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Preface

ECOOP continues to evolve. It has come a long way form its “object-oriented” roots (and it
has even, once, traveled a long way from its European roots). It is difficult to pin down exactly
what belongs in ECOOP, yet I believe many attendees feel there is something distinctive
(and valuable) about the conference.

Part of its distinction is in the format: not just that it is in Europe in the summer, but
that it continues to hew to a single track with a room of informed and attentive listeners,
an experience that has largely vanished in the rest of the programming and programming
languages world. But I believe there is also something identifiable about its content.

Call for Papers

In preparing this year’s Call for Papers, I did a small analysis of the calls from the past
several years. The result was (at least to me) amusing, and can be seen here:

https://github.com/shriram/ecoop-cfps

Program chairs, it appears, cannot help but chop and change the call, with most of their
attention devoted to the laundry list of topics. Well, I could not resist it either, but I also
believe our conference calls would be greatly improved by removing these laundry lists and
replacing them with reasonably crisp, non-vacuous, non-trivial statements of purpose. To
that end, I coined the following:

[ECOOP’s] primary focus has been object-orientation, though it is liberal in its
taste and, in recent years, has accepted quality papers over a much broader range
of programming language and programming topics. Its sweet spot tends to be the
theory, design, implementation, optimization, and analysis of programming languages
that enable or enforce abstractions—data, control, security, performance—across
various programming styles, from object-orientation to reactivity to spreadsheets. It
encourages both innovative and creative solutions to real problems, and evaluations
of existing solutions in ways that shed new insights. Following recent precedent, it
also encourages the submission of reproduction studies.

I look forward to seeing what future chairs will make of it.

Submission Date

This year, we also moved ECOOP’s submission deadline earlier. ECOOP has long set its
date in reaction to when ESOP’s notifications—rejections, specifically—come out. But I felt
having a deadline just a few days later suggests that the feedback from ESOP can in fact be
attended to that quickly, which quite often is false—thereby disrespecting the hard work of
the ESOP reviewers, and pushing the community towards a “dart-throwing” approach to
paper submissions. Waiting for ESOP also pushed a non-trivial load of work to the winter
break period at the end of the year (around Christmas and other festivities), which felt
improper to impose on PC members who are, after all, volunteers.

Therefore, ECOOP had its deadline before ESOP’s responses. This almost certainly
contributed to a significant drop in submissions—we had only 79—but interestingly, the
size of the final accepted paper list was not really smaller than usual, nor was there any
perception of a drop in quality. Perhaps not waiting for rejected papers is not such a problem
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after all, except inasmuch as it fails to boost the denominator of the acceptance rate, affecting
“prestige”.

Reviewing

Thanks to the smaller number of submissions, we were able to lavish attention on the papers.
No paper (with the exceptions below) received fewer than three reviews, of course, but
many papers received five or even six. Because nobody had more than ten papers to review,
the reviewers put a very serious effort into it, and produced outstanding work. Just about
every reviewer produced a useful set of questions for authors to answer and then took their
responses seriously. A later survey indicated significant satisfaction from authors, even of
rejected papers. I doubt papers have been as thoroughly reviewed for any conference in
recent years.

We tried a new-ish format that was only partially successful. The idea was that, in the
two weeks after the submission deadline (finishing before Christmas), we would run a “kick
the tires” round (inspired by what Blackburn and Hauswirth put in place for artifacts). Each
paper would get two PC reviewers, and their job was to:

Check for anonymity failures.
Identify other reviewers.
Identify potential conflicts of interest.
Confirm that the paper was a submission worthy of full reviewing.
Determine if their interest was reduced now that they had seen the paper, so we could
find other reviewers.
Inform the chair if they spotted any other issues.

Some of these goals were indeed achieved. Multiple reviewers came across papers that were
not what they had expected from the title and abstract, and were hence significantly less
interested in. Sometimes these problems are only discovered during the very last few days of
the review period; this made sure that such problems were (partially) detected in the first
few days instead, and reviewers were re-allocated elsewhere.

Other goals did not succeed as much. A few anonymization failures were discovered early,
and we were able to get fixed versions of papers before regular reviewing began. But several
were missed during this round and only uncovered later.

Finally, for non-viable papers, once there was unanimous agreement between the two
assigned reviews and me, in lieu of regular reviews I wrote a generic chair’s response. This
enabled reviewers to focus their energy on papers worth their attention. Both at this
ECOOP and at last year’s Onward!, where I did something similar, this somewhat backfired.
Sometimes the authors of papers that are rejected early are the least aware of how reviewing
works, and are liable to get upset and badger chairs about due process, the nature of science,
and so on. Having done this twice, I’ve learned a lesson: let the papers just get three short
reviews and don’t try to save time. In the long run, it costs more time than it saves.

PC Meeting

In keeping with ECOOP tradition, we had a live PC meeting. I was not initially a big fan of
the idea: I’m not sure how much live meetings accomplish, and they also seem to impose big
costs. Therefore, I asked on social media, and was surprised by the strong support for a live
meeting (and vociferous opposition to doing things electronically). I also polled my potential
PC members, and they too overwhelmingly voted in favor of a live meeting.
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The meeting took one day, and was followed by a 2.5 day workshop featuring PC speakers.
I hosted the attendees at Brown, which is just outside Boston, MA, so the PC workshop had
attendees from the greater Boston area attend. I believe the meeting and workshop were a
success.

Outcome

One thing the PC quickly agreed on is that authors have a tendency to inflate claims about
their work. I believe this is a natural consequence of the punishing standards that PCs set;
authors therefore feel it essential to present their results as acts of perfection, rather than as
they actually are: works in progress. But this complicates the paper record, and forces later
authors to compare against what might be exaggerated or even irrelevant claims.

We therefore agreed that we would be liberal in shepherding papers. This is not common
in programming languages conferences, and can only work with PC members who are willing
to commit to doing the extra work after the date they thought their service would be over;
happily, this PC was very willing to perform this extra work. (On the other hand, in some
communities it is standard for all papers to be assigned a shepherd.) Therefore, we accepted
only ten papers outright (with the usual expectation that authors will make some revisions,
but not a checked, formal requirement that they do so). In contrast, sixteen papers were
sent to shepherding.

Of the sixteen, fifteen passed muster, most of them quite quickly and easily. One paper
had repeated problems, and I decided the PC had already put in too much effort without a
clear end in sight. Therefore, that paper was rejected, leaving us with 25 accepted out of 79.
(Incidentally, that one rejected paper also had non-trivial problems found by the Artifact
Evaluation Committee. It is unclear what would have happened if our shepherd had not
caught the issues the artifact raised.)

Conclusion

It is always healthy to ask whether our ongoing activities are viable and worthwhile. I’m
happy to say that I believe ECOOP is. It provides a distinctive, high-quality venue, and the
surrounding constellation of activities—such as the summer school, CurryOn, workshops,
etc.—have given it a strong supporting context. The conference is healthy and lively.

Many thanks to my supporting team at Brown, who ran the PC meeting and workshop:
Jack Wrenn, Justin Pombrio, Hannah Quay-de la Vallee, Tim Nelson, Kate Correia, and
Lauren Clarke. Ben Lerner has handled assembling the proceedings with saintly patience.
Jan Vitek was an endless source of gnomic wisdom. Camil Demetrescu, Emilio Coppa, and
Daniele Cono D’Elia have made various things that should have been hard startlingly easy.
Beppe Castagna, Richard Jones, and Sophia Drossopoulou fielded numerous questions as
prior chairs, providing responses not only wise but also laced with wit. Finally, the AITO
SC was encouragingly positive about various proposals. A conference that can attract this
many accomplished people to run it with passion has a bright future indeed.

Shriram Krishnamurthi
Providence, RI, USA
2016-05-29

ECOOP 2016
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Abstract
Recent years have seen growing interest in the retrofitting of type systems onto dynamically-
typed programming languages, in order to improve type safety, programmer productivity, or
performance. In such cases, type system developers must strike a delicate balance between
disallowing certain coding patterns to keep the type system simple, or including them at the
expense of additional complexity and effort. Thus far, the process for designing retrofitted type
systems has been largely ad hoc, because evaluating multiple variations of a type system on large
bodies of existing code is a significant undertaking.

We present trace typing: a framework for automatically and quantitatively evaluating vari-
ations of a retrofitted type system on large code bases. The trace typing approach involves
gathering traces of program executions, inferring types for instances of variables and expres-
sions occurring in a trace, and merging types according to merge strategies that reflect specific
(combinations of) choices in the source-level type system design space.

We evaluated trace typing through several experiments. We compared several variations of
type systems retrofitted onto JavaScript, measuring the number of program locations with type
errors in each case on a suite of over fifty thousand lines of JavaScript code. We also used trace
typing to validate and guide the design of a new retrofitted type system that enforces fixed
object layout for JavaScript objects. Finally, we leveraged the types computed by trace typing
to automatically identify tag tests — dynamic checks that refine a type — and examined the
variety of tests identified.
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1 Introduction

In recent years, there have been a number of efforts to retrofit [21] type systems onto
dynamically-typed languages, to aid developer productivity, correctness, and performance.
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These languages are of increasing importance, primarily due to their common use in web
applications on both the client and server side. As more large-scale, complex programs are
written in such languages, greater need arises for static types, due to the resulting benefits
for static error checking, developer tools, and performance. Recent high-profile projects in
type system retrofitting include Closure [16], TypeScript [5] and Flow for JavaScript [13],
and Hack for PHP [32]. Given the proliferation of dynamically-typed languages, there are
many retrofitted type systems ahead.

The key questions in the design of these type systems involve selecting which features to
include. Richer features may allow more coding patterns to be understood and validated
by the type checker. However, richer type systems come at the cost of greater complexity
and implementation effort, and it is rarely a priori obvious whether a given feature’s benefit
outweighs its implementation burden. Hence, great care must be taken in deciding if a
particular type system feature is worthy of inclusion. Such decision points continue to arise
as a type system evolves: e.g., TypeScript recently added union types [29], and Flow recently
added bounded polymorphism [8].

When retrofitting a type system, there is generally a wealth of existing code to which
one would like to introduce types. When considering a type system feature, it would
be very helpful to know how useful the feature would be for typing an existing body of
code. Unfortunately, truly gauging the feature’s usefulness would require implementing type
checking (and possibly inference) for the feature and adding the necessary annotations to the
code base. This involves a significant effort, which ultimately may not have lasting value if an
alternate type system proves to be more suitable. Some previous work [21, 23, 12, 3] reduces
the first burden by providing a reusable framework for implementing type systems, with some
inference. However, each still requires manual annotation, so large-scale evaluation remains
a substantial undertaking — in one case an expert required over 17 hours to annotate part
of one program with type qualifiers [17]. For this reason, in current practice, decisions are
often made based on intuition and anecdotal evidence, without the aid of carefully collected
quantitative results on the impact of certain features. Anecdotes and other qualitative criteria
may validate inclusion of features that are rarely used but important, but quantitative results
on a large corpus can rapidly guide the high level design.

In this work, we propose a novel framework, called trace typing, for automatic and
quantitative evaluation of retrofitted type system features for existing code bases. Our system
works by collecting detailed, unrolled traces of dynamic executions of the code in question.
Evaluating a type system feature then requires implementing type checking and inference for
the unrolled trace, and also defining a merge strategy (explained shortly) for combining the
types of different occurrences of a variable in the trace into the corresponding static program
entity. The crucial observation here is that type checking and effective inference for the
unrolled trace is far simpler than static type checking / inference for the full source language,
and requires no type annotations due to the simplicity of the trace format. Hence, our system
dramatically reduces the implementation effort required to perform quantitative comparisons
of different type system variants, and allows type system designers to automatically gather
feedback from large code bases by typing the trace.

While type inference and checking for unrolled traces is simpler to implement than a
static type checker, the ultimate goal of the designer is a type system for source programs,
not traces. Our key insight is that–given types for the unrolled trace–many source type
systems can be expressed via a family of merge operations, used to merge the types of runtime
entities that the source type system cannot distinguish. For example, a merge operator can
control whether assigning an integer and an object into the same variable yields a union
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type for the variable, or a type error. (We give examples of merging throughout the paper.)
The type errors found by using merged types give an indicative lower bound on the set
of program locations that would be ill-typed under a static type checker, as long as the
merge operator produces useful types. A designer can, therefore, evaluate the usefulness of a
proposed static type system via suitable merge operators in the trace typing framework, and
can also compare the relative power of different static type systems.

We have implemented our techniques in a system for evaluating type system variants for
JavaScript. We evaluated our system on a diverse suite of programs, and evaluated several
different variations on a core object-oriented type system. In particular, our experiments
yielded quantitative answers to the following questions for our benchmarks:

How pervasive is the need for supporting union types on top of a type system that
supports subtyping?
If union types are supported, what kind of “tag tests” usually occur to discriminate
between branches of a union?
How pervasive is the need for supporting parametric polymorphism?
How pervasive is the need for intersection types for functions?

The results are given in Section 6. We believe trace typing gives a quick and easy way to
obtain answers to these (and similar) questions on a given code corpus.

We have also used trace typing to guide the design of a type system to support ahead-
of-time compilation of JavaScript extending previous work [9]. Trace typing allowed us
to validate some of our design choices without implementing a type inference engine that
works on real code. Moreover, it helped point to where we need to extend the type system.
Section 6.4 details this case study.

Trace typing is designed to present a rapid, aggregate, quantitative picture to help a type
system designer decide whether to support certain features and prioritize the development
of a type checker. When features are not supported, a programmer needing said features
must either ignore the warnings from the type system, or refactor her code to fit the type
system restrictions. For example, if trace typing shows that parametric polymorphism is
rarely needed in the code of interest, then the designer can defer supporting polymorphism;
in the interim, developers must work around the limitation, e.g., by code cloning. Of course,
a type system designer will need to consider other factors besides the output of trace typing
when prioritizing, such as idioms used by critical modules, or the difficulty of converting
code to fit within certain restrictions.

Contributions. This paper makes the following contributions:
We propose trace typing as an approach for easily evaluating the usefulness of type system
features, allowing large bodies of existing code to inform type system design. Trace typing
requires far less effort than implementing various static type checkers, and potentially
adding type annotations to large bodies of code.
Using the trace typing approach, we systematically compare the precision of a number of
object type systems for JavaScript on some of the most popular packages for node.js,
totaling over 50,000 lines of code. We include union types as well as several variants of
polymorphism in our study.
We describe our experience with trace typing to guide and check choices in the design of
a type system for use by an optimizing JavaScript compiler.
We use trace typing to automatically identify tag tests in our large corpus, and analyze
the relative frequency of different tests and their structure.

ECOOP 2016



1:4 Trace Typing: An Approach for Evaluating Retrofitted Type Systems

1 function f(a) { a.p = 7; }
2 function g(b) { return b; }
3 var x = { p: 3 };
4 var y = { p: 4, q: "hi" };
5 var z = { q: "bye", r: false };
6 f(x); // f.6: {p: Number } -> void
7 f(y); // f.7: {p: Number , q: String } -> void
8 g(y); // g.8: {p: Number , q: String } -> {p: Number , q: String }
9 var w = g(z); // g.9: {q: String , r: Boolean } -> {q: String , r: Boolean }

10 w.r = true;

Figure 1 A JavaScript program to illustrate polymorphism.

2 Trace Typing by Examples

In this section, we show informally how trace typing can be used to carry out different kinds
of quantitative experiments relevant when designing a type system. Section 3 gives a more
formal description of the framework.

2.1 Polymorphism
Figure 1 gives a small JavaScript example. The program allocates new objects at lines 3–5,
and then calls functions f and g. The f function accesses the p field, while g just returns its
parameters. All field accesses are well-behaved: they access pre-existing fields, and fields are
only updated with a value of a compatible type. Here, we show how trace typing can can
quantify the relative effectiveness of two type systems with different levels of polymorphism
for handling this code.

We focus on the types observed in the dynamic trace for functions f and g. For our
purpose, these types correspond to the parameter and return types observed per function
call site. So, for function f we observe the type {p: Number} -> void for the call at line 6,
and {p: Number, q: String} -> void for line 7. Similarly, for function g we observe
type {p: Number, q: String} -> {p: Number, q: String} for the line 8 call, and {q:
String, r: Boolean} -> {q: String, r: Boolean} for line 9. Note that the types above
are not based on inference on the body of functions f and g.

Type system variants can be distinguished by how their merge strategies combine these
types into a single function type each for f and for g. We consider the following merge
strategies. Tsub merges, separately the argument and return types, in each case taking the
least upper bound in a suitable subtyping lattice. For our example, this strategy yields the
type {p: Number} -> void for f and {q: String} -> {q: String} for g.1 Tpoly merges
the function types by introducing type variables, arriving at a signature with parametric
polymorphism (details in Section 4.3). The type we obtain for f is the same as in the case of
Tsub, but for g, it is (E) -> E; E is a type parameter.

Next, the trace typing system performs type checking using the merged types, and reports
the number of type errors to the user. This type error count identifies program locations
that a static checker for the type system would be unable to validate, a valuable statistic for
determining the usefulness of the variant in practice (fewer errors2 means that the variant
can validate more code patterns).

1 Note that we did not compute a type for g via least-upper-bound with respect to function subtyping
(with contravariance in argument position); see Section 3.1 for further details.

2 Throughout this paper, we use error as a synonym for static type error, not to refer to actual developer
mistakes in a program.
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1 function f(x){
2 ... x ... // x.2: A | int
3 if(x instanceof A){ // x.3: A | int
4 ... x ... // x.4: A
5 }
6 ... x ... // x.6: A | int
7 }
8 f(new A());
9 f(3);

Figure 2 Tag test example.

With Tsub, the types are sufficient for type-checking the bodies of the functions, but g’s
type is still insufficient to typecheck the dereference at line 10, leaving one error remaining.
With Tpoly, the types are sufficient to ensure there is no type error in the program. The type
checking phase also checks conformance of the actual parameters being passed to function
calls at lines 6, 7, 8 and 9; these checks pass for both Tsub and Tpoly.

Tsub produces one type error on this trace, while Tpoly produces 0. These counts are
underestimates with respect to a (hypothetical) static type checker, both due to our reliance
on dynamic information, and due to the over-approximations inherent in any static type
checking. Nevertheless, across a large code base, such data could be invaluable in finding the
extent to which a particular type system feature, e.g. parametric polymorphism, is useful.
Section 6.2 presents results from an experiment that evaluated the usefulness of parametric
polymorphism and a synthetic type system with “unbounded” polymorphism on a suite of
benchmarks, via comparison of error counts.

2.2 Discriminating Unions
Suppose we wish to design a type system for JavaScript that is equipped to reason about tag
checks at the points where the program refines a union type. Such a construct is shown in the
example of Figure 2. In this example, a union type with more than one case is narrowed to a
specific case guarded by a condition. In general, the guard can be an arbitrary expression,
but that makes type checking difficult — it would need to track an arbitrary number of
predicates in carrying out an analysis. For example, the following “non-local” variation of
the type guard in the example in Figure 2 would be more complex to handle:

1 var y = x instanceof A
2 ...
3 if (y) { ...

It is simpler to support a limited number of syntactic forms. Can a type system designer
obtain quantitative feedback on what kind of conditional constructs occur in the code corpora
of interest? Are non-local type guards common? What about conjunctions and disjunctions
of predicates? Simple syntactic pattern matching is an unreliable way to find this out,
because it is fundamentally a flow analysis problem.

Trace typing makes this experiment easy. Trace typing ascribes a type to each occurrence
of each variable in the program based on dynamic observation. Given these types, one can
find pairs of successive reads of a variable without an intervening write, where the type
ascribed to the variable in the second read is different from that of the first. This is a
heuristic to identify instances of a variable’s type becoming narrower on an unrolled path,
likely to be a tag test.

Consider the example in Figure 2 again. We examine some of the type ascriptions carried
out by trace typing during an execution of the program. Here, at line 2, x refers to an object
of type A and an int, respectively, in the invocations from line 8 and line 9. Let us label the

ECOOP 2016
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Ascribe	  
types	  to	  
values

Assign	  
dynamic	  
types	  to	  
variables

Assign	   static	  
types	  to	  
variables

Check	  for	  
errorsTraceProgram

Type
errors

representative	  
input(s)

Candidate	  type	  
system

Figure 3 Trace typing framework overview.

two dynamic occurrences of x as x.2.1 and x.2.2, where the first index refers to the line
on which the variable occurs and the second refers to the invocation sequence number. The
same types will be observed for x.3.1 and x.3.2. At line 4, x.4.1 observes A; that is the
only dynamic occurrence of x on this line. Finally at line 6, x.6.1 and x.6.2 observe A and
int respectively.

Crucially, trace typing can be configured to merge the types ascribed to variable oc-
currences on the same line, but across different invocations. Say that our type system
includes union types. In that case, x.2 (the result of merging x.2.1 and x.2.2) gets the
type A | int, which represents a union type consisting of types A and int. For x.3 we get
A | int as well. However, for x.4, we get just A. Hence, for successive reads x.3 and x.4
(with no intervening write), we observe the situation that the second type is a refinement of
the first. This is a clue that the conditional at line 3 (that falls between the first and the
second reads) is a type guard.

Using this technique on a large code corpus, we found that while non-local type guards
are uncommon, boolean combinations of predicates are commonly used in type guards.
Section 6.3 details the experiment we carried out to find the nature of tag tests in real code.

3 Trace typing

Figure 3 gives an overview of the trace typing process. The trace typing framework takes
two inputs:

a type system of interest, specified by defining various parameters in a framework
(Section 3.1); and
a program P of interest, and inputs for exercising P.

Given these inputs, trace typing proceeds in the following four phases:
1. An unrolled trace is produced by executing an instrumented version of P on the provided

inputs (Section 3.2).
2. The types of all values (including objects and functions) and variables in the trace are

inferred (Section 3.3).3
3. The inferred types are merged, coarsening the precise types in the trace to a corresponding

source typing (Section 3.4).
4. The resulting types are used for type checking, to estimate the ability of the type system

to handle the observed behaviors (Section 3.5).

The number of errors reported in the last step is a useful metric for evaluating type
system features (see Section 7 for further discussion). Our framework has proven to be
sufficiently expressive to model even modern industrial proposals for retrofitted type systems
(Section 4.4). Also, the computed types can be used as part of experiments to test richer
type system features, such as tag tests (Section 4.2).

3 In the remainder of the paper, we use the terms “ascribed” and “inferred” interchangeably.
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3.1 Trace Type Systems
Here, we describe the interface by which a type system is specified to the trace typing
framework. A type system T has five components:

T.α: (Value) → Type ascribes a type to a concrete value. For JavaScript, values include
both primitives as well as object instances.

T.t: (Type, Type) → Type computes the least-upper-bound of the input types in the
subtyping lattice for the type system. For termination, we require T.t to be monotonic.

T.
→
t: (Function-type. . . ) → Function-type takes a list of types for individual invocations

of a function f and computes a type that can accommodate all invocations. A type for
an invocation is computed by applying T.α to the receiver, argument, and return values,
and then combining them into a function type. T.

→
t often differs from applying T.t to the

invocation types; further discussion below.

T.equiv: (FI | FS) × (CI | CS) governs how types for different trace occurrences of the
same source variable are merged to approximate source-level typing (see Section 3.4). The
first component determines whether to maintain a separate type for a local variable at
different program points (flow sensitivity), while the second component determines if separate
types should be maintained across different function invocations (context sensitivity). Note
that use of CI vs. CS is usually dictated by the choice of T.

→
t (see Section 6.2). Also, our

implementation supports more fine-grained flow- and context-sensitivity settings; here we
only present two options for simplicity.

T.check: (TypeEnv, Statement) → number is a type checking function that counts the
number of type errors a trace statement causes in a given type environment.

Together, T.t, T.
→
t, and T.equiv comprise the type system’s merge strategy. Value

represents the values of our trace language (see Section 3.2), while Type and Function-type
are types defined entirely by T. Defining T.α for JavaScript objects is non-trivial, since the
shape and property types of the object may change over time; we detail the issues involved
in Section 4.1.

Note that T.
→
t should not use contravariance when handling function parameters, unlike

typical function subtyping. T.
→
t is used to compute a type τ for function f that is consistent

with all observed invocations of f. Hence, each parameter type in τ should accommodate
any of the corresponding parameter types from the individual calls, a covariant handling.
For an example, see the handling of calls to g in Figure 1 (Section 2.1).

Example 1: Simple OO. To simulate a basic structural OO type system with width
subtyping:

T.α gives a type to an object by recursively characterizing the types of its properties (see
Section 4.1 for details).
T.t gives the least-upper-bound of two object types (retaining common fields that have
identical types) and returns the same type if given two identical types. Otherwise it
returns >.
T.

→
t applies T.t to the individual argument and return types (not using standard function

subtyping; see above) to compute a generalized function type.

ECOOP 2016
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〈trace〉 ::= 〈statement〉*
〈statement〉 ::= 〈var〉 = 〈expression〉 | 〈var〉.〈name〉 = 〈var〉 | delete 〈var〉.〈name〉 | 〈meta〉
〈expression〉 ::= 〈var〉 | 〈var〉.〈name〉 | allocate | null | undefined | 〈bool〉 | 〈number〉 | 〈string〉
〈var〉 ::= v1 | v2 | v3, . . .
〈name〉 ::= a | b | . . .
〈meta〉 ::= begin-call〈var〉〈var〉〈var〉* | end-call〈var〉 | end-initialization〈var〉

Figure 4 TL grammar.

T.equiv is (FI,CI).
T.check performs standard assignment compatibility checks for variable and field writes,
property type lookup on property reads, and standard checks at function invocations.

Example 2: Union Types. To extend Example 1 with union types, we modify T.t to
introduce unions when merging different sorts of types (e.g., a number and object type). For
the code ‘var x = 3; x = { f : 4 };’, x would be given the union type number | {f :
number}: Section 4.1 discusses how we perform type checking in the presence of such union
types.

Example 3: Tsub and Tpoly revisited. We referred to Tsub and Tpoly in Section 2.1. Tsub

is precisely the Simple OO of Example 1. Tpoly replaces T.
→
t of Tsub to introduce parametric

polymorphism (described further in Section 4.3).

3.2 Traces
The execution of a source code program can be recorded as a finite sequence of primitive
instructions that reproduces the dataflow of the execution. We call such a sequence a trace.
A trace is a simplified version of the original source program:

Every dynamic read or write of a variable or subexpression is given a unique identifier.
Control flow structures are erased: conditionals are reduced to the instructions of the
conditional expression and chosen branch, loops are unrolled, and calls are inlined.
Native operations are recorded as their results; e.g. a call to the runtime’s cosine function
is recorded as the computed value.

We express our JavaScript traces as programs in a simple language TL. TL is an
imperative, object-oriented language without control flow structures or nested expressions.
TL has reads and writes for variables and fields, deletion for fields, and values (objects and
primitive values). The syntax of TL can be seen in Figure 4.

Figure 5 shows excerpts from the trace for executing the code in Figure 1. Many JavaScript
details are omitted here for clearer exposition but handled by our implementation. The
variable names in the trace are generated from source variable names where present, and
otherwise fresh temporaries are generated. (Note that fresh temporaries are used within each
call to f.) A source mapping for each trace statement is maintained separately.

The trace contains some meta-statements to aid in later analyses. Each call is demarcated
by begin-call and end-call statements, to aid in recovering the relevant types for the
invocation. Data flow from parameter passing and return values is represented explicitly.
The end-initialization statement marks the end of a constructor or initialization of an
object literal.
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1 <tmp0@G > = allocate // ... allocation and assignment at line 6
2 <tmp1@G > = 3
3 <tmp0@G >.p = <tmp1@G >
4 end - initialization <tmp0@1 >
5 <x@G > = <tmp0@G >
6 begin -call <f@G > <x@G > // ... first call to f, at line 9
7 <a@f_1 > = <x@G >
8 <tmp0@f_1 > = 7
9 <a@f_1 >.p = <tmp0@f_1 >

10 end -call
11 begin -call <f@G > <y@G > // ... second call to f, at line 10
12 <a@f_2 > = <y@G >
13 <tmp0@f_2 > = 7
14 <a@f_2 >.p = <tmp0@f_2 >
15 end -call

Figure 5 Excerpts from the trace for the program in Figure 1. The name of variables include
their scope, e.g. <x@G> is the x variable in the global scope, and <a@f_2> is the a variable during
the second call to f.

3.3 Initial Type Ascription

Given a trace and a type system as specified in Section 3.1, trace typing first ascribes precise
types to variables and values in the trace, without consideration for mapping types back
to the source code. First, types are ascribed to all values. Primitive values and objects
are handled directly using T.α, while functions are handled by combining the type for each
invocation with T.

→
t, as described in Section 3.1.

Once types for values have been ascribed, each trace variable is given the type of the
value it holds (recall that each trace variable is only written once). For a given trace T ,
we define the initial type environment Γ0 as: ∀v ∈ Variables(T ).Γ0(v) = T.α(ValueOf(T, v)).
This typing for trace variables is very precise—every variable access is given its own type,
based solely on the value it holds at runtime. The next phase (Section 3.4) generalizes these
initial types to more closely mimic the desired source-level treatment of variables.

Example. Consider the variable <tmp1@G> at line 2 in Figure 5; it gets the value 3, for
which Tsub.α yields the type Number. Similarly the type of <x@G> at line 5 is {p: Number}
because that is the type ascribed to the value in <tmp0@G> at line 5.

3.4 Type Merging and Propagation

To model realistic type systems, we construct a less precise type environment Γ̂ by merging
the types of “equivalent” trace variables in Γ0. Variable equivalence classes are determined by
the T.equiv operator provided by the type system (see Section 3.1). If the first component
of T.equiv is FI, we employ a flow-insensitive treatment of variables: all variable occurrences
v_i within a single dynamic call corresponding to the same source variable v are made
equivalent. No such equivalences are introduced if the first T.equiv component is FS. If the
second component of T.equiv is CI, we impose a context-insensitive treatment of variables:
each matching v_i across function invocations (i.e., the same read or write of source variable
v) is placed in the same equivalence class.

Given variable equivalence classes and Γ0, Figure 6 defines Γ̂ in terms of two components:
Γ̂m for merging equivalent variables, and Γ̂p for propagating across assignments. (As Γ̂m

and Γ̂p are themselves defined in terms of Γ̂, the equations must be solved by computing
a fixed point.) Given trace variable x, Γ̂m(x) computes the least-upper bound (T.t) of all
variables in its equivalence class x̂. However, this merging alone is insufficient for mimicking
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Γ̂(x) = Γ̂m(x) T. t Γ̂p(x) Γ̂m(x) = T.
⊔

xi∈x̂

Γ̂(xi)

Γ̂p(x) = T.
⊔

′x=rhs′∈stmts


Γ0(x), rhs = allocate ∨ rhs ∈ primitives
Γ̂(y), rhs = y

Γ̂(b).p, rhs = b.p ∧ Γ̂(b) is object with property p
Γ0(b).p, rhs = b.p ∧ (Γ̂(b) not an object ∨ Γ̂(b).p not present)

Figure 6 Equations for type merging and propagation.

1: f :: <({p: Number }) -> Undefined >
2: g :: <({q: String }) -> {q: String })>
6: x :: {p: Number }
7: y :: {p: Number , q: String }
8: z :: {q: String , r: Boolean }

12: w :: {q: String }

Figure 7 Types ascribed for variable writes in Figure 1 with Tsub.

source typing, as it does not consider relationships between variables: if the program contains
statement x = y, then the type of y influences the type of x in a source level type system.

Γ̂p in Figure 6 handles type propagation across assignments. The first case handles
assignments of values, using the baseline environment Γ0. For the second case, x = y, we
generalize Γ̂(x) to include Γ̂(y). This step is important to mimic source-level handling of
the assignment. The final two cases handle object field reads b.p. If Γ̂(b) is an object type
with a property p, the handling is straightforward. However, this may not hold, due to other
approximations introduced in computing Γ̂(b) (e.g., if p were dropped when merging object
types due to width subtyping). If Γ̂(b).p does not exist, we fall back to Γ0(b).p, i.e., we
use the precise type of b. Without this treatment, type errors could propagate throughout
the remainder of the trace, misleadingly inflating the type error count. Our fallback to the
precise type of b helps to localize type errors, thereby allowing for gathering more useful
information from the rest of the trace than the alternative of producing >. For example, if x
holds a number and later an object with property foo, FI merging will give it type >. A
read of x.foo would produce a type error. Rather than tainting all subsequent uses of the
read result, we ascribe the type of the value observed as the result of that read.

Example. Consider type propagation for the a variable in function f of Figure 1, using
type system Tsub from Section 2. The corresponding variables in Figure 5 are <a@f_1>
and <a@f_2>, whose respective types are {p: Number} and {p: Number, q: String} in Γ0
(<y@G>’s initialization (line 4 in Figure 1) is elided in Figure 5). Hence, with the width-
subtyping-based merge mechanism Tsub.t, both <a@f_1> and <a@f_2> are assigned type
{p: Number} in Γ̂. The types in Γ̂ for all variables in Figure 1 (using Tsub) appear in Figure 7.

3.5 Type Checking
Once type propagation is done, type checking can be performed applying T.check to every
statement in the trace, using Γ̂ as the context. T.check should return, for each statement,
the number of falsified antecedents for the corresponding type rule (returning 0 implies a
well-typed statement).
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τ ::= > | ⊥ | number | boolean | string | O | F |
⋃
τ | µX.τ

O ::= PropName → τ

F ::= [τ ](τ)→ τ |
∧
F

Figure 8 Types used in the type systems we model.

Note that our type propagation biases the location of type errors to occur more often at
reads instead of writes. Type propagation uses the T.t operator to find a variable type that
handles all writes to that variable. This process may produce a type higher in the subtyping
lattice than what the programmer may have intended, causing type errors to be pushed to
uses of that variable.

Consider the example: ‘x = {name: "Bob"}; x = {nam: "Bill"}; print(x.name);’
Most likely, the programmer intended the type of x to include a name field. If this type were
declared, the type checker would produce an error at statement two, due to the misspelled
nam field. With trace typing under the Tsub type system, we will instead compute a type for
x that has no fields by merging the types of the two objects — essentially over-generalizing
due to the presence of what is well described as a static type error. Hence, the type error is
pushed to the access of name at statement three, which is no longer in the type of x.

Intuitively, we want that when mimicking two comparable source-level type systems, trace
typing ends up reporting fewer type errors for the more powerful one. Indeed, our results
show that this is generally the case. However, this is not guaranteed to be the case because
our ascription operation (T.α) can sometimes over-generalize, leading to unpredictable error
counts. See Section 7 for further discussion of this matter.

4 Instantiations

In this section, we detail several instantiations of the trace typing framework of Section 3,
showing its flexibility. We first describe a core type system that allows many of JavaScript’s
dynamic object behaviors. We then show how this system can be used to detect possible tag
tests in programs. Then, we present an extension of this system to test the usefulness of
parametric polymorphism. Finally, we show an instantiation with a different, stricter type
system for objects based on recent work [9], and how to evaluate various features of that
system using trace typing.

4.1 Core Type System
The types we use for most of our experiments appear in Figure 8. The top (>), bottom
(⊥), primitive, union (

⋃
), and recursive types (µ) are standard. An object type (O) is a

map from property names to types. Function types (F) are either standard (with receiver,
argument, and return types), or an intersection type over function types. We use intersection
types as a very precise model of call-return behavior, for a limit study of the usefulness of
polymorphism (Section 6.2).

In our implementation, our object types are significantly more complex, mirroring the
many roles objects play in JavaScript. In JavaScript, functions are themselves objects, and
hence can have properties in addition to being invokable. Arrays are also objects with numeric
properties and possibly non-numeric as well. Our implemented object types model these
semantics, but we elide them here for simplicity. JavaScript also has prototype inheritance,
where a read of property p from object o is delegated to o’s prototype if p is not present
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shapeMap(o) ≡ {(pi, vi) | o.pi = vi at some trace point}
T.α(o) ≡ {(pi, τi) | M = shapeMap(o) ∧ pi ∈ dom(M) ∧ τi = T.t

v∈M [pi]
T.α(v)}

Figure 9 Type ascription for objects.

on o. For the core type system, object types collapse this prototype chain, so unshadowed
properties from the prototype parent are collapsed into the child object type (more discussion
shortly). The type system of Section 4.4 deals with prototype inheritance more precisely.

Ascribing Object Types. As noted in Section 3.1, defining the T.α operation for object
values is non-trivial. Since object properties may point to other objects, types for object
values are inter-dependent. Further, JavaScript objects may be mutated in many ways:
beyond changing property values, properties can also be added and deleted. Even the
prototype of an object may be mutated.

Trace typing is currently limited to object types that do not change over time, i.e., only
one type can be associated with each object instance during the entire execution. So, for an
object o, T.α(o) must merge together the different observed properties and property types
for o into a single object type. Nearly all practical type systems use object types in this
manner, as state-dependent object types require complex reasoning and restrictions around
pointer aliasing.

Figure 9 gives our definition of T.α for objects. We first define shapeMap(o), a map from
property names to sets of values (shown as a set of pairs). shapeMap(o) captures all the
property values that could be read from o at any point in the trace. (Note that we do not
require the property read to actually exist in the trace.) Since JavaScript property reads
may be delegated to the prototype object, shapeMap(o) gives a “flattened” view of o that
includes inherited properties. Consider the following example:

1 var y = {};
2 var x = { a: 4 } proto y; // prototype inheritance shorthand from [9]
3 x.b = { c: false };
4 y.d = "hello";
5 x.a = 10;

For this example, the shape map for the object allocated on line 2 is: [a 7→ {4, 10}, b 7→
{{c : false}}, d 7→ {”hello”}].

The object type T.α(o) is written as a set of pairs in Figure 9. The properties in T.α(o)
are exactly those in the domain of shapeMap(o). The type for property pi is obtained by
applying T.α to each value of pi in shapeMap(o), and then combining the resulting types
using T.t. When computing T.α, cyclic data structures must be detected and handled by
introducing a recursive type.

Type Checking. The type rules we checked in our implemented type systems are standard.
Property accesses can be checked normally, since the accessed property name is always
evident in the trace. Function invocations are checked normally with one caveat: passing too
few arguments is permitted, as all JavaScript functions are implicitly variadic.

For type systems with union types, we optimistically allow most operations that work for
one case of the union (e.g., property access on a union typed expression) without validating
that the code has checked for the appropriate case, but treat assignment of union-typed
expressions to storage locations soundly (TypeScript and Flow have very similar rules for
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unions). Our trace language does not currently include conditionals, making it non-trivial to
use tag tests to eliminate union types [20, 28]. However, our types do allow for discovering
likely tag tests in the program, as we show below.

In the case when T.t causes a type to be >, we count every use of and assignment to a
variable of that type to be an error.

4.2 Detecting Tag Tests
To soundly eliminate union types, a type system must support narrowing the union under
a conditional that checks some tag information of a value. While the theory for such
narrowing is rich and well-developed [20, 28], industrial type systems for JavaScript (Flow
and TypeScript) treat union elimination unsoundly in the same “optimistic” manner we do
(Section 4.1). A key issue is that tag tests can vary in complexity, from simple type checks
(e.g., JavaScript’s typeof operator) to complex combinations of user-defined predicates, and
it is unclear what level of complexity must be handled to provide adequate support for tag
tests.

Using trace typing, we designed a technique to observe which tag test constructs are
being used most frequently. As described previously in Section 2.2, the technique works by
observing when there are two consecutive reads of a variable v (with no intervening write),
and v’s type is narrower at the second read than the first. This technique requires using the
FS setting in T.equiv, to keep separate types for each variable occurrence.4 For function
types, we used T.

→
t from Tsub, thereby generalizing using only subtype polymorphism. In

Section 6.3, we discuss the kinds of tag tests discovered in our benchmarks with this technique
and their prevalence.

4.3 Parametric Polymorphism

Here, we define T.
→
tpoly, an instantiation of the T.

→
t operator that discovers types with

parametric polymorphism. With this approach, one can evaluate the usefulness of adding
parametric polymorphism to a retrofitted type system. T.

→
tpoly works by enumerating all

possible type parameter replacements in each invocation type for a function, and finally
choosing the most general parameterized type matching all invocations. The enumeration
proceeds by replacing all subsets of occurrences of a concrete type by a type variable.
Consider the identity function, function id(x){ return x; }, and two invocations, id(3)
and id(true). The observed invocation types for id are Number -> Number and Boolean
-> Boolean. (Applying T.

→
t from Tsub to these types would yield the unhelpful type

(>) → > for id.) For the first type, the enumeration would yield types X -> Number,
Number -> X, and X -> X (along with the original type). After proceeding similarly for the
second type, T.

→
tpoly returns the type X -> X for id, as it is the most general type matching

both invocations.
In general, T.

→
tpoly also generates signatures with multiple type parameters. It also

attempts to replace types nested one level into each argument or return type, to discover
types operating over generic data structures. While this enumeration is exponential in the
arity of the function, we did not observe an appreciable slowdown in practice.

After discovering polymorphic types, we must check the invocations against those types
in T.check. The checking can be done by treating each type variable as a direct subtype

4 Our implementation also disabled the assignment merging shown in Figure 6, to discover more tag tests.
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of >, distinct from other type variables. Our implementation currently uses an alternate
strategy of modifying the context-sensitivity policy in T.equiv, so that variables in function
invocations with distinct instantiations of the type parameters are not merged. This strategy
corresponds to checking a more powerful form of bounded polymorphism, which may yield a
reduced error count compared to directly checking unbounded type parameters.

4.4 Fixed Object Layout
We now show how to enhance the object types presented in Section 4.1 to support fixed object
layout, as described in recent work by Choi et al. [9]. In general, JavaScript objects is used as
dictionaries, with arbitrary addition and deletion of properties (keys). However, implementing
all objects in this manner would lead to poor performance. Real-world programs often do
not use this dictionary-like behavior. Objects often behave like records, in which the set of
properties is stable: after initialization, new properties are not added or removed. Modern
just-in-time compilers detect the record usage pattern at run time, and use it to optimize
the object representation where possible.

Choi et al. [9] show how to enforce the record usage pattern in a type system, enabling
efficient static compilation of a JavaScript subset. Prototype inheritance complicates the
design of such a type system, since a write of an inherited property creates a shadowing
property in the child object. Consider the following example:

1 var o1 = {a:3, m: function (x) {this.a = x;}}
2 var o2 = {b:5} proto o1 // prototype inheritance shorthand from [9]
3 o2.a = o2.b; // adds field a to o2

The write at line 3 adds a local a property to o2, rather than updating the inherited property
o1.a. The type system for fixed layout handles this case by distinguishing between read-write
properties local to an object and read-only properties inherited from the prototype chain.
With this distinction, the type system would reject the statement on line 3 above, as it is a
write to a read-only property.5

To track read-only and read-write properties in object types, we extend T.α from Sec-
tion 4.1 as follows. Instead of tracking a single shape map for each object, we keep a
read-write shape map for locally-declared properties, and a read-only shape map for inherited
properties. In Section 4.1, the domain of shapeMap(o) includes any pi present on o at any
point in the execution. Here, to enforce the fixed layout property, we restrict the domain
of each shape map to properties present before the end of o’s initialization. (Recall from
Section 3.2 that our traces include end-initialization statements to mark these points.)
Given these two shape maps, computation of read-only and read-write properties in each
object type proceeds as in Figure 9. Type checking is enhanced to ensure that property
writes are only performed on read-write properties.

We also check for two additional properties from the Choi et al. type system [9]. The
type system requires any object used as a prototype parent to have a precise type, i.e., no
properties can have been erased from the type using width subtyping. (This is required to
handle subtle cases with inheritance [9].) In trace typing, we check this property by only
flagging types of object literals as precise, so if width subtyping is ever applied, the resulting
type is not flagged. Finally, the type system requires that if a property from a prototype

5 The type system of Choi et al. also tracks which properties are written on method receivers, to locally
check validity of inheritance [9]. With trace typing, this information need not be tracked explicitly,
since receiver types are propagated into method calls.
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is shadowed, the parent and child properties have the same type. This condition is easily
checked in T.α once read-only and read-write properties are computed.

5 Implementation

We implemented the trace typing process described in Section 3 as a toolfor typing JavaScript
programs. This section reports on some of the more noteworthy aspects of the implementation.

Tool Architecture. Our tool consists of two components: Trace Collector and Trace Typer.
Trace Collector is a Jalangi [26] analysis that obtains a trace of a program of interest
by monitoring the execution using source-level instrumentation; it consists of about 2500
lines of JavaScript code. Trace Typer implements the core trace typing framework. The
framework and the type systems described in Section 4 are implemented in about 4000 lines
of TypeScript, of which about 1000 lines are the type system implementations.

Modeling JavaScript Semantics. In our implementation, great care is taken to accurately
model JavaScript’s complex primitive operators. Much of the complexity in operator semantics
lies in the implicit conversions performed on operands. For example, the binary && operator
first coerces each of its operands to a boolean value; this coercion can be applied to a
value of any type. However, the value of the && expression is always one of the uncoerced
operands. The implementation creates trace statements that models these conversions
explicitly, enabling accurate data flow tracking and type ascription.

Modeling the Native Environment. To handle interactions with the native environment
(e.g., built-in JavaScript library routines), we require a model of the native behavior. We
express native models using trace statements, avoiding the need for a separate modeling
language. In many cases, we can actually infer native models from the concrete states of the
execution, thereby avoiding the significant work of writing models by hand. Model inference
works by associating a new global escape variable with each object that can escape to the
native environment. Passing an object to the native environment is modeled as a write to the
corresponding escape variable, while retrieving the object from the environment is modeled
as a read. With this handling, a model can be automatically inferred for much of the native
environment, including complex functions such as the overloaded Array constructor. Our
technical report [4] provides more details.

6 Experiments

We report on several experiments we conducted using trace typing. First, we studied the
trends in error counts for six type system variants, generated by varying handling of subtyping
and function types (Section 6.2), yielding useful insights on the relative importance of these
variants. Second, we used trace typing to discover tag tests in our benchmark and characterize
their relative frequency and complexity (Section 6.3). Finally, we studied several questions
around the restrictiveness in practice of a type system for fixed object layout (Section 6.4).
Together, these experiments show the usefulness and versatility of the trace typing framework.
We first describe our benchmarks, and then present the experiments.
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Table 1 Benchmarks sizes and error rates for the fixed-object-layout type system. ‘LOC’ is
the lines of code in the program. ‘LOC exec’ is the lines covered in our execution of the program.
‘Length’ is the total number of trace statements. ‘ro/rw’, ‘prototypal’ and ‘inheritance’ are the
error-rates for different each kind of type check.

Benchmark sizes Fixed-object-layout error rates

Benchmark LOC LOC exec Length ro/rw prototypal inheritance

escodegen 2132 723 375325 0/53 0/0 0/217
esprima 4610 1052 23986 0/44 0/2 0/298
lazy.js 2557 1016 25439 114/387 0/17 2/470
minimist 186 151 140812 0/14 0/0 0/81
optparse 222 141 15246 0/15 0/1 0/51
qs 726 256 102637 0/41 0/0 0/62
typescript 35456 8139 167730 1/2085 2/3 0/3286
underscore 1098 727 120081 2/175 0/0 1/294
xml2js 840 275 73672 0/42 1/2 0/91

Total 52193 14541 1243857 117/2856 3/25 3/4850

6.1 Benchmarks
We use nine popular packages from npm, the node.js package manager, as benchmark programs.
Table 1 measures the static source code size of each program,6 as well as the number of
statements in the traces we generate and the number of static source lines covered by our
executions. underscore and lazy.js are utility libraries. esprima and escodegen are a
JavaScript parser and code generator, respectively. typescript is the compiler for the
TypeScript language.7 minimist, optparse and qs are parsers for command line options
and query strings. xml2js is an XML serializer/deserializer.

These benchmarks capture a range of interesting JavaScript styles. The parsers, code
generators, and compilers manipulate OO-style AST data structures In contrast, the utility
libraries and option parsers are highly reflective (e.g., constructing or extending objects using
dynamically-computed property names), but are otherwise written in a largely functional
style. Hence, the suite as a whole exercises a variety of features of trace typing.

To exercise the programs for trace generation, we wrote a separate driver for each
benchmark. For the option parsers and escodegen, this driver comprised extracted tool
invocations from their test suites. We exercised the utility libraries with code snippets from
their official tutorials.

6.2 Comparing Type System Variants
For our first experiment, we compared six type systems, generated by varying the T.t and
T.

→
t operators over the core types of Section 4.1. For T.t, we used two options:
subtyping: This uses standard structural (width) subtyping for objects, as in Tsub from
Section 2.1 (see also Example 1 in Section 3.1).
unions: T.t treats two object types as in Subtyping, but also introduces a union type
when applied to an object type and a primitive (see Example 2 in Section 3.1).

6 Non-comment, non-blank lines as counted by cloc, excluding build scripts, tests and test harness code.
7 Table 1 gives lines of JavaScript source (the compiler is bootstrapped).
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Figure 10 Error counts for subtyping and unions, selecting base for T.
→
t.

For T.
→
t, we use three options:

base: T.t is applied individually to argument and return types, as discussed in Section 3.1.
poly: This uses T.

→
tpoly to discover parametric polymorphism, as discussed in Section 4.3.

intersect: T.t simply combines two function types into an intersection of the two types.
This strategy yields more precise types than any practical type system, and hence is only
used as a limit study of the usefulness of polymorphic function types.

T.equiv uses FI for flow-insensitive variable types in all configurations. Context sensitivity
is varied in accordance with T.

→
t: for base, we use CI, while for intersect we use CS (since

each invocation may have its own case in the intersection type). Context sensitivity for poly
was discussed in Section 4.3.

After collecting traces, we ran our trace typer with each of our type system variants,
counting the number of static (source location) type errors that arose. We include only type
errors that occur in the subject program, not in the libraries they depend on.

Experiments were run on a quad-core Intel Core i7-3520M@2.90GHz with 16GB RAM,
running Ubuntu 15.10 and node.js 5.0. Collecting traces and running all six configurations
required less than 15 minutes.

Our full data set is available [4]. We present two select slices of data here. Figure 10
presents the number of syntactic locations with errors for subtyping and unions, where T.

→
t

is base in either case. Figure 11 shows error counts for the three T.
→
t settings, where T.t is

subtyping in all three cases. The trends shown here are similar across other configurations.
Overall we see trends we would expect, with more powerful type systems yielding fewer

errors. There are two small inversions in the results, where a more precise configuration
(poly) produces more errors than a less precise configuration (base) discussed shortly.

This experiment let us find quantitative answers to the kinds of questions we raised in
Section 1 and Section 2. We remind the reader that the objective of these experiments is
not to pass verdict on the usefulness of certain type system features in an absolute sense.
Rather the objective is to help designers of retrofitted type systems prioritize features based
on empirical evidence rather than by intuition alone. If a type system feature ends up
unsupported, then users will need to work around that limitation in their code (or live with
type errors).

How prevalent is the need for union types? While Figure 10 shows that union types do
reduce error counts over just using subtyping (as expected, since unions are more powerful),
the degree of reduction is relatively small. While TypeScript and Flow now both include
unions, TypeScript did not add them until two years after its initial release. The small error
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Figure 11 Error counts for different T.
→
t settings, selecting subtyping for T.t.

count reduction due to union types in our experiments could help to explain why they were
not needed in TypeScript from the very beginning.8

How prevalent is the need for parametric polymorphism? For intersection types? As
shown in Figure 11, the intersection configuration always reduced errors compared to
poly, while poly almost always reduces errors compared to base9. While the error count
reductions for poly are not dramatic in general (typescript is discussed below), parametric
polymorphism is crucial for ascribing types to core routines manipulating data structures
(e.g., array routines), and hence its inclusion in TypeScript and Flow is unsurprising. The
dramatic drop in error count for several programs under the intersection configuration gives
strong evidence that JavaScript requires types that can express non-uniform polymorphism,
such as intersection types. In fact, TypeScript has long supported overloaded functions for
expressing intersection types.10

The typescript benchmark stands out from the others as it was originally implemented
in TypeScript, and hence we would expect it to be mostly well typed. Our results confirm this:
the error count is only 290 in 8139 (JavaScript) lines of code for the least precise configuration,
a much lower error rate than the other programs. Also, the significant reduction in errors
going from base to poly for the benchmark (see Figure 11) corresponds nicely to the use of
parametric polymorphism in the TypeScript code base; see Section 7 for an example.

While in the above experiment we used trace typing to retroactively find evidence of the
need of type system features, the next two experiments are concerned with more exploratory
questions.

6.3 Finding Tag Tests
Here, we provide the first empirical analysis of the use of tag tests in JavaScript which
identifies tag tests based on observed narrowing (as described in Sections 2.2 and 4.2), rather
than syntactic criteria. We post-process the ascription results to automatically identify
occurrences of guard predicates using the techniques of Section 4.2. We then manually
analyze the predicates to identify non-local guards (where the boolean result of a check is
computed outside a syntactic conditional statement), non-atomic guards (i.e., conjunction
and disjunction of guards), and predicate functions (other functions whose result indicates a
certain refinement).

8 TypeScript’s issue tracker has further discussion of their motivation for adding unions; see https:
//github.com/Microsoft/TypeScript/issues/805.

9 The inversions in esprima and optparse are due mostly to implementation quirks, such as an incomplete
merge operator on recursive types that returns > more than necessary.

10 See http://www.typescriptlang.org/Handbook#functions-overloads.

https://github.com/Microsoft/TypeScript/issues/805
https://github.com/Microsoft/TypeScript/issues/805
http://www.typescriptlang.org/Handbook#functions-overloads
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Table 2 Tag test classification results.
Measure Count Example

Type guards 164 -

Non-local 6 var isObj = typeof x == ’object’; if(isObj)
Non-atomic 46 if(typeof x == ’string’ || typeof x == ’object’)

typeof 30 typeof x === ’function’
instanceof 9 x instanceof Function
tag field 16 x.kind = Kinds.Template
predicate function 30 Array.isArray(x)
property presence 35 x.hasOwnProperty(’prop’), x.prop === undefined
.prototype/.constructor 3 x.constructor === Function

.. test on property 37 typeof x.prop === ’function’

other 23 className === toString.call(x)

Methodology. As mentioned in Section 4.2, we detect tag tests by observing consecutive
reads of a variable where the type is narrowed at the second read. Usually, the first read of
this pair will be the use in the type guard. In cases where the guard expression is saved to a
local variable before being checked, this technique detected spurious additional guards, but
they were easy to recognize and discard manually.

We ran the set of benchmark programs from Section 6.1 with the union-producing
T.t operator of Section 6.2, and a flow sensitive T.equiv policy to keep types of variable
occurrences under conditionals separated.

Results. It took 90 minutes to manually classify all of the discovered type guards, the
results of which can be seen in Table 2. The figure contains rows for different kinds of type
guards, if a type is non-atomic, it can be classified as having multiple kinds. Due to their
prevalence, extra rows have been added for type guards that are applied on the property of
the guarded value.

Overall there are 6 major classes of narrowing checks: typeof, instanceof, checking an
explicit tag field in a data structure11 (mostly in the AST manipulations in our corpus), a
general predicate function, explicit property presence checks (hasOwnProperty), and checks
of objects’ prototype or constructor fields. The most prevalent type guards are typeof,
use of general predicate functions, and (a variety of) property presence tests. Checking an
explicit tag field, used to mimic algebraic datatypes in JavaScript, are common but highly
program-dependent. Non-local type guards are rare, and would be easy to rewrite if needed.
Boolean combination of type guards is common enough that they probably should not be
ignored by a sound union elimination check.

6.4 Evaluating Fixed Object Layout
We present a case study of evaluating Choi et al.’s type system [9] to enforce fixed object
layout in JavaScript, as described in Section 4.4. We checked the following salient features in
the trace typing framework:

11A popular requested TypeScript feature: https://github.com/Microsoft/TypeScript/issues/186
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1. Property writes We checked that property writes were only performed on properties
deemed to be “read-write” properties in the type system.

2. Precise types We checked that only objects with a “precise” type (see Section 4.4) were
used as a prototype parent for other objects.

3. Consistent shadowing We checked that when properties were shadowed in the prototype
chain, the parent and child properties had the same type.

We ran trace typing with this type system with the benchmark suite of Section 6.1 (with
the subtyping T.equiv and base policy from Section 6.2, merging all occurrences of a variable
in a dynamic function invocation). Table 1 shows the errors reported by our trace typing
model. The column ro/rw shows, in absolute numbers, how many of the property writes were
to fields that were inherited from prototype chain (and not shadowed by a local redefinition),
of the total number of property writes. The column prototypal shows, how many of the
assignments to some object’s prototype property was in violation of the restriction mentioned
(second bullet) above, vs total number of such assignments. The column inheritance shows
in how many cases, a property was shadowed with an inconsistent type.

The results add significant confidence to our initial beliefs that some of the restrictions
the type system imposes are not onerous in practice: the numerator numbers are generally
(though not universally) quite small compare to the denominator. We manually found that
most of the ro/rw type errors for lazy.js were due to the way prototype hierarchies were
initialized, and that the type errors could be eliminated by a simple refactoring.

Additionally, from the trace typing data (not presented here) we found that support
for optional properties in the type system could have helped eliminate a large number of
type errors, and so would be a very useful feature to add to the type system. Trace typing
finds this information without the need for implementing an actual static type inferencer for
JavaScript that is robust enough to work on large code bases.

7 Discussion

In this section, we discuss the quality of types inferred by trace typing, present limitations
and threats to validity, and then mention possible future generalizations of our approach.

Quality of Types Inferred. Because our type inference approach is non-standard and our
error counts are sensitive to over-generalization (Section 3.5), it is worth asking whether the
types we infer are sensible — whether a human developer would write similar types. While
there is no systematic way to verify this, our experience says that the types are sensible.
In the course of developing the framework and type system plugins, we spent a significant
amount of type examining the types inferred. Object (property) types rarely deviated from
what we would have written ourselves.

We discuss one specific example of types inferred by trace typing for the typescript
benchmark, for which the original TypeScript code contains declared types (trace typing
analyzes the transpiled JavaScript version). Figure 12 contains an excerpt from the TypeScript
code. At the return statement the node variable always has type VarLikeDecl (also shown
in the figure). Trace typing finds the relevant properties that we see mentioned in the
interface, as well as the inherited properties. Moreover, it also correctly computes the
structural type of each property of VarLikeDecl such as initializer. Due to space reasons,
we do not show all the inferred types; but we found them reasonable on manual inspection.
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// TypeScript /src/ compiler / parser .ts :39
export function forEachChild <T>( node:Node , ...):T {

... switch (node.kind) {
... case SyntaxKind . PropertySignature :

... return visitNode (cbNode , (< VarLikeDecl >node). propName );
}

}
// TypeScript /src/ compiler /type.ts :504
export interface VarLikeDecl extends Declaration {

propName ?: Identifier ; \n dotDotDotToken ?: Node;
name: DeclarationName ; \n questionToken ?: Node;
type ?: TypeNode ; \n initializer ?: Expression ;

}

Figure 12 Code fragment from typescript.

Our ascription of parametric polymorphic types (Section 4.3) also works well in practice.
For example, it computes these polymorphic signatures for array methods (from the native
environment):

Array <E>. prototype . indexOf : (E) -> Number
Array <E>. prototype . concat : (Array <E>) -> Array <E>
Array <E>. prototype .push: (E) -> Number
Array <E>. prototype .pop: () -> E

These types are similar to the types used for native environment by TypeScript programs.12
The exceptions to the above arise mostly where type errors occur, and in those cases the

types are not bizarre but simply a different choice among several incompatible options (e.g.,
when a method is overridden with an incompatible type). For the intersect configuration
of Section 6.2, with unbounded intersection types, the gap between inferred types and
what one would write at the source level is larger, due to the synthetic nature of the type
system. Designing a trace typing system that infers a mix of parametric polymorphism and
intersection types closer to what a person would write is future work.

Limitations and Threats to Validity. Trace typing works under the assumption that the
input programs are mostly type correct; the error locations generated by our framework
lose accuracy when this assumption is violated. Moreover, we assume that most parts of a
program have a correct type in the system being modeled, which may not always hold. Our
manual inspection of inferred types suggests that the natural formulations for T.α and T.t
generally behave well, but it is possible other pathological cases exist.

A result that type system design A yields fewer type errors than design B in our framework
does not strictly imply that the same will hold for complete source-level implementations,
due to inevitable over-approximations in a static type checker. Constructs inducing such
approximations include reflective constructs like dynamic property accesses (which are
resolved in our trace) and loops. Type system feature interactions can exacerbate this effect.
The best use of trace typing is to compare type systems that differ in only one or two
parameters, and to give less weight to very small differences in the number of errors detected.
Consider this example:

1 function f(x) { return x.p; }
2 f({p:3, q:4});
3 f({p:3, r:true });

12 https://github.com/Microsoft/TypeScript/blob/v1.7.3/lib/lib.core.d.ts#L1008
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4 var y = {p:3};
5 y = {p:3, q:5};
6 f(y);

Here, type ascription’s over-generalizing in the presence of what would be static type
errors can lead to some unexpected results. For the example above, ascription in the base
polymorphism configuration (see Section 6.2) with no union types would produce the type
{p:Number} -> Number for f, which would allow the trace of the program to type check.
Ascription with the more precise intersect configuration would give the intersection type {p:
Number,q:Number} -> Number ∧ {p:Number,r:Boolean} -> Number. But, the two writes
to y ensures that it is ascribed type {p:Number}, which is not a subtype of either argument
type in the intersection! In such cases, a more powerful trace type system can produce more
errors than a less powerful one. We did not observe this issue in experimental results we
inspected manually, but it may have occurred elsewhere.

Our work is an empirical study using dynamic analysis, and we inherit the normal threats
to validity from such an approach, namely possible sampling bias in the subject programs
and sampling bias from the inputs used to gather traces. For our study, we took inputs from
each program’s often-substantial test suite, which appeared from manual inspection to give
reasonable path and value coverage.

Potential Extensions. We have focused thus far on type systems for JavaScript, but the
core ideas of our technique apply to other languages as well. The generalization to other
dynamically typed languages (e.g., Ruby, Python) would require instrumentation of the other
language. The type system implementations on top of the new framework would need to be
tailored to the primitives and idioms of the new target language.

Our existing trace format could be used for additional experiments that analyze the types
ascribed to specific parts of the program. For example, this could inform strategies for typing
challenging constructs like computed property accesses [24].

More metadata could be added to our traces to enable experimentation with other
type-system features, with no changes to our core approach. For example, more detailed
information about the evolving types and layouts of objects could be maintained, to enable
experimentation with alias types [27, 10]. Our hope is that trace typing will be a useful base
for such future extensions.

8 Related work

We focus here primarily on approaches to retrofitting type systems onto existing languages
and on other means of evaluating type systems on large bodies of code, with a secondary
focus on type systems for JavaScript.

Retrofitting Type Systems. Retrofitting type systems onto existing languages is not new,13
nor is it restricted to dynamic languages. The notion of soft typing for dynamically typed
languages is now well-established [7, 31, 28]. The notion of pluggable type systems — including
extensions to existing type systems — is also an established idea [6], which continues to
produce useful tools [12, 23]. Both bodies of work suffer the same difficulty in evaluating lost
precision: it requires tremendous manual effort to evaluate on non-trivial amounts of code,
leading to design decisions based on intuition and a handful of carefully-chosen examples.

13The use of the term retrofitting is relatively recent, due to Lerner et al. [21].
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More recently, two groups of researchers arrived at means to induce a gradual type system
variant of a given base type system, one as a methodology to produce a gradual type system
by careful transformation of a static type system [14] and another as a a tool to compute a
gradual version of a type system expressed as a logic program [14]. Both deterministically
produce one gradual type system from one static type system, aiding with the introduction
of gradual typing, but not of overall design.

Evaluating Type Systems. The implementation effort for prototyping similar but slightly
different type systems and applying them is a significant barrier to evaluating completely
new type systems for existing programming languages. TeJaS [21] attempts to remedy this
for JavaScript type systems by carefully architecting a modular framework for implementing
type systems. It relies on bidirectional typing to reduce annotation burden, but this still
requires significant manual annotation.

A smaller but closely-related body of work is evaluating changes to existing type systems.
Wright studied approximately 250,000 lines of SML code [30], cataloguing the changes neces-
sary to existing code in order to type-check under the value-restriction to type generalization.
The study in this case required less implementation effort than the general approach we
propose; SML implementations existed, and could be modified to test the single alternative
type system change. Nonetheless, his careful analysis of the impact of the proposed change
justified a type system change that has withstood the test of time. SML still uses the value
restriction, and OCaml uses a mild relaxation of it [15]. More recently Greenman et al. [18]
performed a similar evaluation of an alternative proposal for F-bounded polymorphism in
Java.

Dynamic Type Inference. Type inference for dynamic languages is another rich area with
strong connections to our trace-based type inference. The closest such work to ours is dynamic
type inference for Ruby [2]. They use Ruby’s reflection capabilities to pass virtualized values
through a program, with each use of the virtualized objects gathering constraints on the
type of the object. Their system has a guarantee that the inferred types will be sound if
every path within each procedure is executed at least once. Like trace typing, they rely on
dynamic information to infer types for program fragments, including for complex source-level
constructs. Unlike our approach, they make no attempt to simulate the effect of type checking
the program: they infer types that hold at method entry and exit, but do not infer types
for local variables, whose types may change arbitrarily. Also, they cannot infer method
polymorphism (though they support annotations), require manual annotation for native code,
and evaluate only a single type system design.

Saftoiu et al. [25] implement dynamic type inference for JavaScript, generating types
for a particular JavaScript type system based on dynamic observation, and find that it is
useful for converting code to their typed JavaScript dialect. Their type system is sound with
respect to λJS [19], and they can type-check the source code to verify the inferred types.
We cannot do this, because our goal is experimenting with type system design, so our type
systems are not adequate to type check source programs. Like us they instrument code via
source-to-source translation. We evaluate significantly more code: their examples total 3799
lines of code.

Other Uses of Traces. Coughlin et al. [11] use dynamic traces to identify the spans between
program safety checks and data uses guarded by those checks, e.g., a null check followed
by a dereference. These measurements can inform the design of static analyses, e.g., by
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indicating whether or not an analysis should be interprocedural. While similar in philosophy
to our work, we differ substantially in technical details. First, their implementation is specific
to null dereference errors. Second, their goal is to measure aspects of program behavior
quantitatively, and interpret that measurement when designing an analysis; we instead
advocate directly comparing approximations of a real analysis.

Åkerblom and Wrigstad [1] study the receiver polymorphism of a very large base of open
source Python programs, primarily to examine how adequate nominal subtyping might be
for Python (as opposed to structural subtyping). They classify static call sites by whether
they were observed to have multiple receiver types, consider whether call sites might be
dispatched on parametrically-polymorphic targets by clustering call sites in different ways
(roughly similar to our context-sensitivity policies), and do some reasoning about cases
where different static calls on the same syntactic receiver may have different qualities (a
coarse approximation of typing local variables). They do not reason about actual method
types, argument types (except implicitly if methods are invoked on arguments), and do not
attempt to simulate source type checking as we do. ECMAScript 5 — the previous version
of JavaScript — lacks classes, so even code written to ECMAScript 6 — which added classes
— will generally require structural subtyping. Our type ascription machinery could be used in
a style similar to Section 6.3 to implement most of their instrumentation.

Type Systems for JavaScript. Most previous work on static typing for JavaScript focuses
on novel approaches to typing its most expressive features; we describe particularly relevant
examples here. Guha et al.’s flow typing [20] allows for refining types in code guarded
by runtime tag checks. DJS [10] implements a sophisticated dependent type system that
includes a type-based analogue [27] of separation logic to describe heap changes, and an
SMT-based refinement type system for characterizing the shape of objects. TeJaS [21] builds
an expressive framework for experimenting with JavaScript type systems, whose core is an
extension to Fω

<:.
Throughout we have discussed Flow [13] and TypeScript [22, 5]. They are quite similar

(objects, unions with unsound elimination rules, intersections) with a few small points of
divergence (singleton string types and intentional unsound subtyping in TypeScript, non-
nullable fields in Flow). They have very different approaches to type inference and checking:
TypeScript uses limited local type inference, while Flow performs a global (per-module) data
flow analysis. We have already modeled key features — objects with structural subtyping,
union and intersection types — in our framework.

TypeScript and Flow include forms of parametric polymorphism, based on programmer
annotations. Trace typing can approximate some forms of parametric polymorphism (Sec-
tion 3.4). Both TypeScript and Flow also allow some narrowing of union types based on tag
tests (unsound in general due to aliasing and mutation). Trace typing could be extended to
handle such features in future work, as discussed in Section 7.

Both TypeScript and Flow have added type system features based on user feedback, with
great success. Trace typing provides an alternate, complementary source of information for
deciding which type system features to include, which can be employed without having a
large user base.

9 Conclusions

We presented a framework for quantitatively evaluating variations of a retrofitted type system
on large code bases. Our approach involves gathering traces of program executions, inferring
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types for instances of variables and expressions occurring in a trace, merging types according
to merge strategies that reflect options in the source-level type system design space, and
type-checking the trace. By leveraging the simple structure of traces, we dramatically reduce
the effort required to get useful feedback on the relative benefit of type system features.

To evaluate the framework, we considered six variations of a type system retrofitted
onto JavaScript. In each case, we measured the number of type errors reported for a set of
traces gathered from nine JavaScript applications (over 50KLOC) written in a variety of
programming styles. The data offers quantitative validation for some of the design choices in
two popular retrofitted type systems for JavaScript (Typescript and Flow). In a different
experiment, we used the results of trace typing to automatically identify places where type
narrowing occurred dynamically, to gather empirical results on the frequency and variety of
tag tests in JavaScript. In yet another experiment, we evaluated how onerous the restrictions
for a new retrofitted JavaScript type system [9] were, validating intuitions that our restrictions
were mostly reasonable, and identifying priorities for future extensions.

The feasibility of carrying out these experiments is a strong validation of the trace typing
approach.
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Abstract
This paper describes QL, a language for querying complex, potentially recursive data struc-
tures. QL compiles to Datalog and runs on a standard relational database, yet it provides
familiar-looking object-oriented features such as classes and methods, reinterpreted in logical
terms: classes are logical properties describing sets of values, subclassing is implication, and
virtual calls are dispatched dynamically by considering the most specific classes containing the
receiver. Furthermore, types in QL are prescriptive and actively influence program evaluation
rather than just describing it. In combination, these features enable the development of concise
queries based on reusable libraries, which are written in a purely declarative style, yet can be
efficiently executed even on very large data sets. In particular, we have used QL to implement
static analyses for various programming languages, which scale to millions of lines of code.
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1 Introduction

QL is a declarative, object-oriented logic programming language for querying complex,
potentially recursive data structures encoded in a relational data model. It is a general-
purpose query language, but its strong support for recursion and aggregates makes it
particularly well suited for implementing static analyses, code queries and software metrics.
Although this paper is not about static analysis per se, it is in this area that QL, being the
technical basis of Semmle’s engineering analytics platform, has seen most use so far, so we
will use it as our main source of motivating examples.

A static analysis implemented in QL is simply a query run on a special database: the
database contains a representation of the program to analyse (encoding, say, its abstract
syntax tree or control flow graph), from which the query computes a set of result tuples. A
bug finding analysis, for instance, could return pairs of source locations and error messages.
Since the database describes the program as it was at one particular point in time, we refer
to it as a snapshot database. A snapshot database is created by a language-specific extractor.
We have built extractors for various different languages based on existing compiler frontends.

As our first example of a QL query, let us consider an analysis for finding useless
expressions in JavaScript programs, i.e., pure (that is, side effect-free) expressions appearing
in a void context where their value is immediately discarded. Typically, this indicates a typo,
for instance mistyping an assignment “x = 42;” as an equality check “x == 42;”.
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Listing 1 QL query for finding useless expressions in JavaScript.
import javascript

predicate inVoidContext(Expr e) {
exists (ExprStmt s | e = s.getExpr()) or
exists (SeqExpr seq, int i | e = seq.getOperand(i) and

(i < count(Expr op | op = seq.getOperand(_))-1 or inVoidContext(seq)))
}

from Expr e
where e.isPure() and inVoidContext(e) and not (e instanceof VoidExpr)
select e, "This expression has no effect."

To identify such expressions we need to implement a purity analysis and a check to
determine whether an expression appears in a void context. Fortunately, the former is already
implemented in our standard QL library for JavaScript, so we can concentrate on the latter.

A simple query for finding useless expressions is shown in Listing 1. At a very high level,
it breaks down into three sections:

An import statement pulls in the existing QL library javascript, which, as its name
suggests, provides general support for working with JavaScript snapshot databases.
A predicate inVoidContext is defined to identify expressions in void context.
The main from-where-select clause defines the analysis itself:

the from part declares a variable e ranging over all expressions in the analysed program;
the where part imposes three conditions on e: it must be pure, appear in a void context,
and not be a void expression, which explicitly discards the value of its operand;
the select part specifies the results to return for values of the from variables that pass
the where conditions; in this case, e itself is returned with an explanatory message.

Taking a closer look at the definition of inVoidContext, it is declared as a unary predicate
with a single parameter e of type Expr. Expr and its subtypes model JavaScript expression
ASTs: for instance, BinaryExpr is a subclass of Expr representing all binary expressions,
which in turn has a subclass AddExpr representing additions; another subclass of Expr is
SeqExpr, representing sequence (or “comma”) expressions with two or more operands.

The body of the predicate is a first-order formula with two disjuncts. Its first disjunct
says that e is in void context if it is the toplevel expression in an expression statement (as
in our example above). The second disjunct handles the case where e is an operand of a
sequence expression: e is in void context if it is not the last operand, or if the entire sequence
is in void context, as determined by a recursive call to inVoidContext.

Judging from this example, QL looks like a domain-specific language for querying JavaS-
cript ASTs, but this not the case: the classes used in this example and the navigation
operations available on them are defined entirely in QL, not built into the language. In fact,
there is nothing about QL that is specific to dealing with ASTs, or even for writing static
analyses, but its object-oriented features allow the development of reusable domain-specific
libraries (such as the javascript library and its cousins for other languages), providing a
rich and convenient API for query writers.

Perhaps more surprisingly, there are not even any objects in the traditional sense of
structured records with fields and methods. QL programs only work with atomic values;
structured data is encoded as relational tables. For example, it is natural at first to think of
the formula e = seq.getOperand(i) as an operation on an object seq, perhaps involving
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reading the i-th element of one of its fields holding an array of references to other objects, and
then storing the result in variable e. In fact, though, all three variables e, seq and i range
over atomic values: the latter is an integer, and the former two are entity values, that is,
opaque identifiers representing entities modelled in the database (in this case, expressions).

In JavaScript snapshot databases, the expression AST structure of the program is encoded
in a relation exprs containing 4-tuples (c, k, p, i), for entity values c and p and integers k and
i, stating that expression c is the the i-th child of p in the AST, and has kind k. Class Expr
and its subclasses define an object-oriented view of this relation; for example, getOperand
is defined such that e = seq.getOperand(i) is compiled to ∃k.exprs(e, k, seq, i): no field
reads, no assignments, just logic.

In particular, e is not an output computed from inputs seq and i: all three variables are
on an equal footing, and there is not even any requirement that e is functionally determined
by seq and i (though in this particular case it is). This becomes obvious in our use of the
count aggregate to determine the number of operands to seq: op = seq.getOperand(_)
holds for any value of op that is an operand of seq (where “_” is the special don’t-care
variable familiar from other logic languages), so seq.getOperand(_) behaves like a multi-
valued expression. We use the aggregate to count how many of those values there are to
obtain the number of operands of seq.

In spite of their unusual semantic underpinnings, QL classes offer very similar features to
their more traditional counterparts. In particular, classes can have member predicates, such
as the isPure predicate on Expr, which is defined in the standard QL library for JavaScript
and overridden with different implementations for various subclasses of Expr. Calls such as
e.isPure() are dispatched virtually, looking up the most specific applicable definitions of
isPure based on the (runtime) value of e.

Like in Java and many other languages, all variables in QL have statically declared types,
offering the usual benefits of enabling smart IDEs.1 However, type declarations in QL are
not just assertions to be checked by the compiler, but do, in fact, affect program semantics
at runtime: the values that a variable can take during execution are restricted to those that
conform to the declared type. In particular, the declared types of predicate parameters and
quantified variables restrict the set of values they may range over.

As mentioned above, our example query makes use of (a small part of) the standard QL
libraries for JavaScript. Just like the query, the libraries are implemented in an entirely
declarative style, specifying what should be computed rather than how. In fact, QL exposes
no details at all of the underlying database system on which the queries are run, and it is up
to the optimiser to translate the high-level QL code into an efficiently executable query plan.

In this paper, we present the core features of QL:

We explain the semantics of classes, member predicates and virtual dispatch, first
informally (Section 2) and then more formally via a translation from a subset of the
language, Core QL, to plain Datalog (Section 3).
We discuss practical usage of QL in Section 4, and report on a case study in using QL to
implement static checks for Java in Section 5.
We put QL into context in Section 6, exploring in detail how far it matches the principles
of object orientation laid down in the literature, and briefly survey related work.

1 In fact, this is the main motivation for choosing the from-where-select query syntax instead of SQL’s
select-from-where: variables are declared upfront, so code completion is available in the select part.

ECOOP 2016



2:4 QL: Object-oriented Queries on Relational Data

2 Overview of QL

The fundamental semantic model of QL is that of Datalog: programs define a set of intensional
predicates, one of which is a distinguished query predicate. They are evaluated on top of an
extensional database (EDB), which defines a set of extensional predicates. While intensional
predicates are defined by formulas of first-order logic (possibly involving recursion between
predicates), extensional predicates are defined as explicit sets of tuples stored in the database.
Unlike Prolog, Datalog does not allow the use of complex terms, so intensional predicates
can only refer to values already contained in the database and cannot build up new data
structures, such as lists. Like many Datalog dialects, QL somewhat relaxes this restriction
by providing support for arithmetic and string operations.

The semantics of a program is the least fixpoint of its intensional predicates, that is,
intensional predicates are assigned the smallest sets of tuples that satisfy their recursive
definitions. Since such a fixpoint need not exist in general, QL imposes the restriction that
(mutual) recursion is only allowed under an even number of negations, which is a variant
of the stratified negation restriction used in many Datalog systems [32]. Once a fixpoint
solution has been found, the set of tuples assigned to the query predicate is returned as the
overall result of the program.

The grounding of QL’s semantics in Datalog is not just an expository device: as explained
in Section 4, our implementation compiles QL to plain Datalog, and we shall provide a
precise semantics for a core calculus of QL in the next section by formalising the essential
parts of that translation.

2.1 Classes
A type in QL represents a set of values, which we will call the extent of the type. Classes
are types whose extent is defined by a unary intensional predicate called the characteristic
predicate (or character for short) of the class.

There are also two kinds of base types, that is, types which are not themselves defined in
QL: primitive types such as int or string are built into the language; entity types are defined
by unary extensional predicates, whose names by convention start with an “@” character.
Primitive types always have the same extent, regardless of the content of the EDB, while the
extent of entity types and classes may depend on the EDB. For example, snapshot databases
representing JavaScript programs defines entity types @expr and @seqexpr whose extent is,
respectively, the set of all expressions and the set of sequence expressions in the represented
program.

Subtyping can be thought of as set inclusion of extents: if A is a subtype of B, then the
extent of A is a (not necessarily proper) subset of the extent of B.2 For entity types the
subtyping relation is given by the database schema: for instance, the schema for JavaScript
snapshot databases declares @seqexpr to be a subtype of @expr, and it is up to the database
system to ensure that this constraint is met at runtime. For classes, direct supertypes are
specified as part of their declaration using a Java-like extends clause.

While entity types can only be subtypes of other entity types, classes can also extend
base types. For instance, we can define a class Digit with the extent {0, 1, 2, . . . , 9}:
class Digit extends int { Digit() { (int)this in [0..9] } }

2 The reverse direction cannot, in general, hold: since characters are arbitrary predicates, inclusion of
extents is undecidable, while our subtyping relation needs to be kept decidable.
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The extends clause makes Digit a subtype of the built-in int type, and the character
(which syntactically looks like a constructor in Java) further restricts the extent of Digit.
The x in [a..b] notation is a convenience for defining ranges (note that an explicit cast is
necessary when using variables with a class type in numeric operations).

Characteristic predicates can contain arbitrary QL code. For instance, we can define
the class of even digits and the class of prime digits by subclassing Digit and performing
arithmetic checks on this.
class Even extends Digit { Even() { (int)this class PrimeDigit extends Digit {

PrimeDigit() { count(Digit divisor | (int)this

Observe that the extents of the two classes overlap, yet neither is a subset of the other.
This is a natural consequence of defining types by arbitrary characteristic predicates, but it
means that not every value has a unique tightest type.

Like Java, QL has an instanceof operator, which in QL is really just syntactic sugar for
calling the character of a class. For instance, the class of odd digits can be defined like this:
class Odd extends Digit { Odd() { not this instanceof Even } }

Being intensional predicates, characters can be recursive. For instance, we could define:
class Even extends Digit { Even() { this = 0 or (int)this-1 instanceof Odd } }
class Odd extends Digit { Odd() { (int)this-1 instanceof Even } }

However, recursion has to be stratified: simply defining Even and Odd as mutual comple-
ments is not acceptable, since this definition has no least fixpoint.

A class may extend multiple supertypes, which simply means that it is a subtype of the
their intersection. The (potentially trivial) intersection of all supertypes of a class is called
the domain of the class. For instance, the class of even prime digits ({2}) is defined as
class EvenPrime extends Even, PrimeDigit {}

In fact, since EvenPrime imposes no additional constraints on this in its character, its
extent is exactly equal to its domain. In general, the extent of a class consists of all those
values in its domain that satisfy the body of the character; hence, the implicit this variable
in the character ranges over the domain of the class.

It should be emphasised that the constructor-like syntax for characters is purely superficial:
QL has no new expression. Like plain Datalog, QL programs can never construct new values
or objects, they can only work with primitive values and the values present in the EDB.

2.2 Prescriptive typing
Every variable in QL has a declared type. In most statically typed imperative and functional
languages, such declarations are purely compile-time artefacts that describe the set of values
the variable is allowed to take on at runtime; they are checked for consistency by the
compiler but play no role at runtime. In contrast to this descriptive typing discipline, QL
follows a prescriptive model, where the syntactic type declaration corresponds to a semantic
containment check at runtime.

For instance, consider the predicate isSmall that holds for all Digits smaller than five:
predicate isSmall(Digit d) { (int)d < 5 }

We can use it in a query like the following (which will return the numbers 0, . . . , 4):
from int i where isSmall(i) select i

ECOOP 2016



2:6 QL: Object-oriented Queries on Relational Data

Note that i is declared to be of type int, but is passed as an argument to isSmall,
whose parameter is declared to be a Digit. Under a descriptive typing discipline, this would
be a compile-time type error, but not so in QL: declaring d to be a Digit simply means that
in order for a value to satisfy the predicate isSmall, it has to both be a Digit and satisfy
the logical conditions imposed by the body of the predicate (namely, being smaller than five).

Another way of looking at it is that type declarations entail an implicit instanceof test
(which is, in fact, made explicit when translating to plain Datalog), and our definition of
isSmall is equivalent to
predicate isSmall(int d) { d instanceof Digit and d < 5 }

The call isSmall(i) thus has a perfectly well-defined semantics, regardless of the declared
type of i, and regardless of what set of values i ranges over at runtime. If none of these
values happen to be in Digit, then isSmall(i) will evaluate to an empty set of tuples, as
in the following query:
from int i where isSmall(i) and i < 0 select i

In practice, a query or formula that never returns any values usually indicates a mistake.
The problem of finding such empty formulas can be reduced to the problem of inferring types
for the generated Datalog [33]; (Datalog) formulas for which we infer the empty type are
mapped back to the (QL) formulas they arise from, and reported. In general, emptiness of
Datalog formulas is undecidable (even without arithmetic or string operations), so we can
never find all empty formulas, but in practice this approach has proved to be quite effective.

Besides type declarations, instanceof tests and casts also restrict the possible values of
variables and expressions: x instanceof A restricts x to only take on values from A, and
similarly (A)x is an expression picking out those values of x that are in A.

2.3 Member predicates
The predicate isSmall really describes a property of Digits, so it thus makes sense to add
it to class Digit as a member predicate:
class Digit extends int {

Digit() { (int)this in [0..9] }
predicate isSmall() { (int)this < 5 } }

Like characteristic predicates, member predicates have an implicit parameter this, and
they are invoked using a method call-like syntax:
from Digit d where d.isSmall() select d

Of course, member predicates can have other parameters besides this. For instance, we
could add a predicate divides to check whether one digit is a divisor of another:
class Digit extends int {

...
predicate divides(Digit that) { (int)that

There is one important difference between characters and member predicates: in the
former, this ranges over the domain of the class (that is, the intersection of the extents of its
supertypes), while in the latter this ranges over the extent of the class itself. This is because
the character is what defines the extent of the class in the first place, so by restricting this
to range over the extent of the class in the character, we would introduce a direct recursive
call from the character to itself, which under least fixpoint semantics would mean that the
character (and hence the extent of the class) is always empty.



P. Avgustinov, O. de Moor, M. P. Jones and M. Schäfer 2:7

2.4 Multi-valued expressions
Taking the analogy between member predicates and methods further, QL allows treating
predicates as multi-valued “functions” with a dedicated result parameter. For instance, the
member predicate divides could instead be written as a multi-valued function returning
any of the divisors of a digit:

Digit getADivisor() { (int)this

Note that member predicates using the function syntax have an implicitly declared
result variable whose type is the declared result type. The results of the predicate are
precisely those values that the result variable is bound to. Syntactically, calls to predicates
in function syntax are treated like function calls; in particular, they can be chained as in
d.getADivisor().getADivisor(), which evaluates to all divisors of divisors of d.

Semantically, however, such predicates are still relations: there is no requirement that
result has precisely one value for each value of this, or that result is “computed from”
this in some operational sense. In fact, it is quite possible to use getADivisor() in reverse
to compute all values of this yielding a given result value, as shown in the following query:
from Digit d where d.getADivisor() = 2 select d // selects 0, 2, 4, 6, 8

When translating to Datalog, predicates using the function syntax are desugared into
normal predicates by making the result parameter explicit and introducing temporary
variables as necessary. For instance, d.getADivisor()=2 is translated into code of this form:
exists (Digit tmp | d.getADivisor(tmp) and tmp = 2)

Thus, multi-valued expressions are a purely syntactic, if practically very useful, feature.

2.5 Overriding and virtual dispatch
Given that we have classes that contain member predicates and that may extend each other,
it is natural to ask whether there is a notion of overriding and virtual dispatch, and indeed
there is: intuitively, at runtime a call x.p(...) is dispatched to the definition of p belonging
to the tightest class containing x, i.e., the most specific applicable definition of p.

There are two sources of ambiguity: first, x may, in general, have multiple values; this
is solved by dispatching the call separately for each individual value. Second, classes may
overlap, so even for a single value of x there can be multiple most specific definitions of p;
this is solved by dispatching to each definition separately and unioning the results.

More formally, let us represent member predicates by relation specifiers of the form C.p/n,
where C is the name of the class in which the predicate is declared, p is the name of the
predicate itself, and n is the predicate’s arity, not including the result parameter.3 We say
that a predicate C.p/n overrides a predicate C ′.p/n if C is a transitive subtype of C ′; in this
case, we also say that C.p/n is more specific than C ′.p/n.

A member predicate is a root definition (or rootdef for short) if it does not override any
other predicate. The set of rootdefs of a predicate is the set of all rootdefs that it overrides,
or the predicate itself if it is already a rootdef. Note that due to multiple inheritance a
predicate can have more than one rootdef, but every predicate has at least one.

3 QL allows overloading, so there may in fact be multiple member predicates with the same arity as long
as they have different parameter types. Like in Java, overloading is resolved entirely statically based on
declared types, and hence plays no role in virtual dispatch, and we shall ignore it for simplicity.
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The static target of a member predicate call x.p(...), where the declared type of x is a
class C, is the most specific predicate D.p/n such that C is a reflexive, transitive subtype of
D and n is the number of arguments in the call. In a valid QL program, every predicate call
must have a unique static target. The dispatch candidates of x.p(...) are all the rootdefs
of the static target, as well as any predicates that override at least one of the rootdefs.

At runtime, for every value v of x, the applicable targets of the call are those dispatch
candidates D.p/n for which v is in the extent of D, and the actual targets are the most
specific applicable targets. The call is dispatched to all actual targets for each value of x.

In summary, dispatch for a call x.p(...) occurs in two stages, one static and one dynamic.
At compile-time we compute the set of dispatch candidates, which contains all rootdefs of p
above the declared type of x (that is, member predicates with the same signature that do
not themselves override another definition) and all methods that override them. At runtime,
each of these candidates applies only if the value of x is contained in the corresponding class,
and there is no more specific class that also contains x.

For example, assume we add a member predicate kind to class Digit like this:
class Digit extends int { ... string kind() { result = "digit" } }

We override kind in the subclasses of Digit to result in "even" for Even, "odd" for Odd
and "even prime" for EvenPrime. Now consider this query:
from Even e select e, e.kind()

The static target of the call e.kind() is Even.kind/0, whose (unique) root definition
is Digit.kind/0. The dispatch candidates are Digit.kind/0, Even.kind/0, Odd.kind/0 and
EvenPrime.kind/0. Since e is declared to be an Even, it ranges over the set {0, 2, 4, 6, 8}.
For the runtime values 0, 4, 6 and 8, the applicable targets of e.kind() are Digit.kind/0
and Even.kind/0, and the (unique) actual target is Even.kind/0. For the value 2, the
applicable targets are Digit.kind/0, Even.kind/0 and EvenPrime.kind/0, and the actual
target is EvenPrime.kind/0. Hence, the query evaluates to {(0, "even"), (2, "even prime"),
(4, "even"), (6, "even"), (8, "even")}.

Now consider what happens if we add a new class
class Two extends Digit { Two() { this = 2 } string kind() { result = "two" } }

Two.kind/0 has Digit.kind/0 as its root definition, so it is now also a dispatch candidate
for e.kind(), and it is an applicable target for e = 2. We now have two applicable targets
in this case, neither of which is more specific than the other. Hence they will both be called,
so the query additionally returns the tuple (2, "two").

If, on the other hand, we define Two to extend int instead of Digit, its extent does not
change, but Digit.kind/0 is no longer a root definition of Two.kind/0, which hence is no
longer a dispatch candidate for e.kind().

Discussion

Support for multiple actual targets is perhaps the most unusual feature of virtual dispatch
in QL and can be confusing to novice QL programmers. Its main motivations are:

Naturality Virtual dispatch selects the most specific implementation; with overlapping classes
there may be more than one, so in a logic language it is natural to take their disjunction.

Simplicity Outlawing multiple actual targets is difficult, since it is undecidable whether two
classes overlap (by undecidability of emptiness in Datalog with negation). Requiring
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characteristic predicates to be decidable would rule out many practically interesting cases,
while checking ambiguity at runtime and aborting with an error seems undesirable.

Usefulness Some common idioms use this feature. For example, a flow analysis could be
implemented as a member predicate on data flow nodes; different overriding definitions
handle different kinds of flow, and hence naturally overlap. For instance, one definition
could model intra-procedural def-use chains, while another models inter-procedural
argument passing; both definitions overlap for parameters that are reassigned.

In particular, the last example above rules out a simpler approach where each predicate is
considered its own rootdef, which would make dispatch depend very strongly on static types.
As another extreme, one could consider all predicates of the right name and arity as dispatch
candidates, ignoring static types altogether. This seems undesirable in practice, since it can
cause dispatch to completely unrelated predicates that just happen to have the same name.
Instead, QL views a rootdef and all its overriding methods as alternative implementations of
the same operation. For a given call, all operations implemented by the static target are
determined at compile time, and at runtime the most specific implementations are selected.

There is no intrinsic connection between multiple call targets and multiple inheritance: the
former arises without the latter, for example if a class defines a predicate that is overridden
by two overlapping subclasses. Ambiguous inheritance is, in fact, illegal in QL (as we shall
discuss below), and hence does not give rise to multiple call targets.

2.6 Abstract classes
QL classes as we have described them so far lend themselves quite well to top-down modelling:
starting from a general superclass representing a large set of values, we carve out individual
subclasses representing more restricted sets of values. In particular, the extent of a class is
always defined by filtering its domain through the body of its character.

A classic example where this approach is useful is when modelling ASTs: the node types
of an AST form a natural inheritance hierarchy, where, for example, there is a class Expr
representing all expression nodes, with many different subclasses for different categories of
expressions; there might, for instance, be a class ArithmeticExpr representing arithmetic
expressions, which in turn could have classes AddExpr and SubExpr.

In other cases, however, we might prefer to instead think of a class as being the union
of its subclasses. Here, the superclass exists purely as an interface that provides certain
member predicates, with subclasses filling in concrete implementations.

QL supports a notion of abstract classes that allow us to do exactly this: like a concrete
class, an abstract class has one or more superclasses and a characteristic predicate. However,
the extent of an abstract class is not the set of values that satisfies its character, but rather the
union of the extents of all its subclasses. In particular, an abstract class without subclasses
has an empty extent. We will present a practical example of an abstract class in Section 4.

2.7 Miscellanea
QL has various other language features that are important in practice but are either not
semantically fundamental, or have direct counterparts in other Datalog dialects.

As we mentioned at the beginning of this section, QL predicates may be recursive, and
our program analysis queries make heavy use of this feature. A particularly common kind
of recursion is transitive closure, for which QL offers a syntactic shorthand: for a binary
predicate p, p+ denotes its transitive closure, and p* its reflexive transitive closure. Obviously,
this is purely syntactic sugar that is easily translated into plain recursion.
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prog ::= cd pd program
cd ::= abstract? class C extends T {C() {f} pd} class definition
pd ::= predicate p(T x) {f} predicate definition
f, g ::= p(x) | x.p(y) | C.super.p(x) | not f formula

| f and g | f or g | exists(T x | f)
S, T ::= C | @b | C.domain type reference

Figure 1 Syntax of Core QL; · denotes (possibly empty) sequences, ·? optional elements.

In addition to virtual calls, QL also provides statically dispatched super calls of the form
C.super.p(...). Their static target is looked up in C (which must be a superclass of the
enclosing class), and serves as the single actual target.

The import statement makes definitions from one module available in another. For
instance, the QL standard library for JavaScript is split into 40 modules, which are all
imported into a single module javascript.qll. Since imports are transitive, queries can
simply import that module to gain access to the entire library (cf. Listing 1). As in Java,
implementation hiding is facilitated by access modifiers: member predicates may be marked
private, meaning that they cannot be called from outside the enclosing class.

QL supports aggregates to perform arithmetic operations such as sum or average on
(multi-)sets of values. While very useful in practice, aggregates are really a feature of the
Datalog dialect into which QL is compiled, and they do not interact with the language’s
object-oriented features, hence we will not further discuss them.

As a syntactic convenience, casts may be written in a postfix form as x.(A), which is
semantically equivalent to (A)x, but saves parentheses in chained calls.

Finally, member predicates of abstract classes may themselves be abstract, meaning
that they do not have a body, and the QL compiler checks that each subclass provides
an overriding definition of the predicate. Observe that our definition of virtual dispatch
guarantees that an abstract member predicate is never the actual target of a call: since the
extent of the abstract class is the union of the extents of its subclasses and since each of
those subclasses overrides the abstract predicate, there must always be at least one more
specific applicable target. Thus, abstract predicates are not semantically fundamental, and
in particular have no deep semantic connection with abstract classes.

3 Semantics of Core QL

To formally describe the semantics of QL, we concentrate on a subset dubbed Core QL that
captures the object-oriented features of QL, while omitting other features that are either
purely syntactic or are semantically orthogonal. The semantics of Core QL will be described
by a translation to plain Datalog.

3.1 Core QL
Figure 1 presents the syntax of Core QL. Like full QL, Core QL programs consist of toplevel
predicates and (concrete and abstract) classes with a characteristic predicate and member
predicates. We do not model QL’s from-where-select query syntax, but simply consider
queries as special toplevel predicates.
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Predicates can declare parameters, and their bodies are first-order formulas with predicate
calls as atomic formulas. As in full QL, there are calls to toplevel predicates and to member
predicates, and the latter may be either virtual calls or super calls. Unlike full QL, super
calls always have to be explicitly annotated with the class they refer to.

Type references appearing in extends clauses, parameter declarations or existential
quantifiers are either class names C or base type names @b. We assume the latter to be
defined by an underlying database schema. Core QL also has a syntax for domain types of
the form C.domain for a class name C; these cannot appear at the source level but play a
crucial role in the semantics of classes.

Among the QL features omitted from Core QL are overloading, the function syntax
for predicates, expressions, the forall quantifier, casts and instanceof : these can all be
desugared into Core QL features. Other QL features such as primitive types and aggregates
have no counterpart in Core QL, but their semantics is largely orthogonal to the object-
oriented features of the language, which are the focus of our presentation.

3.2 Datalog
The target language for our translation is an untyped variant of Datalog. A Datalog program
consists of a series of intensional predicate definitions of the form p(x)← ϕ., where p is a
predicate name, x is a possibly empty sequence of variable names, and ϕ is a formula of
first-order logic with the usual logical connectives. The free variables of ϕ must be exactly
x. The atoms of ϕ are calls of the form r(y), where r is either the name of an intensional
predicate defined in the same program, or the name of an extensional predicate.

We say that an intensional predicate p calls a predicate q, written p→ q, if the body of p
contains a call to q. As usual, →∗ denotes the reflexive transitive closure of this relation.
p
−→ q means that one of the calls to q in p occurs under an odd number of negations.
We require all Datalog programs to be stratified, that is, recursive call chains of the form

p →∗ q −→ r →∗ p are not allowed. Any stratified Datalog program has a least fixpoint
semantics, that is, given an interpretation of the extensional predicates, each intensional
predicate has a unique minimal interpretation that satisfies the predicate’s definition.

3.3 Valid Core QL
In order to be meaningfully translatable to Datalog, a Core QL program has to fulfil a set of
syntactic requirements and pass some static semantic checks. There is one additional check
that is easiest to perform on the generated Datalog and will be discussed later.

The syntactic requirements are entirely standard and mostly naming related:

I Definition 1 (Syntactic validity). In order for a Core QL program to be syntactically valid,
the following conditions have to be satisfied:

No two classes and no two toplevel predicates with the same arity may have the same
name; no two member predicates of the same class with the same arity, and no two
parameters of the same predicate may have the same name.
Every extends clause must list at least one type.
Every characteristic predicate must have the same name as its enclosing class.
No predicate parameter may have the name this.
For every variable name appearing in a formula, there must either be an enclosing exists
declaring a variable of that name, or the enclosing predicate must have a parameter of
that name, or the variable name is this and it appears in a member predicate or character.
In particular, every variable name can be associated with a declared type.
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Similarly, for every class name appearing in a type reference there must be a class of
the same name, and for every predicate name appearing in a call to a toplevel predicate,
there must be a toplevel predicate of that name with the appropriate arity.
super calls may only appear in member predicates.

To formulate the static semantic checks, we first introduce some terminology.

I Definition 2 (Relation specifiers). A relation specifier C.p/n consists of a class name C
and a pair p/n, where p is a predicate name and n a natural number.

Unless otherwise specified, we require relation specifiers to be valid, that is, C must be
the name of a class defined in the program, and C must declare a member predicate p with n
parameters. We abbreviate C.p/n as C.p where n is not important or obvious from context.

I Definition 3 (Subtyping). The subtyping relation S <: T is the smallest relation such that
for every class C we have C <: C.domain, and if C extends T , then C.domain <: T .

As usual, S <:+ T denotes the transitive closure of this relation.

I Definition 4 (Overriding). C.p/n overrides D.p/n, written C.p/n ≺ D.p/n, if C <:+ D.
We write C.p/n � D.p/n to mean that either C = D or C.p/n ≺ D.p/n. If D.p/n overrides
no other member relation, it is a rootdef. We write ρ(C.p/n) for the set of all rootdefs D.p/n
such that C.p/n � D.p/n.

I Definition 5 (Member predicate lookup). We define a lookup function λ(S, p, n) that looks
up a member predicate in a type given a name and its arity and returns a set of candidates:

λ(S, p, n) =
{
{C.p/n} if S = C and C.p/n is valid⋃
S<:T λ(T, p, n) otherwise

The static semantic checks guarantee that a program can be translated to Datalog:

I Definition 6 (Translatability). A syntactically valid Core QL program is translatable if the
following conditions are met:

It is not the case that T <:+ T for some type T ; that is, the subtyping relation is acyclic.
For every (not necessarily valid) relation specifier C.p/n, we have |λ(C, p, n)| ≤ 1; in
other words, classes must override ambiguously inherited predicates.
For every member predicate call x.p(y) where x has type T we have λ(T, p, |y|) 6= ∅, i.e.,
all calls can be resolved to a static target.
Similarly, for every call D.super.p(x) in a member predicate of a class C, we must have
C <:+ D and λ(D, p, |x|) 6= ∅.

3.4 Translation to Datalog
The translation from (translatable) Core QL to Datalog is presented in Figure 2 as a family
of structurally recursive translation functions:

Tc translates Core QL class definitions into sequences of Datalog predicates, using an
auxiliary function K to generate the extent predicate as explained below;
Tm translates Core QL member predicates into Datalog predicates; it takes the declaring
class of the member predicate as an additional argument;
Tp translates toplevel Core QL predicates into Datalog predicates;
Tb translates Core QL predicate and character bodies into Datalog formulas; it takes a
type environment as an additional argument;
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Translation of a class definition cd ≡ abstract? class C extends T {C() {f} pd}:

Tc(cd) :=

C.domain(this) ←
∧
C<:B

B.B(this) ∧
∧

C<:@b
@b(this).

C.C(this) ← Tb(f, 〈this := C.domain〉).
C(this) ← K(cd).
Tm(pdi, C)

K(cd) :=
∨
D<:C D(this) if cd is abstract

K(cd) := C.C(this) if cd is concrete

Translation of a toplevel predicate definition pd ≡ predicate p(T x) {f}:

Tp(pd) := p(x)← Tb(f, 〈xi := Ti〉).

Translation of a member predicate definition pd ≡ predicate p(T x) {f}:

Tm(pd, C) :=
C.p(this, x) ← Tb(f, 〈this := C, xi := Ti〉).

C.pdisp(this, x) ←
(∧

D.p≺C.p ¬D(this)
)
∧ C.p(this, x).

Translation of a predicate or character body f :

Tb(f,Γ) :=
(∧

(x,S)∈Γ S(x)
)
∧ Tf (f,Γ)

Translation of a predicate call:

Tf (p(x),Γ) := p(x)

Tf (x.p(y),Γ) :=
∨

R.p∈ρ(D.p)

( ∨
B.p�∗R.p

B.pdisp(x, y)
)

where D.p := λ(Γ(x), p, |y|)

Tf (C.super.p(x),Γ) := D.p(this, x) where D.p := λ(C, p, |x|)

Translation of other formulas:

Tf (not f,Γ) := ¬Tf (f,Γ)
Tf (f and g,Γ) := Tf (f,Γ) ∧ Tf (g,Γ)
Tf (f or g,Γ) := Tf (f,Γ) ∨ Tf (g,Γ)
Tf (exists(C x | f),Γ) := ∃x. (C(x) ∧ Tf (f,Γ[x := C]))

Figure 2 Translation from Core QL to Datalog (for readability, we write C <: T to mean
C.domain <: T ).

ECOOP 2016



2:14 QL: Object-oriented Queries on Relational Data

Tf translates Core QL formulas into Datalog formulas; it takes a type environment as an
additional argument.

The type environments Γ used by Tb and Tf are partial functions from variable names to
type references. We write 〈x := T 〉 to denote the type environment that maps x to T , and
contains no other mappings. As usual, Γ[x := T ] is a type environment that is identical to Γ
except that it maps x to T .

∨
i∈I ϕi and

∧
i∈I ϕi denote disjunctions and conjunctions of

families of formulas indexed by a set I. For empty index sets we define
∨
i∈∅ ϕi := ⊥ and∧

i∈∅ ϕi := >, i.e., empty disjunctions are false and empty conjunctions are true.
We now discuss the individual translation functions in greater detail.

Classes

For every Core QL class C, we generate a definition for its domain predicate C.domain,
its characteristic predicate C.C, and its extent predicate C. Additionally, each member
predicate pdi is translated recursively using Tm.

The domain predicate is the intersection of the characteristic predicates of all supertypes
of C. The characteristic predicate is generated from its Core QL definition, additionally
enforcing prescriptive typing, which is not a feature of plain Datalog. The extent predicate,
finally, is the Datalog predicate that actually defines the extent of the class. For concrete
classes, this is the same as the characteristic predicate. For abstract classes, however, their
extent is instead defined as the union of the extents of their subclasses.

The distinction between these three predicates is subtle, but crucial. C.domain is mainly
needed to circumscribe the type of this inside the characteristic predicate of C. To see why
it cannot have type C, consider what the definitions of the characteristic predicate and the
extent predicate would look like if it did:

C.C(this) ← C(this) ∧ . . . .
C(this) ← C.C(this).

Note the recursion between C.C and C, which is resolved by computing least fixpoints.
Clearly, both rules are satisfied if C.C and C are empty, and this is also the least fixpoint.
In other words, typing this as C in the character would render every concrete class empty.
Using type C.domain instead breaks the recursion, and both predicates are now interpreted
as the subset of the extent of C.domain that satisfies the body of the character, as expected.

The distinction between the characteristic predicate C.C and the extent predicate C is
only relevant for abstract classes (and the two are indeed equal for concrete classes): the
extent of an abstract class is not the extent of its characteristic predicate, but rather the
union of the extents of its subclasses, and this is precisely how C is defined.

Predicates

Toplevel Core QL predicates are translated directly into Datalog predicates of the same
name, using Tb to translate the body and enforce prescriptive typing for all parameters.

Member predicates C.p are translated into two Datalog predicates: an implementation
predicate of the same name, and a dispatch predicate C.pdisp. The latter is used during
dispatch translation as explained below.

Formulas

Most Core QL formulas are straightforward to translate into their Datalog counterparts,
except that for quantifiers we again enforce prescriptive typing. The two most interesting
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cases are super calls and virtual calls. For the former, we simply use the λ function to look
up the member predicate to invoke, explicitly passing in this as the first argument.

For virtual calls, we need to implement dispatch. Recall that for a call with static target
D.p, the dispatch candidates are all member predicates that override a rootdef for D.p. Hence
the call is translated into two nested disjunctions: the outer disjunction is over all rootdefs
R.p of the static target D.p, while the inner is over all methods overriding the rootdef. For
each dispatch candidate B.p identified in this way, we emit a call to B.pdisp, which in turn
invokes B.p, but only if it is a most specific implementation of p for the given parameter.

The syntactic and static semantic checks ensure that the result of the translation is a
valid Datalog program, except that they do not yet ensure stratification. While it would be
possible to devise a QL-level check for this, it is conceptually simpler to check stratification
of the generated Datalog, and map any violations of this condition back to the QL code it
originated from. This is also how we implement the stratification check in our QL compiler.

3.5 Example
As a concrete example of the translation, we show the Datalog definitions generated for
classes Digit and Even from Section 2, including definitions for the method kind and a
query predicate that computes all even digits e and their kinds k.4

Digit.domain(this)← int(this).
Digit.Digit(this)← Digit.domain(this) ∧ range(this, 0, 9).
Digit(this)← Digit.Digit(this).
Digit.kind(this, result)← Digit(this) ∧ string(result) ∧ result = "digit".
Digit.kinddisp(this, result)← ¬Even(this) ∧ Digit.kind(this, result).
Even.domain(this)← Digit.Digit(this).
Even.Even(this)← Even.domain(this) ∧ mod(this, 2, 0).
Even(this)← Even.Even(this).
Even.kind(this, result)← Even(this) ∧ string(result) ∧ result = "even".
Even.kinddisp(this, result)← Even.kind(this, result).
query(e, k)← Even(e) ∧ string(k) ∧ (Digit.kinddisp(e, k) ∨ Even.kinddisp(e, k)).

4 QL in Practice

The previous two sections have presented the semantics of QL in some detail, using toy
examples for simplicity. We now show how these concepts apply in a more realistic setting.

4.1 Databases and schemata
Recall that QL programs (or rather, the Datalog programs into which they are translated)
are run on a relational database. In practice, we use our own custom database system, but
in principle QL programs could just as well be run on an off-the-shelf system.5

As in any relational database, data is represented in terms of tuples (rows), grouped into
relations (tables) such that all tuples in a relation have the same arity (number of columns).

4 Core QL does not include primitive types or arithmetic operations, so for the purposes of this example we
have treated int and string like entity types, and assumed EDB relations range(a,b,c) and mod(x,y,z)
corresponding to QL’s range operator a in [b..c] and the modulo operator x%y=z, respectively.

5 In fact, early versions of our compiler translated QL to SQL, using a third-party database system as our
backend. Performance was disappointing, since typical QL compiles to very complex SQL with deeply
nested joins and lots of recursion. Most SQL systems are not designed with such queries in mind, and
hence handle them badly. On the other hand, our queries do not make use of complex extra-logical
features such as database updates or transactions, which made it relatively easy to implement our own
engine and saves us some performance overhead.
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A table may have a distinguished primary key column, meaning that no two rows in the
table have the same value in this column; in other words, each value in the primary key
column uniquely identifies a row. A table t1 may also have foreign key columns referring to
the primary key column of a table t2 (t1 = t2 is allowed), meaning that any value occurring
in the foreign key column must also be present in the corresponding primary key column; in
other words, each row of t1 references a unique row of t2.

Keys can be used to model hierarchical data structures using flat tables. Suppose, for
instance, that we want to build a snapshot database representing a JavaScript program.
Among other data, we may want to represent the abstract syntax tree of source files, including,
in particular, all expressions. Simplifying somewhat, we could introduce a table exprs with
four columns: a primary key column id with a unique ID for each expression; a column
kind indicating what kind of expression we are dealing with, encoded as an integer; a foreign
key column parent referencing the ID of the parent expression in the AST; and an integer
column idx recording the ordering among children of the same parent.6 Since id is a primary
key, every expression is guaranteed to have a unique ID, and since parent is a foreign key, it
is a well-defined reference to another expression in the same table.

For example, assume we want to represent a comparison expression x === 1; its two
children are the variable reference x and the integer literal 1. Assume further that we assign
them the IDs 0, 1 and 2, and encode “equality expression” as kind 2, “variable reference”
as kind 1, and “integer literal” as kind 0. The variable reference x thus has id 1, kind 1,
parent 0, and idx 0, corresponding to the tuple exprs(1, 1, 0, 0), while “1” gives rise
to exprs(2, 0, 0, 1). In practice, we would additionally store the name of the referenced
variable and the value of the integer literal in separate tables, which we elide for simplicity.

At the storage level, all four columns of the exprs table look the same: they are just
integers. QL, on the other hand, espouses a strongly typed view where keys are treated as
opaque values and annotated with an entity type. Primary key columns define an entity type
whose extent is the set of values occurring in that column. For instance, the id column of
exprs could be annotated with the entity type @expr, meaning that it defines the extent
of entity type @expr. Foreign key columns are also annotated with entity types, and the
database system ensures that they only contain values drawn from the extent of their type.

This information about tables, the types of their columns, and the entity types they
define is described by a schema, which thus defines the interface between a QL program and
the database on which it is run.

4.2 Data abstraction
Given a snapshot database with a schema, we could write our analyses in plain Datalog,
directly accessing the information stored in the tables. However, this can become quite
cumbersome since we need to remember which column contains which piece of information,
and is not robust against schema changes.

QL classes hide the specifics of how data is stored in tables behind a higher-level interface,
thereby acting like abstract datatypes. For instance, we could implement a QL class Expr to
provide an abstract view of the exprs table discussed above:
class Expr extends @expr {

Expr getParent() { exprs(this, _, result, _) }

6 Alternatively, each expression could keep references to their child expressions, but as different kinds of
expressions have different numbers of children, this would require tuples with different arities, which
would have to be stored in different tables.
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Expr getChildExpr(int i) { exprs(result, _, this, i) }
string toString() { result = "expr" } }

Since Expr should contain all expressions represented in the database, it has a trivial
character, and hence the same extent as @expr. The member predicate getParent provides
access to the parent column of the exprs table, while getChildExpr enables navigation in
the other direction. Note that we do not need to check that the index i is in range: if there
is no i-th child, the predicate will simply fail to hold. QL also requires each class to define
(or inherit) a toString member predicate, for which we provide a dummy implementation.

This interface allows us to navigate the program AST as a graph without being exposed
to the details of its relational representation. For instance, e.getParent+() = f expresses
the property that expression e is nested within expression f (using QL’s “+” syntax for
transitive closure).

If all client analyses use Expr instead of directly accessing the EDB, we can easily change
our data representation later on. For instance, it may not be desirable to record the parent
expression directly in the exprs table, since toplevel expressions do not have a parent
expression. Instead, the parent-child relation could be stored in a separate three-column
table expr_nesting(child,parent,idx). The first two columns are foreign keys, so they
must refer to properly defined @expr values, but there is no requirement that every @expr
value appears in the first column (or, for that matter, the second column), so expressions
without parents can now be modelled.

If we want to switch to this representation, we can simply update the definitions of
getParent and getChildExpr without affecting any client analyses:

class Expr extends @expr {
Expr getParent() { expr_nesting(this, result, _) }
Expr getChildExpr(int i) { expr_nesting(result, this, i) } ...

4.3 Inheritance

Class Expr abstracts away from the details of the relational encoding of the AST and is useful
for implementing generic syntax tree traversal, but if we want a richer semantic interface we
have to implement subclasses of Expr. For instance, we could implement a class EqExpr to
exclusively represent equality checks (and no other expressions):

class EqExpr extends Expr {
EqExpr() { exprs(this, 2, _, _) }
Expr getLeftOperand() { result = this.getChildExpr(0) }
Expr getRightOperand() { result = this.getChildExpr(1) }
string toString() { result = "===" } }

The characteristic predicate filters out those expressions that do not have kind 2 (which,
in our example encoding, represents equality). We provide getter predicates for the two
operands of the equality, further abstracting away from the details of our AST representation,
and we override the toString predicate to provide a more specialised string representation.
Similar classes can be implemented for variable references, literals, and other expressions.

QL classes thus allow us to impose an abstract data type representation on relational
data. Since classes can freely overlap, we can even implement multiple representations for
the same data. For instance, we could overlay a control flow graph structure on top of the
AST by defining a class CFGNode that also extends @expr, but presents it under a different
interface, offering, say, a method getASuccessor() to compute call graph successors.

ECOOP 2016



2:18 QL: Object-oriented Queries on Relational Data

4.4 Overriding
As a practical example of overriding, consider implementing Expr.isPure, the member
predicate used in Listing 1. Its default implementation in class Expr is none(), which is
a built-in predicate that always fails. In other words, we conservatively assume that all
expressions are impure, and override it in subclasses:
class Expr extends @expr { predicate isPure() { none() } ...

In class Literal, we override isPure as any(), a built-in predicate that always succeeds:
class Literal extends Expr { predicate isPure() { any() } ...

As another example, equality checks are pure if all of their children are:
class EqExpr extends Expr {

predicate isPure() { forall (Expr c | c = this.getChildExpr(_) | c.isPure()) } ...

4.5 Interface vs Implementation
Abstract classes support decoupling interface and implementation even further: while Expr
implements an interface in terms of one particular set of EDB relations, abstract classes
specify only an interface, which may be implemented in multiple different ways.

As an example, assume we want to implement an analysis for JavaScript to find com-
parisons between expressions with incompatible (dynamic) types, which will always eval-
uate to false at runtime. Assume further that we have implemented a binary predicate
incompatTypes(e, f) that infers possible types of e and f and checks whether they are
compatible. Using class EqExpr defined above, we could implement our analysis as follows:
from EqExpr eq, Expr l, Expr r
where l = eq.getLeftOperand() and r = eq.getRightOperand() and incompatTypes(l, r)
select eq, "Operands have incompatible types."

Other JavaScript language constructs that compare values in the same way include, e.g.,
the switch statement. If we want to consider them in our query, we could add another
disjunct to the where part, but this would make it less readable, and we would need to
keep extending it for any other equality tests we want to support. Instead, we introduce an
abstract class capturing the common interface for all equality tests:
abstract class EqualityTest extends ASTNode {

abstract Expr getALeftOperand(); abstract Expr getARightOperand(); }

Like all classes, EqualityTest needs a superclass: we choose ASTNode, which is a common
superclass of Expr and Stmt defined in the JavaScript QL libraries. The interface defined
by EqualityTest consists of member predicates to access the left and right operands of the
comparison. We allow a single equality test to have multiple left or right operands; e.g., in a
switch, every case is viewed as a right operand of the comparison.

We can implement this interface on EqExpr and SwitchStmt by introducing new classes
that have the same extent as EqExpr and SwitchStmt, respectively, but extend EqualityTest:
class EqExprEqualityTest extends EqExpr, EqualityTest {

Expr getALeftOperand() { result = this.getLeftOperand() }
Expr getARightOperand() { result = this.getRightOperand() } }

class SwitchEqualityTest extends SwitchStmt, EqualityTest {
Expr getALeftOperand() { result = this.getExpr() }
Expr getARightOperand() { result = this.getACase().getExpr() } }



P. Avgustinov, O. de Moor, M. P. Jones and M. Schäfer 2:19

The extent of EqualityTest now contains all equality expressions and all switch state-
ments, under a convenient interface for our query:
from EqualityTest eq, Expr l, Expr r
where l = eq.getALeftOperand() and r = eq.getARightOperand() and incompatTypes(l, r)
select eq, "Operands have incompatible types."

To add support for other kinds of equality tests, all we need to do is to define new
subclasses of EqualityTest; the query need no longer be changed.

4.6 Optimisation
In practice, the translation shown in Figure 2 can produce very inefficient Datalog, particularly
when translating virtual calls: the disjunction over all candidates can be quite large, and in
many cases the context restricts the receiver variable in such a way that some disjuncts end
up always being false, which would lead to a lot of wasted computation if evaluated naively.
For example, in the translation shown in Section 3.5, the query predicate restricts e to Even,
so the dispatch disjunct Digit.kinddisp(e, k) can never apply. Another source of inefficiency
are superfluous type guards for variables that are already restricted sufficiently by their uses.
For instance, the conjunct string(result) in Even.kind is implied by result="even" and
hence unnecessary.

One could devise a more sophisticated compilation scheme that avoids this, but we choose
to instead perform these optimisations at the Datalog level, keeping the translation as simple
as possible: infeasible dispatch disjuncts are simply a special case of formulas that logically
contradict other formulas in their context and hence are equivalent to false, while unnecessary
type tests are logically implied by other formulas in their context and hence equivalent to
true. Both cases can be detected by a form of type inference [15, 33]. We also apply various
standard optimisations such as inlining, join ordering and the magic sets transformation [7];
the latter two rely on (compile-time) estimation of (run-time) relation sizes [34].

Ultimately, the example from Section 3.5 is simplified by our optimiser to
Even(this) ← range(this, 0, 9) ∧ mod(this, 2, 0).
query(e, k) ← Even(e) ∧ k = "even".

5 Case Study

To demonstrate the benefits of QL in implementing static checks, we reimplemented Error
Prone (http://errorprone.info) in QL. Error Prone is a bug finding tool for Java that
integrates with the compiler and checks for common mistakes, reports them and suggests
possible fixes. As of version 2.0.4, there are 101 checks. We reimplemented the checks (but
not the fix suggestions), ensuring that they pass all the unit tests of the original. This
required about one man-month of effort by an experienced QL programmer.

Error Prone is originally implemented in Java, comprising about 10,500 lines of code, not
including supporting libraries such as the javac Compiler Tree API.7 Our reimplementation,
by contrast, is slightly less than 2,000 lines of code, not including the QL standard library
for Java. However, our implementation only covers the checks themselves, not the suggested
fixes. Manual inspection suggests that the latter account for about 1,100 lines of code in the
Java implementation, leaving 9,400 lines of analysis code.

7 That is, counting only files in the src/main/java/com/google/errorprone/bugpatterns directory.
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Listing 2 QL code for detecting nested null checks in Java.
// a "==" test where one operand is a null literal
class NullCheck extends EQExpr { NullCheck() { getAnOperand() instanceof NullLiteral } }

// "inner" is nested inside the then−branch of "outer", and both check nullness of "v"
predicate nestedNullCheck(IfStmt outer, IfStmt inner, Variable v) {

inner.getParent+() = outer.getThen() and
outer.getCondition().(NullCheck).getAnOperand() = v.getAnAccess() and
inner.getCondition().(NullCheck).getAnOperand() = v.getAnAccess() }

Java is famously verbose, which explains part of the size difference, although QL is overall
syntactically quite similar to Java. If we exclude Java package declarations and @Override
annotations (which have no QL counterparts) and import statements (the number of which
is largely determined by the organisation of the supporting libraries), we can subtract a
further 2,800 lines from Error Prone and 100 lines from our implementation. In other words,
the Java implementation is 3.5x the size of the QL implementation.

This is mostly because AST traversal and filtering, which require lots of boilerplate
code in Java, can be expressed very concisely using recursion and prescriptive typing in QL.
For example, Listing 2 shows part of a query for finding incorrect uses of double-checked
locking: NullCheck picks out comparisons to null, and nestedNullCheck identifies nested
if statements that check the same variable for nullness. Recursion is used to check the
nesting condition. The casts to NullCheck would fail in a descriptive interpretation, since
s.getCondition() is not a NullCheck for most if statements s. In QL, they act as filters,
restricting outer and inner to those if statements that do, in fact, check nullness.

To assess scalability, we ran both the original Error Prone analyses and our reimplement-
ations on a recent snapshot of Apache Hadoop,8 which is about 1.5 MLoC. Four of the Error
Prone checks failed with null pointer exceptions, the remaining 97 finished in 46 seconds.
Our reimplementation is about 4x slower, at 201 seconds for the same 97 analyses.9

The performance difference is not so much due to the use of Java instead of QL, but to a
fundamentally different execution model: while Error Prone checks are performed on a per-file
basis, our queries run on a database representing the entire program, and hence are implicitly
global. This reflects different usage scenarios: Error Prone is normally run during compilation
or as an IDE service, hence instantaneous feedback is important. Our analysis usually runs
offline, often even on a dedicated machine, hence a runtime of several minutes on a large code
base (and memory requirement of a few gigabytes) is entirely acceptable. Ultimately, these
differences are orthogonal to the choice of language, and there is no fundamental obstacle to
running local QL analyses on small databases representing one file each.

In summary, this case study shows that QL allows us to quickly implement static
analysis checks as concise and scalable queries, though the whole-program approach of our
implementation imposes a performance overhead.

As of March 2016, Semmle’s static analysis platform offers about 2500 individual analyses
for eight languages (C/C++/Objective-C, C#, Cobol, Java, JavaScript, PL/SQL, Python,
Scala), all implemented in QL. While some analyses are shallow local checks similar to Error
Prone, many crucially depend on whole-program analysis. This is especially true for the
dynamically typed languages, where global invariants that a statically typed language would

8 Commit SHA 855d529 from https://git-wip-us.apache.org/repos/asf/hadoop.git.
9 As measured on an Intel Core i7-4900MQ laptop, with 1GB of heap allocated to the analysis. Timings
do not include compilation time for Error Prone and database construction time for QL.

https://git-wip-us.apache.org/repos/asf/hadoop.git


P. Avgustinov, O. de Moor, M. P. Jones and M. Schäfer 2:21

express in the type system instead have to be derived by flow analysis. For instance, our
Python analysis suite includes checks for common mistakes such as using undefined attributes
or hashing unhashable objects, which sit on top of a whole-program points-to analysis also
implemented in QL. As another example, our Java and C++ suites include security analyses
based on inter-procedural taint tracking that identifies vulnerabilities to common attacks such
as cross-site scripting or SQL injection. All these analyses are in daily use by our customers
on multi-million line code bases. A thorough discussion of technical details is out of scope
for this paper, but the advantages of using Datalog for static analysis are well-known [35], to
which QL adds the benefits of object-oriented modularity and reusability.

Besides implementing static checks, we also use QL for structural analysis to determine
dependencies between different parts of a code base that are then visualised in an architectural
design tool. Finally, we use QL as a meta-query language to write queries over static analysis
results, comparing and correlating results across multiple revisions of the same code base in
order to track introductions and fixes of defects over the history of a code base [6].

6 Discussion and Related Work

In this section, we will discuss QL’s object-oriented features in the light of popular definitions
of object orientation in the literature, and then proceed to survey related work.

6.1 Discussion
The deliberately minimalist examples of Section 2 perhaps make the gap between QL classes
and methods and their more traditional counterparts appear wider than it is. Recall that in
practice QL programs rely on an extensional database, and here the parallels become quite
striking: tuples in a table are records with columns as fields; primary keys uniquely identify
tuples, and hence play the role of addresses; foreign keys uniquely reference other tuples,
thus acting like references to other records. Hence, a database can be viewed as a strongly
typed heap containing a collection of objects with fields that may contain primitive values or
references to other objects, where objects with the same layout are collected into tables.

A QL class like Expr whose extent is (a subset of) the primary key column of a table
thus describes a set of records; its member predicates can access record elements, using
the primary key for lookup. Subclasses inherit member definitions and can override them,
allowing different implementations of the same operation for different objects, the appropriate
implementation being chosen at runtime based on the dynamic type of the object.

Of course, QL classes are not restricted to this particular setting, since classes can be
sets of arbitrary values, not just primary keys, and EDB tables can be arbitrary relations,
for which there is no parallel in other object-oriented languages.

QL fits the folklore definition of object orientation as “data abstraction plus inheritance”:
Section 4 shows how QL classes achieve the former by abstracting from the concrete layout
of database tables; inheritance in QL is entirely conventional, and, as usual, can be used
both for implementing an interface and for code reuse.

A more refined characterisation is given by Cook [11] (building on the classic definition
by Wegner [39]), whereby object orientation is support for the dynamic creation and use
of objects. An object, in turn, is a first-class, dynamically dispatched behaviour, where a
behaviour is a collection of named operations, and dynamic dispatch means that different
objects can implement the same operations in different ways.

QL satisfies the second half of this definition: classes associate named operations with
arbitrary values, and subtyping and virtual dispatch allow different implementations of the
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same operations. The first half of Cook’s definition is not satisfied, as QL programs cannot
create new values, which is arguably a natural limitation for a query language. QL also does
not support mutable state, and has no notion of object identity as opposed to value identity,
but Cook, in fact, argues that these features are not essential to object orientation.

Ullman [37] claims that query languages cannot be “seriously logical and seriously object-
oriented at the same time”. His argument is framed in the context of a radical reinterpretation
of the relational model, where tuples and relations are understood as objects with relational
operators as methods. In Ullman’s analysis, this would mean that each tuple computed
during evaluation is distinct from any previously computed tuple, conflicting with the set
semantics of Datalog and its least fixpoint semantics. Furthermore, it is unclear what types
to assign to relational operators such union or join in such a setting. Our approach differs
significantly from this model: QL classes range over values, not tuples, sidestepping his first
point. Relational operators are primitive language constructs, not methods, and hence not
typed. In Ullman’s view, this might disbar QL from being “seriously” object-oriented, but
we have argued that it nevertheless provides the usual benefits of object orientation.

Proposals for integrating object identity and logic programming range from explicitly
exposing object identifiers [42] to sophisticated extensions of the underlying logic [24]. Our
experience with QL suggests that object identity is not a prerequisite for object orientation.

In summary, QL supports data abstraction and inheritance with dynamic dispatch, widely
considered as hallmarks of object orientation. Less conventionally, QL supports overlapping
classes and relational member predicates, which are quite natural for a logic query language,
while object creation and mutation do not fit this paradigm well and hence are not supported.

6.2 Related Work
Encoding hierarchical data in relational form is conceptually quite straightforward, but
querying the encoded data in a traditional relational language is cumbersome. This has been
termed the object-relational impedance mismatch, and led to calls for replacing the relational
model with models directly supporting structured data [5]. We will not discuss the literature
on this topic, since QL is based on a completely conventional relational data model. Our
approach agrees in spirit, if not in detail, with the so-called Third Manifesto [13], which
argues that object orientation should be built on, rather than supplant, the relational model.

Object-oriented extensions of Datalog have been studied in the literature before. Abiteboul
et al. [2] propose a language where individual rules for predicates may be associated with
classes. They consider three variants of overriding, one of which, termed static inheritance, is
somewhat similar to QL’s approach, although they define overriding at the level of individual
rules, not entire predicates. Since their language has no static types they have no concept
of rootdefs, instead considering all methods with the right name and arity as dispatch
candidates; as we have argued, this makes dispatch highly non-local and brittle in the
presence of overlapping classes. They also do not consider multiple inheritance. While for
the most part they assume that classes are defined directly by the EDB, they also briefly
consider “virtual” classes (first proposed in [1]), which, like concrete QL classes, are defined
by a characteristic predicate (though it is unclear whether they can be recursive). Their
proposal never seems to have been implemented, making it hard to gauge its practicality.

Extensions of Prolog with subtyping and inheritance have also been proposed [3, 36].
These approaches focus on types for structured terms and on performing unification modulo
subtyping between term constructors, which are not available in Datalog.

The idea of storing source code in a database and exploring and analysing it using
relational queries goes back at least to Linton [27], who used the INGRES database system.
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To overcome the limited expressiveness of standard database query languages, several authors
have suggested the use of Prolog [23, 14], which, however, tends to suffer from scalability
problems on large code bases. Aiming for a middle ground, Paul et al. [31] propose writing
queries in a relational algebra with transitive closure, while Consens et al. [10] employ a
subset of Datalog just powerful enough to express properties of paths in graphs.

Many new languages specifically designed for code exploration have been proposed; we
discuss just a few examples: ASTLOG [12] focuses on AST traversal, permitting a very
efficient implementation. PQL [22] allows more general queries over graphs, while JQuery [21]
is based on a full-featured, Prolog-like logic language. JTL [9] only supports querying Java
source code, allowing for a very concise and specialised syntax; its expressive power is that
of first order logic with transitive closure. Martin et al. [28] propose a DSL for matching
sequences of events on objects both statically and dynamically, based on the bddbddb Datalog
system [40], which has also been used directly for program analysis.

Our own work in the area started with CodeQuest [20], which compiled Datalog queries to
SQL. An early version of QL, which likewise compiled to SQL and only supported analysing
Java, was described in [17, 16], where it was presented informally through examples. The
present paper provides a more rigorous description of QL including new features such as
abstract classes and recursive characters, presents an experimental case study, and (perhaps
most importantly) gives a formal semantics. Apart from its potential use in exploring the
metatheory of QL, the semantics has already proved useful in clarifying subtle semantic
issues such as the type of this in characters, which was left implicit in previous work.

The benefits of Datalog for specifying and implementing highly scalable flow analyses [8, 35]
have recently been demonstrated on the LogicBlox platform [4], which extends Datalog with
support for database updates and creating fresh values. It would be interesting to investigate
whether these concepts could be fruitfully combined with QL’s object-oriented features.

Graph databases have also been suggested as a basis for source code exploration and
analysis. Ebert et al. [18] use the custom graph query language GreQL, while Urma et al. [38]
show that the Cypher language of Neo4j (http://neo4j.com) allows simple queries to be
expressed concisely and evaluated efficiently even over large code bases. Neither language
appears to provide abstraction mechanisms like user-defined predicates, making them less
well-suited for implementing more complex analyses. Compiling QL to GreQL or Cypher is
not possible in general, since they do not seem to provide native support for recursion (besides
transitive closure), which is heavily used by typical QL analyses. The four example queries
shown by Urma can be written in QL just as concisely (5, 4, 8 and 6 lines, respectively),
and execute efficiently (0.4s, 5s, 0.1s, 4s) on a recent snapshot of OpenJDK (2.5MLoC),
somewhat faster than the runtimes they report on a similar-sized code base.

Another interesting alternative are metaprogramming languages like Rascal [25], which
provide seamless integration of program analyses with code generation and transformation
tools. However, their suitability for deep analyses has not been shown yet.

Virtual dispatch in QL is a form of predicate dispatch [19], with class characters as guards.
While exhaustiveness is ensured (that is, each call has at least one dispatch candidate), we
make no attempt to prevent ambiguity: calls with more than one actual target are fully
supported. Also, our translation from QL to Datalog is non-modular and requires reasoning
about the entire program, unlike more recent work on predicate dispatch [30].

Prescriptive type systems have been studied in the context of Prolog [41, 26]. As pointed
out by Meyer [29], prescriptive type annotations are essentially runtime type checks; hence,
in spite of its static type declarations QL is, in some sense, dynamically typed.
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7 Conclusion

We have presented QL, an object-oriented dialect of Datalog with classes, subtyping and
dynamic dispatch, which we have described both informally and through a translation to
plain Datalog: classes are unary predicates representing sets of values; subtyping is set
inclusion; and dynamic dispatch resolves calls in the smallest class containing the receiver
value. As a typical application of QL, we have shown its use in implementing static checks,
and presented a case study highlighting its advantages in this domain over Java. Finally, we
have discussed QL’s merits as an object-oriented language: while it is missing object creation
and mutable state, QL does offer the twin features of abstraction and dynamic dispatch,
usually considered to be at the heart of object-oriented programming, without relying on
objects in the traditional sense. Apart from QL’s practical usefulness, its model of object
orientation is an interesting contribution in itself, which, we hope, will spur further discussion
of and investigation into the nature of object-oriented programming.
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Abstract
Although run-time language composition is common, it normally takes the form of a crude
Foreign Function Interface (FFI). While useful, such compositions tend to be coarse-grained and
slow. In this paper we introduce a novel fine-grained syntactic composition of PHP and Python
which allows users to embed each language inside the other, including referencing variables across
languages. This composition raises novel design and implementation challenges. We show that
good solutions can be found to the design challenges; and that the resulting implementation
imposes an acceptable performance overhead of, at most, 2.6x.
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1 Introduction

Language composition allows programmers to create systems written in a mix of program-
ming languages. Most commonly, a Foreign Function Interface (FFI) to C is provided so
that programs can interact with external libraries. However, other instances of language
composition are rare, as crossing the barrier between arbitrary languages is difficult. In
many cases, the only way to do so is by having different languages run their parts of the
system in separate processes that communicate using (slow) inter-process communication
mechanisms. The most common alternative is to use a single Virtual Machine (VM) (e.g. a
Java VM), and translate all languages into that VM’s bytecode format. This enables finer-
grained compositions, but their performance is still generally underwhelming [3].

We believe that there are two different types of friction which make good language
compositions difficult: semantic friction occurs when an aspect of one language has no
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Figure 1 A PCG8 pseudo-random number generator [25] PyHyp program, written in the Eco
language composition editor. In this case, the composed PHP and Python program will be exported
to PyHyp compatible source code. The outer (white background) parts of the file are written in
PHP, the inner (grey background) parts of the file in Python. ¶ A Python language box is used
to add a generator method written in Python to the PHP class RNG. · A Python language box is
used to embed a Python expression inside PHP, including a cross-language variable reference for
rng (defined in line 19 in PHP and referenced in line 20 in Python). In this case, a Python list
comprehension builds a list of random numbers. When the list is passed to PHP, it is ‘adapted’ as
a PHP array. ¸ Running the program pretty-prints the adapted Python list as a PHP array.

equivalent in the other; and performance friction occurs when the implementation of one
language’s behaviour forces the other to execute slowly.

Our hypothesis is that it is possible to reduce the currently accepted levels of friction in
language compositions. We believe that the only way to test this hypothesis is through a
concrete case study, since friction manifests in different ways in each language composition.
We therefore composed together two real-world, widely used languages, Python and PHP,
to make a new language composition called PyHyp. At a low-level, PyHyp defines a (some-
what traditional) FFI between PHP and Python that allows cross-language calls and the
exchange of data. Building on the FFI, PyHyp then provides the basis for a novel syntactic
composition. As shown in Figure 1, a single file can contain multiple fragments of PHP
and Python code, and variables can be referenced across different language fragments (e.g.
Python code can ‘see’ PHP variables and vice versa). Unlike approaches which translate
one language into another, PyHyp does not alter existing language semantics, nor does it
limit users to a subset of either language.

Depending on how one chooses to classify programming languages, Python and PHP
can appear similar—most obviously, both are dynamically typed. From our perspective,
however, there are a number of tricky differences: PHP has multiple global namespaces
which can span multiple files, whereas Python uses one global namespace per file (semantic
friction); most of PHP’s core data-structures are immutable, whereas many of Python’s
are mutable (semantic and performance friction); and PHP’s sole collection data type is a
mapping, whereas Python separates the notion of mappings from that of sequences (semantic
and performance friction). As this may suggest, this combination of languages presents a
number of design and implementation challenges which have no obvious precedent. We show
that PyHyp’s solutions to these challenges allow interesting case studies to be implemented.
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The practicality of our work rests on two recent developments. First, and most important,
is the concept of interpreter composition. The basic idea is to make use of systems which
can generate Just-In-Time (JIT) compiled VMs solely from the description of an interpreter
(e.g. RPython [6] or Truffle [32]). There are three existing compositions in this style: Prolog
and Python [3]; C and Ruby [16]; and C, Ruby, and JavaScript [17]. In essence, each of
these systems implements a traditional FFI between its constituent interpreters. All of the
systems have good peak performance, but implement simple FFIs. PyHyp defines a much
finer-grained FFI between its two languages and also enables syntactic composition between
the two languages. The second concept we make use of is language boxes as found in the Eco
editor [11], which allow users to naturally write fragments of different languages alongside
each other. Note that PyHyp neither extends, nor requires, Eco; however, Eco does hide
several tedious details from users.

Although universal answers to our hypothesis are impossible, PyHyp shows that it is
possible to create compositions which validate our hypothesis. To summarise, we show that:

1. PyHyp’s FFI addresses a number of challenging semantic friction points.
2. Syntactic composition is possible and that practical designs can be found for novel cross-

language features.
3. PyHyp’s fine-grained language composition has, in the worst case, a performance over-

head of 2.6x over its mono-language constituents.

A VirtualBox VM containing repeatable experiments, data and case studies is available
at http://dx.doi.org/10.4230/DARTS.2.1.1.

2 Background

We assume a basic knowledge of Python syntax and semantics, but not of meta-tracing,
interpreter composition, or PHP. In this section we provide overviews of the latter three.

2.1 Meta-tracing
Tracing JIT compilers record hot loops (‘traces’) in an interpreted program, optimise those
traces, and then compile them into machine code [2, 13]. An individual trace is thus a record
of one particular path through a program’s control flow graph. Subsequent executions which
follow that same path can use the machine code generated from the trace instead of the
(slow) interpreter. To ensure that the path followed really is the same, ‘guards’ are left
in the machine code at every possible point of divergence. If a guard fails, execution then
reverts back to the interpreter.

Meta-tracing JITs have the same basic model, but replace the manually written tracer
and machine code generator with equivalents automatically generated from the interpreter
itself [24, 29, 33, 4, 6]. The key to good meta-tracing performance is heavily optimised traces.
Language implementers can annotate the interpreter provide ‘hints’ to the meta-tracer to
improve the quality of compiled traces. For example, hints can be used to mark parts of the
interpreter constant, allowing the trace optimiser to apply constant folding. Similarly, hints
can mark a function in the interpreter as ‘elidable’: given the same inputs, it always returns
the same outputs.1 The optimiser can then replace calls to (slow) elidable functions with

1 Unlike pure functions, elidable functions can have idempotent side-effects (e.g. caching). The user is
responsible for guaranteeing that the relationship between inputs and outputs is maintained.
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(fast) checks on input values, substituting the output values in place of the function call.
Identifying parts of an interpreter amenable to such hints requires the author’s knowledge
of both the semantics of the language being implemented and common idioms of use.

In this paper we use RPython, the main extant meta-tracing language. RPython is a
statically typed subset of Python with a type system similar to Java’s. Unlike seemingly
similar languages (e.g. Slang [18] or PreScheme [22]), RPython is more than just a thin
layer over C: it is, for example, fully garbage collected and has several high-level data types
(e.g. lists and dictionaries). Despite this, VMs written in RPython have performance levels
which far exceed traditional interpreters [6]. The specific details of RPython are generally
unimportant in most of this paper, and we do not dwell on them: we believe that one could
substitute any reasonable meta-tracing language (or its cousin approach, self-optimising
interpreters with dynamic partial evaluation [32]) and achieve similar results.

2.2 Interpreter Composition
Interpreter composition involves ‘glueing’ together two or more existing interpreters such
that each can utilise the other. Assuming that both interpreters are written in the same
language, a basic composition is simple: interpreter A needs to import interpreter B and then
call appropriate functionality in B. A more sophisticated composition will define matters
such as data type conversion, and how and when execution passes between its constituent
interpreters. Achieving the desired composition can require adding entirely new glue code,
and/or invasively modifying the constituent interpreters.

Since, traditionally, interpreters are slow, composing them tends to worsen
performance [3]. Fortunately, composed interpreters are as amenable to meta-tracing –
and its close cousin dynamic partial evaluation [32] – as their constituent interpreters.
Existing examples of such compositions include Python and Prolog [3] and Ruby, C and
JavaScript [17]. Both systems have good peak performance.

In the rest of this paper, we use ‘interpreter’ to mean the source-code of the system that
is used to produce an executable binary ‘VM’. In practice, most readers can consider the
terms ‘interpreter’ and ‘VM’ to be interchangeable with only a small loss of precision.

2.3 PHP
PHP is a language used widely for server-side webpage creation. Originally intended as a
language to glue together CGI programs written in C, it gradually evolved into a complete
programming language. Largely due to this gradual evolution, PHP features a number of
design decisions that appear unusual when viewed from the perspective of other imperative
languages such as Python or Ruby. As one example that appears later in the paper shows,
many of PHP’s primitive data types, including arrays, are immutable. We give further
details on such features as needed.

PHP’s syntax is Perl-esque, taking influence from the Unix shell (e.g. variables start with
a ‘$’) and C (e.g. basic control structures). The following (contrived) example shows most
of the syntax needed to understand this paper’s examples:

1 $i =1; // Assign 1 to variable $i
2 $j =& $i; // Create a reference to var $i
3 $a= array (3, 4, 5); // Create a list -like array
4 $b= array (" bob "= >45); // Create a dictionary -like array
5 foreach ($a as $c) { // Iterate over the array
6 echo $c . " "; // Print out (in order ) 3 4 5
7 }
8 $o=new C(); // Create a new object
9 $o ->m($i ); // Call method m
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10 $s = <<<EOD // Start multiline string
11 A string
12 with multiple lines
13 EOD; // End multiline string

3 PyHyp

PyHyp is a language composition of PHP and Python, implemented by composing two
existing RPython interpreters: HippyVM (for PHP) and PyPy (for Python). PyPy is
an industrial-strength Python interpreter which can be used as a drop-in replacement for
CPython 2.7.8; HippyVM is a partially complete PHP 5.4 interpreter. PyHyp is a ‘semantics
preserving’ composition in the sense that it adds behaviour to both Python and PHP, but
does not alter or remove existing behaviour.

PyHyp programs currently start by executing PHP code. There is no deep reason for this
choice, and one could easily allow it to start by executing Python code instead. Since they
start as normal PHP programs, ‘raw’ PyHyp programs require <?php ... ?> tags around
the entire file. In the interests of brevity, we omit these in all code listings.

We stage our explanation of PyHyp as follows: the design and implementation of its FFI
(Section 4); its support for syntactic composition (Section 5); and finally cross-language
variable scoping (Section 6).

4 PyHyp FFI

PyHyp defines an FFI which is the core upon which advanced functionality is later built. A
simple example of PHP code using the FFI to interact with Python is as follows:

1 $random = import_py_mod (" random ");
2 $num = $random -> randrange (10 , 20);
3 echo $num . "\n";

The code first imports Python’s random module into PHP (line 1) before calling the Python
randrange(x, y) function to obtain a random integer between 10 and 20 (line 2) which
is then printed (line 3). The only explicit use of the FFI in this example is the call to
import_py_mod. However, the FFI is implicitly used elsewhere: the PHP integers passed as
arguments to randrange are converted to Python integers, and the result of the function is
converted from a Python integer to a PHP integer. As this may suggest, the FFI is two-way
and Python code can also call PHP.

4.1 FFI Design
Many parts of PyHyp’s FFI are fairly traditional, while some are unusual due to the semantic
friction between Python and PHP. To the best of our knowledge there has not previously
been an FFI between Python and PHP, so our solutions are necessarily novel.

4.1.1 Data Type Conversions
All FFIs have to define data type conversions between their constituents. Since primitive
data types in both PHP and Python are immutable, PyHyp directly maps them from one
language to the other (e.g. a PHP integer is transformed into a Python integer). Arbitrary
user objects cannot be directly mapped and are instead wrapped in an adapter which allows
the other interpreter to work transparently with the underlying foreign instance. A PHP
object, for example, appears to Python code as a normal Python object, whose attributes
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and methods can be accessed, introspected etc. Passing an adapter back to the language
from which it was created simply removes the adapter. Adapters are immutable, only ever
pointing to single object in their lifetime; the trace optimiser is then extremely effective at
removing the overhead of repeated adaptations.

Collection data types are more involved. Python separates the notion of a list (i.e. re-
sizeable array) from that of a dictionary (i.e. hashmap). In contrast, PHP has a single
dictionary type called, somewhat confusingly, an array. PHP arrays are therefore also used
wherever ‘lists’ are required. This presents an interesting case of semantic friction. Python
lists and dictionaries can both be sensibly adapted in PHP as arrays. PHP arrays passed
to Python, in contrast, are ambiguous: should they be adapted as lists or dictionaries? It
is easy to design schemes which can be dangerously subverted. For example, a PHP array
which ‘looks like’ a list might seem best adapted as a Python list, but later mutation to its
keys (e.g. adding a string key) can turn it into something which is clearly not a list.

The only consistent design is therefore to default to adapting PHP arrays as Python
dictionaries. However, users often know that a given PHP array is, and always will be,
equivalent to a list. Therefore, PHP arrays adapted as Python dictionaries have an addi-
tional method as_list, which re-adapts the underlying array as a Python list. Whenever
operations on the list adapter are called, a check is made to see whether the underlying
PHP array is still list-like; if it is not (e.g. because a non-integer key has been added) an
exception is raised.

In general, converting an adapted object to its ‘host’ language simply requires removing
the adapter. The one exception is a Python list which has been passed to PHP, adapted as a
PHP array, and which is subsequently returned back to Python. Since our data-conversion
rules dictate that PHP arrays are adapted as Python dictionaries, Python code expecting a
PHP array would get a surprising result if the PHP array returned was unwrapped directly
to a Python list (rather than a dictionary). Thus a Python list adapted as a PHP array
and then returned to Python has a special Python dictionary adapter. Only if as_list is
called on that adapter is the underlying Python list returned.

4.1.2 Mutability

PHP data types are immutable except for objects (which are mutable in the same way as
objects in Python) and references. Immutable data types often use copy-on-write semantics.
For example, appending to an array creates a copy with an additional element at the end.
Operations on references – mutable cells which typically point to immutable data – are
passed onto the underlying datum, which may be replaced. For example, appending to a
reference which points to an array mutates the reference to point to the newly copied array.

Since it is common to wrap PHP arrays in a PHP reference, and since Python’s ex-
pectations are that such data types are mutable, PyHyp does not directly adapt arrays:
instead, arrays are replaced by references to arrays, which are then adapted. Put another
way, PHP arrays always appear to Python as mutable collections, whether adapted as lists
or dictionaries, and those mutations are visible to PHP code as well.

4.1.3 Cross-language Calls

Both Python and PHP functions can be adapted and passed to the other language where
they can be called naturally. There are, however, two cases of semantic friction: Python
functions with keyword arguments; and PHP’s pass-by-reference mechanism.
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Simplifying slightly, Python functions accept zero or more mandatory, ordered argu-
ments, and zero or more unordered, keyword arguments, each of which has a default value.
Function calls must pass parameters for each ordered argument and then zero or more
keyword arguments. The following example shows such a function and an example call:

1 def fmturi (host , path , scheme =" http", frag ="" , query =""):
2 uri = "%s://%s%s" % (scheme , host , path)
3 if query : uri += "?%s" % query
4 if frag: uri += "#%s" % frag
5 return uri
6 fmturi (" google .com", "/" , frag ="q= ecoop ")

While PHP allows parameters to have default values, arguments must be passed in order,
and there is no notion of keyword arguments. To enable PHP to call Python functions
such as fmturi, PyHyp adds a global PHP function call_py_func(f, a, k) where f is an
adapted Python function, a is an array of regular arguments, and k is an array of keyword
arguments. From PHP, one can thus emulate the function call from line 6 as follows:

1 call_py_func ($fmturi , array (" google .com", "/") , array (" frag" => "q= ecoop ")).

By default, PHP parameters are pass-by-value but function signatures can mark their ar-
guments as being pass-by-reference by prepending the parameter name with &. When a
function with such a parameter is called, a reference is created which points to the argu-
ment passed (if it is not already a reference). Thus one can write a PHP function which
swaps the contents of the variables passed to it:

1 function php_swap (&$x , &$y) {
2 $tmp = $y;
3 $y = $x;
4 $x = $tmp;
5 }
6 $a = 10; $b = 20;
7 php_swap ($a , $b );
8 echo "$a $b\n"; // prints "20 10"

As this example shows, the code calling php_swap has no control over whether it is pass-
ing arguments with pass-by-value or pass-by-reference semantics—indeed, calling php_swap
updates $a and $b so that they point to the newly created references. Since PyHyp needs
to allow Python functions to be used as drop-in replacements for PHP functions, we need a
notion of pass-by-reference for Python function arguments. This is tricky since Python has
no explicit notion of a reference.

PyHyp takes a two-stage approach to reducing this case of semantic friction. First, we
introduce an explicit PHPRef adapter into Python which represents a mutable PHP reference.
PHPRefs support two explicit operations: deref() returns the value inside the reference; and
store(x) mutates the reference to point to x. Second, we add a Python decorator php_decor
which takes a keyword argument refs which specifies (as a sequence of argument indices)
which arguments are pass-by-reference. With this, we can write a Python swap function as
follows:

1 @php_decor (refs =(0 , 1))
2 def py_swap (a, b):
3 tmp = a. deref ()
4 a. store (b. deref ())
5 b. store (tmp)

Although it may be tempting to think that PHPRefs should be transparent in Python, as
they are in PHP, we found such a scheme to be impractical: it would require changing every
possible part of the Python language and implementation where one can read or write to
variables. Explaining the effects to users would be extremely challenging, as would changing
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the implementation. In PyPy, for example, we estimate that this would involve changing
around 100 separate locations.

Because PHPRefs are explicit, calling a PHP function with pass-by-reference arguments
from Python is possible but, inevitably, somewhat clunky. Pass-by-reference arguments
must be explicitly passed a PHPRef object; other object types lead to a run-time exception.
Thus Python can call php_swap as follows:

1 xref , yref = PHPRef (x), PHPRef (y)
2 php_swap (xref , yref)
3 x, y = xref. deref (), yref. deref ()

4.2 PyHyp FFI Internals
Until now, we have detailed the language PyHyp presents to the user. We now consider
PyHyp’s internal implementation details. PyHyp required modifying both HippyVM and
PyPy. We added modules to both HippyVM (pypy_bridge) and PyPy (hippy_bridge),
which encapsulate most of PyHyp’s behaviour. Most of the common behaviour resides in
the pypy_bridge module, though it could just as easily reside in hippy_bridge. Some
behaviour is implemented by invasively modifying existing HippyVM or PyPy code.

4.2.1 Data Type Conversion
Viewed from a suitable level of abstraction, both HippyVM and PyPy implement their
respective languages using broadly similar data type hierarchies: a root data type class
– not entirely coincidentally, called W_Root in both interpreters – from which all objects
inherit. Generally PyHyp adapters extend, directly or via a subclass, one of the W_Roots.

We added methods to both root data type classes: a to_py method to every PHP data
type; and a to_php method to every Python data type. Calling to_py on a PHP datum
creates a Python adapter (and vice versa for to_php). The default implementations of
to_py and to_php return generic adapters, but other data types override them to return
specialised adapters. Calling to_py / to_php on an adapter simply returns the adapted
datum. The only exception is calling to_py on a Python list which has been adapted as a
PHP array; rather than returning the Python list itself, PyHyp is forced to return a special
(new) variant of a Python dictionary (see Section 4.1.1).

The generic adapters – one each in HippyVM and PyPy– simply forward attribute
lookups, method calls, and the like onto the adapted object. PyHyp then defines a number of
specialised adapters: 10 additional Python adapters and 8 additional PHP adapters. Some
of the special adapters expose different behaviour to the user (e.g. collection data types),
whereas some deal with low-level differences between data types in the VM (e.g. PyPy’s lay-
out requires separate adapters to be defined for functions and methods). As PyPy uses stor-
age strategies to optimise collection data types [5], adapted PHP collections create Python
collection instances that use PyHyp-specific strategies rather than subclassing W_Root.

The code for adapters is self-contained and relatively simple. Together, the PHP and
Python adapters are just under 1400LoC, of which 400LoC implements new storage strate-
gies.

4.2.2 Mutability
In order to make PHP arrays mutable from Python, PyHyp requires PHP arrays passed to
Python to be wrapped in a reference. However, simply adding a reference when an adapter
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is created would lead to mutations from Python not being seen by PHP. PyHyp therefore
handles arrays specially: the following two examples give a flavour of this.

The ARG_BY_PTR PHP opcode organises function arguments prior to a function call, and
is where arrays passed to a call-by-reference function argument have their storage in the
PHP frame replaced by a reference. PyHyp adds a special case to this opcode: every PHP
array passed to a Python function is treated as if it was being passed to a call-by-reference
function argument. This ensures that the PHP frame observes mutations from Python.

Similarly, when Python loads an array from an adapted PHP object’s attribute, PyHyp
must replace the attribute with a reference. This ensures that the parent object observes
mutations from Python. Implementing this is fairly simple, as we reuse an existing function
in HippyVM which can lookup an attribute and turn non-references into references (used to
implement PHP’s standard x=&$y->z behaviour). We add a new flag to this function, since
we only want to turn arrays (and not other data types) into references.

4.2.3 Cross-language Calls
For the most part, cross-language calls are simple to implement. PyHyp is careful to ensure
that the necessary glue code is optimised and does not obstruct meta-tracing’s natural
cross-language inlining. Most importantly, this requires annotating the relevant RPython
functions as being unrollable, so that they dynamically specialise themselves to the number
of parameters passed by the user.

The php_decor decorator is implemented as a normal Python (not RPython) class.
When the decorator is applied with the refs keyword argument, the argument indices are
stored in a normal, user visible attribute of the function object. When the function is
adapted for PHP, the adapter loads the indices, which are later used by the PHP interpreter
to determine which parameters are to be passed by reference.

4.2.4 Transparency
Ensuring that adapters are as transparent as possible inevitably requires invasive modifica-
tions of HippyVM and PyPy. We were helped by the fact that both interpreters centralise
all the behaviour we wished to modify. For example, implementing identity transparency
in PyPy is easy, as identity checks are not handled directly but handed over to an object’s
is_w method which compares the current object with another for identity equality. PyHyp
adapters override this method so that if the objects being compared are both adapters of
the same type, the identity check is forwarded on to the underlying adapted objects. The
is_w method of W_PHPGenericAdapter (the class representing an adapted PHP object in
PyPy) shows this idiom:

1 def is_w(self , other ):
2 if isinstance (other , W_PHPGenericAdapter ):
3 return self. w_php_obj is other . w_php_obj
4 return False

5 Syntactic Composition

Traditionally, FFIs have made the implicit assumption that the source code of each language
involved is kept in different files. In this section, we show how PyHyp allows PHP and
Python code to be used within a single file. To avoid tedious duplication of explanation,
we concentrate our explanation on embedding Python into PHP, though PyHyp also allows
PHP to be embedded into Python.
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5.1 Functions
At a low-level, PyHyp provides simple support for embedding Python inside PHP (and vice
versa) as strings. For example, the compile_py_func function takes a string containing a
single Python function and returns a Python function object that is adapted as a callable
PHP instance. The following example embeds a Python function inside PHP and calls it to
produce a random number between 0 and 10:

1 $src = <<<EOD
2 def randnum (n):
3 import random
4 return random . randrange (n)
5 EOD;
6 $randnum = compile_py_func ($src );
7 echo $randnum (10) . "\n";

In this paper we mostly use compile_py_func, though compile_py_func_global can be
used to compile a Python function and put it in PHP’s global function namespace.

Although the compile_* functions are called at run-time, they are surprisingly fast.
First, due to PHP and Python being simple languages to compile, both HippyVM and
PyPy have efficient compiler implementations. Second, when JIT compiled, PyHyp caches
the bytecode output of compile_* calls. Re-evaluating a function thus produces a new
(cheap) function object while reusing the (expensive) bytecode object which underlies it.

5.2 Methods
PyHyp supports inserting Python methods into PHP classes via the compile_py_meth(c,
f) function, where the Python method source f is compiled and inserted into the class named
by the string c. However, this feature must be used carefully because HippyVM’s implemen-
tation takes advantage of the fact that PHP’s classes can be statically compiled. This means
that, by the time a program has started running, normal PHP classes cannot be altered.
This poses a problem for PyHyp because its syntactic embedding is currently performed at
run-time. We work around this by enclosing a PHP class inside curly braces, which delays
its compilation until run-time. We also require that all calls to compile_py_meth(c, ...)
immediately follow the definition of c and that the class and all such calls be surrounded
by curly brackets. This also affects sub-classes of c, whose execution must also be delayed
by curly brackets (though not necessarily at the same point in the source code).

PHP supports a Java-like public/private/protected method access scheme, but Python
has no concept of private or protected methods.2 To model this, PyHyp extends the
php_decor decorator (see Section 4.1.3) with an optional extra argument access which
accepts a string access value ("public", "private", or "protected"). Similarly, the option
static boolean argument allows static methods to be denoted. These arguments can be
combined to specify that a Python method is e.g. protected and static.

5.3 Using Eco to Express Embeddings
For simple uses, the compile functions are tolerable as-is, but they tend to obfuscate em-
bedded code, especially in multi-level embeddings (e.g. PHP inside Python inside PHP),
where string escaping becomes onerous.

2 Python attributes prefixed by two underscores have their names mangled, but are otherwise publicly
accessible.
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1 # Create PHP grammar referencing Python (and vice versa )
2 python = Grammar (" python .eco ")
3 php = Grammar (" PHP+ Python ", "php.eco ")
4 python . add_alternative (" atom", php)
5 php. add_alternative (" top_statement ", python )
6 php. add_alternative (" class_statement ", python )
7 php. add_alternative (" expr", python )
8 # Create Python expressions -only grammar
9 python_expr = Grammar (" Python expressions ", " python .eco ")

10 python_expr . change_start (" simple_stmt ")
11 php. add_alternative (" expr", python_expr )

Listing 1 Composing PHP and Python grammars in Eco. Grammar(n, p) loads a
grammar named n from path p. change_start changes the start rule of a grammar.
g1.add_alternative(r, g2) adds a new alternative to the rule r in grammar g1 to the
start rule of grammar g2.

In order to make PyHyp’s syntactic composition more palatable, we make use of the Eco
editor [11]. Eco allows users to compose grammars and to write composed programs. In
essence, one takes a context-free grammar X and adds a reference from a rule R ∈ X to
another grammar Y . When entering language X into Eco, the user can switch to entering
language Y by creating a language box. Language boxes delineate when one language ends
and another starts, but do not introduce ambiguity or complexity into a parser. Eco parses
as the user type, and thus always has access to parse trees for all languages involved in a
composition. However, from the user’s perspective, editing in Eco feels like a normal text
editor, except when creating a language box or moving between nested language boxes (a
fairly rare occurrence).

We first had to enable users to write PyHyp programs. Since Eco comes with a Python
grammar, we only had to add a PHP grammar (which we adapted, with minor modifica-
tions, from Zend PHP) and a PHP lexer. We then used Eco’s Python interface to express
the join points between the two grammars (see Listing 1). Simplifying slightly, in PHP
one can add Python language boxes wherever PHP statements or expressions are valid;
and in Python one can add PHP language boxes wherever a Python expression is valid.
From the users perspective, this means that when using Eco for PyHyp, they create a new
PHP+Python file and start typing PHP. When they want to insert a Python function they
insert a Python+PHP language box; when they want to insert a Python expression they insert
a Python expression language box.

We then had to implement an exporter from parse trees relative to the composed
PHP+Python composed grammar to PyHyp-compatible input. The exporter automatically
inserts compile_* functions, follows compile_py_meth’s restrictions, and escapes arbitrarily
deeply nested language boxes. For example, the gen Python language box in the RNG class
in Figure 1 is exported as follows:

1 {
2 class RNG { ... }
3 compile_py_meth (" RNG", "def gen(self , amount ):\n \\
4 while amount > 0:\n \\
5 amount -= 1\n \\
6 yield self. pcg8_random ()");
7 }

Figure 1’s second language box (line 20) is more interesting. PyHyp has no explicit interface
for embedding Python expressions. Instead, the expression is encoded as a callable PHP
instance which is compiled and immediately called:

1 $l = call_py_func ( compile_py_func ("f = lambda : [x % 64 for x in rng.gen (25)];"));
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Figure 2 Cross-language exception handling in PyHyp, showing that the stacktrace presents
entries from within language boxes correctly. As an example, the first line of the stacktrace should
be read as follows: “The 0th entry in the stacktrace relates to the exceptions.eco file, line 2, within
the h function”.

In the rest of the paper we use the term ‘language box’ to refer to an embedded language
fragment irrespective of whether Eco is used or not.

5.3.1 Exceptions
When a native exception crosses the language boundary, PyHyp adapts it, before re-raising
the exception. For example, if PHP calls Python code which raises the Python exception
ZeroDivisionError, then the exception will appear to PHP as a generic PyException. As
with all other adapters, an adapted exception crossing back to its native language (e.g. a
PyException which percolates back to Python) simply has its adapter removed.

However, adapters on their own do not solve a crucial problem: cross-language stack-
traces. By default, both HippyVM and PyPy can only print out their own frames in stack-
traces, which makes cross-language exceptions seem to appear out of thin air. Equally
frustratingly, frames which represent inner language boxes report incorrect line numbers, as
each language box’s frame assumes it starts at line 1.

PyHyp fixes both problems. First, we altered HippyVM and PyPy’s stacktrace functions
to call each other for their appropriate frames. Second, we added two arguments to PyHyp’s
compilation functions (e.g. compile_py_func) to allow Eco to pass the file and line offset the
compiled text is relative to. The stacktrace routines then use this information to adjust the
reported locations. The end result is that cross-language stacktraces are just as informative
as mono-language stacktraces, as can be seen in Figure 2.

6 Cross-language Scoping

For syntactic composition to be useful, we believe that users must be able to reference
variables across language boxes. PyHyp therefore allows both Python and PHP to reference
variables in the other language, making syntactic composition significantly more powerful
and usable. This raises a novel design challenge: what are sensible cross-language scoping
rules? The major challenge is to deal with both language’s expectations surrounding global
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Figure 3 Cross-language scoping with nested language boxes: each language expects to see its
own global scope. Lexical scoping suggests that x referenced on lines 3 and 4 should bind to the
definition on line 2. Since PHP and Python’s range functions are incompatible, the PHP language
box on line 3 must reference a different range function to that on line 4. However, both the PHP
and Python language boxes wish to use PHP’s print_r function on lines 3 and 4. PyHyp’s scoping
rules respect these desires and this example prints out 0, 1, 2, 0, 1.

namespaces. We eventually settled upon scoping rules that are relatively easily explained,
and which impose a mostly lexical system. This is no small matter, as PHP and Python
have significantly different scoping rules.

In this section, we first define a simplified version of the scoping rules in each language
(since PHP and Python share neither common semantics nor terminology, we do our best to
homogenise the description). We then define PyHyp’s additional rules for PHP referencing
Python and vice versa, before explaining how these rules are implemented.

6.1 PHP and Python’s Namespace Semantics

PHP has separate global namespaces for functions, classes, constants, and variables. Any
given name can appear in multiple namespaces, as syntactic context uniquely identifies which
namespace is being used (e.g. new x() references a class, whereas x() references a function).
PHP has no concept of modules, textually ‘including’ files in similar fashion to C headers.
Thus the global namespaces span all PHP files.3 The namespaces for functions, classes,
and constants can have new names added to them dynamically, but existing names cannot
be removed or changed. In contrast, names can be added or removed to the namespace for
variables at will. Each function then defines a local scope; variable lookups within a function
first search the local scope before searching the global variable namespace.

Python modules each have a single ‘global’ namespace, to which names can be added and
removed. Functions define their own local namespace. Lexical lookups (for names defined
in the current or parent function’s scope) are determined statically (the set of local names
cannot be modified); global lookups are performed dynamically.

Neither PHP nor Python has Scheme-esque closures4: nested functions can read a parent
function’s variables but writes are not shared between the two. In the interests of brevity,
we consider PHP and Python’s variable scoping rules to be local and global, but not lexical.

3 Although PHP 5.3 introduced a mechanism for defining non-global namespaces, this does not effect
our explanation.

4 For our purposes, we consider what PHP calls a ‘closure’ to be a first-class anonymous function.
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6.2 PyHyp’s Cross-language Scoping Rules
The use of cross-language scoping in Figure 1 may suggest that cross-language scoping
design is a matter of applying traditional language design principles. Figure 3 shows a
more challenging example, where modern expectations about lexical scoping and PHP and
Python’s global namespaces appear to clash.

PyHyp resolves this issue with the following simple design. First, PHP and Python’s
local scoping rules remain unchanged. Second, we split the search for variables which are
not bound in the current language box into two distinct phases: the ‘recursive’ phase, and
the ‘global’ phase. The recursive phase searches language boxes (from inner to outer) for a
matching variable definition. Failing this, the global phase searches the global namespace(s)
of the current language box’s language; if no match is found, it then searches the global
namespace(s) of the other language.

The recursive phases for PHP and Python are conceptually identical. Python’s global
phase is simple, but PHP’s is complicated by its multiple global namespaces. If the search
originated from PHP, then only the appropriate namespace for the syntactic context is used
(e.g. if, syntactically, a function was looked up, only the function namespace is searched); if
the search originated in Python the namespaces are searched in the following order: global
functions, classes, then constants.

Performance reasons led us to make one small adjustment to the PHP global phase search.
PHP has the ability to lazily load classes; every failed class lookup triggers a (fairly slow)
check for user-defined lazy loading mechanisms. In mono-PHP this is a sensible mechanism,
as in practice either a class is found in the namespace, or it is lazily loaded, or an error is
raised. However, since cross-language scoping frequently checks for the existence of names
that do not, and will never, exist, the cumulative performance effect can be frustrating. Since
disabling lazy loading would break many existing PHP applications, we tweaked PyHyp’s
scoping rules. The search for a Python name in PHP’s global namespaces is ‘sticky’: if a
name x was found to be (say) a class on the first search in a given scope, it will only ever
return a class on subsequent searches (i.e. if a function x is later added to the functions
namespaces, it will not be returned as a match in that scope). This small loss of dynamicity
increases performance in some benchmarks by around 50%.

Using Figure 3 as a concrete example, we can see how these rules apply in practice.
First, consider the PHP variable reference $x on line 3. There is no binding of x in the PHP
language box so when the code is executed a recursive phase search commences: the parent
(Python) language box is inspected and a binding found on line 2. The range function
reference on line 3 starts with the same pattern: a recursive phase search looks in the
Python language box for a binding but fails. A PHP global phase search then commences;
since range was syntactically referenced as a function, only the global function namespace
is searched, where a match is then found. The print_r function reference on line 3 follows
the same pattern. The reference to a range function in the Python language box at line
4 starts with a recursive phase search which looks into the parent PHP language box’s for
a suitable binding (i.e. a name starting with a ‘$’) but fails. It then does a global phase
search in Python’s global namespace, finding Python’s built-in range function. The print_r
reference on line 4 is more interesting. A recursive phase search fails to find a match. A
global phase search then searches in Python’s global namespace and fails before trying PHP’s
global namespaces, starting with functions, where a match is found.

PyHyp’s scoping rules also work well in corner-cases (e.g. PyHyp deals with PHP’s
superglobals sensibly). Note that the scoping rules of both languages are partly or wholly
dynamic: that is, in some situations, bindings can be changed at run-time. PyHyp’s scoping
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rules maintain PHP’s and Python’s dynamic lookup properties since some programming
idioms (particularly in PHP, but also in Python) rely on adding or removing bindings.

6.2.1 Implementation
To add PyHyp’s scoping rules to HippyVM and PyPy, we first needed to connect language
box scopes together at run-time, and then intercept the locations where PHP and Python
global variables are read and written to.

Connecting language box scopes is made relatively simple by the fact that each is con-
structed by a compile_* function (see Section 5.1). The outer part of any PyHyp program
is, by definition, a PHP language box and every other language box is nested inside that.
Thus any call to compile_py_* implicitly receives a reference to the PHP frame from which
it was called. The reference is then stored in a PHPScope object, which PyHyp attaches
to the Python function object being created; nested Python functions inherit a PHPScope
object from their parent function, so that multiply nested functions can still access outer
language boxes. Similarly, when a PHP language box is nested inside Python, a PyScope
object is created and placed inside a PHP function’s bytecode object. This simple scheme
means that, from any PHP or Python frame, one can walk a chain from the current to the
outermost language box.

To actually search outer language box’s scopes, we have to modify those parts of Hip-
pyVM and PyPy which perform global lookups. In HippyVM, we modify the 3 separate
functions on the main interpreter object which perform searches of functions, classes, and
constants, as well as the lookup_deref function on frames which lookups up variables. An
elided version of the locate_function function – which searches for a PHP function n –
shows the small scale of such modifications:

1 def locate_function (n):
2 py_scope = self. topframeref (). bytecode . py_scope
3 if py_scope is not None:
4 ph_v = py_scope . ph_lookup_local_recurse (name)
5 if ph_v is not None: return ph_v
6 ph_v = self. lookup_function (name)
7 if ph_v is not None: return ph_v
8 ph_v = py_scope . ph_lookup_global (name)
9 if ph_v is not None: return ph_v

10 else:
11 func = self. lookup_function (name)
12 if func is not None: return func
13 self. fatal (" Call to undefined function %s()" % name)

In essence, the original function consisted of lines 11 and 12; PyHyp adds lines 1–9. When
a PHP function performs a global function lookup, and that PHP function is nested inside
a Python language box (lines 1 and 2) then a local phase search is performed (lines 4 and
5). If unsuccessful, the global phase search then commences: first the PHP global function
namespace is searched (lines 6 and 7) before Python’s global namespace is searched (lines 8
and 9). The modifications made to PyPy are identical in idiom, modifying the two opcodes
(LOAD_GLOBAL and STORE_GLOBAL) which read and write global variables.

Since PyHyp’s rules are highly dynamic, we rely heavily on use of Self-style maps (see [9])
to turn most name lookups from (slow) dictionary lookups of names into (fast) constant
lookups. HippyVM originally made only limited use of maps in its global namespaces: we
altered it to use maps extensively.5 We also used maps for the sticky namespace search.
Looking up a variable in a global phase search in a PHP scope returns an integer representing

5 This optimisation also helps plain HippyVM, as it significantly improves the performance of programs
such as MediaWiki and phpBB that use the $GLOBALS superglobal.
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unknown (i.e. this name has not previously been searched for in this context), class, function,
constant, or not found (i.e. a search was previously done and no match was found). After
tracing, virtually all global lookups turn into a small number of (quick) attribute guards,
avoiding (slow) dictionary lookups.

7 Experiment

To understand PyHyp’s performance characteristics, we define three classes of benchmarks:
small microbenchmarks, large microbenchmarks, and permutation benchmarks. Bench-
marks come in four variants: mono-language PHP (henceforth ‘mono-PHP’); mono-language
Python (‘mono-Python’); composed PHP and Python where PHP is the ‘outer’ language
(‘composed-PHP’) and where Python is the ‘outer’ language (‘composed-Python’). We run
these benchmarks on several PHP and Python implementations.

7.1 Benchmarks

Our small microbenchmarks, focus on single language features in isolation, and are useful for
identifying low-level pinch points. Each of our small microbenchmarks consist of two parts.
In most, an outer loop repeatedly calls an inner function (e.g. the total_list benchmark’s
inner function takes a list of integers and sums them). In the remainder, an outer function
generates elements, and an inner function consumes them. In the composed variants, the
inner and outer components are implemented in different languages.

Some small microbenchmarks cannot be implemented in all variants. The ref_swap
benchmark measures the performance of operations on PHP references and PHPRefs (see
Section 4.1.3) and thus has no mono-Python variant. Benchmarks which require putting
PHP methods into Python classes are currently not supported by PyHyp. The complete list
of small microbenchmarks can be found in Appendix A.

Our large microbenchmarks aim to measure performance more broadly. We use four ‘clas-
sic’ benchmarks: Fannkuch counts permutations by continually flipping elements in a list [1];
Mandel plots an ASCII representation of the Mandelbrot set into a string buffer6; Richards
models an operating system task dispatcher7; and DeltaBlue is a constraint solver [27]. To
create composed variants of these benchmarks, we took the mono-language variants and
replaced each function with an implementation in the other language. The composed-PHP
variants of Richards and DeltaBlue are thus PHP ‘shell’ classes containing many Python
methods (33 and 75 respectively), with variables referenced between languages and data
repeatedly crossing from PHP to Python (Figure 4 shows the mono and composed-PHP
variants of Richards alongside each other). In other words, Richards and DeltaBlue are
designed to heavily test PyHyp’s cross-language performance. In contrast, Fannkuch is a
single function, and so the composed variant consists of a single Python function embedded
in PHP. This serves as a rough baseline, since we would expect that the composed variant
has roughly the same performance as PyPy. Mandel also started off life as a single function,
but we made modifications to make a more interesting benchmark: we split the innermost
loop into a separate function; made the function’s parameters pass-by-reference; and made
the function modify these references during execution. Since Mandel uses references, there

6 Zend/bench.php in the Zend distribution of PHP.
7 http://www.cl.cam.ac.uk/~mr10/Bench.html

http://www.cl.cam.ac.uk/~mr10/Bench.html
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Figure 4 The mono-PHP and composed-PHP variants of Richards side by side. The composed-
PHP variant of the benchmark contains a ‘shell’ PHP program with PHP classes whose methods
are Python language boxes. Global variables remain defined in PHP, so that the benchmarks also
include an element of cross-language scoping.

is no mono-Python variant. There is no composed-Python variant of either Richards or
DeltaBlue, since PHP methods cannot yet appear inside Python classes.

The permutation benchmarks are designed to uncover whether some parts of a program
are faster in one or other language. Using the mono-PHP DeltaBlue benchmark as a base,
we created 79 permutations, each with one PHP function replaced by a Python equivalent.
We then compare the timings of each permutation to the original mono-PHP benchmark.
For brevity, we henceforth refer to permutation number x as px.

7.2 Methodology
Each benchmark was run on the following VMs (in alphabetical order): CPython, the stan-
dard interpreter for Python; HHVM, a JIT compiling VM for PHP; HippyVM; PyHypPHP,
which is PyHyp running composed-PHP variants; PyHypPy, which is PyHyp running com-
posed-Python variants; PyHypmono, which is PyHyp running mono-PHP variants; PyPy;
and Zend, the standard interpreter for PHP. The versions used for each of these VMs is
shown in Table 1. Note that PyHypPHP, PyHypPy and PyHypmono are all the save VM,
and we use the terms to be clear about which benchmarks PyHyp is running.

For each benchmark and VM pair, we ran 5 fresh processes, with each process running
50 iterations of the benchmark. We then used the bootstrapping technique described in
[21] to derive means and 99% confidence intervals for each pairing. Since we could not
always determine when a given VM had warmed up, we made no attempt to remove any
iterations from the process: thus our timings include warmup. All timings are wall-clock
with a sub-microsecond resolution.

All experiments were run on an otherwise idle 4GHz Core i7-4790 CPU and 32GiB RAM
machine, running Debian 8. We disabled turbo mode and hyper-threading in the BIOS. We
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Table 1 The VM versions used in this paper.

Interpreter Version(s)

CPython 2.7.10
HHVM 3.4.0
HippyVM git #2ae35b80
PyPy 2.6.0
Zend 5.5.13
PyHyp Based on above HippyVM/PyPy versions.

used a tickless Linux kernel, disabled Intel p-states, and ensured that the CPU governor was
set to maximum performance mode. All VMs were built with the system GCC (4.9.2). We
did not interfere with the garbage collection of any of the VMs, which run as normal.

7.3 Results
Table 2 shows the results of our microbenchmarks relative to the composed PyHyp variant.
Absolute timings are shown in Table 4 in the Appendix. Starting with the simplest obser-
vations, we can see that Zend and CPython (C-based interpreters) are slower than HHVM,
HippyVM, and PyPy (JIT-based VMs). Small to medium benchmarks tend to flatter meta-
tracing, and so HippyVM and PyPy outperform HHVM. PyPy is nearly always faster than
HippyVM, reflecting the greater level of engineering PyPy has received.

PyHypmono’s results are very similar to HippyVM’s, though a few cases run slightly
slower on PyHyp. For walk_list and DeltaBlue, some missing optimisations in PyHyp’s
scoping lookups cause undue bloat in the optimised traces. instchain and sum_meth_attr
in contrast have identical traces except for a small portion of their headers: this seemingly
small difference has a surprisingly large run-time effect which we do not fully understand.

PyHyp is generally faster than HippyVM on the composed-PHP benchmarks. This is
largely due to moving code from PHP (slower HippyVM) to Python (faster PyPy) and the
ability that meta-tracing has to naturally inline code across both languages. PyHyp is in
most cases slower than PyPy, as we would expect, because of the additional overhead of
adapters and cross-language scoping. Although meta-tracing naturally optimises the vast
majority of these operations away, a few inevitably remain, and their cumulative effect is
often noticeable, even though it is not severe. On the geometric mean PyHypPHP is only
around 20% slower on average than PyPy, and no individual PyHypPHP benchmark is more
than 2.2x slower. The composed-Python benchmarks have a similar overall average to the
composed-PHP benchmarks, though several benchmarks are slower. By comparing traces
from the composed-PHP and composed-Python benchmarks, we were able to identify several
missing optimisations in HippyVM that are likely to account for most such slowdowns:
redundant comparisons in logical operators; many more allocations in PHP iterators; and
more allocations when appending to PHP lists.

In some cases, the timings for composed variants running on PyHyp are virtually iden-
tical to the mono-language variants running on PyHyp’s constituents (e.g. smallfunc on
HippyVM, PyHypPHP and PyPy are all roughly 1x). For small benchmarks, we would
expect any well-written RPython VM to compile virtually identical traces, and such bench-
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Table 2 Microbenchmark timings relative to PyHypPHP. Note that PyHypPHP and PyHypPy are
the same VM, but running composed-PHP and composed-Python benchmark variants respectively.

Benchmark CPython HHVM HippyVM PyHypPHP PyHypPy PyHypmono PyPy Zend
instchain 33.451

±0.0679
9.547

±0.0096
0.912

±0.0011
1.000 1.116

±0.0012
0.675

±0.0007
36.471

±0.1577

l1a0r 86.017
±0.0179

4.052
±0.0020

1.368
±0.0004

1.000 1.360
±0.0003

1.359
±0.0003

1.340
±0.0106

38.778
±0.0078

l1a1r 83.803
±0.1407

2.980
±0.0038

1.306
±0.0017

1.000 1.303
±0.0016

1.303
±0.0016

1.140
±0.0022

39.111
±0.1272

lists 8.047
±0.0139

0.931
±0.0036

0.975
±0.0020

1.000 0.560
±0.0012

0.978
±0.0021

0.497
±0.0010

14.626
±0.0377

ref_swap 8.393
±0.0006

1.000
±0.0002

1.000 0.700
±0.0001

1.000
±0.0001

53.320
±0.0040

return_simple 110.409
±0.1104

7.049
±0.0019

1.000
±0.0001

1.000 0.778
±0.0001

1.000
±0.0001

0.889
±0.0001

84.724
±0.0645

scopes 133.487
±0.0493

15.023
±0.0018

4.511
±0.0025

1.000 0.929
±0.0005

4.495
±0.0013

1.000
±0.0001

152.608
±0.0131

smallfunc 187.132
±0.1488

13.078
±0.0010

1.000
±0.0001

1.000 0.750
±0.0000

1.000
±0.0001

1.000
±0.0001

230.818
±0.0145

sum 317.479
±0.2718

19.362
±0.0014

0.999
±0.0001

1.000 0.750
±0.0001

1.000
±0.0003

0.874
±0.0001

418.485
±0.0921

sum_meth 341.850
±1.3274

24.106
±0.0280

0.999
±0.0001

1.000 1.000
±0.0001

0.874
±0.0002

447.472
±0.4913

sum_meth_attr 131.469
±0.7392

17.915
±0.1052

0.999
±0.0061

1.000 1.131
±0.0065

0.904
±0.0057

145.365
±0.8321

total_list 19.230
±0.0145

2.245
±0.0008

0.864
±0.0002

1.000 1.508
±0.0004

0.858
±0.0005

0.587
±0.0003

33.667
±0.0633

walk_list 5.060
±0.0071

0.406
±0.0005

0.779
±0.0011

1.000 1.601
±0.0026

1.010
±0.0018

1.080
±0.0015

10.647
±0.0677

deltablue 16.528
±0.0707

671.482
±2.9041

4.325
±0.0212

1.000 4.507
±0.0214

0.457
±0.0026

144.149
±2.6843

fannkuch 20.582
±0.0226

3.342
±0.0025

1.848
±0.0007

1.000 1.891
±0.0005

1.878
±0.0005

1.005
±0.0004

14.387
±0.0128

mandel 0.791
±0.0056

0.921
±0.0005

1.000 0.493
±0.0001

0.999
±0.0003

7.241
±0.0188

richards 26.902
±0.0189

11.897
±0.0088

0.853
±0.0010

1.000 0.887
±0.0007

0.488
±0.0005

24.207
±0.0236

Geometric Mean 52.743
±0.0341

6.940
±0.0047

1.222
±0.0006

1.000 0.963
±0.0003

1.277
±0.0006

0.813
±0.0007

55.549
±0.0692

marks show this effect. However, in some cases where we expected identical performance for
both PyHyp and its constituents, the composed variant is faster: lla0r, l1a1r, and smallfunc.
Indeed, the crucial parts of the traces were identical between the two VMs in all these cases.
Further exploration showed that RPython’s machine code generator occasionally emits less
than optimal code (in this case unnecessary x86-64 MOVs) that account for the difference.
We do not understand the precise reason for this, but it seems plausible it is a limitation of
the current register allocator. We have reported our findings to the RPython developers.

Table 3 shows the results from the permutations experiment. The majority of permu-
tations are statistically indistinguishable from mono-PHP; most of the remainder are close
enough in performance to be of little interest. Four permutations, however, show substantial
differences: p2, p5, p6 and p7 all perform much better than in mono-PHP. We now describe
the reasons for these cases.

p2 swaps the OrderedCollection class’s constructor which performs a single action,
assigning an array (in PHP) or list (in Python) to the elms attribute. The seemingly
innocuous change of moving from a PHP array to a Python list has a big impact on perfor-
mance simply because PyPy’s lists are are far more extensively optimised than HippyVM’s
(see [5]). This provides indirect evidence of the importance of making adapters immutable
(see Section 4.1.1): even though p2 operates extensively on adapters, their costs after trace
optimisation are extremely small.

p5, p6, and p7 are all similar in nature. Ultimately, and perhaps surprisingly, the slow-
down is due to Hippy using a tracing garbage collector. Because of PHP’s copy-on-write
semantics, arrays are conceptually copied on every mutation. Zend (the traditional PHP
implementation) is able to optimise away many of these writes by making use of its reference
counting garbage collector. When a mutation operation occurs on an array with a reference
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Table 3 DeltaBlue permutations in PyHyp, with absolute times (in seconds) and relative timings
(to mono-PHP DeltaBlue run on PyHyp). Greyed-out cells indicate that the confidence intervals
overlap. Bold entries indicate that there is more than a 25% relative performance difference.

p1:
0.246s

±0.0005
1.000×

±0.0029 p17:
0.246s

±0.0004
1.000×

±0.0028 p33:
0.246s

±0.0005
0.999×

±0.0028 p49:
0.246s

±0.0005
1.002×

±0.0028 p65:
0.246s

±0.0005
1.001×

±0.0029

p2:
0.120s

±0.0003
0.490×

±0.0015 p18:
0.250s

±0.0005
1.015×

±0.0029 p34:
0.246s

±0.0004
1.000×

±0.0026 p50:
0.246s

±0.0006
1.001×

±0.0032 p66:
0.247s

±0.0004
1.006×

±0.0026

p3:
0.240s

±0.0004
0.978×

±0.0026 p19:
0.245s

±0.0004
0.999×

±0.0026 p35:
0.246s

±0.0006
1.000×

±0.0031 p51:
0.246s

±0.0004
1.000×

±0.0027 p67:
0.246s

±0.0005
1.001×

±0.0027

p4:
0.249s

±0.0005
1.015×

±0.0030 p20:
0.245s

±0.0004
0.998×

±0.0026 p36:
0.246s

±0.0005
1.002×

±0.0030 p52:
0.246s

±0.0004
1.000×

±0.0026 p68:
0.246s

±0.0005
1.000×

±0.0030

p5:
0.132s

±0.0002
0.538×

±0.0014 p21:
0.246s

±0.0004
1.001×

±0.0027 p37:
0.246s

±0.0005
1.001×

±0.0028 p53:
0.248s

±0.0004
1.008×

±0.0027 p69:
0.251s

±0.0004
1.021×

±0.0028

p6:
0.131s

±0.0002
0.533×

±0.0013 p22:
0.247s

±0.0005
1.005×

±0.0029 p38:
0.246s

±0.0005
1.000×

±0.0028 p54:
0.246s

±0.0005
0.999×

±0.0028 p70:
0.248s

±0.0005
1.008×

±0.0028

p7:
0.175s

±0.0003
0.710×

±0.0020 p23:
0.244s

±0.0005
0.993×

±0.0027 p39:
0.246s

±0.0005
0.999×

±0.0027 p55:
0.247s

±0.0005
1.004×

±0.0028 p71:
0.242s

±0.0004
0.986×

±0.0025

p8:
0.246s

±0.0006
1.002×

±0.0032 p24:
0.246s

±0.0005
1.000×

±0.0029 p40:
0.246s

±0.0005
1.000×

±0.0030 p56:
0.247s

±0.0006
1.005×

±0.0031 p72:
0.246s

±0.0005
1.001×

±0.0028

p9:
0.246s

±0.0005
1.000×

±0.0029 p25:
0.246s

±0.0005
1.002×

±0.0029 p41:
0.245s

±0.0005
0.995×

±0.0028 p57:
0.245s

±0.0005
0.999×

±0.0028 p73:
0.246s

±0.0005
1.000×

±0.0027

p10:
0.246s

±0.0004
1.000×

±0.0026 p26:
0.246s

±0.0004
1.001×

±0.0027 p42:
0.248s

±0.0004
1.011×

±0.0027 p58:
0.245s

±0.0004
0.999×

±0.0026 p74:
0.248s

±0.0004
1.011×

±0.0027

p11:
0.246s

±0.0005
1.000×

±0.0027 p27:
0.247s

±0.0006
1.006×

±0.0031 p43:
0.247s

±0.0005
1.005×

±0.0029 p59:
0.248s

±0.0006
1.011×

±0.0032 p75:
0.251s

±0.0004
1.021×

±0.0027

p12:
0.246s

±0.0004
1.001×

±0.0027 p28:
0.247s

±0.0005
1.004×

±0.0029 p44:
0.248s

±0.0005
1.011×

±0.0031 p60:
0.247s

±0.0005
1.005×

±0.0030 p76:
0.246s

±0.0004
1.002×

±0.0025

p13:
0.246s

±0.0005
1.000×

±0.0029 p29:
0.246s

±0.0006
1.000×

±0.0032 p45:
0.248s

±0.0005
1.011×

±0.0027 p61:
0.248s

±0.0005
1.009×

±0.0028 p77:
0.244s

±0.0005
0.992×

±0.0027

p14:
0.248s

±0.0005
1.009×

±0.0029 p30:
0.246s

±0.0006
1.000×

±0.0031 p46:
0.270s

±0.0005
1.100×

±0.0029 p62:
0.246s

±0.0005
1.000×

±0.0027 p78:
0.246s

±0.0003
0.999×

±0.0025

p15:
0.246s

±0.0004
0.999×

±0.0026 p31:
0.246s

±0.0004
1.000×

±0.0027 p47:
0.267s

±0.0004
1.085×

±0.0027 p63:
0.245s

±0.0004
0.999×

±0.0026 p79:
0.246s

±0.0004
0.999×

±0.0026

p16:
0.246s

±0.0004
1.000×

±0.0026 p32:
0.246s

±0.0005
1.000×

±0.0028 p48:
0.247s

±0.0005
1.003×

±0.0030 p64:
0.245s

±0.0005
0.998×

±0.0028

count of 1, the array is mutated in place, as the change cannot be observed elsewhere. Hip-
pyVM in contrast does not use reference counting, and does not know exactly how many
pointers to an array exist at any given point. Checking every pointer in the run-time system
would be prohibitively expensive, so HippyVM approximates Zend’s optimisation with a
‘unique’ flag on array references. Various operations can remove uniqueness, but arrays in
unique references can be optimised in the same manner as Zend arrays with a reference count
of 1. Taking p5 as a concrete example, we can see the subtle effects of this optimisation in
HippyVM. p5 swaps the OrderedCollection class’s size method, which simply calls count
(in PHP) or len (in Python) on a PHP array stored in an attribute. Since the count function
is call-by-value, HippyVM optimises the copy that of the array that should occur by simply
dropping its unique flag; later mutations thus must therefore copy the array. However, this
is not directly why PyHyp is faster than HippyVM in p5. When the OrderedCollection
class’s size method is moved to Python, PyHyp’s mutability semantics (see Section 4.1.2)
cause size to be a pass-by-reference function, thus meaning that the PHP reference does
not lose uniqueness, and less copying is then required.

7.4 Threats to Validity

Benchmarks are only ever a snapshot of certain performance characteristics of a system,
and we do not pretend that they necessarily tell us about program performance in a more
general setting. Our experiments also make no attempt to account for JIT warmup (for
reasons explained in Section 7.2). Removing JIT warmup would thus ‘improve’ the perceived
timings of VMs such as PyHyp which perform JIT compilation. Since it is also known that
RPython VMs have relatively poor warmup [6], the likely effect of our decision is to make
PyHyp look worse relative to other VMs. We consider this a better trade-off than trying to
make other VMs look worse relative to PyHyp.
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Figure 5 Example mails sent with our extended version of SquirrelMail. We extended this PHP
mail client such that it can visualise mathematical formulae using the SymPy Python library. A
portion of the plug-in code is shown in the right.

8 Case Studies

8.1 Using CFFI in PHP
PHP does not have a built-in C FFI, whereas Python does via the cffi module. PHP code
can thus use PyHyp to access cffi, acquiring a C FFI by default. For example the following
elided example shows PHP using cffi to call the Unix clock_gettime function:

1 $cffi = import_py_mod (" cffi ");
2 $ffi = new $cffi ->FFI ();
3 $ffi ->cdef (" double _clock_gettime_monotonic ();");
4 $csrc = <<<EOD
5 double _clock_gettime_monotonic (){
6 struct timespec ts;
7 if (( clock_gettime ( CLOCK_MONOTONIC , &ts )) == -1)
8 err (1, " clock_gettime error ");
9 return ts. tv_sec + ts. tv_nsec * pow (10 , -9);

10 }
11 EOD;
12 $ffi -> set_source (" _example ", $csrc );
13 $C = $ffi -> dlopen (null );
14 echo " Monotonic time: " . $C -> _clock_gettime_monotonic () . "\n";

8.2 A SquirrelMail Plugin
SquirrelMail is a venerable PHP web mail client. We used PyHyp to add a SquirrelMail
plug-in that uses the Python SymPy library. This is intended to show that PyHyp can
be used to add Python modules to relatively large existing systems. In essence, the plug-
in recognises mathematical formulae between triple backticks, and uses SymPy to render
them in traditional mathematical notation. Formulae in incoming emails are automatically
rendered; users sending emails with such formulae can preview the rendering before sending.
Figure 5 shows the plug-in in use, and the core parts of the code within Eco.

The sympy_changebody_do function is called by SquirrelMail’s message_body hook
(which is also called upon viewing a message), receiving the content of the email as an
argument. A regular expression finds all occurrences of formulae between backticks (line 53)
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and passes them to the Python formulae_to_images function. This then uses SymPy to
convert the formulae to images (numbered by their offset in the array/list) into the direc-
tory pointed to by the PHP constant SM_PATH (lines 61–68), and uses the URL of the image
in-place of the textual formula (line 56).

8.3 System Language Migration
We expect that one of the key uses of syntactic language composition is system language
migration, where systems are slowly migrated from language A to B in small stages. Instead
of having to rewrite whole modules or sub-systems, syntactic language composition offers
the possibility of migrating one function at a time. A full case study is far beyond the
scope of this paper, but we implicitly modelled this technique when creating the DeltaBlue
and Richards benchmarks, where we translated each PHP method into Python, leaving
only ‘shell’ PHP classes, global functions and variables. As Section 7.3 clearly shows, the
resulting performance is at worst 2x of its mono-language variant, which we believe makes
system language migration plausible for the first time.

9 Discussion

To give an approximate idea of PyHyp’s size, some rough metrics are useful. The pypy_-
bridge module – in which the majority of PyHyp is implemented – adds around 2KLoC.
Aside from this we added around 0.25KLoC and 0.2KLoC to the existing HippyVM and
PyPy interpreter code respectively. 5KLoC of new unit tests were added. On a fast build
machine (4GHz Core i7) PyHyp takes about 45 minutes to build. We estimate that imple-
menting PyHyp took around 7 person months.

A succinct summary of our experiences of creating PyHyp is: implementing what we
wanted was fairly easy; making what we implemented run fast was somewhat easy; but
working out what we wanted to implement was often hard. The latter point may surprise
readers as much as it has surprised us. There are two main reasons for this.

First, there is little precedent for fine-grained syntactic language composition. Most
existing language compositions are either extremely crude (per process compositions) or have
design decisions implicitly imposed upon them (translating into another VM’s bytecode).
We therefore faced a number of novel language design issues, and used gradually larger case
studies to help us iterate our way to good solutions, sometimes exhausting what felt like
every possible alternative. Cross-language scoping is a good example of this: we tried many
possibilities before settling on the scheme described in Section 6.

Second, it is difficult, and probably impossible, for any single person to be truly expert
in every language and implementation involved in a composition. We sometimes had to base
initial designs on (hopefully) intelligent guesses about one or the other languages’ semantics
or implementations. We then tried as hard as we could to break the resulting design. It
rapidly became clear to us that in large languages such as PHP and Python, there are many
corner-cases, sometimes little used, which need to be considered. PHP references caused
us more headaches than any other language feature. At first we ignored them, and then
we failed to appreciate their pervasive nature. It took us considerable effort to understand
them well enough to make sense of their place within PyHyp. While we do not pretend to
be experts in every aspect of either PHP or Python, we can recommend this route to anyone
who wishes to understand the nooks and crannies of a language and its implementation.

Once we had settled upon a good design, we rarely had substantial difficulty in modifying
HippyVM or PyPy to implement it. The relatively small size of the additional / changed code
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in the composition is a reasonable proxy for this. Similarly, the very nature of meta-tracing
meant that most cross-language optimisations came without any extra work on our part.
Cross-language variable scoping was the only feature that required substantial optimisation
effort on our part, including to HippyVM itself.

9.1 Generalising from the Case Study

PyHyp is, to the best of our knowledge, the first fine-grained language composition. Al-
though we are cautious about over-generalising our results, we believe that some of the
lessons embodied in PyHyp may be relevant for future fine-grained language compositions.

Most obviously, despite the rather different run-time properties of PHP and Python,
PyHyp’s performance is close enough to HippyVM and PyPy to be usable. While we would
like to claim credit for all of this, most of the benefit comes from meta-tracing: only in a few
places did we have to add PyHyp-specific optimisations. We expect languages even more
disparate than PHP and Python to still achieve fairly good performance using meta-tracing.

Our use of adapters meant that most interactions between PHP and Python required
little or no effort on our part to compose together satisfactorily. We expect this to gener-
alise to most other compositions. Adapters were also the key to resolving seemingly major
semantic data-type incompatibilities between (mostly immutable) PHP and (mostly muta-
ble) Python. The techniques we used are likely to be relevant to compositions involving
languages that are more rigorously immutable than PHP.

Finally, despite the archaic nature of PHP and Python’s scoping rules, we were able to
design good cross-language scoping rules. Most modern languages have embraced lexical
scoping, and compositions involving them will require less contortions than PyHyp.

10 Related Work

There has been a long-standing desire for language composition (see e.g. [10]), and many
flavours have developed since then. Extensible languages (e.g. [19, 20, 8]) aim to grow a
language as required by a user. However, the base language places restrictions on what
extensions are possible (e.g. due to parsing restrictions) and performant [31]. Translating
one language into another (with e.g. Stratego [7]) removes many of the limitations on what
is expressible, but full-scale translations are complex (e.g. [15]) and typically suffer the
same performance issues as extensible languages. However, for small use cases, or where
performance is not important, either approach can work well.

FFIs are the most common approach to composing languages, but their performance is
typically poor due to their inability to inline cross-language calls. The next most common
mechanism is to target an existing high performance VM (typically HotSpot). However,
since such VMs can only optimise those programs they expect to commonly see. Languages
which step even slightly outside this mould perform poorly. For example, Java programs
have often excellent performance on HotSpot, but Python programs on HotSpot generally
run slower than with simple C-based interpreters [28, 6].

Our aim in this paper has been to show that fine-grained syntactic language composition
is possible and performant. We make no claims about the formal properties of the resulting
composition as the practical challenges identified in this paper are already substantial. There
is already a small body of work on formalising language composition, such as an investigation
of the COM architecture [30], and an abstract framework for specifying the operational
semantics of multi-language embeddings [23]. There are also partial formal semantics for
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languages such as Python and PHP (see e.g. [26, 12]). We welcome future work formalising
fine-grained compositions.

As the case studies show, PyHyp is at least somewhat usable, but we are under no
illusions that it is an industrial strength product. There are many interesting directions for
further exploration, such as experimenting with cross-language inheritance [14].

11 Conclusions

In this paper we introduced PyHyp, a fine-grained syntactic composition of PHP and Python
implemented by combining together meta-tracing interpreters. We consider that PyHyp
validates our hypothesis that programming languages can be composed in a finer-grained
manner than previously thought possible or practical. Not only does PyHyp introduce novel
concepts such as cross-language variable scoping, but its performance is close enough to its
mono-language cousins to encourage use of such a system. Inevitably, some of PyHyp’s
details are specific to the particular pair of languages it composes. However, many of the
techniques that PyHyp embodies – the use of interpreter composition with meta-tracing;
some of the design choices surrounding cross-language scoping – are likely to be of use to
future language compositions.
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PyHyp’s demands, and advice on Hippy; Ronan Lamy and Maciej Fijałkowski for help with
Hippy; Jasper Schulz for help with cross-language exceptions; Alan Mycroft for insightful
thoughts on language composition; and Martin Berger, Darya Kurilova, and Sarah Mount
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A Small Microbenchmarks

Section 7.1 outlined the small microbenchmarks used in our experiment. This appendix lists
and describes each of the small microbenchmarks. The following microbenchmarks consist
of an outer loop calling an inner function:

l1a0r The inner function takes an integer which is decremented to zero in a loop. Nothing
is returned.

l1a1r The inner function takes an integer which is decremented to zero in a loop. After
every decrement, the value is added to a sum total. The sum is returned.

ref_swap The inner function swaps its two arguments using references. Since Python has
no support for references, there is no mono-Python variant of this benchmark.

return_simple The inner function returns a constant integer.
scopes The inner function takes a parameter and adds it to a variable from an outer scope.

In the composed variants, the scope lookup crosses language boxes.
smallfunc The inner function takes three arguments a, b, and c, and returns a + b ∗ c.
sum The inner function takes five arguments, sums them, and returns the result.
sum_meth As sum, except the sum is computed and returned by a method. The method

belongs to an object which is allocated once and re-used.
sum_meth_attr As sum_meth, except that the result is stored to an attribute of the object.
total_list The inner function sums the elements of a list/array passed as an argument.

The following microbenchmarks consist of one function generating elements which another
function consumes:

instchain A nested chain of objects is constructed and consumed in a loop. Each object in
the chain has an attribute storing an integer. One function constructs the chain, another
walks it summing the integers. These functions are called in a loop. In the composed
variants, the outer loop is in one language and the construct and walk functions (including
utility methods) are in the other.

lists One function constructs a list of integers, and another iterates over the list, summing
its elements. These functions are called in a loop to repeatedly construct and sum lists.
In the composed variant, the summing function is written in one language, with all other
parts written in the other.

list_walk One function creates a linked list while the other function walks the list. Each
element in the list is a three element tuple (x, y, n) where x and y are integers and n is
a pointer to the next element, or the string "end" for the final element. As the list is
walked, a counter is incremented by y − x. In the composed variant, the list creation
and walking functions are in a different language from the outer loop.

The l1a0r, l1a1r, lists, smallfunc, and list_walk microbenchmarks are ports of benchmarks
from [3]. All other small microbenchmarks were created specifically to test PyHyp.
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Table 4 Absolute microbenchmark timings.

Benchmark CPython HHVM HippyVM PyHypPHP PyHypPy PyHypmono PyPy Zend
instchain 11.323

±0.0208
3.232

±0.0016
0.309

±0.0002
0.338

±0.0003
0.378

±0.0002
0.228

±0.0001
12.345

±0.0519

l1a0r 15.965
±0.0011

0.752
±0.0003

0.254
±0.0000

0.186
±0.0000

0.252
±0.0000

0.252
±0.0000

0.249
±0.0019

7.198
±0.0005

l1a1r 16.473
±0.0162

0.586
±0.0001

0.257
±0.0000

0.197
±0.0002

0.256
±0.0000

0.256
±0.0000

0.224
±0.0003

7.689
±0.0166

lists 3.871
±0.0021

0.448
±0.0015

0.469
±0.0005

0.481
±0.0008

0.269
±0.0003

0.470
±0.0005

0.239
±0.0002

7.036
±0.0136

ref_swap 2.573
±0.0001

0.306
±0.0001

0.306
±0.0000

0.215
±0.0000

0.306
±0.0000

16.343
±0.0008

return_simple 27.678
±0.0273

1.767
±0.0005

0.251
±0.0000

0.251
±0.0000

0.195
±0.0000

0.251
±0.0000

0.223
±0.0000

21.239
±0.0161

scopes 17.854
±0.0065

2.009
±0.0002

0.603
±0.0003

0.134
±0.0000

0.124
±0.0001

0.601
±0.0002

0.134
±0.0000

20.412
±0.0014

smallfunc 46.912
±0.0368

3.278
±0.0002

0.251
±0.0000

0.251
±0.0000

0.188
±0.0000

0.251
±0.0000

0.251
±0.0000

57.862
±0.0025

sum 23.612
±0.0201

1.440
±0.0000

0.074
±0.0000

0.074
±0.0000

0.056
±0.0000

0.074
±0.0000

0.065
±0.0000

31.124
±0.0063

sum_meth 25.428
±0.0994

1.793
±0.0021

0.074
±0.0000

0.074
±0.0000

0.074
±0.0000

0.065
±0.0000

33.283
±0.0360

sum_meth_attr 31.930
±0.0046

4.351
±0.0003

0.243
±0.0003

0.243
±0.0014

0.275
±0.0001

0.220
±0.0003

35.305
±0.0125

total_list 8.076
±0.0058

0.943
±0.0003

0.363
±0.0001

0.420
±0.0001

0.633
±0.0001

0.360
±0.0002

0.246
±0.0001

14.138
±0.0257

walk_list 1.054
±0.0007

0.085
±0.0000

0.162
±0.0001

0.208
±0.0003

0.333
±0.0003

0.210
±0.0003

0.225
±0.0001

2.218
±0.0144

deltablue 0.901
±0.0006

36.609
±0.0320

0.236
±0.0005

0.055
±0.0002

0.246
±0.0005

0.025
±0.0001

7.860
±0.1417

fannkuch 15.273
±0.0168

2.480
±0.0017

1.371
±0.0004

0.742
±0.0002

1.403
±0.0002

1.393
±0.0002

0.746
±0.0002

10.676
±0.0092

mandel 0.460
±0.0033

0.536
±0.0003

0.581
±0.0002

0.287
±0.0000

0.581
±0.0001

4.211
±0.0112

richards 11.901
±0.0055

5.263
±0.0027

0.377
±0.0004

0.442
±0.0002

0.392
±0.0003

0.216
±0.0002

10.709
±0.0091
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Abstract
While database management systems (DBMSs) are highly optimized, interactions across the
boundary between the programming language (PL) and the DBMS are costly, even for in-process
embedded DBMSs. In this paper, we show that programs that interact with the popular em-
bedded DBMS SQLite can be significantly optimized – by a factor of 3.4 in our benchmarks
– by inlining across the PL / DBMS boundary. We achieved this speed-up by replacing parts
of SQLite’s C interpreter with RPython code and composing the resulting meta-tracing virtual
machine (VM) – called SQPyte – with the PyPy VM. SQPyte does not compromise stand-alone
SQL performance and is 2.2% faster than SQLite on the widely used TPC-H benchmark suite.
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1 Introduction

Significant effort goes into optimizing database management systems (DBMSs) and pro-
gramming languages (PLs), and both perform well in isolation: we can store and retrieve
huge amounts of complex data; and we can perform complex computations in reasonable
time. However, much less effort has gone into optimizing the interface between DBMSs and
programming languages. In some cases this is not surprising. Many DBMSs run in separate
processes – and often on different computers – to the PL calling them, preventing meaningful
optimisation across the two. However, embedded DBMSs run in the same process as the PL
calling them and are thus potentially amenable to traditional PL optimisations.

In this paper, we aim to improve the performance of PLs that call embedded DBMSs.
Our fundamental hypothesis is the following:

Hypothesis 1 Optimisations that cross the barrier between a programming language
and embedded DBMS significantly reduce the execution time of queries.

∗ This research was funded by the EPSRC Cooler (EP/K01790X/1) grant and Lecture (EP/L02344X/1)
fellowship.

† Work performed on secondment at King’s College London.
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In order to test this hypothesis, we composed together PyPy and SQLite. PyPy is a widely
used Python virtual machine (VM). SQLite is the most widely used embedded DBMS,
shipped by default with many operating systems, and used by many applications. This
composition required outfitting SQLite with a Just-In-Time (JIT) compiler, which meant
that we also implicitly tested the following hypothesis:

Hypothesis 2 Replacing the query execution engine of a DBMS with a JIT reduces
execution time of standalone SQL queries.

Thus, we tested Hypothesis 2 before testing Hypothesis 1. Our results strongly validate
Hypothesis 1 but, to our initial surprise, only weakly validate Hypothesis 2.

The fundamental basis of the approach we took is to use meta-tracing JIT compilers,
as implemented by the RPython system. In essence, from a description of an interpreter,
RPython derives a VM with a JIT compiler. PyPy is an existing RPython VM for the
Python language. SQLite, in contrast, is a traditional interpreter implemented in C. We
therefore ported selected parts of SQLite’s core opcode dispatcher from C to RPython,
turning SQLite into a (partially) meta-tracing DBMS. While we left most of the core DBMS
parts of SQLite (e.g. B-tree manipulation, file handling, and sorting) in C, we refer to our
modified research system as SQPyte to simplify our exposition.

Relative to SQLite, SQPyte is 2.2% faster on the industry standard TPC-H benchmark
suite [28]. We added specific optimisations intended to exploit the fact that SQLite is
dynamically typed, but, as this relatively paltry performance improvement suggests, to
little effect. We suspect that much more of SQLite’s C code would need to be ported to
RPython for this figure to significantly improve.

Since TPC-H measures SQL query performance in isolation from a PL, we then created
a series of micro-benchmarks which measure the performance of programs which cross the
PL / DBMS boundary. SQPyte is 3.4× faster than SQLite on these micro-benchmarks,
showing the benefits of being able to inline from PyPy into SQPyte.

The major parts of this paper are as follows. After describing how SQPyte was created
from SQLite (Section 3), we test Hypothesis 2 (Section 5). We then describe how PyPy and
SQLite are composed together (Section 6) allowing us to test Hypothesis 1 (Section 7).

SQPyte’s source code, and all benchmarks used in this paper, can be downloaded from
http://dx.doi.org/10.4230/DARTS.2.1.2.

2 Background

After briefly defining the difference between external and embedded databases, this sec-
tion summarizes the relevant aspects of SQLite and meta-tracing for those readers who
are unfamiliar with them. Note that this paper deals with several different technologies,
each of which uses slightly different terminology. We have deliberately imposed consistent
terminology in our discussions to aid readers of this paper.

2.1 Embedded DBMSs
From the perspective of this paper, DBMSs come in two major variants.

External DBMSs are typically used for large quantities of vital data. They run as sep-
arate processes and interactions with them require inter-process calls (IPCs) or network
communications. The overhead of IPC varies depending on operating system and hardware,
but translating a function that returns a simple integer into an IPC equivalent typically
leads to a slowdown of at least 5 orders of magnitude. Since there is a fixed cost for each

http://dx.doi.org/10.4230/DARTS.2.1.2
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Figure 1 SQLite architecture.

call, unrelated to the quantity of data, small repeated IPC calls are costly. Programmers
thus use various techniques to bunch queries together to lower the fixed cost overhead of
IPC. When bunching is impossible, it is not unusual for IPC costs to dominate interaction
with an external DBMS. This effect is even more pronounced for databases which run over
a network.

Embedded DBMSs are typically used for smaller quantities of data, often as part of a
desktop or mobile application. They run within the same memory space as a user program,
removing IPC costs. However, embedded DBMSs tend to be used as pre-packaged external
libraries, meaning that there is no support for optimising calls from the user application to
the embedded DBMS.

2.2 SQLite
SQLite1 is an embedded DBMS implemented as a C library. It is the most commonly used
embedded DBMS, installed as standard on operating systems such as OS X, and widely
used by desktop and mobile applications (e.g. email clients).

Figure 1 shows SQLite’s high-level architecture: its core provides the user-facing API that
external programs use, as well as an interpreter for running queries; the backend stores and
retrieves data in memory and on disk; and the compiler translates SQL into an instruction
sequence. Instructions consist of an opcode (i.e. the ‘type’ of the instruction) and up to
five operands p1. . . p5 (p1, p2, and p3 are always 32-bit integers; p4 is of variable size;
and p5 is an unsigned character), which are variously used to refer to registers, program
counter offsets, and the like. SQLite is dynamically typed and SQL values are either Unicode
strings, arbitrary binary ‘blobs’, 64-bit numbers (integers or floating point), or null. SQL
values are stored in a single C-level type Mem, which can also store other SQLite internal
values (e.g. row sets). The opcode dispatcher2 contains an arbitrary number of registers
(each of which stores a Mem instance), and zero or more cursors (pointers into a table or
index).

Figure 2 shows an elided version of the Mem struct, which plays a significant role in
SQLite and therefore in much of our work. flags is a bit field that encodes the type(s) of
the values stored in the struct. Most SQL values and all SQLite internal values are stored
in the MemValue union. Strings are stored on the heap with a pointer to them in z. In
some cases, Mem can store two SQL values simultaneously. For example, an integer cast at
run-time to a string will store the integer value in i and the string in z, so that subsequent
casts have zero cost. In such cases, flags records that the value has more than one run-time
type.

1 http://www.sqlite.org/
2 SQLite refers to this as its ‘virtual machine’, but we reserve that term for other uses.

ECOOP 2016

http://www.sqlite.org/


4:4 Making an Embedded DBMS JIT-friendly

1 struct Mem {
2 union MemValue {
3 double r;
4 i64 i;
5 ...
6 } u;
7 u16 flags;
8 char *z;
9 ...

10 };

Figure 2 An elided view of SQLite’s Mem struct, used to represent SQL values.

2.3 Meta-tracing
Tracing is a technique for writing JIT compilers that record ‘hot loops’ in a program and
convert them to machine code. Traditionally, tracing requires manually creating both an
interpreter and a trace compiler (see [1, 8]). In contrast, meta-tracing takes an interpreter
as input and from it automatically creates a VM with a tracing JIT compiler [22, 27,
4, 30, 3]. At run-time, user programs begin their execution in the interpreter. When
a hot loop in the user program is encountered, the actions of the interpreter are traced,
optimized, and converted to machine code. Since the initial traces are voluminous, the trace
optimiser is often able to reduce them to a fraction of their original size, before they are
converted to machine code. Subsequent executions of the loop then use the fast machine
code version rather than the slow interpreter. Guards are left behind in the machine code
so that execution paths that stray from the trace revert back to the interpreter.

In this paper we use RPython, the major extant meta-tracing language. RPython is a
statically typeable subset of Python with a type system similar to that of Java, garbage
collection, and high-level data types (e.g. lists and dictionaries). Despite this, VMs written
in RPython have performance levels far exceeding traditional interpreter-only implementa-
tions [5]. The specific details of RPython are generally unimportant in most of this paper,
and we do not concentrate on them: we believe that one could substitute any reasonable
meta-tracing language (or its cousin approach, self-optimizing interpreters with dynamic
partial evaluation [29]) and achieve similar results.

3 SQPyte

In order to test Hypothesis 2, we created a variant of SQLite called SQPyte, where parts
of SQLite’s interpreter are ported from C into RPython. SQPyte is therefore meta-tracing
compatible, meaning that SQL queries which use the RPython parts of SQPyte’s interpreter
are JIT compiled. In the rest of this section we explain the details of our porting.

It is important to note that SQPyte is not a complete, or even a majority, rewrite of
SQLite. Fortunately for us, RPython is compiled into C by default, which makes mixing
RPython and C code simple, with zero overhead for common operations such as function
calls. This means that we were able to leave most of SQLite in C, calling such code as
necessary, and only porting the minimum possible to RPython.

However, only code which is written in RPython can be JIT compiled: calls to C cannot
be inlined by the meta-tracer, reducing the possibilities for optimisations. We therefore
worked incrementally, porting code to RPython only after we had recognized that it was on
the critical performance path and likely to benefit from meta-tracing. Note that we are not
suggesting that SQPyte would not benefit from having more code in RPython, simply that
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1 import sqpyte
2 conn = sqpyte.Connection("tpch.db")
3 sum_qty = 0
4 sum_base_price = 0
5 sum_disc_price = 0
6 iterator = conn.execute("SELECT quantity, extendedprice, discount FROM lineitem")
7 for quantity, extendedprice, discount in iterator:
8 sum_qty += quantity
9 sum_base_price += extendedprice

10 sum_disc_price += extendedprice * (1 - discount)

Figure 3 An example use of the sqpyte module in PyPy. This example program connects to the
tpch.db database and computes the total quantity, the sum of the base price, and the sum of the
discounted price of all items. balance of all accounts.

with our available effort levels, we had to focus our attention on those parts of SQLite that
we believed were most relevant. As a rough indication of size, we ported 1550 lines of C
code and wrote 1300 lines of RPython code to replace it.

In this section, we first introduce this paper’s running example, before explaining how
SQPyte was created from SQLite.

3.1 Running Example
SQPyte adds a module called sqpyte to PyPy. This module exposes a standard Python
DBMS API3 that allows Python programs to directly interact with SQPyte. Although it
is mostly irrelevant from this paper’s perspective, the sqpyte module’s interface is a strict
subset of that exposed by the sqlite3 module, which is shipped as standard with PyPy
and other Python implementations.

Figure 3 shows the running example we use throughout this paper. After connecting to
a database (line 2), the example starts the execution of an SQL query (line 6), receiving an
iterator object in return. As the iterator is pumped for new values in the for loop (line
7), SQPyte lazily computes further values. Each iteration yields 3 SQL values that are
processed by regular Python code (lines 8–10).

3.2 Opcodes
SQLite’s interpreter executes instructions until either a query is complete, a new row of
results is produced, or an error occurs. Each iteration of the interpreter loop loads the
instruction at the current program counter and jumps to an implementation of the instruc-
tion’s opcode.

The first stage of the SQPyte port was to port the opcode dispatcher from C to RPython,
as shown in Figure 4. This can be thought of as having three phases. First, since we
wanted to reuse some of SQLite’s opcode’s implementations, we split them out from the
(rather large) switch statement they were part of into individual functions (one per opcode).
Second, we translated the main opcode dispatcher loop itself. Finally, we added the two
annotations4 required by RPython to make SQPyte’s interpreter meta-tracing compatible.
These annotations inform the meta-tracing system about the current execution point of the

3 The API is defined in https://www.python.org/dev/peps/pep-0249/
4 While these are written using normal function call syntax, they are treated specially by RPython.
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1 SQLITE_PRIVATE int sqlite3VdbeExec(
2 Vdbe *p) {
3 int pc=0;
4 Op *aOp = p->aOp;
5 Op *pOp;
6 int rc = SQLITE_OK;
7 ...
8 for(pc=p->pc; rc==SQLITE_OK; pc++){
9 ...

10 switch( pOp->opcode ){
11 case OP_Goto: {
12 pc = pOp->p2 - 1;
13 ...
14 break;
15 }
16 case OP_Gosub: {
17 ...
18 break;
19 }
20 case ...: { ... }
21 }
22 }
23 }

1 def mainloop(self):
2 rc = CConfig.SQLITE_OK
3 pc = self.p.pc
4 while True:
5 jitdriver.jit_merge_point(pc)
6 if rc != CConfig.SQLITE_OK:
7 break
8 op = self._hlops[pc]
9 opcode = op.get_opcode()

10 oldpc = pc
11 if opcode == CConfig.OP_Goto:
12 pc, rc =
13 self.python_OP_Goto(pc, rc, op)
14 elif opcode == CConfig.OP_Gosub:
15 pc = self.python_OP_Gosub(pc, op)
16 elif ...:
17 ...
18 pc += 1
19 if pc <= oldpc:
20 jitdriver.can_enter_jit(pc)

Figure 4 An elided version of the opcode dispatcher, with the original C on the left and the ported
RPython on the right. The RPython interpreter requires the jit_merge_point and can_enter_jit
annotations to enable the meta-tracing system to identify hot loops.

system (for example, the program counter and the known types of the registers) so that
it can determine if JIT compilation or execution can, or should, occur. can_enter_jit is
called when a loop is encountered: if that happens often enough, then tracing of the loop
occurs (i.e. the loop is, ultimately, converted into machine code). jit_merge_point allows
the meta-tracing system to determine whether there is a machine code version of the current
execution point, or whether the interpreter must be used instead.

Figure 5 shows an example of an opcode in SQLite and its SQPyte port. As this example
suggests, many aspects of the porting process are fairly obvious, though some are slightly
obscured by the greater use of helper functions in RPython (these make the RPython version
easier to understand in isolation, but can make C-to-RPython comparisons a little harder).
To ensure that we are able to make an apples-to-apples performance comparison, we ported
all aspects of SQLite’s C code enabled in the single-threaded default build. This meant that
we did not need to port parts such as the assert and VdbeBranchTaken macros (a complete
list of unported aspects can be found in Appendix A), which are no-ops in the default build
and thus have no run-time effect whatsoever.

SQLite’s opcode dispatcher contains several gotos to deal with exceptional situations, as
can be seen in Figure 6. Since SQPyte breaks opcodes into different functions, this behaviour
is no longer tenable, since we can’t goto across different functions.5 We thus ported labelled
blocks to explicit functions, and goto jumps to function calls, with each followed by a
return. This achieves the same overall program flow at the cost, when interpreting, of
requiring more function calls and, at any given time, an extra stack frame.

Porting all of SQLite’s opcodes to RPython would be a significant task, and not ne-
cessarily a fruitful one—some opcodes are called rarely, and some would benefit little from

5 Not, it should be added, that RPython has a goto construct.
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1 case OP_IfPos: {
2 pIn1 = &aMem[pOp->p1];
3 assert(pIn1->flags&MEM_Int);
4 VdbeBranchTaken(pIn1->u.i > 0, 2);
5 if (pIn1->u.i > 0) {
6 pc = pOp->p2 - 1;
7 }
8 break;
9 }

1 def python_OP_IfPos(hlquery, pc, op):
2 pIn1 = op.mem_of_p(1)
3 if pIn1.get_u_i() > 0:
4 pc = op.p2as_pc()
5 return pc

Figure 5 An example port of an opcode from C to RPython. The IfPos opcode is a conditional
jump: it loads the register specified by its p1 operand (lines 2 in C and RPython) and compares
the resulting value (as an integer) to 0 (line 5 in C; line 3 in RPython). If the value is greater than
zero it jumps to the position specified by the p2 operand (line 6 in C; line 4 in RPython). As this
example shows, the RPython code makes greater use of helper functions and removes functions that
do not appear in the production version of SQLite (both assert and VdbeBranchTaken are no-ops
in production builds).

1 case OP_MakeRecord: {
2 ...
3 if (...)
4 goto no_mem;
5 ...
6 }
7 case OP_Yield: {
8 ...
9 }

10 ...
11 no_mem:
12 ...

1 def OP_MakeRecord(...):
2 ...
3 if ...:
4 return hlquery.gotoNoMem(pc)
5 ...
6 def OP_Yield(...):
7 ...
8 ...
9 def gotoNoMem(hlquery, pc):

10 ...

Figure 6 An example of how we port gotos in an opcode into SQPyte. We ported 4 goto labels,
making each a separate function (e.g. gotoNoMem). Instead of executing a goto, SQPyte calls the
appropriate function, and then immediately returns to the main interpreter loop, thus mimicking
the control flow of SQLite.

meta-tracing. We thus chose to focus our porting efforts on those opcodes which we believed
would see the greatest benefit from meta-tracing (chiefly those which change the program
counter, or manipulate type flags). Of SQLite’s 153 opcodes, we ported 61 into RPython. A
further 42 opcodes were needed by queries we support, but we judged that they were unlikely
to benefit from JIT optimisations (because, for example, they immediately call SQLite’s B-
tree manipulating functions, which remain in C and are thus opaque to the meta-tracer).
We thus copied these opcodes directly from SQLite, leaving them in C. Since we removed the
giant switch statement these C opcodes were originally part of, each was put into its own
function, mirroring those opcodes ported to RPython. Since this is a tedious, mechanical
task, we copied only those opcodes we needed: 50 of SQLite’s opcodes are thus currently
unsupported by SQPyte, and an exception is raised if a query tries to use one of them.

3.3 Optimizing the flags Attribute
Most SQLite opcodes read or write to registers, each of which contains a Mem struct. Typic-
ally, such opcodes must first read the flags attribute of the Mem struct to determine what
type of value is stored within it. Many opcodes also write to this flag when storing a res-
ult. SQLite is completely dynamically typed – different entries in a database column, for
example, may be of different types – and, in essence, the flags attribute is how the dy-
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1 case OP_NotNull: {
2 pIn1 = &aMem[pOp->p1];
3 VdbeBranchTaken((pIn1->flags &
4 MEM_Null) == 0, 2);
5 if( (pIn1->flags & MEM_Null)==0 ){
6 pc = pOp->p2 - 1;
7 }
8 break;
9 }

1 def OP_NotNull(hlquery, pc, op):
2 pIn1, flags1 = op.mem_and_flags_of_p(1)
3 if flags1 & CConfig.MEM_Null == 0:
4 pc = op.p2as_pc()
5 return pc

Figure 7 An example of porting operations on the flags attribute from C to RPython. In this
case, the NotNull opcode jumps to a different pc if the register indexed by the opcode’s p1 operand
is not Null. The op.mem_and_flags_of_p(1) helper function reads the register specified by the p1
argument and returns the appropriate Mem structure and its flags.

1 @cache_safe(mutates="p2")
2 def python_OP_String(self, op):
3 capi.impl_OP_String(...)

Figure 8 An example of the side-effect annotation used to specify which flags attributes a C
opcode can invalidate. In this case, the annotation specifies that the OP_String opcode invalidates
the entry for the register specified by the opcode’s p2 argument.

namic types are encoded. However, dynamically typed languages tend to be surprisingly
type-constant at run-time, which is why JIT compilers are effective on such languages [5]. A
reasonable expectation is thus that, as with other dynamically typed languages, most SQL
queries are fairly type-constant. We thus made the following hypothesis:

Hypothesis 3 Exposing the type information in the flags attribute associated with
registers allows the JIT compiler to speed up query execution.

We addressed this hypothesis by adding a mechanism to SQPyte that allows the trace op-
timiser to reason about the flags attributes in registers’ Mem structs. This is implemented
as a cache storing known flags values (in essence, a close cousin of Self-style maps [7]).
When an opcode reads the flags attribute from a Mem struct in a register, the trace records
the read; SQPyte is annotated such that the trace optimizer can remove all the subsequent
reads of the flags attribute of the same register, using the previously read value. Similarly,
subsequent reads are optimised away after a flags attribute is written to. While the trace
optimiser is normally able to perform redundant load optimisations such as this automatic-
ally, it is unable to reason about the flags attribute, which is stored in a (semi-opaque) C
object, hence our need to manually help the trace optimiser.

Figure 7 shows an example of the NotNull opcode which operates on the flags attribute.
The RPython method mem_and_flags_of_p() is the heart of the flags optimisation. If this
opcode is part of a trace which has earlier read p1’s flags, and there are no intermediate
writes, then the call to mem_and_flags_of_p(1) will be entirely removed by the trace optimizer.

Those opcodes which remain in C have their RPython wrapping function annotated with
side-effect information [19] to specify which registers’ flags may have been changed by the
opcode. After the opcode has been executed, the tracer knows that any previous information
about the flags fields of the relevant registers is now invalid. An example annotation is
shown in Figure 8.

Two opcodes are handled somewhat specially. First is SQLite’s most frequently executed
opcode, Column, which reads one value from a row. This relatively complex opcode analyses
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1 static void sin_sqlite(
2 sqlite3_context *context, int argc,
3 sqlite3_value **argv) {
4 double value =
5 sqlite3_value_double(argv[0]);
6 double result = sin_sqlite(value);
7 sqlite3_result_double(context, result);
8 }
9 ...

10 sqlite3_create_function(db, "sin", 1,
11 SQLITE_UTF8, NULL, &sin_sqlite,
12 NULL, NULL)

1 def sin(func, args, result):
2 arg = args[0].sqlite3_value_double()
3 result.sqlite3_result_double(
4 math.sin(arg))
5 ...
6 db.create_function("sin", 1, sin)

Figure 9 An example of registering a sin function with SQLite (C) and SQPyte (RPython).
Note that both APIs require specifying the name of the function, the number of parameters, and a
pointer to its implementation.

the packed B-Tree representing a row, extracts the requested column, and stores it into the
register specified by the p3 operand. Because most of this opcode calls out to DBMS C
code, translating the entire (rather large) opcode to RPython would be a tedious exercise.
Since the opcode can change register p3’s flags, this meant that most calls to this opcode
were followed by a check of p3’s flags—including a read from memory. We removed these
reads by having the Column opcode return both the return code of the opcode and the most
recent value of p3’s flags encoded into one number. The trace optimizer is then able to
use the returned value to determine if its knowledge of p3’s flags is current or not, without
having to read from memory.

We also optimized the MakeRecord opcode to expose flags information to the JIT
compiler. This opcode reads from a specified number of n registers and produces a packed
representation of the content of these registers, used for later storage, and placed in the
register specified by p3. Since n is constant for each specific call of the opcode, we marked
MakeRecord’s inner loop as unrollable, so that the resulting trace contains separate code
for each register read. As well as removing the general loop overhead, this allows the trace
optimizer to reason about the flags operations involved in reading from each of the n
registers.

3.4 SQL Functions and Aggregates
SQLite has both regular functions (henceforth simply ‘functions’) and aggregates.6 Both
take a number of arguments as input. Functions produce a single result per row that they
are applied to, whereas aggregates (e.g. max) reduce many rows to a single value.

SQLite implements functions and aggregates in C, but does not hard-code them into
the interpreter: each is registered via an API to the SQL interpreter. If SQPyte kept these
functions in C, then the meta-tracer would have to treat them as opaque calls, preventing
inlining. Fortunately, we were able to easily add an RPython mirror of SQLite’s C interface
for registering functions and aggregates. Figure 9 shows an example of the two interfaces
alongside each other. Aggregates are implemented in similar manner, albeit in two parts: a
step function (e.g. an acumulator) and a finalizer function (e.g. a divisor). We implemented
a small number of commonly called SQL aggregates in RPython: sum, avg, and count.

To enable inlining, we also had to alter the opcodes which call functions and aggregates.

6 There are also user-defined collation functions which we did not optimize in a special way.

ECOOP 2016



4:10 Making an Embedded DBMS JIT-friendly

0|Init|0|12|0||00|
1|OpenRead|0|8|0|7|00|
2|Rewind|0|10|0||00|
3|Column|0|4|1||00|
4|Column|0|5|2||00|
5|RealAffinity|2|0|0||00|
6|Column|0|6|3||00|
7|RealAffinity|3|0|0||00|
8|ResultRow|1|3|0||00|
9|Next|0|3|0||01|
10|Close|0|0|0||00|
11|Halt|0|0|0||00|
12|Transaction|0|0|23|0|01|
13|TableLock|0|8|0|LineItem|00|
14|Goto|0|1|0||00|

1 # SQLite opcode Next
2 ...
3 i168 = call(sqlite3BtreeNext, ...)
4 guard_value(i168, 0)
5 # SQLite opcode Column
6 i173 = call(impl_OP_Column, 3, ...)
7 guard_value(i173, 262144)
8 # SQLite opcode Column
9 i174 = call(impl_OP_Column, 4, ...)

10 guard_value(i174, 524288)
11 # SQLite opcode RealAffinity
12 # SQLite opcode Column
13 i175 = call(impl_OP_Column, 6, ...)
14 guard_value(i175, 524288)
15 # SQLite opcode RealAffinity
16 # SQLite opcode ResultRow
17 ...
18 i178 = call(sqlite3VdbeCloseStatement, ...)
19 i179 = int_is_true(i178)
20 guard_false(i179)
21 ...

Figure 10 On the left, SQLite’s rendering of the opcodes generated for the query SELECT
quantity, extendedprice, discount FROM lineitem. The first column represents the program
counter; the second column the opcode; and the remaining columns the operands to the opcode.
On the right, an elided SQPyte optimized trace for one result row of the query. Note that after
optimisation, some opcodes have no operations in the trace.

The Function opcode is responsible for calling functions and is easily altered to permit
inlining into RPython functions. Calling an aggregate uses two opcodes: AggStep initializes
the aggregator, and calls the step function on each row; and AggFinalize returns the final
aggregate result.

3.5 Overflow checking
An advantage of controlling assembler code generation in a JIT is that one can make use of
machine code features that are hard to express directly in C. RPython uses this to allow for
overflow check’s on arithmetic operations to be performed without checking the operations
concrete result (i.e. it makes use of hardware features which few programming languages
directly expose). We make use of this feature in the implementation of arithmetic opcodes
such as Add, Sub, and Mul. If results overflow an integer, each of these switch to a floating
point representation.

3.6 From Query to Trace
We now recall the SQL query used in the running example of Figure 3: SELECT quantity,
extendedprice, discount FROM lineitem. SQLite’s compiler translates this into a se-
quence of opcodes, which can be seen in Figure 10.

The high-level structure of the query opcode as as follows. The query starts by calling
Init (opcode 0) which sets the program counter to its second operand, in this case 12. This
creates a new transaction (opcode 12), locks the table (opcode 13) before jumping (opcode
14) to the main loop query.

The main loop operates on every row in the database (opcodes 3–9). The Column opcodes
(opcodes 3, 4, and 6) read values from the quantity, extendedprice, and discount columns
in a row respectively. Although SQLite attaches type information to columns, these are, in
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a sense, optional: any given value within a column may be of an arbitrary type. Thus the
RealAffinity opcodes (opcodes 5 and 7) inspect the extendedprice and discount Mem
structs: if they hold floats (which SQLite terms ‘reals’), the result is a no-op; if they hold
integers, then they are cast to floats. The ResultRow opcode (opcode 8) returns n results
(registers p1. . . p1+p2-1 i.e. 1, 2, and 3 in our example) to the caller, suspending query
execution. Upon resumption, the Next opcode (opcode 9) advances the database cursor to
the next row in the table and updates the program counter to its second operand – in this
case 3. If there is no further data in the table, execution continues to the next opcode, which
closes the database connection (opcode 10) before halting query execution (opcode 11).

If the heart of the query opcode is in a hot loop traced by SQPyte’s tracing JIT compiler,
then the result is as in Figure 10. Traces always start with the Next opcode, since the
iteration that triggered the tracing threshold was suspended as part of that opcode and thus
the next iteration starts when the query is resumed. Next calls the sqlite3BtreeNext C
function, which advances the database row (line 3), with a guard ensuring the result is 0,
which indicates success (line 4). The Column opcodes also call a C function, but the return
type is more complex, encoding both the function’s error code and the flags of the register
that Column stored a result into. Assuming the guard holds, the remainder of the trace thus
implicitly knows the type of the register in question (see Section 3.3). This allows the trace
optimizer to remove the dynamic checks of the RealAffinity opcode all together. As this
shows, the trace optimizer is often able to remove a substantial portion of the operations in
an SQPyte trace.

4 Experimental methodology

We have two distinct experimental sections (primarily addressing, in order, Hypotheses 2
and 1), both sharing a common methodology. First we compare SQPyte to SQLite and
to H2, a widely used embedded Java database. H2 is of most interest to Hypothesis 1,
where it allows us to understand how SQPyte and PyPy’s cross-system inlining in RPython
compares to Java and H2’s cross-system inlining on HotSpot. However, to put H2’s cross-
system performance into perspective, it is also useful to see its performance on queries that
address Hypothesis 2. SQPyte is based on SQLite 3.8.8.2. We used PyPy 5.0 and H2 1.4.191.

In both experimental sections, we run a number of queries. Each query is run in 5 fresh
processes; each process runs 50 iterations of the query. We placed a 1 hour timeout on
each process. We report the mean and 99% confidence intervals of all iterations across all
processes (i.e. 250 in total). Note that by including all iterations, we are implicitly including
those where the VMs may be warming up.

As recommended by its documentation, SQLite was configured in single-threaded mode,
as was SQPyte. We used H2 in its default configuration. All benchmarks were run on an
otherwise idle Intel i7-4790 machine, with 32 GiB RAM, and Debian 8.1. We turned off
hyper-threading and turbo boost in the BIOS: hyper-threading is of little use to our single-
threaded benchmarks, and adds noise to measurements; and turbo boost’s benefits disappear
as soon as the CPU gets too hot, ruining benchmarking. The database files were put into a
RAM disk to ensure that possible data caching effects between DBMSs were reduced. We
performed an initial run of our experiment to ensure that it never caused the machine to
swap memory to disk.
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Table 1 SQPyte, SQLite, and H2 performance on the TPC-H benchmark set. For each query,
the first row shows the absolute time in seconds; the second row shows the performance relative to
SQPyte as a factor. Queries where SQLite or H2 are faster than SQPyte are shown in bold. Queries
where SQLite or H2 are, within the confidence interval, equivalent in performance to SQPyte are
shown in grey. Note that Query 19 timed out on H2, hence the lack of data.

Benchmark SQPyte SQLite H2

Query 1 (s) 6.929 ± 0.0352 8.715 ± 0.0083 13.168 ± 0.1584

× 1.258 ± 0.0065 1.901 ± 0.0254

Query 2 (s) 0.298 ± 0.0098 0.305 ± 0.0024 12.890 ± 0.0787

× 1.025 ± 0.0340 43.324 ± 1.4273

Query 3 (s) 2.933 ± 0.0329 3.098 ± 0.0100 10.636 ± 0.0490

× 1.056 ± 0.0122 3.626 ± 0.0452

Query 4 (s) 0.345 ± 0.0038 0.345 ± 0.0014 2.243 ± 0.0265

× 0.998 ± 0.0121 6.494 ± 0.1081

Query 5 (s) 1.111 ± 0.0145 1.116 ± 0.0239 158.297 ± 0.5371

× 1.004 ± 0.0261 142.473 ± 1.9971

Query 6 (s) 0.701 ± 0.0081 0.794 ± 0.0040 9.197 ± 0.0571

× 1.134 ± 0.0147 13.125 ± 0.1741

Query 7 (s) 2.630 ± 0.0070 2.847 ± 0.0318 116.322 ± 0.3302

× 1.083 ± 0.0126 44.236 ± 0.1710

Query 8 (s) 2.510 ± 0.0141 2.519 ± 0.0646 161.185 ± 0.9576

× 1.003 ± 0.0265 64.225 ± 0.5471

Query 9 (s) 10.062 ± 0.0448 10.269 ± 0.0276 121.319 ± 0.9515

× 1.021 ± 0.0055 12.055 ± 0.1137

Query 10 (s) 0.019 ± 0.0056 0.009 ± 0.0006 17.082 ± 0.0660

× 0.499 ± 0.1632 918.900 ± 292.4240

Query 11 (s) 0.604 ± 0.0071 0.647 ± 0.0026 0.494 ± 0.0174

× 1.071 ± 0.0134 0.819 ± 0.0312

Query 12 (s) 0.938 ± 0.0062 1.027 ± 0.0013 20.129 ± 0.0604

× 1.094 ± 0.0073 21.455 ± 0.1571

Query 13 (s) 2.721 ± 0.0135 2.818 ± 0.0123 14.350 ± 0.0840

× 1.036 ± 0.0072 5.274 ± 0.0427

Query 14 (s) 0.792 ± 0.0102 0.863 ± 0.0043 65.708 ± 0.3407

× 1.090 ± 0.0156 82.944 ± 1.1772

Query 15 (s) 20.636 ± 0.2254 20.881 ± 0.5542 0.009 ± 0.0036

× 1.011 ± 0.0300 0.000 ± 0.0002

Query 16 (s) 0.410 ± 0.0074 0.447 ± 0.0013 0.583 ± 0.0155

× 1.089 ± 0.0199 1.420 ± 0.0459

Query 17 (s) 0.107 ± 0.0008 0.114 ± 0.0001 0.516 ± 0.0141

× 1.067 ± 0.0082 4.805 ± 0.1354

Query 18 (s) 2.449 ± 0.0144 2.822 ± 0.0351 15.210 ± 0.0745

× 1.152 ± 0.0164 6.211 ± 0.0492

Query 19 (s) 8.140 ± 0.1333 8.114 ± 0.0397 —
× 0.997 ± 0.0169 —
Query 20 (s) 80.386 ± 0.2692 81.378 ± 0.2668 10.210 ± 0.0450

× 1.012 ± 0.0049 0.127 ± 0.0007

Query 21 (s) 8.661 ± 0.0347 9.066 ± 0.1017 8.146 ± 0.0651

× 1.047 ± 0.0124 0.941 ± 0.0086

Query 22 (s) 0.087 ± 0.0036 0.087 ± 0.0003 1.728 ± 0.0215

× 1.003 ± 0.0408 19.830 ± 0.8475

Geometric mean × 1.022 ± 0.0151 6.172 ± 0.1484
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5 Testing Hypothesis 2: SQPyte using TPC-H

To evaluate Hypothesis 2 – in essence, does SQPyte have better performance than SQLite
when both are used standalone? – we measure SQPyte’s performance on the widely used
TPC-H benchmark set [28]. TPC-H’s 22 queries utilise 8 tables, which can be populated
with different quantities of data: we chose the 1.5GiB variant, which contains 8.7 million
rows. Table 1 shows the resulting comparison of the 3 DBMSs.

Overall, SQLite is 2.2 ± 1.53% slower than SQPyte. This validates Hypothesis 2, though
only weakly. A more detailed look at the data reveals a slightly muddy story. All but
1 query is faster in SQPyte than SQLite, with a maximum improvement over SQLite of
25.8 ± 0.65% faster (query 1). Query 10 is the outlier, with SQPyte a little over 100%
slower than SQLite. This is simply because the query executes two orders of magnitude
more quickly than all but one other query (0.0093 ± 0.00061s). SQPyte’s performance
is thus dominated by the time the JIT takes to produce machine code while in the first
iteration of the benchmark. However, even if query 10 were removed from the results, the
overall speedup would only be 5.8 ± 0.45% — substantially better, but still somewhat weak
validation of Hypothesis 2. These results strongly suggest that for benchmarks such as TPC-
H, SQLite and SQPyte’s overall performance is dominated not by the interpreter but by the
core DBMS (e.g. operations on B-trees). Porting more of SQLite to RPython may improve
performance further, but it is hard to estimate the likely gains, and the effort involved would
be significant.

H2 is, on average, 6.172 ± 0.1476× significantly slower than both SQPyte and SQLite.
Query 19 exceeded our one hour timeout. Query 15, on the other hand, is almost 3 orders
of magnitude faster than SQLite and SQPyte. The reason for that is that Query 15 uses
an SQL view, which H2 is able to cache, but which SQLite continually, and unnecessarily,
recomputes (a well known SQLite issue).

6 Composing SQPyte and PyPy

As with most embedded DBMSs, SQLite is rarely used standalone. Instead, a user program
interacts with SQLite through a language-specific library, as shown in Figure 3. Thus the
overall performance experienced by the user is dictated by 3 factors: the performance of
the programming language the user program is implemented in; the performance of the
embedded DBMS; and the performance of interactions across the PL / DBMS boundary.
Hypothesis 1 captures our intuition that substantial optimisations are possible if one can
optimize across the PL / DBMS boundary.

In order to test Hypothesis 1, we composed together SQPyte and PyPy. PyPy is an
industrial strength meta-tracing Python VM, which can be used as a drop-in replacement
for the standard Python interpreter. Since PyPy is written in RPython, we were able to
extend SQPyte and PyPy so that tracing can bridge across the PL / DBMS boundary. Put
another way, database calls from PyPy inline code in SQPyte’s RPython interpreter.

The major part of the composition is the sqpyte module added to PyPy, which allows
programs run under PyPy to execute queries in SQPyte (see Section 3.1 for the user-facing
details about this module). Since it is written in RPython, sqpyte simply imports SQPyte as
another RPython module. Simple queries thus inline across the interface without significant
effort, with all the normal benefits of trace optimisation. The optimisation of SQPyte’s
flags attribute (see Section 3.3) means that in many cases data moved between SQPyte
and PyPy requires neither an explicit conversion nor even a guard. Some queries can’t be
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1 label(i144, f147, f154, i55, f57, f59, ...)
2 # for quantity, extendedprice, discount in iterator:
3 ...
4 i161 = <MemValue 87403720>.u.i
5 f162 = <MemValue 87403776>.u.r
6 f163 = <MemValue 87403832>.u.r
7 ...
8 # At this point, there is a copy of the trace from Figure 10
9 ...

10 # sum_qty += quantity
11 i186 = int_add_ovf(i144, i161)
12 guard_no_overflow()
13

14 # sum_base_price += extendedprice
15 f188 = float_add(f147, f162)
16

17 # sum_disc_price += extendedprice * (1 - discount)
18 f189 = float_sub(1.000000, f163)
19 f190 = float_mul(f162, f189)
20 f191 = float_add(f154, f190)
21 ...
22 jump(i186, f188, f191, i161, f162, f163, ...)

Figure 11 An elided version of the optimized trace of the Python program and SQL query from
Figure 3, annotated to explain which parts relate to which parts of the input program. Notice
that we have removed a significant part of the trace at line 8, since it is identical to that found in
Figure 10. As a rough gauge, the complete unoptimized trace contains 375 operations; the optimized
trace contains 137 operations.

sensibly inlined, notably those which induce a loop in SQPyte’s interpreter such as SQL
joins. In such cases, PyPy and SQLite optimize their traces independently of each other.

Using the running example from Figure 3, the resulting trace in our composition can
be seen in Figure 11. The optimized trace starts by reading the integer and two float
values (quantity, discount, and lineitem respectively) from the Mem structures of the
most recently read row (lines 4–6). Next is a structurally identical clone (with only α-
renamed SSA variables) of the trace from Figure 10 (see the explanation in Section 3.6),
which establishes the datatypes of the three fetched values. The remainder of the trace
(lines 10–22) correspond to the Python for loop in Figure 3. Since the low-level integer and
float datatypes used by SQPyte and PyPy are the same, there is no need to convert between
the two, and, for example, the SQPyte integer (line 5) can be used as-is in the PyPy part
of the trace (line 11). Indeed, with the exception of the overflow guard imposed by Python
(line 12), the optimized trace melds SQPyte and PyPy together such that it is difficult to
distinguish the two.

6.1 Calling back from SQPyte to Python
SQLite allows callbacks during an SQL query to functions in the calling PL. For example, an
end user can register a new aggregate, which consumes a sequence of SQL rows and returns
a value as shown in Figure 12. In our context, Python can call SQLite, which calls Python,
which returns to SQLite, and which finally returns to Python. Since SQLite is reentrant,
this pattern of nesting can be arbitrarily deep.

While the ability to register such callbacks is powerful, it means that data and control
flow pass over the programming language / DBMS boundary much more frequently than
normal. The sqpyte module not only supports callback of regular functions and aggregates,
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1 class MySum(object):
2 def __init__(self):
3 self.sum = 0
4

5 def step(self, x):
6 self.sum += x
7

8 def finalize(self):
9 return self.sum

10 conn.create_aggregate("mysum", 1, MySum)

Figure 12 A pure Python implementation of a sum aggregate, registered using sqpyte’s public
API (line 10). Put another way, this example is not part of SQPyte’s RPython system, and is
normal end-user code. For every row of the query, the step method is called. The aggregation’s
result is computed by calling the finalize method.

1 d = {}
2 for key, suppkey in conn.execute("""SELECT PartSupp.PartKey, PartSupp.SuppKey
3 FROM PartSupp;"""):
4 cursor = conn.execute("SELECT Part.name FROM Part WHERE part.PartKey = ?;", [key])
5 partname, = cursor.next()
6 cursor = conn.execute("""SELECT Supplier.name FROM Supplier
7 WHERE Supplier.SuppKey = ?;""", [suppkey])
8 suppname, = cursor.next()
9 d[partname] = suppname

10 return d

Figure 13 The core of the pythonjoin micro-benchmark.

but enables inlining whenever possible. Enabling this meant that we had to convert a few
more parts of SQLite into RPython, so that the full path from Python to SQPyte back to
Python is in RPython. Much as we did when calling SQPyte from Python, we make use of
tracings natural tendency to inline; though, as before, Python callbacks which have loops
lead to separate traces on either side.

7 Evaluation of Hypothesis 1: SQPyte and PyPy

In this section we evaluate Hypothesis 1 – in essence, does optimizing across the boundary
between PyPy and SQPyte lead to a significant performance increase? – and Hypothesis 3
– in essence, does exposing type information in the flags attribute increase performance?
As well as benchmarking SQLite, SQPyte, and H2 (as in Section 5), we also benchmark
two SQPyte variants: SQPyteno−inline turns off inlining between SQPyte and PyPy and
SQPyteno−flags turns off the type flags optimisations of Section 3.3.

7.1 Micro-benchmarks for PyPy Integration
The TPC-H benchmarks measure SQL performance in isolation, but tell us nothing about
the performance of a PL calling a DBMS. Indeed, to the best of our knowledge, there are no
relevant benchmarks in this style. In order to test Hypothesis 1, we were therefore forced
to create 6 micro-benchmarks, each designed to pass large quantities of data across the
PL / DBMS boundary. While they are not necessarily completely realistic programs, they
exemplify common idioms in larger programs (see Figures 3 and 13). The micro-benchmarks
are as follows:
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Table 2 How often the micro-benchmarks cross the boundary between Python and the database,
and how many values are converted across the boundary in total. In most cases, the ‘values
converted’ is a whole-number multiple of ‘crossings’. pyfunction crosses the PL / DBMS boundary
twice per iteration, with one crossing returning one value, the other two. pythonjoin has a similar,
though more complex, pattern of crossings to pyfunction.

Benchmark Crossings Values converted

select 6 001 217 18 003 645
innerjoin 800 002 1 600 000
pythonjoin 4 000 002 4 800 000
pyfunction 12 002 434 18 003 645
pyaggregate 6 001 218 12 002 431
filltable 200 004 400 000

select is the running example of Figure 3. The DBMS query iterates over three columns of
a table, returning them to Python, which performs arithmetic operations on the results.

innerjoin joins 3 tables with an inner join and returns the resulting tuples to Python, which
are then stored into a hashmap.

pythonjoin implements a semantically equivalent join to the innerjoin benchmark, but does
so in Python rather than using the DBMS. The Python code iterates over 1 of the tables,
on each iteration executing 2 sub-queries for the other 2 tables. On the Python side the
tuples are stored into a hashmap. The core part of this micro-benchmark can be seen in
Figure 13.

pyfunction models calling back to a Python function from SQL. An abs function is defined
in pure Python. The SQL query then iterates over all rows in a table, calling abs on one
column, and returning that column’s value to Python, which then sums all the elements.

pyaggregate models calling an aggregate defined in Python. A sum aggregate is defined in
pure Python (as in Figure 12) and used to sum one column of a table.

filltable first adds 100,000 rows to a two-column table, with each row being added in a single
SQL query. A single SQL query then reads all of the added rows back out again.

Each benchmark has a Java equivalent such that we can run it with H2. All micro-
benchmarks use the TPC-H dataset from Section 5, with the exception of the filltable
micro-benchmark which creates, writes, and reads from its own tables. Table 2 shows how
often each micro-benchmark crosses between DBMS and PL, and how many values are
converted between the DBMS and PL.

7.2 Results and Evaluation
The results of the micro-benchmarks are shown in Figure 3. They show that on these
conversion-heavy queries SQPyte outperforms SQLite by a factor of 3.367 ± 0.0637× on
average. Table 2 shows how often each micro-benchmark crosses the DBMS / PL boundary.
As predicted by Hypothesis 1, the more often a micro-benchmark crosses the boundary (as
shown in Table 2), the greater SQPyte’s advantage.

H2, in contrast, is significantly slower on these benchmarks – 30.285 ± 0.3515× – than
on the TPC-H benchmarks. We believe that this is because HotSpot is unable to optimize
effectively across the PL / DBMS boundary. Unfortunately, definitively verifying that this
is the cause is impossible, as we cannot selectively turn on and off the relevant HotSpot
optimisations. However, the magnitude of the effect strongly suggests that simply having
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Table 3 Results of the micro-benchmark set. The table shows absolute times in seconds, as well
as the relative factor of each VM normalized to SQPyte. The last row contains the geometric mean
of the normalized factors. Micro-benchmarks where SQLite or H2 are faster than SQPyte are shown
in bold. Micro-benchmarks where SQLite or H2 are, within the confidence interval, equivalent in
performance to SQPyte are shown in grey.

Benchmark SQPyte SQLite H2

select (s) 0.772 ± 0.0081 3.382 ± 0.0114 73.095 ± 0.9489

× 4.382 ± 0.0515 94.662 ± 1.6645

innerjoin (s) 0.578 ± 0.0030 0.913 ± 0.0032 20.957 ± 0.1636

× 1.579 ± 0.0102 36.268 ± 0.3472

pythonjoin (s) 1.397 ± 0.0061 3.332 ± 0.0862 9.292 ± 0.0776

× 2.385 ± 0.0585 6.651 ± 0.0628

pyfunction (s) 0.580 ± 0.0027 3.861 ± 0.0930 55.298 ± 0.3916

× 6.661 ± 0.1678 95.402 ± 0.8443

pyaggregate (s) 0.542 ± 0.0289 2.558 ± 0.0712 8.218 ± 0.0387

× 4.730 ± 0.2893 15.167 ± 0.7735

filltable (s) 0.067 ± 0.0013 0.188 ± 0.0149 1.565 ± 0.0443

× 2.805 ± 0.2336 23.342 ± 0.8382

Geometric mean × 3.367 ± 0.0648 30.283 ± 0.3563

both PL and DBMS running on the same VM is not sufficient to optimize across the PL /
DBMS boundary effectively.

In order to understand the cause of SQPyte’s good performance on the micro-bench-
marks, we created SQPyteno−inline, a simple variant of SQPyte which disables all inlining
between SQPyte and PyPy. Note that although no inlining occurs, traces in SQPyteno−inline
are still created on both sides of the PL / DBMS boundary, so we are able to make a sensible
comparison between SQPyte and SQPyteno−inline.

The resulting figures are shown in the second columns of Tables 4 and 5. As expected,
there is no statistical difference in the performance of SQPyte and SQPyteno−inline on the
TPC-H benchmarks (0.3 ± 1.99%)—the only Python code in these benchmarks is that used
to consume the results of a query, ensuring that the database definitely produces the results.

The micro-benchmarks are rather different, with SQPyteno−inline being 2.388 ± 0.0350×
slower than SQPyte. This shows that inlining is the single biggest part of the speed benefit
of SQPyte relative to SQLite. The only micro-benchmark that is relatively little affected
is innerjoin, which is 1.266 ± 0.0079× slower than SQPyte. This is because most of the
work in the benchmark is involved in the table joins, which happen entirely in the DBMS.
In contrast, pyfunction, which crosses the boundary twice per iteration (once from Python
to the DBMS, and then from the query calling back to Python) sees a large slowdown in
SQPyteno−inline of 3.501 ± 0.0555×.

In summary, not only does SQPyte give a significant performance increase when the
DBMS / PL boundary is crossed regularly, but we can see that inlining is the major factor
in this. This strongly validates Hypothesis 1.
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Table 4 Results of the micro-benchmark set. SQPyteno−inline disables inlining across the
database-programming language boundary, SQPyteno−flags disables the optimisation that reasons
about the flags attribute of the Mem structures. The table shows average absolute times in seconds,
as well as the factor of SQPyte normalized to each of the other VMs. The last row contains the
geometric mean of the normalized factors. Micro-benchmarks where SQLite or H2 are faster than
SQPyte are shown in bold. Micro-benchmarks where SQLite or H2 are, within the confidence
interval, equivalent in performance to SQPyte are shown in grey.

Benchmark SQPyte SQPyteno−inline SQPyteno−flags

select (s) 0.772 ± 0.0081 1.948 ± 0.0190 0.795 ± 0.0029

× 2.524 ± 0.0383 1.030 ± 0.0119

innerjoin (s) 0.578 ± 0.0030 0.732 ± 0.0025 0.579 ± 0.0017

× 1.266 ± 0.0079 1.003 ± 0.0060

pythonjoin (s) 1.397 ± 0.0061 2.961 ± 0.0796 1.423 ± 0.0117

× 2.117 ± 0.0605 1.019 ± 0.0099

pyfunction (s) 0.580 ± 0.0027 2.029 ± 0.0302 0.605 ± 0.0021

× 3.501 ± 0.0551 1.044 ± 0.0062

pyaggregate (s) 0.542 ± 0.0289 1.380 ± 0.0619 0.529 ± 0.0023

× 2.547 ± 0.1862 0.976 ± 0.0498

filltable (s) 0.067 ± 0.0013 0.206 ± 0.0017 0.069 ± 0.0016

× 3.072 ± 0.0670 1.032 ± 0.0327

Geometric mean × 2.388 ± 0.0346 1.017 ± 0.0113

8 Evaluation of Hypothesis 3: The Effect of Optimizing the flags
Attribute

In order to see how much the optimisation of the flags attribute of the Mem struct described
in Section 3.3 helps, we created a version SQPyteno−flags of SQPyte that disables this op-
timisation completely and reran all benchmarks. The results are shown in the last columns
of Tables 4 and 5.

We expected that turning off the flags optimisations would slow execution down, and
that it would account for much of the performance benefit not accounted for by inlining
in Section 7.2. On the TPC-H benchmarks, there is no statistically observable effect (a
slowdown 1.0 ± 2.41%). On the micro-benchmarks, the slowdown is statistically significant
(1.7 ± 1.112%), but only very marginally.

These results were not what we expected, and lead us to reject Hypothesis 3.

9 Threats to Validity

Benchmarks can only provide a partial view of a system’s overall performance, and thus
don’t necessarily reflect the behaviour of more realistic settings and workloads. The TPC-H
benchmarks are widely used, though the micro-benchmarks are our own creations, and we
may unintentionally have created micro-benchmarks which unduly flatter SQPyte.

When porting SQLite’s interpreter to SQPyte, we only ported those parts enabled in
the default build of SQLite. Since some parts are tangled up in C #ifdefs, we may have
unintentionally misclassified one or more of these parts. Appendix A contains a complete
list of the parts we did not port, so that readers can verify our choices.

There is a subtle difference between PyPy calling SQLite and SQPyte: in the former case,
PyPy uses a C FFI (the cffi module in PyPy) to interface with SQLite; in the latter, PyPy
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Table 5 Further variants of SQPyte running TPC-H. For a description of the columns see Table 4.

Benchmark SQPyte SQPyteno−inline SQPyteno−flags

Query 1 (s) 6.929 ± 0.0352 6.903 ± 0.0137 7.082 ± 0.0239

× 0.996 ± 0.0055 1.022 ± 0.0064

Query 2 (s) 0.298 ± 0.0098 0.296 ± 0.0065 0.283 ± 0.0039

× 0.995 ± 0.0385 0.953 ± 0.0345

Query 3 (s) 2.933 ± 0.0329 2.922 ± 0.0136 2.957 ± 0.0379

× 0.996 ± 0.0124 1.008 ± 0.0184

Query 4 (s) 0.345 ± 0.0038 0.346 ± 0.0038 0.346 ± 0.0041

× 1.002 ± 0.0159 1.001 ± 0.0169

Query 5 (s) 1.111 ± 0.0145 1.114 ± 0.0117 1.097 ± 0.0176

× 1.003 ± 0.0185 0.987 ± 0.0221

Query 6 (s) 0.701 ± 0.0081 0.693 ± 0.0016 0.702 ± 0.0014

× 0.990 ± 0.0118 1.001 ± 0.0117

Query 7 (s) 2.630 ± 0.0070 2.637 ± 0.0178 2.657 ± 0.0105

× 1.003 ± 0.0075 1.010 ± 0.0049

Query 8 (s) 2.510 ± 0.0141 2.494 ± 0.0167 2.499 ± 0.0270

× 0.994 ± 0.0088 0.996 ± 0.0124

Query 9 (s) 10.062 ± 0.0448 10.102 ± 0.0227 10.138 ± 0.0766

× 1.004 ± 0.0051 1.007 ± 0.0090

Query 10 (s) 0.019 ± 0.0056 0.020 ± 0.0057 0.023 ± 0.0089

× 1.079 ± 0.4796 1.237 ± 0.6278

Query 11 (s) 0.604 ± 0.0071 0.602 ± 0.0093 0.600 ± 0.0073

× 0.998 ± 0.0205 0.994 ± 0.0178

Query 12 (s) 0.938 ± 0.0062 0.937 ± 0.0067 0.934 ± 0.0045

× 0.999 ± 0.0099 0.995 ± 0.0083

Query 13 (s) 2.721 ± 0.0135 2.767 ± 0.0420 2.767 ± 0.0461

× 1.017 ± 0.0164 1.017 ± 0.0178

Query 14 (s) 0.792 ± 0.0102 0.785 ± 0.0048 0.793 ± 0.0101

× 0.991 ± 0.0151 1.001 ± 0.0196

Query 15 (s) 20.636 ± 0.2254 20.437 ± 0.1008 20.674 ± 0.3404

× 0.991 ± 0.0120 1.002 ± 0.0210

Query 16 (s) 0.410 ± 0.0074 0.416 ± 0.0088 0.443 ± 0.0380

× 1.014 ± 0.0295 1.079 ± 0.0972

Query 17 (s) 0.107 ± 0.0008 0.107 ± 0.0007 0.108 ± 0.0008

× 1.001 ± 0.0102 1.009 ± 0.0112

Query 18 (s) 2.449 ± 0.0144 2.441 ± 0.0043 2.485 ± 0.0145

× 0.997 ± 0.0062 1.015 ± 0.0091

Query 19 (s) 8.140 ± 0.1333 8.082 ± 0.0744 7.883 ± 0.0611

× 0.993 ± 0.0191 0.968 ± 0.0182

Query 20 (s) 80.386 ± 0.2692 80.801 ± 0.3028 80.542 ± 0.3804

× 1.005 ± 0.0054 1.002 ± 0.0061

Query 21 (s) 8.661 ± 0.0347 8.684 ± 0.0782 8.572 ± 0.0340

× 1.003 ± 0.0101 0.990 ± 0.0059

Query 22 (s) 0.087 ± 0.0036 0.087 ± 0.0037 0.084 ± 0.0020

× 0.998 ± 0.0601 0.959 ± 0.0465

Geometric mean × 1.003 ± 0.0197 1.010 ± 0.0237
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simply imports the SQPyte system as an RPython module. There is thus the potential
of additional overhead when PyPy calls SQLite compared to when it calls SQPyte. We
examined the PyPy traces for the case when it calls SQLite, and verified that the overhead
is extremely small (a small handful of machine code instructions), and insignificant relative
to the difference to the two systems.

10 Related Work

We split our discussion of related work into two sections: optimizing SQL with code gener-
ation; and optimizing the interactions between PLs and DBMSs.

10.1 Optimizing Execution SQL with Code Generation

Many databases use the iterator model for query execution [20, 11] which, in essence, is
equivalent to an AST interpreter in PL implementation. There have been many attempts
to generate code from query plans to reduce the overheads of the iterator model. This
started with very early databases such as System R [6]. Most of these approaches require
code generators to be written by hand. In contrast, SQPyte’s meta-tracing JIT compiler
implicitly implements the semantics of the system by tracing the RPython interpreter.

Rao et al. [24] describe a relational, Java-based, in-memory database that, for each
query, dynamically generates new query-specific code. They created two versions of the
query planner: an interpreted one using the iterator model and a compiled one. They
demonstrated that using the compiled version removed the overhead of virtual functions in
the interpreted version. In addition, the Java JIT compiler was much better at optimizing
the generated code for each query than the interpreted version. On average, the compiled
queries in their benchmark ran twice as fast as the interpreter.

Krikellas et al. [17] generate C code from queries and load the compiled shared libraries
to execute them. Their compilation process dynamically instantiates carefully handwritten
templates to create source code specific for a given query and hardware. The performance
of their dynamically generated evaluation plans are comparable to hard-coded equivalents.

Neumann [23] describes an approach where the query is compiled to machine code using
the LLVM compiler [18]. When generating code, the approach attempts to keep data in
registers for as long as possible. Similar to how SQPyte interacts with the existing SQLite
C code, this system also preserves complex parts of the database in C++ and calls into the
C++ code from the LLVM code as needed. The resulting system is 2 − 4× faster than the
other databases benchmarked.

Klonatos et al. [15, 16, 25] use generative programming techniques in Scala to dynamically
compile queries using a Scala SQL query engine into C. This technique implicitly inlines
parts of the DBMS into the query and shows good performance on the TPC-H benchmark
suite relative to the DBX DBMS. However, because code written in Scala cannot inline the
generated C, there is no equivalent of the PyPy / SQPyte bridge we implemented.

Haensch et al. [14] describe an automatic operator model specialization system. Their
system uses a general LLVM-based specialization component to dynamically optimize the
execution of query plans in the operator model with the help of partial evaluation. Certain
query operator fields are marked as immutable, allowing the specializer to aggressively inline
and optimize the query plan execution. This approach suffers somewhat from having to
perform its optimisations at the (rather low-level) LLVM IR, at which point a lot of useful
high-level information has been lost. Both this approach and SQPyte use interpreters as
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the basis of the run-time code generation, though Haensch et al.’s interpreters are closer in
style to the AST-based partial evaluation system of Truffle [29].

10.2 Optimizing Language-Database Interaction
Grust et al. [13] created the Ferry glue language which serves as an intermediate language to
translate subsets of other languages to SQL. That is various front-end languages can translate
to that intermediate language, which is then lowered into SQL code. The goal is to reduce the
impedance mismatch between languages and database when programming and to improve
the efficiency of the interaction. Ferry influenced several works in other languages: Garcia et
al. [9] developed a Scala plugin that enables programmers to translate Scala-level constructs
to Ferry; Grust et al. [12] introduced Switch which uses Ferry-like translation principles to
allow seamless integration of Ruby and Ruby on Rails with the DBMS; Giorgidze et al. [10]
designed and implemented a Haskell library for database-supported program execution; and
Schreiber et al. [26] created a Ferry-based LINQ-to-SQL provider. Since one of the main
goals of Ferry is to reduce the number of times the PL / DBMS boundary is crossed, the
approach is complementary to the SQPyte approach of reducing the cost of the boundary
crossings.

Mattis et al. [21] describe columnar objects, which is an implementation of an in-memory
column store embedded into Python together with a seamless integration into the Python
object system. With the help of the PyPy JIT compiler they produce efficient machine code
for Python code that queries the data store. Compared to SQPyte their approach offers a
much deeper integration of the database implementation into the host language, at the cost
of having to implement the data store from scratch.

Unipycation by Barrett et al. [2] is a language composition of Prolog and Python that uses
meta-tracing to reduce the overhead of crossing the boundary between the two languages.
It composes together PyPy with Pyrolog, a Prolog interpreter written in RPython. As with
SQPyte, the most effective optimisation is inlining.

11 Conclusion

This paper’s major result is that there are substantial, and previously missed, opportunities
for optimizing across the PL / DBMS boundary. We achieved a significant performance
increase by inlining queries from SQL into PyPy. Furthermore, most of this performance
increase came from tracing’s natural tendency to inline—our attempts to add more complex
dynamic typing optimisations had little effect.

Those who wish to apply our approach to other embedded DBMSs can take heart from
this: a relatively simple conversion of parts of an interpreter implemented in C into a meta-
tracing language is highly effective. We estimate that we spent at least 8 person-months on
the SQPyte implementation, with perhaps half of that spent on the flags optimisation, and
a further 2 person-months on the PyPy / SQPyte bridge. For this relatively moderate effort
– certainly compared to the much greater work put into both SQLite and PyPy – we were
able to substantially improve performance for queries that regularly cross the PL / DBMS
boundary. While we were only able to marginally increase the performance of stand-alone
SQL queries, we did not encounter any examples where SQPyte is slower than SQLite. This
suggests that SQPyte, or a similar system based on SQLite, may be useful to a wider range
of users.

Our approach of incrementally replacing SQLite’s C code with RPython had an inter-
esting trade-off. It made initial development easier, since we always had a running system.
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However, it had disadvantages which became more apparent in later stages of development.
Most obviously, since it necessitated keeping core data-structures in C, we hobbled the trace
optimizer somewhat. The best – or, from our perspective, worst – example of this is the
flags optimisation which, despite significant effort, ended up slightly slowing our system
down. We suspect that porting more of these data-structures, and the code that relies on
them, into RPython would enable further performance increases. Indeed, were we to tackle
SQPyte from scratch, we might place less emphasis on keeping interpreter data-structures
in C—we conjecture that in several places we might have incurred less effort on our part if
we had ported more C data-structures into RPython.

A secondary, and largely implicit result, is that we have shown that it is possible to
take an existing interpreter in C and replace relevant parts of it with RPython, creating a
meta-tracing VM. To the best of our knowledge, the first time this has been done. It may
be possible to apply this technique to other systems (including non-DBMSs), with minor
adjustments.

Acknowledgements. We thank Geoff French for comments.
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A Unported Aspects of SQLite

When porting SQLite C code to RPython, we did not port the following aspects:

Assert statements, which are removed by the C compiler.
Statements related to tests and debugging, which expand to nothing in production builds:

VdbeBranchTaken
REGISTER_TRACE
SQLITE_DEBUG
memAboutToChange
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UPDATE_MAX_BLOBSIZE
Blocks of #ifdef and #ifndef, which are usually not included in default production builds:

SQLITE_DEBUG
SQLITE_OMIT_FLOATING_POINT

We assumed SQLITE_THREADSAFE to be false, which SQLite recommends for best single-
threaded performance.
We decided to compile and port with SQLITE_OMIT_PROGRESS_CALLBACK turned on. Usu-
ally SQLite makes it possible to register a progress callback that is called every n opcodes.
We plan to implement this in the future. Note that in our evaluation, we compared
SQPyte to SQLite with callbacks similarly omitted, thus ensuring an apples-to-apples
comparison.
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Abstract
The proliferation of shared mutable state in object-oriented programming complicates software
development as two seemingly unrelated operations may interact via an alias and produce un-
expected results. In concurrent programming this manifests itself as data-races. Concurrent
object-oriented programming further suffers from the fact that code that warrants synchronisa-
tion cannot easily be distinguished from code that does not. The burden is placed solely on
the programmer to reason about alias freedom, sharing across threads and side-effects to deduce
where and when to apply concurrency control, without inadvertently blocking parallelism.

This paper presents a reference capability approach to concurrent and parallel object-oriented
programming where all uses of aliases are guaranteed to be data-race free. The static type of
an alias describes its possible sharing without using explicit ownership or effect annotations.
Type information can express non-interfering deterministic parallelism without dynamic concur-
rency control, thread-locality, lock-based schemes, and guarded-by relations giving multi-object
atomicity to nested data structures. Unification of capabilities and traits allows trait-based re-
use across multiple concurrency scenarios with minimal code duplication. The resulting system
brings together features from a wide range of prior work in a unified way.

1998 ACM Subject Classification D.3.3 [Programming Languages] Language Constructs and
Features – Classes and Objects

Keywords and phrases Type systems, Capabilities, Traits, Concurrency, Object-Oriented

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2016.5

1 Introduction

Shared mutable state is ubiquitous in object-oriented programming. Sharing can be more
efficient than copying, especially when large data structures are involved, but with great
power comes great responsibility: unless sharing is carefully maintained, changes through a
reference might propagate unexpectedly, objects may be observed in an inconsistent state,
and conflicting constraints on shared data may inadvertently invalidate invariants, etc. [28].

Multicore programming stresses proper control of sharing to avoid interference or data-
races1 and to synchronise operations on objects so that their changes appear atomic to
the system. Concurrency control is a delicate balance: locking too little opens up for the
aforementioned problems. Locking too much loses parallelism and decreases performance.

For example, parallelism often involves using multiple threads to run many tasks simul-
taneously without any concurrency control. This requires establishing non-interference by
considering all the objects accessed by the tasks at any level of indirection.

∗ This work was partially funded by the Swedish Research Council project Structured Aliasing, the
EU project FP7-612985 Upscale (http://www.upscale-project.eu), and the Uppsala Programming
Multicore Architectures Research Centre (UPMARC)

1 Two concurrent operations accessing the same location (read–write or write–write) without any syn-
chronisation is a data-race. Non-interference allows only read–read races and no locks.
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Mainstream programming languages place the burden of maintaining non-interference,
acquiring and releasing locks, reasoning about sharing, etc. completely on the (expert)
programmer. This is unreasonable, especially considering the increasing amount of parallelism
and concurrency in applications in the age of multicore and manycore machines [6].

In this paper, we explore a reference capability approach to sharing objects across threads.
A capability [31, 33] is a token that grants access to a particular resource, in our case objects.
Capabilities present an alternative approach to tracking and propagating computational
effects to check interference: capabilities assume exclusive access to their governed resources,
or only permit reading. Thus, holding a capability implies the ability to use it fully without
fear of data-races. This shifts reasoning from use-site of a reference to its creation-site.

We propose a language design that integrates capabilities with traits [39], i.e., reusable
units from which classes are constructed. This allows static checking at a higher level of
abstraction than e.g., annotations on individual methods. A mode annotation on the trait
controls how exclusivity is guaranteed, e.g., by completely static means such as controlling
how an object may be referenced, or dynamically, by automatically wrapping operations in
locks. A trait can be combined with different modes to form different capabilities according
to the desired semantics: thread-local objects, immutable objects, unsharable linear objects,
sharable objects with built-in concurrency control, or sharable objects for which locks must
be acquired explicitly. This extends the reusability of traits across concurrency scenarios.

The sharing or non-sharing of a value is visible statically through its type. Types are
formed by composing capabilities. Composition operators control how the capabilities of a
type may share data, which ultimately controls whether an object can be aliased in ways
that allow manipulation in parallel. Hiding a type’s capabilities allows changing its aliasing
restrictions. For example, hiding all mutating capabilities creates a temporarily immutable
object which is consequently safe to share across threads (cf., [9]).

Ultimately, with a small set of primitives—differently moded capabilities and composition
operators—working in concert, the resulting system brings together many features from prior
work: linear types [41, 23] and unique references [27, 34, 8, 17], regions [25], ownership types
[16], universe types [22] and (fractional) permissions [9, 42]. As far as the authors are aware,
there is no other single system that can express all of these concepts in a unified way.

This paper makes several contributions to the area of type-driven concurrency control:
We present a framework for defining capabilities which work in concert to express a wide
variety of concepts from prior work on alias control. The novel integration of capabilities
with traits extends trait-based reuse across different concurrency scenarios without code
duplication. Traits are guaranteed to be data-race free or free from any interference, which
simplifies their implementation and localises reasoning. A single keyword controls this
aspect. We support both internal and external locking schemes for data (Section 3–4).
We formalise our system in the context of the language κ (pronounced kappa), state
the key invariants of our system (safe aliasing, data-race freedom, strong encapsulation,
thread-affinity and partial determinism) and prove them sound (Section 6–7).

The full proofs, dynamic semantics and a few longer code examples can be found in the
accompanying technical report [15].

2 Problem Overview

Object-oriented programs construct graphs of objects whose entangled structure can make
seemingly simple operations hard to reason about. For example, the behaviour of the
following program (adapted from [28]) manipulating two counters c1 and c2 depends on
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whether c1 and c2 may alias, which may only be true for some runs of the program.

assert c1.value() == 42; c1.inc(); c2.inc(); assert c1.value() == 43;

If c1 and c2 always alias, we may reason about the sequential case, but if c2.inc() is
performed by another thread, the behaviour is affected by the scheduling of c2.inc(), and
whether inc() itself is thread-safe. While aliasing is possible without sharing across threads,
sharing across threads is not possible without aliasing. With this in mind, we move on
to three case studies to discuss some of the challenges facing concurrent object-oriented
programming.

2.1 Case Study: Simple Counters
To achieve thread-safety for a counter implemented in Java we can make the inc() method
synchronised to ensure only one thread at a time can execute it. While this might seem
straightforward, there are at least three problems with this approach:

1. Additional lock and unlock instructions for each increment will be inserted regardless of
whether they are necessary or not – synchronising an unaliased object is a waste.

2. Making the object thread-safe does not help protect an instance from being shared, which
might have correctness implications (e.g., non-determinism due to concurrent accesses).

3. Unless the value() method is also synchronised, concurrent calls to inc() and value()
may lead to a data-race, which might lead to a perception of lost increments.

In 1. and 2., the underlying problem is distinguishing objects shared across threads from
thread-local objects as only the former needs synchronisation. Using two different classes for
shared and unshared counters are possible, but leads to code duplication. Furthermore, if a
counter is shared indirectly, i.e., there is only one counter but its containing object is shared,
the necessary concurrency control might be in the container. Establishing and maintaining
such a “guarded-by property” warrants tool support.

In 3., the underlying problem is the absence of machinery for statically checking that all
accesses to data are sufficiently protected. This might not be easy, for example, excluding
data-races in methods inherited from a super class that encapsulates its locking behaviour.

2.2 Case Study: Data Parallelism and Task Parallelism
The counter exemplifies concurrent programming which deals with asynchronous beha-
viour and orchestration of operations on shared objects. In contrast, parallelism is about
optimisation with the goal of improving some aspect of performance.

Consider performing the operations f1 and f2 on all elements in a collection E. A data
parallel approach might apply f1(f2(e)) in parallel to all e ∈ E. In contrast, a task parallel
approach might execute f1(e1); . . . ; f1(en) and f2(e1); . . . ; f2(en) as two parallel tasks.

Both forms of parallelism requires proper alias management to determine whether f1(ei)
and f2(ej) may safely execute in parallel. When i = j, we must determine what parts of
an object’s interface might be used concurrently. When i 6= j, we must reason about the
possible overlapping states of (the different) elements ei and ej . Furthermore, unless f1(e)
(or f1(f2(e))) is safe to execute in parallel on the same object, we must exclude the possibility
that E contains duplicate references to the same object.

If f1 and f2 only perform reads, any combination is trivially safe. However, correctly
categorising methods as accessors or mutators manually can be tricky, especially if mutation
happens deep down inside a nested object structure, and a method which may logically
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only read might perform mutating operations under the hood for optimisation, telemetry,
etc. Extending the categorisation of methods to include mutation of disjoint parts further
complicates this task. Further, as software evolves, a method’s categorisation might need to
be revisited, even as a result of a non-local change (e.g., in a superclass).

2.3 Case Study: Vector vs. ArrayList in Java
As a final case study, consider the ArrayList and Vector classes from the Java API. While
both implement a list with comparable interfaces, vectors are thread-safe whereas array lists
are not. There are several consequences of this design:

1. Vector objects lock individual operations. This requires multiple acquires and releases for
compound operations (e.g., when using an external iterator to access multiple elements).

2. The reliance on Java objects’ built-in synchronisation excludes concurrent reads.
3. Just like the counter above, even thread-local vectors pay the price of synchronisation.

As a result, ArrayList is commonly favoured over Vector despite the fact that this requires
locks to be acquired correctly for each use, rather than once if built into the data structure.

A lock that allows multiple concurrent reads (a readers–writer lock) would allow both
vectors and array lists to be used efficiently and safely in parallel. This distinction adds an
extra dimension of locking and requires categorising methods as accessors/mutators.

Summary. The examples above illustrate a number of challenges facing programmers doing
concurrent and parallel programming in object-oriented languages. In summary:

Code that needs synchronisation for data-race freedom is indistinguishable from code
that does not. The same holds for code correctly achieving non-interference.
Conservatively adding locks to all data structure definitions or all uses of a data structure
hurts performance.
Using locks to exclude conflicting concurrent accesses is non-trivial and requires reasoning
about aliasing and program-wide sharing of data structures. The same reasoning is
required for partitioning a data structure across multiple threads for parallel operations
on disjoint parts, or specifying read-only operations.
The need for concurrency control varies across different usage scenarios. Building concur-
rency control into data structures generates overhead or leads to code duplication (one
thread-safe version and one which is not). Leaving concurrency control in the hands of
clients instead opens up for under-synchronisation and concurrency bugs.
The need for alias control varies across different usage scenarios. At times, thread-locality
or even stronger aliasing restrictions are desirable, for example to avoid locks or non-
determinism, or to unlock compiler optimisations or simplify verification. At other times,
sharing is required. The sharing requirements of a single object could even vary over
time.

We now describe our reference capability system which addresses all of these problems.

3 Capabilities for Concurrency Control

Our starting point for this work is to unify references and capabilities. A capability is a
handle to a resource—a part of or an entire object or aggregate (an object containing other
objects). A capability exposes a set of operations, which can be used to access its resource
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without possibility of data-races. Granting and revoking capabilities corresponds to creating
and destroying aliases. Capabilities’ modes controls how they may be shared across threads:

Exclusive capabilities denote resources that are exclusive to one thread so that accesses are
trivially free from any interference from other threads. There are two exclusive modes:
linear, used for resources to which there is only a single handle in the program, and
thread, which allows sharing, but only within one single thread. linear capabilities must
be fully transferred from one thread in order to be used by another thread.

Safe capabilities denote resources that can be arbitrarily shared (e.g., across multiple
threads). There are two safe modes: locked, causing operations to be implicitly guarded
by locks, and read which do not allow causing or directly observing mutation. Safe
capabilities guarantee data-race freedom.

Subordinate capabilities (the mode subordinate) denote resources that are encapsulated
inside some object and therefore inherit its protection against data-races or interference.
Subordinate capabilities are similar to rep or owner in ownership types [16].

Unsafe capabilities (the mode unsafe) denote arbitrarily shared resources which are unsafe
to use concurrently without some means of concurrency control. Accesses to unsafe
capabilities must be wrapped in explicit locking instructions.

Linear capabilities impose transfer semantics on assignment. We adopt destructive reads
[27] here for simplicity. This means that reading a variable holding a linear capability has the
side-effect of updating it with null. Methods in locked capabilities automatically get acquire
and release instructions, providing per-method atomicity. For unsafe capabilities locking
must be done manually, providing scoped atomicity (the duration of the lock). Although
straightforward, for simplicity we do not allow manual locking of locked in this presentation.

Types are compositions of one or more capabilities (cf., Section 3.3) and expose the union
of their operations. The modes of the capabilities in a type control how resources of that
type can be aliased. The compositional aspect of our capabilities is an important difference
from normal type qualifiers (cf., e.g., [24]), as accessing different parts of an object through
different capabilities in the same type gives different properties.

Exclusive and read capabilities guarantee non-interference and enable deterministic
parallelism. Safe capabilities guarantee the absence of data-races, i.e., concurrent write–write
or read–write operations to the same memory location, but do not exclude race-conditions,
e.g., two threads competing for the same lock. This means that programs will be thread-safe,
only one thread can hold the lock, but not necessarily deterministic—the order in which
competing threads acquire a lock is controlled by factors external to the program. This also
means that capabilities using locks do not exclude the possibility of deadlocks.

3.1 Capability = Trait + Mode
We present our capabilities system through κ, a Java-like language that uses traits [39] in
place of inheritance for object-oriented reuse. A κ capability corresponds to a trait with
some required fields, provided methods, and a mode. For the reader not familiar with
traits, a trait can be thought of as an abstract class whose fields are abstract and must
be provided by a concrete subclass—see Figure 4 for a code example of traits and classes.
An important property of κ is that an implementer of a trait can assume freedom from
data-races or interference, which enables sequential reasoning for all data that the trait owns,
(its subordinate capabilities), plus reachable exclusive capabilities. A trait’s mode controls
how data-race freedom or non-interference is guaranteed. For example, prohibiting aliases to
cross thread boundaries or inserting locks at compile-time in its methods.
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The mode of a trait is either manifest or must be given wherever the trait is included by
a class. A manifest mode is part of the declaration of the trait, meaning the trait defines
a single capability. As an example of this, consider the capability read Comparable which
provides compare methods to a class which do not mutate the underlying object. Traits
without manifest modes can be used to construct different capabilities, e.g., a trait Cell
might be used to form both a locked Cell and a linear Cell when included in different
classes, with different constraints on aliasing of its instances.

As a consequence of this design κ allows the same set of traits to be used to construct
classes tailored to different concurrency scenarios, thus contributing to trait-based reuse.

3.2 Dominating and Subordinate Capabilities
Building a data structure from linear capabilities gives strong encapsulation: subobjects of the
data structure are not aliased from outside. However, linearity imposes a tree-shaped structure
on data. Subordinate capabilities instead provide strong encapsulation by forbidding aliases
from outside an aggregate to objects within the aggregate. Inside an aggregate, subordinate
capabilities may be aliased freely, enabling any graph structure to be expressed.

The capabilities linear, thread, locked and unsafe are dominating capabilities that enclose
subordinate capabilities in a statically enforced way. Domination means that all direct accesses
to objects inside an aggregate from outside are disallowed, making the dominator a single
point of entry into an aggregate. As a consequence, any operation on an object inside
an aggregate must be triggered by a method call on its dominating capability (directly or
indirectly). This means that subordinate objects inherit the concurrency control of their
dominator. Subordinate capabilities dominated by a thread capability inherit its thread-
locality; subordinate capabilities dominated by a locked capability enjoys protection of its
lock, etc. An implementation of a linked list with subordinate links inside a dominating list
head guarantees that only a single thread at a time can mutate the links, while still allowing
arbitrary internal aliasing inside of the data structure (e.g., doubly-linked, circular).

Figure 1 shows encapsulation in κ from dominating and subordinate capabilities. To
enforce the encapsulation of subordinate objects, a subordinate capability (B and C) may not
be returned from or passed outside of its dominating capability (A). There is no hierarchical
decomposition of the heap (cf., [16]) and no notion of transitive ownership. However,
compositions (cf. Section 3.3) of dominating and subordinate capabilities (B) create nested
aggregates, i.e., entire aggregates strongly encapsulated inside another. Pointers to external
capabilities must all be to dominating capabilities. Thus, objects inside B can refer to A, but
not to C.

3.3 Flat and Nested Composition
As usual in a trait-based system, κ constructs classes by composing traits, or rather
capabilities. There are two forms of composition: disjunction (⊕) and conjunction (⊗). If A
and B are capabilities, their disjunction A ⊕ B provides the union of the methods of A and B
and requires the union of their field requirements. Their conjunction A ⊗ B does the same,
but is only well-formed if A and B do not share mutable state which is not protected by
concurrency control. This means that A ⊗ B allows A and B to be used in parallel. Figure 2
shows the composition constraints of disjunction and conjunction pictorially.

We use the term flat composition to mean disjunction or conjunction. When employing
parametric polymorphism a form of nested composition appears. The nested capability A<B>
exposes that A contains zero or more B’s at the type level, allowing type-level operations on
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dominating

subordinate

permitted reference

unpermitted reference

A

a. b.

c.
d.

B
B C

a. Disallowed if A is linear. If A is thread, aliases must
come from same thread.

b. References from outside an aggregate to its inside are not
permitted.

c. References from inside an aggregate to its outside are
permitted if the target is a dominating capability.

d. References inside an aggregate are allowed.

The box encloses the subordinate capabilities of A. Note that B
is a composition of a subordinate and a dominating capability
(cf. Section 3.3), denoted by the two circles. All dominating
capabilities have their own boxes (as shown for A), e.g., B has a
box nested inside of A’s box, inaccessible to A (cf., b.).

Figure 1 Encapsulation: dominating and subordinate capabilities.

var
val

var
val

A ⊗ B

val
var
val

var
val

A ⊕ B

var
val

Explanation: val fields are “final”, var
fields are mutable. Intersections denote
variables shared between (i.e., require’d
by) both capabilities. Types of fields in the
filled intersection must be safe, i.e., locked
or read. Fields of subordinate type in a
conjunction also must not alias.

Figure 2 Permitted sharing of fields and state across two capabilities A and B in a composite.

the composite capability. (This presentation uses a “dumbed down” version of parametric
polymorphism using concrete types in place of polymorphic parameters for simplicity.)

A composite capability inherits all properties and constraints of its sub-capabilities. Linear
capabilities must not be aliased at all. Subordinate capabilities must not leak outside their
dominator. Consequently, a type which is both subordinate and linear is both a dominator
(may encapsulate state) and a subordinate (is encapsulated), may not escape its enclosing
aggregate and has transfer semantics when assigned (cf., B in Figure 1).

Composition affects locking. A disjunction of two locked capabilities A ⊕ B will be
protected by a single lock. A conjunction A ⊗ B of locked capabilities can use different locks
for A and B, allowing each disjoint part to be locked separately. Furthermore, compositions
of read and locked capabilities can be mapped to readers–writer locks.

An important invariant in κ is that all aliases are safe with respect to data-races or
interference and can be used to the full extent of their types. If an alias can be created, any
use of it will not lead to a bad race, either because it employs some kind of locking, because
all aliases are read-only, or because the referenced object is exclusive to a particular thread.

4 Creating and Destroying Aliases = Concurrency Control

As aliasing is a prerequisite to sharing objects across possibly parallel computations, creating
and destroying aliases is key to enabling parallelism while still guaranteeing race freedom
in κ. Alias restrictions allows statically checkable non-interference, i.e., without dynamic
concurrency control (e.g., locking). Programs that require objects that are aliased across
threads must employ locks or avoid mutation.

Subordinate and thread-local capabilities may only be aliased from within certain contexts.
Read, locked and unsafe capabilities have no alias restrictions. Finally, linear capabilities are
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[A ⊗ B]n (A)n + (B)n

[A ⊗ B]m + [A ⊗ B]m′ (A)m + (B)m + (A)m′ + (B)m′

flat

nested

nested

flat

Figure 3 Flat and nested unpacking, using arrays as an analogy. [A ⊗ B]n, an array of length n
containing composite capabilities A ⊗ B can be thought of as a matrix with rows as elements and
whose columns are the elements’ subparts, A and B. The matrix can be unpacked by rows (flat)
or by columns (nested). Flat unpacking splits the array into subarrays of length m and m′ such
that n = m+m′. Nested unpacking requires that the containing object is not mutable, denoted by
turning arrays into tuples, (A)m. These compose in any order producing the same result.

alias-free. The following sections explore how linear types can be manipulated to create and
destroy aliases (granting and revoking capabilities) while enjoying non-interference.

4.1 Packing and Unpacking
Conjunctions describe objects constructed from parts that can be manipulated in parallel
without internal races. Unpacking breaks an object up into its sub-parts. A variable c with a
handle to an instance of a class C, where class C = A ⊗ B, can be unpacked into two handles
with types A and B using the + operator: var a:A + b:B = c, nullifying c in the process.

Unpacking a disjunction is unsafe (and therefore disallowed) since its building blocks can
share mutable state not mediated by concurrency control. The dual of unpacking is packing,
which re-assembles an object by revoking (nullifying) its sub-capabilities: var c:C = a + b.

The packing and unpacking above is flat. Using an array as analogy, flat unpacking takes
an array [A]n with indexes [0, n) and turns it into two disjoint equi-typed sub-arrays with
indexes [0,m) and [m,n) where m ≤ n. κ also allows nested unpacking, which in the array
analogy means that [A ⊗ B]n can be unpacked into two tuples (A)n and (B)n with the same
length and indexes. Turning the array into tuples, i.e., immutable arrays of mutable values,
is necessary as the aliases could otherwise be used to perform conflicting operations, e.g.,
updating the B-part of element i in one thread and nullifying element i in another thread.

While safe capabilities can always be shared, unpacking allows a linear capability to be
split into several aliases that can safely be used concurrently. When restoring the original
capability through packing, there may be no residual aliases. We implement this here by
preserving linearity in the unpacked capabilities. Figure 3 shows flat and nested unpacking
and how they combine and commute. Section 5 shows how unpacking can be used to
implement both data parallelism and task parallelism.

In this paper, we only consider packing and unpacking as operations at the level of types:
their purpose is to statically guarantee non-interference, not construct new objects from
other parts. Thus, packing can be efficiently compiled into an identity check or removed by
a compiler provided that handles do not escape the scope in which they were unpacked.

4.2 Bounding Capabilities to the Stack
Linearity is often overly restrictive since it prevents even short-lived aliases that do not break
any invariants. To remedy this, κ employs borrowing [8]: temporarily relaxing linearity
as long as the original capability is not accessible in the same scope, and all aliases are
destroyed at the end of the scope. Borrowed capabilities in κ are stack-bound, denoted by a
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class Pair = (linear Fst ⊗ linear Snd) ⊕ linear Swap { var fst:int; var snd:int; }

trait Fst {
require var fst:int;

def setFst(i:int) : void {
this.fst = i;

}
def getFst() : int {

this.fst;
} }

trait Snd {
require var snd:int;

def setSnd(i:int) : void {
this.snd = i;

}
def getSnd() : int {

this.snd;
} }

trait Swap {
require var fst:int;
require var snd:int;

def swap() : void {
var tmp:int = this.fst;
this.fst = this.snd;
this.snd = tmp;

} }

Figure 4 A pair class constructed from capabilities, Fst, Snd and Swap.

type wrapper S(). For example, S(linear Cell) denotes a capability which is identical to
the linear Cell capability except that it may not be stored in a field, and thus is revoked
once the scope exits. κ supports two forms of borrowing:

Forward Borrowing A linear capability in a stack variable can be converted into a stack-
bound capability for a certain scope, destructively read and then safely reinstated at
the end of the scope. This allows e.g., passing a linear capability as an argument to a
method, reinstating it on return. In conjunction with the borrowing it may optionally be
converted to a thread, allowing it to be freely aliased until reinstated.

Reverse Borrowing A method of a linear capability may non-destructively read and return
a stack-bound alias of a field of linear type. This allows linear elements of a data
structure to be accessed without removing them, which is safe as long as the capability
holding the field is not accessed during borrowing. To prevent multiple reverse borrowings
of the same value (which would break linearity), the returned value may not be stored in
fields or local variables but must be used immediately, e.g., as an argument to a method
call.

Borrowing simplifies programming with linear capabilities as it removes the need to
explicitly consume and reinstate values when aliasing is benign, avoiding unnecessary memory
writes. See Section 5 for an example of both forward and reverse borrowing in action.

4.3 Forgetting and Recovering Sub-Capabilities
Unpacking a disjunction is unsafe as its building blocks may have direct access to the same
state without any concurrency control. As an example, consider the simple Pair class created
from the capabilities Fst, Snd and Swap shown in Figure 4.

If we could unpack the pair, it would allow fst and snd to be updated independently.
However, this is unsafe in the presence of the Swap capability, which accesses both fields. For
example, the result of calling swap() concurrently with setFst() depends on the timing of
the threads. A crude solution is simply upcasting Pair to linear Fst ⊗ linear Snd. This
forgets the Swap capability and enables unpacking—but as a consequence Swap is lost forever.

To facilitate recovering a more specific type, κ provides a means to temporarily stash
capabilities inside a jail which precludes their use except for recovering a composite type:
var p:Pair = ...;
var j:J(Pair|Fst ⊗ Snd) + k:(Fst ⊗ Snd) = p; // (1)
var f:Fst + s:Snd = k; // flat unpacking
... // use f and s freely
p = j + (f + s); // flat packing, twice, and getting out of jail (2)
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At (1), the type of j, J(Pair|Fst ⊗ Snd), denotes a jail storing a Pair which is unusable
(the interface of a jailed capability is empty) until it is unlocked by providing the Fst ⊗ Snd
capability of the corresponding resource as key. Thus j serves as a witness to the existence
of the full Pair capability, including Swap. At (2), we recover k from f and s, nullifying both
variables. We use the resulting value to open the jail j and store the result in p. As for
packing, checking whether a key “fits” at run-time (i.e., if f and s are aliases of the jail) is a
simple pointer identity check, which could often be optimised away using escape analysis.

5 Applying Capabilities to the Case Studies in Section 2.1–2.3

Simple Counters. This example demonstrated the problem of distinguishing objects shared
across threads from thread-local or unaliased objects objects, and pointed at the trickiness
of locking correctly. In κ, a counter might be described as a simple trait Counter:
trait Counter {

require var cnt : int;
def inc() : void { this.cnt = this.cnt + 1; }
def value() : int { return this.cnt; } }

To get a capability from the trait, what is missing is to add the mode declaration, which
controls aliasing and sharing across threads. Out of the six possible mode annotations, five
are allowed for the Counter trait:

linear A globally unaliased counter.
thread A thread-local counter. It can be aliased, but aliases cannot cross into other threads.
locked A counter protected by a lock, sharable across threads.
subordinate This type denotes a counter nested inside another object from which it cannot

escape. It thus inherits data-race freedom or non-interference of the enclosing object.
unsafe A sharable, unprotected counter that requires the client to perform synchronisation

at use-site: c.inc() will not compile unless wrapped inside a synchronisation block, which
changes the type of c from unsafe to locked.

Using the mode read would denote a read-only counter, sharable across threads. Assigning
this mode to the trait is rejected by the compiler because of the mutable cnt field.

Modes communicate how counters may be aliased: not at all, by a single thread, or across
threads. In the latter case modes also communicate how concurrent accesses are made safe:
by locks, by only allowing reads (not applicable here), by relying on some containing object
or by delegating responsibility to the client.

Differently synchronised counters can be defined almost without code duplication, e.g.:
class LocalCounter = thread Counter { var cnt:int; }
class SharedCounter = locked Counter { var cnt:int; }

Data/Task Parallelism. This example demonstrated the need for reasoning about aliasing
in order to determine what parts of an interface can be safely accessed concurrently.

A binary tree can be constructed as the conjunction of capabilities giving access to the
left and right subtrees and the current element (full code in the technical report [15]).
class Tree<T> = linear Left<T> ⊗ linear Right<T> ⊗ linear Element<T>

We employ nesting to show that the tree contains capabilities of type T, the type of the
element value held by the Element capability. The conjunction allows parallel operations on
subparts of a tree and requires that parts do not overlap, modulo safe capabilities. Since the
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tree type must be treated linearly, the fact that the Left and Right subtrees do not overlap
follows from the requirement that Left and Right manipulate fields of different names.

To perform data-parallel operations on a tree, we can construct a recursive procedure
that takes a tree, splits it into its separate components and operates on them in parallel.
def foreach(t:S(Tree<T>), f:T → T) : void {

var l:S(linear Left<T>) + r:S(linear Right<T>) + e:S(linear Element<T>) = t; // 0
finish {

async { foreach(l.getLeft(), f); } // 1
async { foreach(r.getRight(), f); } // 1
e.apply(f); } } // 2

At (0) the splitting implicitly consumes the original tree capability. At (1) we recurse on
the left and right subtrees. At (2) we pass the function argument f to the element capability
to be performed on its T-typed value. For simplicity, we omit the check for whether l or r is
null. The implementation requires a tree to be constructed from linear building blocks to
guarantee that no parts of the tree are ever shared across multiple threads. T does not need
to be linear.

This code illustrates both forward and reverse borrowing. The tree argument to foreach()
is forward borrowed and stack-bound, which is why there is no need to pack l, r and e to
recover t—t is still accessible at the call-site, where it was buried [8] during the call.

Calls to getLeft() and getRight() return two reversely borrowed linear values (of type
S(Tree<T>)) which we can pass as arguments to the recursive calls. Hence, all trees manipu-
lated by this code will be stack-bound. If we remove the stack-boundedness, foreach() may
not update the subtrees in-place, and must recover and return t at the end, reminiscent of
functional programming. This would cause lines marked (1) to change thus:
async { l.setLeft( foreach( l.getLeft(), f ) ); }
async { l.setRight( foreach( l.getRight(), f ) ); }

which allows replacing the tree as opposed to updating it, plus a return: return l + r + e.
We may extend the Tree type with a disjunction on a capability Visit which provides

a read-only view of the entire tree. Elements may not be swapped for other elements, but
modified if T allows it. This allows multiple threads to access the same tree in parallel
provided that Left, Right and Element are temporarily forgotten.
class Tree<T> = read Visit<T>⊕ (linear Left<T>⊗ linear Right<T>⊗ linear Element<T>)

Let the type of our tree be Tree<A ⊗ B> for linear capabilities A and B. Turning this capability
into Visit<A ⊗ B> is possible by forgetting every other capability in the tree type. While
read-only capabilities can be aliased freely, creating multiple aliases typed Visit<A ⊗ B>
would provide multiple paths to supposedly linear A ⊗ B capabilities. Composition must
thus adhere to all alias restrictions in the composite capability, just like flat composition.
Therefore, Visit<A ⊗ B> is a linear capability. Unpacking however allows us to turn Visit<A
⊗ B> into two handles typed Visit<A> and Visit<B>, which preserves linearity across all paths.
This allows us to specify a task-parallel operation which implements column-based access:
def map(t:S(Tree<A⊗ B>), f:S(A)→ void, g:S(B)→ void) : void {

var ta:S(read Visit<A>) + tb:S(read Visit<B>) = t; // 3
finish {

async { ta.preorder(f); } // 4
async { tb.preorder(g); } } }// 4

In this code we create two immutable views of the spine of the tree using Visit and
then proceed to apply f and g to all elements of the tree in parallel. At (3) the rest of the
capabilities of Tree are forgotten. If we wanted to restore them after the parallel operations
we would jail them at (3) and restore them after (4).
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While the data-parallel version is more scalable than the task-parallel version, there
may be cases when the latter is preferred. Further, their combination is possible in either
order—apply f and g in parallel to each element at (2) above, or start by unpacking the tree
into multiple immutable trees and then process the sub-elements in parallel in each tree,
equivalent to calling a version of foreach instead of preorder at (4) (cf., Figure 3).

Vector vs. ArrayList in Java. This example demonstrated that building synchronisation
into a data structure can cause too much overhead and destroy parallelism. In κ, a list
might be described using capabilities (full code in technical report, [15]):

Add_Del for adding and removing elements
Get for looking up elements

Add_Del might be split into two capabilities allowing for more flexibility, for example granting
a client only the ability to add elements but not delete them. As the two capabilities operate
on some shared state (the links), their combination must be a disjunction: Add_Del ⊕ Get.

To express the difference between the array list and vector, we would write
class ArrayList = unsafe Add_Del ⊕ unsafe Get // Needs external synchronisation
class Vector = locked Add_Del ⊕ locked Get // Has synchronisation built in

Specifying use of readers–writer locks to access an object is straightforward and allows sharing
a list across threads for reading, causing concurrent write operations to block:
class ArrayList = unsafe Add_Del ⊕ read Get
class Vector = locked Add_Del ⊕ read Get

The use of unsafe in the definition of the array list class pushes the synchronisation from
within the called methods to the outside, e.g., calling list.add(element) we must first take
a (write-)lock on list. Requiring external synchronisation also allows acquiring, holding
and releasing a lock once to perform several operations, like an iteration, without fear of
interleaving accesses from elsewhere.

The type thread Add_Del ⊕ read Get denotes a list confined to its creating thread. The
type linear Add_Del ⊕ read Get denotes a list that can mediate between being mutated from
one alias or read-only from several aliases. This type is similar to a readers–writer lock,
except relying on alias restrictions instead of locks (cf., [9]), removing locking overhead. The
ability to reuse traits for different concurrency scenarios is an important contribution of κ.

Concluding Remarks for Section 3–5
Linear and thread-local capabilities give non-interference by restricting aliases to a single
thread. Locked and unsafe capabilities can be shared across threads and employ locks at
declaration-site or at use-site to avoid data-races. Read capabilities can be shared across
threads and do not allow causing or directly witnessing mutation. When a read capability is
extracted from a linear composite, no mutating aliases exist, guaranteeing non-interference.
When extracted from a locked composite, locks are used to guarantee data-race freedom.

The assignment of modes to traits at inclusion site allow a single definition to be reused
across multiple concurrency scenarios. Composition captures how different parts of an
object’s interface interact and defines the safe aliasing of an object.

Subordinate capabilities inherit the protection of their enclosing dominating capabilities.
Thus, operations on encapsulated objects are atomic in κ, in the sense that all side-effects
of a method call on an aggregate are made visible to other threads atomically. Operating
atomically on several objects which are not encapsulated in the same aggregate is possible by
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P ::= Cds Tds e (Program)
Cd ::= class C = K { Fds } (Class definition)
Fd ::= mod f : t (Field definition)

mod ::= var | val (Mutable and immutable fields)
K ::= k T | k I | K〈K〉 | (K � K) (Capabilities and composition)
� ::= ⊗ | ⊕ (Conjunction and disjunction)

Td ::= k trait T〈t〉 {Rs Mds } | trait T〈t〉 {Rs Mds } (Trait definition)
R ::= require Fd (Field requirement)

Md ::= def m(x : t) : t { e } (Method definition)
e ::= v | let x = e in e | pack x = y + z in e | unpack x + y = z in e | x.m(e) | x | x.f
| x.f = e | new C | consume x | consume x.f | (t) e | sync x as y { e } ; e
| bound x { e } ; e | finish { async { e } async { e } } ; e (Expression)

v ::= null (Literal)
t ::= K | C | B(K) (Type)
B ::= JK | S (“Boxed” types, i.e., jailed or stack-bound)
k ::= linear | locked | read | safe | subordinate | thread | unsafe (Modes)

Figure 5 Syntax of κ. T is a trait name; I is the incapability; C is a class name; m is a
method name; f is a field name; x, y are variable names, including this. Ds ::= D1, . . . , Dn for
D ∈ {Cd,Td,Fd,R,Md}.

locking them together using nested synchronisation (for unsafe capabilities) or by structuring
a call-chain on locked capabilities.

Invariantly, all well-typed aliases can coexist without risking data-races. The type system
guarantees that all accesses to an object will either be exclusive or only perform operations
that cannot clash with any other possible concurrent operations to the same object.

6 Formalising κ

We formalise the static semantics of κ. We define a flattening translation into a language
without traits, κF, whose static and dynamic semantics is found in the accompanying
technical report [15]. κF is a simple object-oriented language with structured parallelism and
locking, that uses classes and interfaces which are oblivious to the existence of κ capabilities.
The translation from κ to κF inserts locking and unlocking operations when translating
locked capabilities and conjunctions of locked and read capabilities. The locks are reentrant
readers–writer locks controlling access to parts of objects. Other locking schemes are possible.

The syntax of κ is shown in Figure 5. We make a few simplifications, none of which are
critical for the soundness of the approach:

1. We use let-bindings and explicit pack/unpack constructs. Targets of method calls must
be stack variables. Aliasing stack-bounds requires a method-call indirection.

2. We consider finish/async parallelism rather than unstructured creation of threads.
3. Classes only contain fields and no methods.
4. We omit the treatment of constructors. Fields are initialised with null on instantiation.
5. We use objects to model higher-order functions and omit these from the formalism.
6. Only a single method parameter and a single nested type are supported.

We introduce a safe capability, which abstracts read and locked to allow mode subtyping.
The safe mode is only allowed in types, not in declarations. The incapability type I does not
contain any fields or methods and simply allows holding a reference to an object.
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` P : t ` Td Γ ` Td ` Cd (Well-formedness top-level declarations)

wf-program
∀ Cd∈ Cds . ` Cd
∀ Td∈ Tds . ` Td

ε ` e : t
` Cds Tds e : t

wf-t-trait
` subord trait T〈t〉 { Rs Mds }
` trait T〈t〉 { Rs Mds }

wf-t-trait-mfst
ρ : t ` k trait T { Rs Mds }
` k trait T〈t〉 { Rs Mds }

wf-t-innards
k 6= safe

Γ, this : k T ` Rs
Γ, this : k T ` Mds

Γ ` k trait T { Rs Mds }

wf-class
` K ∀ Fd∈ Fds . this : K ` Fd

∀ var f : t1∈ fields (K) . ∃ var f : t2∈ Fds . t2 ≡ t1
∀ val f : t1∈ fields (K) . ∃ var f : t2∈ Fds . t2 <: t1

` classC = K { Fds }

Γ ` R,Rs Γ ` Mds,Md Γ ` Fd ` Γ (Well-formed body parts)

wf-req-fd
Γ ` Fd

Γ ` requireFd

wf-req-fds
Γ ` R
Γ ` Rs

Γ ` Rs,R

wf-mds
Γ ` Md
Γ ` Mds

Γ ` Mds,Md

wf-m-trait
Γ, x : t1 ` e : t2

Γ ` defm(x : t1) : t2 { e }

wf-fd-nst
` Γ

Γ(ρ) = K
Γ ` val f : K

wf-fd
Γ(this) = K ` t t 6= S(_)
` K thread(t)⇒ thread(K)
read(K)⇒ (mod ≡ val ∧ safe(t))

Γ ` mod f : t

env-e

` ε

env-var
` Γ
` t

x 6∈ dom(Γ)
` Γ, x : t

Figure 6 Well-formed declarations. Γ ::= ε | Γ, x : t, (x incl. ρ).

Our main technical result is the proof that a κF program translated from a well-typed κ
program enjoys safe aliasing and strong encapsulation (cf. Section 7.2) in a way that implies
thread-safety (cf. Section 7.3). We verify our definition of thread-safety by proving that it
implies data-race freedom and, when certain capabilities are excluded, also non-interference
(cf. Section 7.3).

Helper Predicates and Functions. The functions fields, vals, vars and msigs return a map
from names to types or method signatures. We use helper predicates of the form k(K) to
assess whether a capability K has mode k. The predicates linear, subord(inate) and unsafe
hold if there exists at least one sub-capability in K of that mode. The predicates read(K) and
encaps(K) hold if all sub-capabilities in K are read or subordinate, respectively. locked(K)
holds if one or more sub-capabilities are locked, and the remainder safe.

6.1 Well-Formed κ Programs (Figure 6)

A well-formed program consists of classes, traits, and an initial expression (WF-PROGRAM).
Traits without manifest mode are type-checked as if they were subordinate (WF-T-TRAIT).
To reduce the number of rules, we require all traits to have exactly one nested capability (a
concrete type “parameter”), and use T as shorthand for T<I>, where I is the empty capability.
A trait is well-formed if its field requirements and methods are well-typed given the self-type
of the current trait and the nested type. The latter is tracked by the special variable ρ which



E. Castegren and T. Wrigstad 5:15

` t (well-formedness of types)

t-class
classC = K {_ } ∈ P

` C

t-boxed
` K
` B(K)

t-nesting
` K1
` K2

` K1〈K2〉

t-trait-mfst
k trait T〈K〉 {__ } ∈ P

` k T

t-trait
k ≡ read⇒ this : read T ` Rs

trait T〈K〉 { Rs_ } ∈ P
` k T

t-i

` k I

t-composition
` K1 ` K2

∀ Fd1∈ fields (K1),Fd2∈ fields (K2) . Fd1 � Fd2
wfRegions (K1, K2) wfRegions (K2, K1)

` K1 � K2

t-regions
∀ K1⊗ K2∈ K . mod1 f1 : t1∈ fields (K1) ∧mod2 f2 : t2∈ fields (K2)

∧ f1 6= f2 ∧ subord(t1) ∧ subord(t2)⇒
¬ (f1∈ fields (K′) ∧ f2∈ fields (K′))

wfRegions (K, K′)

Fd1 � Fd2 (sharing fields
across traits)

c-sharable
safe(t) ∨ unsafe(t)
val f : t ⊗ val f : t

c-var-val
t1 <: t2

var f : t1 ⊕ val f : t2

c-val-val
` K1 ⊗ K2

� = ⊗ ⇒ ¬ subord(K1 ⊗ K2)
val f : K1 � val f : K2

c-disjoint
f1 6= f2

mod1 f1 : t1 � mod2 f2 : t2

c-disjunction

mod1 f : t ⊕ mod2 f : t

Figure 7 Well-formed types. Conjunctions and disjunctions of traits are governed by the rules for
overlapping fields. For simplicity, we omit (C-VAL-VAR) which is isomorphic with (C-VAR-VAL).

may not appear anywhere in the program source (WF-T-TRAIT-MFST). Fields are either
mutable (var) or stable (val). We assume that names of classes and traits are unique in a
program and the names of fields and methods are unique in classes and traits.

A well-formed class consists of well-typed var fields that satisfy the requirements from its
traits, and a defined equivalence to a well-formed composite capability. We allow covariance
for val fields (WF-CLASS). Only immutable fields holding safe capabilities are allowed in
read capabilities (WF-REQ-*,WF-FD), unless the type of the field is exposed through nesting
(WF-FD-NST). Fields may not store stack-bound capabilities and fields holding thread-local
values are only allowed if the containing object is also thread-local (WF-FD).

6.2 Well-Formed Types (Figure 7)

Capabilities corresponding to traits with manifest modes are trivially well-formed (T-TRAIT-

MFST). Traits without a manifest mode can be given any mode (T-TRAIT). Well-formed
read capabilities may only contain safe val fields. The empty capability I can be given any
mode (T-I). Composing capabilities with I thus affects the mode of the composite, but not
the interface (cf., Section 6.3).

Two well-formed capabilities can form a nested capability type (T-NESTING). A composite
capability is well-formed if its sub-capabilities are well-formed and their shared fields are
composable (T-COMPOSITION). We also require that two subordinate fields appearing on
opposing sides of a conjunction K1⊗K2 are not both accessible from some other trait K′ in
the same composite (T-REGIONS). Such a field would act as a channel that could be used to
share subordinate state across the supposedly disjoint representations of K1 and K2.
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The rules of the form Fd1�Fd2 govern field overlaps between capabilities in a composite,
where � ∈ {⊗,⊕} denotes the composition of the capabilities containing the fields (cf.,
Figure 2). Disjunctions may overlap freely (C-DISJUNCTION). Disjoint fields do not overlap
(C-DISJOINT). If a field appearing on both sides of a composition is mutable on one side and
immutable on the other, the mutable field’s type must be more precise (C-VAR-VAL). An
immutable field may appear on both sides of a composition only if its type is safe or unsafe
(C-SHARABLE) or if the fields have types whose conjunction is well-formed (C-VAL-VAL). If
the sharing capabilities are conjunctive, the field must not be subordinate.

6.3 Type Equivalence, Packing and Subtyping (Figure 8)

Class names are aliases for composite capabilities (T-EQ-CLASS-TRAIT). The order of the
operands in composition of a single kind does not matter (T-EQ-COMMUTATIVE) and
(T-EQ-ASSOCIATIVE). Equivalent types in jail or bound to the stack are still equivalent
(T-EQ-BOXED). A read with a nested conjunction can be unpacked into two read capabilities
with nested capabilities from the unpacked conjunction (T-EQ-NESTING). Incapabilities can
be added and removed from a type as long as modes are preserved (T-EQ-I).

Jailing allows creating a conjunction from a disjunction (T-JAIL). The full capability that
can be unlocked from the jail is written as a subscript K. Jailing requires that all modes on
the composite are preserved by the extracted capability, modulo the rules k<: for unpacking
to be sound. For example, locked A ⊕ subord B denotes a (partially) subordinate capability
that is strongly encapsulated inside an aggregate. If we are allowed to forget the subordinate
mode of the type, the locked sub-capability could be leaked. We employ (T-EQ-I) to this end.
For example, we can compose subord I with locked A ⊕ subord B and then apply (T-JAIL)

to extract locked A ⊕ subord I which satisfies mode preservation.
Subtyping is structural on capabilities. Subtyping must preserve modes, or encapsulation,

domination or exclusivity could be lost. The rules (T-SUB-*) allow locked and read to be
abstracted by the safe mode.

6.4 Well-Typed Expressions (Figure 9)

Packing & Unpacking. The rules (E-PACK) and (E-UNPACK) govern the packing and
unpacking of capabilities. They rely on the rules (T-JAIL) and (T-PACK) in Figure 8 which
allow introducing aliases to discrete capabilities of a conjunction and turning a disjunction
into a conjunction by jailing the overlapping parts.

Linearity. linear capabilities are destructively read to maintain alias freedom and allow
ownership transfer (E-CONS-VAR,E-CONS-FD). Method calls do not destroy linear receivers
as an object’s this cannot be consumed. Thus, linear capabilities are externally unique [17].

Finish–Async and Sync. Parallelism in κ is modelled using a scoped finish/async construct
(abbreviated as f and a respectively) (E-FJ). A finish–async forks two parallel computations
and waits until they have both completed. Forking a larger number of threads can be
simulated using nested finish/async blocks. For simplicity we do not allow async blocks
outside of a finish block, but extending the system to support unstructured parallelism or
active objects is possible. We employ a frame rule that guarantees that no variable is visible
in both asyncs, and that subordinate objects are only accessible to the first of the asyncs,
(FRAME). This models the current thread running the first async (with access to the current
this), and another thread running the second async block.
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t1 ≡ t2 (type equivalence)

t-eq-class-trait
classC = K {_ } ∈ P

C ≡ K

t-eq-commutative

K1 � K2 ≡ K2 � K1

t-eq-associative

(K1 � K2) � K3 ≡ K1 � (K2 � K3)

t-eq-boxed
K1 ≡ K2

B(K1) ≡ B(K2)

t-eq-nesting
read(K1)

K1〈K2 ⊗ K3〉 ≡ K1〈K2〉 ⊗ K1〈K3〉

t-eq-i
k(K)

K � k I ≡ K

t-eq-trans
K1 ≡ K2 K2 ≡ K3

K1 ≡ K3

t1 
 t2⊗ t3 (packing and unpacking)

t-pack
K1 ≡ K2 ⊗ K3

subord(K2)⇔ subord(K3)
K1 
 K2⊗ K3

t-jail
K1 ≡ K2 ⊕ K3

∀ k . k(K1)⇒ k(K3)
K1 
 JK1 (K2)⊗ K3

t-pack-bound
K1 
 K2⊗ K3

S(K1)
 S(K2)⊗ S(K3)

t1 <: t2 k<:(K) (subtyping and “submoding”)

t-sub-structural
∀ k . k(K1 � K2)⇒ k<:(K1)

K1 � K2 <: K1

t-sub-boxed
K1 <: K2

B(K1) <: B(K2)

t-sub-eq
t1 ≡ t2 t2 <: t3

t1 <: t3

t-sub-id

t <: t

t-sub-k
k(K)

k<:(K)

t-sub-rd
safe(K)

read<:(K)

t-sub-lock
safe(K)

locked<:(K)

Figure 8 Type equivalence, packing/unpacking, subtyping.

frame
dom (Γ2) ∩ dom (Γ3) ≡ ∅ 6 ∃ x : t∈ Γ3 . (subord(t) ∨ thread(t))

∀ x . (Γ2(x) = t ⇒ Γ1(x) = t) ∧ (Γ3(x) = t ⇒ Γ1(x) = t)
Γ1 = Γ2 + Γ3

The sync keyword temporarily converts an unsafe (and therefore unusable) capability
into a locked capability, acquiring and releasing locks at the entry and exit of e1 (E-SYNC).

Borrowing. Forward borrowing allows turning capabilities into stack-bound capabilities non-
destructively, possibly relaxing a linear to a thread and allows splitting reads (E-FORWARD).
The helper predicate boundable(K1, K2) holds in either of three cases:
1. K1 = K2
2. K1[linear 7→ thread] = K2 (relaxing linearity to thread-affinity)
3. K1 = K2 � K3 s.t. K3 is neither subordinate nor thread, and all capabilities in K2 are read.
The last case allows relaxing alias restrictions for stack-bound read capabilities which enables
mediating from single writer to multiple readers across multiple threads without dynamic
concurrency control for a clearly defined scope.

Reverse borrowing allows non-destructively reading a linear capability into a stack-bound
value (E-REVERSE). Since only one value can be returned by a method, multiple reverse
borrowing of the same field in the same method is innocuous. Non-linear capabilities never
need to be reverse borrowed as they can always be returned normally without consuming.

Self Typing. Modulo traits with manifest modes, this inside a trait is always subordinate
(WF-T-TRAIT). This reflects the fact that on the inside of a capability, exclusive access of a
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Γ ` e : t (expression typing)

e-upcast
Γ ` e : t2
t2 <: t1

Γ ` (t1)e : t1

e-new
` Γ

classC = K {_ } ∈ P
Γ ` newC : K

e-null
` Γ ` t
Γ ` null : t

e-let
Γ ` e1 : t1
t1 6= S(_)

Γ, x : t1 ` e2 : t2

Γ ` let x = e1 in e2 : t2

e-unpack
Γ ` z : t1 t1 
 t2⊗ t3

Γ, x : t2, y : t3 ` e : t4

Γ ` unpack x + y = z in e : t4

e-pack
Γ ` y : t1 Γ ` z : t2
linear(t1) linear(t2)

t3 
 t1⊗ t2 Γ, x : t3 ` e : t4

Γ ` pack x = y + z in e : t4

e-select
Γ ` this : t1

fields (t1)(f ) = t2
¬ linear(t2)

Γ ` this.f : t2

e-cons-fd
Γ ` this : t1

vars (t1)(f ) = t2

Γ ` consume this.f : t2

e-update
Γ ` this : t1

vars (t1)(f ) = t2
Γ ` e : t2

Γ ` this.f = e : t2

e-var
` Γ

Γ(x) = t
¬ linear(t)
Γ ` x : t

e-cons-var
` Γ

x 6= this
Γ(x) = t

Γ ` consume x : t

e-call
linear(t1)⇒ x 6∈ freeVars (e) Γ(x) = t1

¬unsafe(t1) msigs (t1)(m) = z : t2 → t3 Γ ` e : t2
(subord(t2) ∨ subord(t3))⇒ encaps (t1) ∨ x ≡ this

Γ ` x.m(e) : t3

e-fj
Γ = Γ1 + Γ2 Γ ` e : t

Γ1 ` e1 : _ Γ2 ` e2 : _
Γ ` f { a { e1 } a { e2 } } ; e : t

e-sync
Γ ` x : unsafe T

Γ, y : S(locked T) ` e1 : _
Γ ` e2 : t

Γ ` sync x as y { e1 } ; e2 : t

e-reverse
Γ ` this : t
linear(t)

fields (t)(f ) = K
Γ ` this.f : S(K)

e-forward
boundable (K1, K2)
Γ, x : S(K2) ` e1 : _

Γ, x : K1 ` e2 : t
Γ, x : K1 ` bound x { e1 } ; e2 : t

Figure 9 Typing of expressions. Note that all fields are “private”.

single thread is already guaranteed (e.g., because the accessing thread was forced to acquire a
lock to enter the object, or place a linear entry point in a stack variable, which is analogous).

Viewing this as subordinate allows an object to be aliased freely from inside its own
enclosure, including objects of linear capabilities. Thus, linear capabilities in κ are externally
unique [17]. Traits with manifest modes have more information about themselves internally.

7 Meta-Theoretic Evaluation

In this section, we describe the key invariants of our capabilities in a well-typed κ program.
Due to lack of space, proofs have been relegated to a technical report [15]. This section aims
to explain the key properties, and sketching why they hold.

7.1 κF and the Dynamic Semantics of κ Programs
To execute κ programs, they are translated into a simpler language, κF, with classes and
interfaces without traits or capabilities. The semantics of κF is straightforward, and only
the most relevant details are presented here.
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Flattening of traits [39] is performed similar to other trait-based languages: A class is
translated by copying the methods from its traits, traits are translated into interfaces with
the equivalent signature. For each composition K1� K2, an interface is created extending the
interfaces corresponding to K1 and K2. This preserves the same subtyping rules as in κ. For
each κ-capability in a translated program, there is a single corresponding interface. Because
of this one-to-one mapping, we can easily recover κ types from a κF program, which we use
extensively in our proofs.

From field overlaps, we infer a set of regions for each class, and insert lock and unlock
instructions at the start and end of methods to acquire and release the lock for the region
touched by the method. Read locks are acquired in methods in read capabilities if they
overlap with a locked or unsafe capability. Methods in locked capabilities acquire write locks.
All locks are reentrant. Well-formedness of κF configurations requires that no two threads
can hold the same writer lock, and that all locks held by a thread are also taken in the
objects themselves. This assures mutual exclusion in all parts of a program that use locks.

A well-formed κ program will always translate into a well-formed κF program. This is
easy to prove as most type rules for κF are subsumed by the κ type rules. Thus, by proving
type soundness (progress and preservation) of κF, we show that a translated κ program will
never get stuck (modulo deadlocks, which we distinguish from unsound stuck states).

κF imposes no restrictions on aliasing nor does it provide any guarantees about race
freedom. However, κF programs translated from well-formed κ programs will always be
data-race free. As κF itself provides no data-race guarantees, the invariants given by κ are
defined independent of well-formed configurations of κF (see Section 7.2 and Section 7.3).

We have a fully mechanised specification of κF in Coq, including a proof of type soundness,
but not data-race freedom. In our hand-written proof of data-race freedom we also extend
κF with means of tracking types and stack-boundedness of values. This has no effect on the
execution or typechecking of κF programs and is thus excluded from the mechanised version
[15]. Specifying all of κ in Coq is future work.

7.2 Aliasing and Encapsulation
This section details the invariants on aliasing and encapsulation in well-typed κ programs.

Safe Aliasing. One of the main technical results of this work is the proof that κ programs
enjoy safe aliasing, i.e., two paths to the same mutable field are local to the same thread, or
protected by the same lock which must be acquired before access. Informally, aliasing is safe
if the following is true for all aliases x, y on the stack or heap:

x and y have composable types, meaning they point to different parts of the same object,
modulo safe val fields, corresponding to ` tx⊗ ty in κ (cf., Figure 7).
x and y are protected, i.e., read-only aliases, or safe aliases that use locks internally, or
unsafe aliases whose accesses must be wrapped in locks.
x and y are both local to the same thread, corresponding to the thread capabilities of κ.
x and y both have subordinate types, meaning that any thread accessing them must
currently have exclusive access to their dominator.
If x or y is linear, at least one of the aliases must be stack-bound to prevent introducing
aliases of linear values on the heap.
If one of the aliases is stack-bound, the origins of the borrowed value must be buried, to
prevent multiple accessible references to the same linear value.
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Proof. Part of the proof of thread-safety [15].

Strong Encapsulation of Subordinate Capabilities. Another invariant preserved by κ
programs is that references in fields of subordinate type point to objects dominated by the
dominator of the current enclosure. This is what grants subordinate capabilities strong
encapsulation, similar to ownership types [16] and external uniqueness [17].

At run-time in κF, instances know the identity of their dominator. This identity is
invariant, even under ownership transfer, because transfer operates on linear capabilities and
instances of classes without a subordinate capability are their own dominators.

Let → denote “refers to” and ι.dom denote the dominator for an object with id ι in the
heap H. Now, ∀ ι, ι′ ∈ dom(H), ι → ι′ s.t. ι 6= ι′, either one of the following holds:

1. ι′.dom = ι.dom (a pointer between subordinates in the same enclosure)
2. ι′.dom = ι (a dominator pointing to one of its subordinates)
3. ι.dom = ι′ (a subordinate pointing to its dominator)

or ι′ is a top-level object, i.e., ι′.dom = ι′.

Proof. Part of the proof of thread-safety [15].

7.3 Data-Race Freedom and Non-Interference.
This section describes the invariants of κ for concurrent and parallel programming.

Thread-Safety. Safe aliasing and the encapsulation guarantees mentioned above are both
part of a bigger notion of a thread-safe (TS) configuration. A configuration is thread-safe if
no two possible reductions can cause interference—if a possible reduction of a configuration
has one thread writing to a field, there cannot be another reduction of the same configuration
where the same field is read or written to by another thread.

In addition to safe aliasing, a number of constraints apply to the elements of thread-safe
configurations that deal specifically with aliasing across threads:

references in fields of subordinate type point to objects dominated by the dominator of
the current enclosure;
values of type thread were created by the thread that can access them;
all local variables of subordinate type are dominated by the closest dominating this on
the current stack;
if a stack-bound linear value aliases a value on the heap, the value on the heap is
effectively buried, i.e., the only path to it is rooted on the stack;
all accesses to values not wrapped in locks are linear, thread, subord or read.

Having defined thread-safety, we then prove that the initial configuration is TS and that
evaluation preserves this property in a program translated from κ to κF.

I Preservation of Thread-Safety. In a well-formed program translated from κ, if a thread-safe
configuration cfg can step to cfg′, then cfg′ is also thread-safe.

∀Γ, cfg, cfg′.

Γ ` TS(cfg) ∧ cfg ↪→ cfg′ ⇒ ∃Γ′.Γ′ ` TS(cfg′) ∧ Γ ⊆ Γ′



E. Castegren and T. Wrigstad 5:21

Proof. We prove thread-safety by induction over the thread structure [15]. The proof is
similar in structure to the type preservation proof of κF (and relies on type preservation to
find Γ′).

Data-Race Freedom. The dynamic semantics of κF tracks effect footprints in terms of
reads (rd(_)) and writes (wr(_)) of object fields. This allows us to define and prove data-race
freedom, which verifies that our notion of thread-safety is sound.
I Data-Race Freedom. If a safe configuration cfg steps to two different configurations causing
effects Eff 1 and Eff 2 respectively, then these effects are non-conflicting:

∀Γ, cfg, cfg′ cfg′′ .

Γ ` TS(cfg) ∧ cfg ↪→Eff 1 cfg′ ∧ cfg ↪→Eff 2 cfg′′ ⇒ Eff 1 # Eff 2 ∨ cfg′ = cfg′′

where # denotes that two effects are disjoint or a read–read conflict:

rd(l.f) # rd(l′.f ′) _(l.f) # wr(l′.f ′) iff l 6= l′ ∨ f 6= f ′

ε # _ Eff 1 # Eff 2 iff Eff 2 # Eff 1

Proof. The proof is straightforward and performed by case analysis on the thread structure,
showing that any interference contradicts thread-safety [15].

Corollary: Non-Interference. Parallel κ expressions that do not use locked or unsafe
capabilities are free from interference and therefore deterministic. The only way threads
can affect each other is by writing shared mutable locations, which requires taking a lock.
Without locked or unsafe capabilities there are no locks, meaning that any data that is shared
between threads can only be read, and that no threads are ever blocked in their execution.

Corollary: Thread-Affinity of Thread Capabilities. Implied by TS, κ thread capabilities
are thread-affine. Let creator(ι) return the id of the thread creating ι. From TS follows that
in a thread tid with local variables V and expression e, ∀x . V (x) = ι∧ Γ(x) = t∧ thread(t)⇒
creator(ι) = tid and ∀ι . ι ∈ locations(e) ∧ Γ(x) = t ∧ thread(t) ⇒ creator(ι) = tid. Thus
thread capabilities are only visible to their creating threads. The key elements in the type
system are the thread(t) =⇒ thread(K) constraint in the κ rule (WF-FD) which restrict fields
of type thread to only appear inside manifestly thread capabilities and the κ rule (FRAME)

which does not allow thread capabilities to be visible in the second async of a finish.

8 Related Work

An original source of inspiration for this work was Boyland et al.’s “Capabilities for Sharing”
which introduces a system of reference capabilities, such as immutability or ownership in
a dynamic system, not amenable to static typing [10]. Similarly, κ brings together ideas
from many different areas in a single system, but fully statically typed. To the best of our
knowledge, the selection and integration of the features in κ are unique in an object setting:

1. Linear capabilities are similar to uniqueness [27, 34] or permissions [9, 42, 38] and enable
ownership transfer [17].

2. Subordinate capabilities enable strong encapsulation similar to ownership types [16]
or Universes [35, 36]. κ’s combination of subordinate and dominating capabilities
give arbitrary nesting, but nested aggregates may not refer to subordinate objects in
their enclosing aggregate, nor does κ support incoming read-only references (owners-as-
modifiers [35, 36])—both enable data-races.
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3. Thread capabilities resemble thread-local heaps in Loci [43] and ownership for actors [18].
4. That linear capabilities view themselves as subordinate capabilities internally gives a

form of external uniqueness [17, 26].
5. The combination of locked and read capabilities express readers–writer locks, with a

compile-time guarantee that readers will not write.
6. The safe mode, abstracting over read and locked, avoids code duplication for traits that

are agnostic to why objects are safe, similar to type qualifier generics [22, 45].
7. The combination of locked and subordinate capabilities empowers a single lock to range

over an entire aggregate with a compile-time guarantee of correctness (cf., owners-as-locks
in e.g., [16]), it also allows enforcing a crude form of lock ordering in combination with
readers-writer locks by connecting lock order to nesting order (cf., [7]).

8. Nested capabilities are essentially storable permissions [9, 42] but without breaking
abstraction—the names of fields etc. of the object storing permissions can be kept secret.

9. The flat composition of capabilities and the packing/unpacking marries ideas from
fractional permissions [9] with ownership and substructural types [13], similar to [29].
Composites of read and linear capabilities support mediation between readers and writers,
using stack-bounding to identify where sharing starts and stops.

Ownership Systems. Aliasing of mutable state in object-oriented programming is a mature
research field: categorisations of alias management techniques [28], ownership types [16],
universe types [22, 36], external uniqueness [17], balloons [2], as well as multiple flavours
of references [27, 4, 34, 3, 10, 8, 12] etc. (cf. [16] for a broad coverage of many aspects).
Banning aliasing is usually abandoned in favour of alias control, which commonly prescribes
a certain shape on the program [16, 22, 43, 18] possibly combined with an effect system to
coordinate accesses to shared data across multiple program locations [19, 5, 14]. κ does not
prescribe a certain topology for shared capabilities. With the shift to ubiquitous parallelism,
ideas from these fields have been applied to the simplification of concurrent and parallel
programming (e.g., [7, 18, 26, 24, 37, 21]).

Abadi et al. [1] propose RaceFree Java where field declarations are associated with locks
and an effect system tracks how locks are acquired and released. Classes can be parameterised
with external locks. The combination of locked and subordinate capabilities in κ seem to
be able to express the same, but without ghost variables or an effect system. Zhao [44]
constructs a system similar to Abadi et al. [1] but based on fractional permissions. It uses
method annotations with read/write effects and locks taken and also considers deadlocks
through lock ordering, similar to [7].

The recent surge of interest in Mozilla’s Rust language provides anecdotal evidence to
the value of languages with data-race freedom built in. In Rust, values mediate between
linear/mutable and sharable/immutable. Linear values use transfer semantics and Rust
uses borrowing to simplify programming. Rust support flat unpacking of arrays, but not
nested unpacking and not unpacking of other types. Rust does not have strong encapsulation
meaning an aggregate’s innards is not protected by the aggregate’s single entry-point and no
aliasing of mutable objects is allowed inside the aggregate.

Substructural Systems. κ is close in spirit to work by Caires and Seco [13] as well as
work by Pottier et al. [38] on Mezzo, both in the context of ML-like languages. Caires and
Seco formalise a fine-grained capability system for reasoning about interference caused by
aliasing or concurrent accesses to aliased data with explicit synchronisation. There is no
support for read-sharing or strong non-linear encapsulation.
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Militão et al. use a substructural type system for specifying rely-guarantee protocols in
a functional context [32]. Protocols capture the view of shared state from one particular
alias—our capabilities are similar. Ownership transfer and recovery for linear values is
supported.

The functional language Alms [40] explores the design space of practical programming
with substructural types. Alms separates capabilities from references and operations that
require a capability must have the capability passed in as an argument. Capabilities in Alms
are lower level than in κ and can be used to express many of our capabilities. There is no
unification of capabilities with building blocks like traits, or composition of capabilities.

Capability Systems and Permission Systems. Miller uses capabilities for access control
and concurrency control in a distributed setting in the seminal E language [33], employing a
more dynamic approach (than κ) with optional soft typing.

Mediation between different views of an object is similar to fractional permissions [9]. κ
supports going from a single writer to multiple enumerable disjoint writers or readers, and
in the case of readers to an unbounded number of stack-bound aliases via (E-FORWARD).
Fractional permissions with nesting [11, 42] is similar to subordinate capabilities in allowing
one permission to act as guard to another. These system allows turning an entire nested
structure read-only. κ’s subordinate capabilities are less restricted, but also not transferable.
κ’s read capabilities also provide abstraction as they allow fields remain private.

Bocchino’s Deterministic Parallel Java [5] uses an effect system to guarantee deterministic
parallelism for operations that have no overlapping writes. When the effect system is
not enough, the user can annotate trusted operations as commuting. κ provides similar
determinism guarantees when excluding locking capabilities, but resorts to locking (and
non-determinism) rather than using unchecked annotations for more complex operations.

Clebsch et al. [20] use “deny capabilities” to provide safe sharing of objects between
actors. Their capabilities always grant exclusive write access to entire objects, while κ’s also
allows accessing parts of an object, as well as permitting multiple parallel writers.

Westbrook et al. [42] formalise and implement a gradual extension to HabaneroJava, HJp,
in the form of a permission system. Permissions in HJp always govern access to entire objects,
and there is no notion of encapsulation modulo storing linear permission in fields which
only supports tree-shaped data. When there is not enough permission information, dynamic
checks are inserted which may fail, but which also allow unconstrained aliasing. Splitting a
single write-permission into multiple read permissions is similar to read capabilities.

Chalice by Leino et al. [30] is a language for specification and verification of concurrent
software that uses permissions to statically track aliasing. Since κ is concerned only with data-
race freedom, it trades some of the more fine-grained control (e.g., full method specification)
for simplicity (e.g., no need for manual permission tracking).

9 Discussion & Future Work

We currently require programmers to explicitly manage substructural operations manually
through packing and unpacking and jails. Building simpler-to-use constructs on top of these
is possible. For example, a combination of bound and unpack would remove the need for
packing, at the cost of enforcing a nested structure to unpacking and packing. Employing
inference to automate this to a large extent seems possible and is a direction for future work.

Implementation of κ is on-going in the actor-based language Encore. There, actors
replace locks as a means of pessimistic concurrency control. Capabilities protect actors’ state
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while allowing ownership-transfer due to linear values. A larger case study evaluating the
full expressiveness of κ is planned for future work.

Unstructured vs. Structured. We have purposely supported unstructured packing and
unpacking of capabilities. This allows granting capabilities to other threads (possibly on
other machines) without requiring the capabilities to be returned or tying their return to a
particular local scope. This removes limitations inherent in effect systems (e.g., [25, 19, 5]),
which requires computations to be nested. Unstructured locking is important in some
applications, for example to implement hand-over-hand locking, and is a possible direction
for future work.

Revocation. We only consider “cooperative revocation”, i.e., there is no built-in mechanism
to arbitrarily revoke a given capability. In the security setting from which the capability idea
stems, this is a major concern but it makes less sense in our setting as revoking a capability
from another thread at an unfortunate point in time might cause system-wide inconsistencies.

Other Capabilities. The only form of dynamic concurrency control considered in this paper
is locks. In ongoing work, the set of modes are extended with async (objects are actors),
atomic (objects use transactional memory) and lockfree (lock-free programming). In this
richer setting, we aim to address more programmer-friendly forms of multi-object atomicity.

10 Conclusions

Creating and destroying aliases enables and constrains parallelism and is key to establishing
data-race freedom and non-interference. By capturing how data is shared and accessed
through modes, and by introducing a structured approach to creating and destroying aliases
through the combination of capabilities that make up classes, data-race freedom can be
guaranteed statically with or without dynamic concurrency control. κ’s invariants are
similar to what an effect system can give, but avoids complicated effect annotations which
propagate through the program and constrain inheritance. Tracking modes in types provides
machine-checked documentation about alias freedom and sharing which localises reasoning.

The unification of traits and capabilities allows a single trait to serve multiple concur-
rency scenarios, which extends trait-based reuse. It also simplifies programming as trait
implementers may safely assume data-race freedom. Ultimately, κ brings together a broad
spectrum of prior work in a unified system.
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Abstract
Variation is ubiquitous in software. Many applications can benefit from making this variation
explicit, then manipulating and computing with it directly—a technique we call “variational pro-
gramming”. This idea has been independently discovered in several application domains, such
as efficiently analyzing and verifying software product lines, combining bounded and symbolic
model-checking, and computing with alternative privacy profiles. Although these domains share
similar core problems, and there are also many similarities in the solutions, there is no dedicated
programming language support for variational programming. This makes the various implemen-
tations tedious, prone to errors, hard to maintain and reuse, and difficult to compare.

In this paper we present a calculus that forms the basis of a programming language with
explicit support for representing, manipulating, and computing with variation in programs and
data. We illustrate how such a language can simplify the implementation of variational program-
ming tasks. We present the syntax and semantics of the core calculus, a sound type system, and
a type inference algorithm that produces principal types.
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1 Introduction

The idea of representing and computing with explicit variation has been used to solve a
variety of problems where a similar computation must be performed on sets of related data.
For example, a challenge in software product lines (SPL) is to ensure that all program
variants that can be generated from a code base satisfy a given property. Since analyzing
each variant in sequence is intractable, researchers have developed algorithms and tools for
analyzing the variational code directly. This work enables the efficient parsing [29], type
checking [28, 46, 2], type inference [17, 16], model checking [19, 1], and flow analysis [6, 7] of
whole software product lines at once.

But the need to write programs that manipulate variation representations is not limited
to the area of software product lines. Other applications include computing with alternative
privacy policies [3], improving type error messages [10, 11, 15], improving the performance
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of simulations [45], supporting view-based editing [53], and several applications to software
testing [30, 31, 39, 49].

All these applications require an explicit representation of variation in data along with
operations for inspecting, transforming, and/or mapping computations over such variational
data. We collectively refer to these as variational programming tasks. Variational pro-
gramming is not well supported by existing programming languages. While there exists
some support from libraries [24, 29], there is no dedicated language support for variational
programming. The lack of language support makes it difficult to reason about the variational
programs and the artifacts they produce.

Therefore, we present in this paper a set of carefully designed, dedicated variational
programming abstractions that can provide guarantees about variational programs and their
results. The integration of these operations into a functional programming language can
greatly improve the effectiveness, reliability, and productivity of variational programming.

In the remainder of this paper, we first motivate variational programming and illustrate
it with several examples. We then formalize the underlying principles by defining a calculus
for variational programming. This paper makes the following contributions.

We explain the idea of variational programming through several examples in Section 2.
We introduce the underlying variation representation and demonstrate how variational
programming combinators can be built from a small set of core constructs and principles.

We present the syntax and operational semantics of a variational programming calculus
(vpc) in Section 3. A particular challenge is to balance and integrate the competing
notions of variation-preserving computation and variation aggregation. A careful choice
of congruence rules and evaluation strategy ensures the confluence of the semantics.

We develop a type system for vpc in Section 4 and present a soundness theorem. Named
choices lead to a limited form of dependent types, called dimension polymorphism, which
reflect variability in expressions at the type level. Moreover, since operations for the
elimination of variation cause subtle changes in variational types, we have to employ
constraints in the type system to track the evolution of variability in computations.

In Sections 5 and 6, we present constraint generation and constraint solving that constitute
a type inference algorithm for vpc, which is sound, complete, and principal.

We discuss related work in Section 7 and conclude the paper with Section 8.

2 Variational Programming

The term “variational program” has two related meanings. On the one hand, it refers to
a program family from which individual programs can be selected. On the other hand, it
refers to programs that process variational values. For variational programs that process
variational programs the two meanings collapse. In this paper we are primarily focused on
the second meaning, that is, we want to study programs that process variational values.

The systematic processing of variational values requires machinery to create, query,
and transform such values. These tasks should be supported by a principled variation
representation that enjoys a rich set of laws. In Section 2.1 we present a simple representation
based on the choice calculus [23], illustrate how it can be embedded into a (functional)
programming language, and then motivate and outline the rest of this section.
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2.1 Representing Variation
We represent variation by named, binary choices [23]. For example, a program that applies
a function f to either 1 or True can be represented as p = \f.f A<1,True> where the choice
represents a point of variation within p. A program that contains choices is called a variational
program. This variational program encodes two plain programs, \f.f 1 and \f.f True, called
variants. These variants can be obtained by selecting either the left or right alternative from
the choice. The name associated with the choice, A, is called a dimension. Dimensions allow
the synchronization of choices in different parts of a program. For example, the program
q = p A<succ,not> runs p with a choice of functions that will be synchronized with the choice
of constants. Variational programs can vary in more than one dimension. Choices in different
dimensions vary independently of one another, that is, whereas q contains only two variants,
the variational program q’ = p B<succ,not> contains four.

Executing a variational program produces a variational result. For example, executing
program q above produces the result A<2,False>. This result may, in general, vary in all of
the dimensions referred to in the variational program. We call such executions variation-
preserving (see Section 2.2).

However, variational programming encompasses more than just executing variational
programs. For example, suppose we have implemented a variational function that computes
the time needed to complete a project depending on many design decision each represented
by a different dimension. We can imagine several subsequent operations to perform on
the variational result of this function. For example, we may want to do further variation-
preserving computations by adding the variational time to complete the project to the
variational time needed to complete another project, or by comparing it with a variational
time computed by a different function. We may also want to filter the result by making
selections that reduce the amount of variability in the result, which can help speed up
subsequent variation-preserving computations. Alternatively, we may want to aggregate the
variation, for example, to identify the minimum or maximum variant, to determine how to
proceed depending on if we are being paid on salary or hourly. In the rest of this section,
we take a closer look at variation-preserving computations (Section 2.2), reducing variation
through selection (Section 2.3), and variation aggregation (Section 2.4), introducing the core
constructs of our language and deriving some general combinators to support variational
programming, as illustrated through an example application (Section 2.5). Finally, in Section
2.6, we argue why our language design is a good basis for variational programming.

2.2 Variation-Preserving Computations
We start with the task of adding variational numbers. Since choices in the same dimension
are synchronized, expect evaluating A<1,2> + A<3,4> to produce A<4,6>. But how about
A<1,2> + B<3,4> or even A<1,2> + 3? We can address the latter expression by realizing that
a non-variational number is the same as a choice whose alternatives are identical, that is,
3 = A<3,3>. In other words, choices are idempotent. Therefore, A<1,2> + 3 = A<1,2> + A<3,3> =
A<4,5>. We arrive at the same result by considering that the variational expression A<1,2> + 3
represents two plain expressions 1+3 and 2+3, depending on which alternative from dimension
A is selected, that is, the expression is equivalent to A<1+3,2+3>, which evaluates to A<4,5>.

We can see that the operation +3 was effectively “moved” into the A choice, which is an
application of the choice distribution law [23] that allows one to push a common context into
a choice. This is illustrated below where C is an arbitrary context and D is an arbitrary
dimension.

C[D⟨e, e′⟩] =D⟨C[e],C[e′]⟩

ECOOP 2016
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Choice distribution is the basis for variation-preserving computation. It says that we can
evaluate an expression such as f A<3,4> by applying f to the alternatives of the A choice.
With this we can also determine the result of A<1,2> + B<3,4> by moving one of the choices
into the other and then doing this again in each of the alternatives.

A<1,2>+B<3,4> = A<1+B<3,4>,2+B<3,4>> = A<B<1+3,1+4>,B<2+3,2+4>> = A<B<4,5>,B<5,6>>

If we decide to move the A choice instead, we obtain the equivalent value B<A<4,5>,A<5,6>>.
This can be verified by making all possible selections for A and B.

Previously, we argued that A<1,2> + A<3,4> yields only two variants since both A choices
are synchronized. It is instructive to perform choice distribution on this example to illustrate
that selection commutes with semantics-preserving computation. In fact, we obtain the same
derivation except that all Bs are replaced by As, so the resulting expression is A<A<4,5>,A<5,6>>.
Observe that both 5 values can never be selected since selecting either the left or right
alternative of A implies the same selection in the nested A choices. This phenomenon, called
choice domination, neutralizes the effect of nested choices in the same dimension on the
variability of values. These examples illustrate that we can apply a (variational) function to
a (variational) value, and choice distribution will produce a result in which the variation in
both the function and argument are preserved.

As another example, we can also compare variational values by a variation-preserving
computation. For example, the expression A<3,5> == A<4,5> evaluates to A<False,True>, and
A<B<5,4>,7> ≤ A<6,C<8,2> yields A<True,C<True,False>>.

2.3 Eliminating Variation
The elimination of choices is called selection. Selection takes a selector of the form D.s

(where D is a dimension and s is either L or R), traverses the expression, and replaces all
choices named D with its corresponding left or right alternative. For example, given program
q defined in Section 2.1, the expression sel A.L q produces the variant (\f.f 1) succ. Since
the program q’ contains choices in two different dimensions, we need two selection operations
to eliminate the variability in the program and obtain plain expressions. By considering all
four possible selections on q’, we can observe that only two of the variants are type correct.

sel A.L (sel B.L q’) = (\f.f 1) succ sel A.R (sel B.L q’) = (\f.f True) succ
sel A.L (sel B.R q’) = (\f.f 1) not sel A.R (sel B.R q’) = (\f.f True) not

A choice is an expression, not a textual macro.1 This means that we cannot vary, say, a
few letters in the middle of an identifier or optionally exclude a closing parenthesis. However,
we can pass choices to functions, and observe and manipulate them at runtime.

2.4 Variation Aggregation
Besides selecting individual variants, we often want to systematically eliminate all the
variability in a variational program. For example, to compute the minimum variant of
a variational number, we have to eliminate all of the choices, replacing each one by the
smaller of its two alternatives. This kind of aggregation is supported by the syntactic form
any d from e in e′ else e′′. An any-expression checks to see if there are any choices in

1 This is in contrast with, for example, the C Preprocessor’s #ifdef notation, which is widely used to
implement static variation in C programs.
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expression e. If so, it picks one out, binds the corresponding dimension name to a new
variable d, then returns expression e′, which may contain references to d. If no choices exist in
e, the any-expression evaluates to e′′. The following function vmin uses any to implement the
minimum-variant aggregation. If a choice is found in its argument i, it eliminates the choice
with sel and recursively computes the minimum variant of the left and right alternatives,
then returns the minimum of those two values (using the function min). If no choice is found,
then all variation has been eliminated and i is a plain integer, which is simply returned.

vmin : Int -> Int
vmin i = any d from i in

min (vmin (sel d.L i)) (vmin (sel d.R i))
else i

Now consider the expression vmin A<B<4,3>,2>, which we expect to evaluate to 2. However,
by applying the choice distribution principle from the previous subsection, the expression
could also evaluate to A<B<4,3>,2>. In other words, in this scenario, choice distribution
prevents aggregation and changes the intended semantics of the program. There are several
ways to address this issue, but we choose to disambiguate the situation syntactically, which
leads to a simpler operational semantics. Specifically, we allow certain function arguments
to be annotated as “aggregating” (using @), which acts as a boundary that prevents choice
distribution. In the case of vmin this looks as follows.

vmin @i = any d from i in ...

Now vmin A<B<4,3>,2> will compute 2 and not return a choice. But what if we want to
independently compute vmin for two alternatives of a dimension, say A? We can still do this
by applying a corresponding choice of vmins, that is, we write A<vmin,vmin> A<B<4,3>,2>.
Now choice distribution will preserve the A dimension and we get the result A<3,2>. However,
note that the idempotency law does not hold for variation aggregators, that is, in general we
have A<vmin,vmin> ≠ vmin.

Within the definition of vmin are two inter-related patterns that occur frequently in
variational programs. The first is to select both the left and right alternatives of the same
dimension in parallel; the second is to pick an arbitrary dimension, then immediately select
with it. To accommodate the first pattern, we introduce a derived form, split, which allows
us to rewrite vmin as follows.

vmin @i = any d from i in
split i on d<l,r> -> min (vmin l) (vmin r)

else i

In the split expression, d refers to the dimension we want to eliminate, bound by the
enclosing any expression; l and r are new names bound to the result sel d.L i and sel d.R
i, respectively.

To accommodate the second pattern, we combine split and any into a single construct
as illustrated below. This expression form picks a dimension out of i and immediately splits
on it.

vmin @i = split i on any
d<l,r> -> min (vmin l) (vmin r)

else i

ECOOP 2016
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Which dimension is picked by any is determined by a fixed, predefined ordering among
dimensions. Therefore the names of dimensions in a variational value generally matters.
However, in functions that systematically process all variability present in a value, the order
does not matter. For example, vmin A<B<5,4>,7> will compute the same result, independent
of the order in which the dimensions are picked by any. To demonstrate, here is the
computation that unfolds if A is picked first.

min (vmin B<5,4>) (vmin 7) = min (min 5 4) 7 = min 4 7 = 4

If B is picked first, the enclosing A choice is preserved across both alternatives of B.

min (vmin A<5,7>) (vmin A<4,7>) = min (min 5 7) (min 4 7) = min 5 4 = 4

The two computations return the same result because choices commute [23] allowing
arbitrary reordering of how choices are nested. Specifically, for any two dimensions, A and B,
the following relationship holds.

A<B<a,b>,B<c,d>> ≡ B<A<a,c>,A<b,d>>

Computing the minimum variant of a variational integer is an instance of the more general
task of aggregating variability, which can be captured by a variational join function that
accumulates variants with a binary function.

vjoin : (a -> a -> a) -> a -> a
vjoin f @x = split x on any

d<l,r> -> f (vjoin f l) (vjoin f r)
else x

Using vjoin we can define vmin more simply as vjoin min. More generally, we can define
a variational fold that both converts each variant to a separate accumulator type b, then
aggregates them.

vfold : (a -> b) -> (b -> b -> b) -> a -> b
vfold f g @x = split x on any

d<l,r> -> g (vfold f g l) (vfold f g r)
else f x

Now vjoin is just a vfold where the conversion is the identity function: vjoin = vfold id.
Using vfold, we can aggregate variational values in a variety of ways. For example, here

is a function for counting the number of choices in a variational value.

choices : a -> Int
choices = vfold (\x.0) (\x y.1+x+y)

The vfold function is essentially a bottom-up tree fold over the binary trees of choices.
However, because of the semantics of any, the aggregation order is determined not by the
structure of the value, but by the ordering of dimension names contained in the value. This
means that one should be careful when using vfold or vjoin with aggregating functions that
are not associative.

2.5 An Application to Variational Unification
Variational unification finds substitutions that solve equations of the form: A⟨Int, a⟩ ≡? B⟨b, c⟩.
This is not a trivial problem. The following substitution is an obvious solution to this example.

σ1 = {a↦ Int, b↦ Int, c↦ Int}
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However, while some simple unifiers such as σ1 can be found quickly, identifying the most
general unifier is not easy. To wit, here is a list of some other solutions, some more general
than others, some unrelated. Substitution σ6 is the most general unifier.

σ2 = {b↦ A⟨Int, a⟩, c↦ A⟨Int, a⟩} σ3 = {a↦ B⟨Int, f⟩, b↦ Int, c↦ A⟨Int, f⟩}
σ4 = {a↦ B⟨f, Int⟩, b↦ A⟨Int, f⟩, c↦ Int} σ5 = {a↦ B⟨d, f⟩, b↦ A⟨Int, d⟩, c↦ A⟨Int, f⟩}

σ6 = {a↦ B⟨A⟨i, d⟩,A⟨j, f⟩⟩, b↦ B⟨A⟨Int, d⟩, g⟩, c↦ B⟨h,A⟨Int, f⟩⟩}

One particular challenge for the unification algorithm is to find substitutions modulo an equiv-
alence relation (≡) that includes laws for choice distribution, idempotency, and domination,
which have been described already, plus some others.

A variational unification algorithm was first presented in [17]. This algorithm has since
been employed as a crucial component in a number of applications [17, 16, 10, 12, 13, 14].
The original implementation in Haskell required a considerable number of auxiliary type and
function definitions to support handling choice types. Having choices available as part of
the language simplifies the implementation tremendously, allowing the programmer to focus
on the main logic. First, the data type definition for types does not need to mention choice
types and only needs to provide the (non-variational) constructors to represent the original
(non-variational) core type language.

data Type = TInt | TBool | TVar Int | TFun Type Type

The unification of choice types works by systematically matching dimensions and type
constructors, constructing substitutions along the way. The matching process is dominated
by the matching of dimensions since they can be moved up or down in expressions (due to
choice distribution/factoring), which is directly supported by the operation split. This is
reflected in the following definition of the function vunify. Without going into too much
detail, we explain how some of the cases work, and in particular, how they can profitably
exploit the fact that variation is built into the language.

vunify : Type -> Type -> Subst
vunify @t @u = split t on any d<lt,rt> ->

split u on d<lu,ru> -> d<vunify lt lu,vunify rt ru> (1)
else d<vunify lt u,vunify rt u> (2)

else
split u on any d<lu,ru> -> d<vunify t lu,vunify t ru> (3)
else unify t u (4)

In case (1), if both types contain the same dimension, vunify computes a choice of substitutions
for both alternatives, which is equivalent to a substitution with choice types.

D⟨{a↦ T, . . .},{a↦ T ′, . . .}⟩ = {a↦D⟨T,T ′⟩, . . .}

Since it can happen that either substitution contains a mapping for a variable that isn’t
contained in the other, choice factoring can be “blocked” in such cases. We can write a
function that explicitly converts a variational substitution into a substitution containing choice
types and that takes care of these cases by adding a type variable for missing substitutions;
we omit the code here for brevity.

In case (2), if t contains some dimension d but u does not, we can unify each of ts
alternatives with u due to idempotency (that is, u = D<u,u>). The case (3) is symmetric.
Finally, in case (4), neither type contains any more dimensions, so we invoke the non-
variational function unify, which implements Robinson’s traditional unification algorithm.

ECOOP 2016



6:8 A Calculus for Variational Programming

This example illustrates how variational concerns can be isolated from the rest of the
unification algorithm; vunify focuses on variation, while unify handles the non-variational
type structure.

2.6 A Foundational Language for Variational Programming
We argue that the features described in this section constitute a rational basis for a variational
programming language. A choice between two alternatives is by definition the simplest possible
representation of variation, and the choice calculus has a well-developed theory [23, 50] that
has been successfully reused in several contexts [17, 16, 10, 12, 13, 14, 24, 52, 53, 11, 15].
Choices are also used internally in the TypeChef system [29], which has been reused in a
number of projects for analyzing software product lines [37, 38, 33, 30, 34], and choices are
the basic representation used in other variational programming scenarios outside of software
product lines [3, 48]. Choices encode variation in-place but can also be combined with
compositional approaches to variation [51]. Choices between several alternatives can be
modeled by cascading choices in different dimensions. In previous work [53], we have shown
how the choice calculus can be extended with more general conditions on choices, but we
omit this extension here to keep the presentation concise.

The concept of variation-preserving computation describes the property that selection
commutes with evaluation. That is, running a variational program corresponds to running
all of the individual variants separately. This is the philosophy expressed in almost all work
on analyzing software product lines [47] and in recent work on variational execution [39, 3].
Selection is a symmetric elimination form for choices that satisfies Gentzen’s principle [25,
p. 102]. This means that choice and selection are information-preserving inverses, a property
that enables simple and reversible semantics.

Finally, a necessary feature for practical programming with variations is reflection on
variability. In Section 2.4, we describe the any form for extracting one arbitrary dimension
if it exists, and in the next section we describe a similar the form that extracts one specific
dimension if it exists. The any and the forms are orthogonal constructs that are sufficient
to implement pattern matching on variations, as illustrated by the derived form split.

3 Syntax and Semantics of VPC

In this section we define a variational programming calculus (vpc). The calculus extends
the lambda calculus with all of the features needed to implement the variational functional
programming language described in the previous section. We define the syntax of vpc in
Section 3.1 and a small-step operational semantics in Section 3.2.

3.1 Syntax
We separate the definition of vpc into two parts: (1) a core calculus that includes only the
essential features of the language, and (2) several derived forms, defined in terms of the core
calculus, that provide convenient surface syntax for variational programming.

Core calculus.

The syntax of the core calculus is defined in Figure 1. The first two lines define separate
namespaces for variables that refer to expressions and variables that refer to dimension
names. In this paper, we distinguish these namespaces by using letters from the beginning of
the alphabet for dimension variables, and from the end of alphabet for expression variables.
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v ∶∶= x ∣ y ∣ z ∣ . . . (expression variables)
d ∶∶= a ∣ b ∣ c ∣ . . . (dimension variables)
D ∶∶= A ∣ B ∣ C ∣ . . . (dimension names)
δ ∶∶= d ∣ D (dimensions)
ϕ ∶∶= v ∣ d (variables)
s ∶∶= ` ∣ r (selectors)
∗ ∶∶= @ ∣ ε (abstraction annotations)

e ∶∶= κ ∣ λ∗ϕ.e ∣ e e ∣ v (lambda calculus + constants)
∣ let v = e in e (recursive let)
∣ δ (dimensions)
∣ δ⟨e, e⟩ (choice)
∣ δs ▸ e (selection)
∣ any d from e in e else e (any dimension pick)
∣ the δ from e in e else e (specific dimension pick)

e ∶∶= κ ∣ D ∣ λ∗ϕ.e ∣ D⟨e, e⟩ (values)

Figure 1 Syntax of core vpc.

Literal dimension names are represented by capital letters. The syntactic category δ includes
both dimension variables and dimension names, while ϕ includes both dimension variables
and expression variables. As a convention, we use the nonterminal of a syntactic category
(or variations on it) to stand for arbitrary instances of that category. For example, ϕ, ϕ1,
and ϕ2 all generically refer to variables where it is not important to distinguish between
expression variables and dimension variables. We explain the syntactic categories s and ∗ in
the context of the relevant expression forms.

The metavariable e ranges over vpc expressions. The first two lines enumerate the
constructs of the lambda calculus extended by constants, ranged over by κ, and recursive
let-expressions. Abstractions differ from standard lambda calculus in two ways. First, they
can be distinguished by the namespace of their declared variable. That is, we will sometimes
distinguish between expression abstractions, λv.e, and dimension abstractions, λd.e. Second,
they may be optionally annotated by an @ symbol, as in λ@ϕ.e, which prevents mapping the
function over variation in its argument, as described in Section 2.4. Note that the alternative
annotation ε represents the lack of an @ annotation; that is, we write simply λϕ.e for an
unannotated abstraction. In addition to constants and expression variables, the third line
defines that we can also refer to dimension literals and dimension variables.

The next two lines define the choice and select constructs, described in Section 2.1
and Section 2.3, for introducing and eliminating variation, respectively. The dimension δ
associated with a choice δ⟨e1, e2⟩ may be either a literal dimension name D or a reference to
a dimension variable d. A selection replaces, within e, all choices in dimension δ by either
their left alternatives, written δ` ▸ e, or their right alternatives, written δr ▸ e.

The any d from e in e′ else e′′ and the δ from e in e′ else e′′ forms match against the
variability in e. The any form is described in Section 2.4, while the is new.

For any, if e contains variation, then d will be bound to a dimension from e and e′ will
be evaluated, otherwise d will remain undefined and e′′ will be evaluated. For the, if e
contains variation in the specified dimension δ, then e′ will be evaluated, otherwise e′′ will
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split e on δ⟨v`, vr⟩→ e′ ↝ (λv` vr.e′) (δ` ▸ e) (δr ▸ e)
split e on δ⟨v`, vr⟩→ e′ else e′′ ↝ the δ from e in split e on δ⟨v`, vr⟩→ e′ else e′′
split e on any d⟨v`, vr⟩→ e′ else e′′ ↝ any d from e in split e on d⟨v`, vr⟩→ e′ else e′′
ifvar e then e′ else e′′ ↝ any d from e in e′ else e′′
ifplain e then e′ else e′′ ↝ any d from e in e′′ else e′

Figure 2 Derived syntactic forms for vpc.

be evaluated. Note that any declares a new dimension variable d while the refers to an
existing dimension name or variable δ.

Values.

The last line in Figure 1 describes the values of vpc as a subset of expressions. Values are
produced by fully evaluating well-typed and terminating vpc expressions. In addition to
constants and abstractions, which are typical values in lambda calculus, a value can also be
dimension literal or a choice whose alternatives are also values. Note that only choices with
literal dimension names may be values. This implies that expressions with free dimension
variables are not well-typed (see Section 4). Additionally, observe that the body of an
abstraction value may be an arbitrary expression.

Derived forms.

Figure 2 extends the syntax of vpc with several derived forms that macro-expand to
constructs in the core calculus. These forms enable higher-level operations on variational
values without complicating the semantics and type system of vpc.

The first group of derived forms are three variations on the split construct described in
Section 2.4. A basic split expression makes both possible selections on e in dimension δ and
binds these to v` and vr in e′ using function application. The split–else form expands to a
the expression that checks whether δ appears in a free choice in e; if so, it performs the split,
otherwise it returns e′′. Finally, the split–any–else form expands to an any expression that
picks an arbitrary dimension out of e, if one exists, then either splits on that dimension or
returns e′′ if there is no variation in e.

The second group introduces two derived forms for basic queries about the presence
(ifvar) or non-presence (ifplain) of variability in e. These expand to any-expressions that
declare an arbitrary fresh dimension variable d, which is not referenced in e′.

3.2 Operational Semantics

In this section we define a small-step operational semantics for vpc. Since derived forms
macro-expand into the core calculus before evaluation, we consider only the core calculus
here. The step relation has the form e Ð→ e′ and is defined in Figure 3. We separate the
discussion of the rules into three parts: (1) reduction rules, which form the core of the
semantics, (2) commutation rules for setting up future reductions, and (3) congruence rules
for enabling reduction in subexpressions.
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Chc-Elim-L
D` ▸D⟨e1, e2⟩Ð→D` ▸ e1

Chc-Elim-R
Dr ▸D⟨e1, e2⟩Ð→D` ▸ e2

Sel-Idemp-K
δs ▸ κÐ→ κ

Sel-Idemp-D
δs ▸D Ð→D

App-Reduce
(λϕ.e) e′ Ð→ split e′ on any d⟨v`, vr⟩→ d⟨(λϕ.e) v`, (λϕ.e) vr⟩ else [e′/ϕ]e

App@-Reduce
(λ@ϕ.e) e′ Ð→ [e′/ϕ]e

Any-Reduce-Then
any d from e in e′ else e′′ Ð→ [min(dims(e))/d]e′

Any-Reduce-Else
∅ = dims(e)⇒ any d from e in e′ else e′′ Ð→ e′′

The-Reduce-Then
δ ∈ dims(e)⇒ the δ from e in e′ else e′′ Ð→ e′

The-Reduce-Else
δ ∉ dims(e)⇒ the δ from e in e′ else e′′ Ð→ e′′

Let-Reduce
let v = e in e′ Ð→ [[let v′ = e in v′/v]e/v]e′

Sel-Let
δs ▸ let v = e in e′ Ð→ let v = δs ▸ e in δs ▸ e′

App-Chc
δ⟨e1, e2⟩ e′ Ð→ δ⟨e1 (δ` ▸ e′), e2 (δr ▸ e′)⟩

Sel-App
δs ▸ e e′ Ð→ (δs ▸ e) (δs ▸ e′)

Sel-Abs-Exp
δs ▸ λ∗v.eÐ→ λ∗v.(δs ▸ e)

Sel-Abs-Dim
d′ is fresh⇒ δs ▸ λ∗d.eÐ→ λ∗d′.(δs ▸ [d′/d]e)

Sel-Chc
D ≠D′ ⇒Ds ▸D′⟨e1, e2⟩Ð→D′⟨Ds ▸ e1,Ds ▸ e2⟩

Sel-Any
d′ is fresh⇒ δs ▸ (any d from e in e′ else e′′)Ð→ any d from δs ▸ e in δs ▸ [d′/d]e′ else δs ▸ e′′

Sel-The
δs ▸ (the δ′ from e in e′ else e′′)Ð→ the δ′ from δs ▸ e in δs ▸ e′ else δs ▸ e′′

Figure 3 Small-step operational semantics of vpc: reduction and commutation rules.

ECOOP 2016



6:12 A Calculus for Variational Programming

Reduction rules.

The most basic variation constructs are choice and selection, for introducing and eliminating
variation. The elimination of choices by selections is defined by the two Chc-Elim rules,
for selecting the left or right alternative of a choice. Observe that selection is only defined
on choices with literal dimension names, not dimension variables. This requires that all
dimension variables be substituted (see App-Reduce) before choices can be eliminated.
Also note that these reductions propagate the selection into the remaining alternative,
implementing choice domination (see Section 2.2, illustrated by the following reduction
sequence.

Ar ▸A⟨2,A⟨3,4⟩⟩Ð→ Ar ▸A⟨3,4⟩Ð→ Ar ▸ 4Ð→ 4

The final step of this sequence depends on the fact that selection on constants (and dimension
names) is idempotent, as defined by the two Chc-Idemp rules. Our strategy for eliminating
selections will be to continually push selections down to the leaves of an expression, eliminating
choices as we go. This will be accomplished mainly by the commutation rules discussed
later. However, note that we do not have a selection idempotency rule for selections applied
to variables. Such expressions are stuck until a corresponding substitution enables further
progress.

The next two rules define function application with aggregating (@-annotated) and
non-aggregating functions. The App@-Reduce rule is just standard β-reduction. For non-
aggregating functions, recall from Section 2.2 that we must instead map the function
application over all variants of the argument. In fact, both the LHS and RHS of an
application may be variational. If the LHS is a choice, we can apply the App-Chc rule to
push the application into both alternatives (and selecting on the RHS to enforce choice
domination). We might expect a symmetric rule for pushing an application into a choice
on the RHS of an application and then a β-reduction rule for reducing abstractions applied
to non-choices. However, this strategy only maps across variation introduced by top-level
choices, whereas in general variation may be arbitrarily embedded within an expression, such
as in an abstraction body. Therefore, in App-Reduce we define that an unannotated redex
is expanded into a split-any-else expression that recursively splits e′ on every dimension it
contains, effectively pushing the application downward into its variants. After we’ve split on
all of the dimensions in e′, the else branch applies, and the generated expression reduces to
standard β-reduction.

Reducing an any- or the-expression requires querying the variability of the first subex-
pression, which we call the scrutinee. Observe that all of the Any and The reduction rules
require the scrutinee to be a value. This forces full reduction of the scrutinee before the
expression can be reduced. Ideally, we would reduce the scrutinee to either a choice or
a constant, then replace the any/the-expression by its then or else branch, respectively.
However, this strategy is stymied by the fact that abstractions are also a value form, and
abstraction bodies are expressions that may contain choices, but may also contain free
variables and so cannot be further reduced to values. This leaves two possible solutions:
(1) get stuck when the scrutinee reduces to an abstraction, (2) statically approximate the
variability of the reduced scrutinee. Since we want to match against arbitrary values, we
choose option (2).

Figure 4 defines an auxiliary function dims(e) that computes a set of dimensions that
conservatively approximates the free dimensions of variability in e. A free dimension is either
a dimension name or a dimension variable that is not bound by an enclosing abstraction in e.
Observe in the definition of dims that dimension declarations and choices contribute to the
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dims(κ) = dims(v) = {} dims(e e′) = dims(e) ∪ dims(e′)
dims(δ) = {δ} dims(δ⟨e, e′⟩) = dims(e) ∪ dims(e′) ∪ {δ}
dims(λ∗v.e) = dims(e) dims(δs ▸ e) = dims(e) − {δ}
dims(λ∗d.e) = dims(e) − {d}

dims(any d from e in e′ else e′′) = {dims(e′) − {d} if dims(e) ≠ ∅
dims(e′′) otherwise

dims(the δ from e in e′ else e′′) = {dims(e′) if δ ∈ dims(e)
dims(e′′) otherwise

Figure 4 Static approximation of dimensions in a vpc expression.

(λv.e1) D⟨e2, e3⟩
Ð→ split D⟨e2, e3⟩ on any d⟨v`, vr⟩→ d⟨(λv.e1) e2, (λv.e1) e3⟩ else [D⟨e2, e3⟩/v]e1

{App-Reduce}
Ð→ any d from D⟨e2, e3⟩ in split D⟨e2, e3⟩ on d⟨v`, vr⟩→

d⟨(λv.e1) e2, (λv.e1) e3⟩ else [D⟨e2, e3⟩/v]e1 {expand split-any-else}
Ð→ split D⟨e2, e3⟩ on D⟨v`, vr⟩→D⟨(λv.e1) e2, (λv.e1) e3⟩ {Any-Reduce-Then}
Ð→ (λv` vr.D⟨(λv.e1) v`, (λv.e1) vr⟩) (D` ▸D⟨e2, e3⟩) (Dr ▸D⟨e2, e3⟩)

{expand split}
Ð→ (λv` vr.D⟨(λv.e1) v`, (λv.e1) vr⟩) e2 e3 {Chc-Elim-L,Chc-Elim-R}

Figure 5 Example reduction of (λv.e1) D⟨e2, e3⟩.

result set, while selections (which eliminate choices and therefore variability) subtract from
it. The dimension abstraction and any forms, which declare and scope dimension variables,
also subtract from the result set since their dimension variables are not free in e.

Using dims, we can define the reduction rules for the and any. The The-Reduce rules
simply check to see whether the specified dimension is present in dims(e) and reduce to
either the then or else branch accordingly. An any-expression reduces to the else branch if
dims(e) is empty (Any-Reduce-Else), but if it’s not empty we must pick a dimension to bind
to d (in Any-Reduce-Then). The dimension we pick is based on an ordering relation (≺) on
dimensions: for any dimension name D and dimension variable d′, D ≺ d′; when comparing
two dimension names or two dimension variables, ≺ is the lexicographic ordering of their
names. The function min(δ) returns the minimum δ ∈ δ according to this ordering relation.
(We use the overbar to denote lists.)

The requirement that the scrutinee of an any/the-expression be fully evaluated is needed
to ensure confluence since dims is an approximation of the actual variation in e. To illustrate,
consider the expression2 ifvar (λ@x.2) A⟨3,4⟩ then 5 else 6. Forcing evaluation of the
scrutinee first yields reduces the expression to ifvar 2 then 5 else 6 and then to 6 since
dims(2) = ∅. However, if we allowed also reducing any/the immediately, the expression
reduces to 5 since dims((λ@x.2) A⟨3,4⟩) = {A}.

Finally, the Let-Reduce rule implements a recursive let by a nested substitution.

2 Recall that ifvar expands to an any–then–else expression.
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Selection commutation rules.

The App-Chc rule described in the previous section pushes applications into choices on the
LHS in order to setup future reductions via the App-Reduce or App@-Reduce. Similarly,
the eight Sel-* rules push selections downward to setup the elimination of matching choices
via the Chc-Elim rules, and eventually to reduction at the leaves via the Sel-Idemp rules.

The Sel-App and Sel-Let rules straightforwardly push selections into applications and
let-expressions, respectively. The two Sel-Abs rules push selections into abstractions. In
these rules we distinguish between expression abstractions (where the variable is in the
namespace v) and dimension abstractions (in namespace d). However, both rules apply to
both annotated and unannotated abstractions. We make this explicit by writing λ∗v.e and
assume that the annotations are preserved by the transformation. Note that the Sel-Abs-Dim
rule renames the bound dimension variable to preemptively avoid the capture of the selected
dimension δ, which may also be a dimension variable.

The Sel-Chc rule pushes selections into choices. This rule can only be applied if both
dimensions (the one being selected, and the one referenced by the choice) have been resolved
to dimension names. Selection on a choice involving a dimension variable is stuck until
dimension substitution enables further progress. To illustrate why this is necessary, consider
the expression d` ▸ d′⟨e1, e2⟩. At first it may seem that this expression is equivalent to
d′⟨d` ▸ e1, d` ▸ e2⟩ since the dimension variables have different names. However, it might be
that d and d′ are substituted by the same dimension name, in which case we should have
eliminated the choice rather than pushing the selection into it.

Finally, the Sel-Any and Sel-The rules push selections into any- and the-expressions.
Since any binds dimension names, the Sel-Any rule renames to avoid dimension variable
capture.

Congruence rules.

For space reasons, we relegate to the long version of this paper [18] the congruence rules,
which complete the reduction relation. They are entirely straightforward. We give them
names like In-Any-Then for reducing the then-branch of an any-expression, and In-Chc-L
for reducing the left alternative of a choice. The most interesting feature of the congruence
rules are two rules that are omitted—we do not define In-Abs or In-Sel rules for reducing
the body of abstractions or selections, respectively. The reason these are omitted is to avoid
prematurely reducing any- and the-expressions. When an any/the occurs in the body of
an abstraction, future variable substitutions may affect the variability of the scrutinee, and
so we should not reduce it until all free variables have been substituted. Conversely, when
an any/the occurs in the body of a selection, the scrutinee may contain more variation
than it will after the selections have been pushed all the way down. Thus, reducing within
abstractions and selections would lead to semantics that is not confluent.

Confluence.

The main result for the operational semantics is that the reduction relation is confluent,
captured in the following lemma. (For a proof sketch, see [18]).

▸ Lemma 1 (Local confluence). eÐ→ e′ ∧ eÐ→ e′′ Ô⇒ ∃e′′′. e′ Ð→∗ e′′′ ∧ e′′ Ð→∗ e′′′
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τ ∶∶= γ ∣ α ∣ τ → τ (plain types)
φ ∶∶= τ ∣ δ⟨φ,φ⟩ ∣ φ→ φ ∣ δ (variational types)
σ ∶∶= ∀αd.φ ∣ ∀αd.C ⇒ φ (variational schemas)
C ∶∶= φ ≡ φ ∣ C ∧C ∣ δ⟨C,C⟩ ∣ ∃αd.C ∣ δ ∈ φ⇒ δ↓φ (constraints)

Figure 6 Type Syntax.

4 Type System

This section presents a type system for vpc. In Section 4.1 we define the syntax of the type
language, and in Section 4.2 we define the typing relationship through a set of typing rules.

4.1 Syntax
Types are stratified into three layers (see Figure 6). First, we use τ to range over plain types,
which don’t contain variations. Plain types include type constants γ, type variables α, and
function types. Second, we use φ to range over variational types. A choice type δ⟨φ1, φ2⟩
allows us to represent type variation. By including dimensions δ, which are expressions, in
type syntax we obtain a lightweight form of dependent types. Finally, we have type schemas,
which are variational types universally quantified over type variables α and dimension
variables d. We refer to type schemas of the form ∀d.φ as dimension-polymorphic types.
Note that we don’t explicitly represent choice types containing polymorphic types since
they can be transformed to type schemas, as shown in [10].3 With this type syntax we
can characterize types for expressions manipulating dimensions and choices. Consider, for
example, the function poly that takes a dimension and creates a choice in that dimension.

poly ∶ ∀d.d→ d⟨Int, Bool⟩
poly = λd.d⟨2, True⟩

In this example, the type precisely describes the intention of poly. While we can instantiate
poly with any dimension, we may want to restrict dimensions that can be used to instantiate
dimension-polymorphic types in general. We use the following expression bounded to illustrate
this point.

bounded = λ@e.any d from e in d⟨2, True⟩ else undefined

Here bounded finds a dimension in the expression supplied as argument based on some
ordering that is discussed in Section 3. What should be the type of bounded? The type
∀d.φ → d⟨Int, Bool⟩ is not precise enough since it can be instantiated with any dimension,
even one absent in the input expression. To address this issue, we introduce constrained
types that allow us to attach constraints to polymorphic types. Constraints specify the valid
ways of instantiating polymorphic variables. To represent the type for bounded, we introduce
the constraint d↓φ, which requires that d must be the particular dimension in φ according to
the defined ordering. For example, for φ = B⟨A⟨Int, Bool⟩, Bool⟩, we have A↓φ. With this
constraint, we can write the type for bounded as follows.

bounded ∶ ∀d.d↓φ⇒ φ→ d⟨Int, Bool⟩

3 E.g., we don’t deal with A⟨∀α.α→ α,∀α.α→ Int⟩ since we can transform it to ∀α,β.A⟨α → α,β →
Int⟩.
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E1
C ⊩ C

E2
C ∧C1 ⊩ C1

E3
C ⊩ ∃αd.C

E4
C1 ⊩ C2 C2 ⊩ C3

C1 ⊩ C3
E5

C1 ⊩ C2

θ(C1) ⊩ θ(C2)

E6
C1 ⊩ C2

∃αd.C1 ⊩ ∃αd.C2
E7

C1 ⊩ C2 C3 ⊩ C4

δ⟨C1,C3⟩ ⊩ δ⟨C2,C4⟩

E8
FD(φ1) = ∅ FV(φ1) = ∅ δ ∉ dims(φ1)

⊩ δ ∈ φ1 ⇒ δ↓φ
E9

δ ∈ dims(φ1) δ = min(dims(φ))
⊩ δ ∈ φ1 ⇒ δ↓φ

T1 φ1 ≡ φ2 ⊩ φ2 ≡ φ1 T2 φ1 ≡ φ2 ∧ φ2 ≡ φ3 ⊩ φ1 ≡ φ3 T3 ⊩ φ ≡ φ

T4 φ1 ≡ φ2 ⊩ φ[φ1] ≡ φ[φ2] T5 ⊩ δ⟨φ,φ⟩ ≡ φ T6 ⊩ δ⟨φ1, φ2⟩ ≡ δ⟨⌊φ1⌋δ`
, ⌊φ2⌋δr ⟩

Figure 7 Entailment relation of constraints.

This type states that for any given argument, there is at most one valid instantiation of d.
Note that the constraint d↓φ must be satisfied only if d appears in the result type, as it does
in bounded. In general, the conditional constraint δ ∈ φ2 ⇒ δ↓φ1 means that δ↓φ1 must be
satisfied only if δ ∈ φ2 is satisfied.

We define other constraints in Figure 6 and use the metavariable C to range over
constraints. The constraint φ1 ≡ φ2 requires that types φ1 and φ2 be equivalent, which is
more flexible than type equality. The “variational constraint” δ⟨C1,C2⟩ expresses a choice
between constraint C1 or C2, depending on dimension δ. The constraint forms C1 ∧C2 and
∃αd.C have the conventional meanings.

We now turn to the relations among constraints. We use the entailment relation C1 ⊩ C2
to denote that if C1 is satisfied then C2 must also be satisfied. The rules E1, E2, and E4
are standard in constrained type systems. The rules E3 and E6 specify that existential
quantifiers hide information of constraints and thus quantified constraints are easier to satisfy.
The constraint E5 states that the entailment relation is stable under substitution, where θ is
a mapping of type variables to types and dimension variables to dimensions. Rule E7 deals
with variational constraints and is obvious.

Finally, rules E8 and E9 describe two ways to satisfy the constraint δ ∈ φ1 ⇒ δ↓φ. The
first applies when δ doesn’t occur in φ1, which we can conclude only when φ1 doesn’t contain
dimension variables or type variables because they may be substituted with other variational
types. The operation FD(φ) is defined as follows.

FD(d⟨φ1, φ2⟩) = {d} ∪ FD(φ1) ∪ FD(φ2)
FD(D⟨φ1, φ2⟩) = FD(φ1) ∪ FD(φ2)
FD(φ1 → φ2) = FD(φ1) ∪ FD(φ2)

FD(d) = {d} FD(D) = FD(τ) = ∅

The operation dims(φ) is defined similarly but collecting all δs. The second situation is
handled by E9, which requires that δ ∈ dims(φ1) and that δ is min(dims(φ2)).

The second part of Figure 7 presents the entailment relation between type equivalence
relations. The rules T1 through T3 state that type equivalence is reflexive, symmetric, and
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C; Γ; ∆ ⊢ e ∶ φ

Con
κ of type γ
C; Γ; ∆ ⊢ κ ∶ γ

Var
Γ(v) = ∀αd.C ⇒ φ C ′ ⊩ C

C ′; Γ; ∆ ⊢ v ∶ φ

Abs
C; Γ, (v, φ1); ∆ ⊢ e ∶ φ
C; Γ; ∆ ⊢ λv.e ∶ φ1 → φ

App
C; Γ; ∆ ⊢ e1 ∶ φ1 C; Γ; ∆ ⊢ e2 ∶ φ2 C ⊩ φ1 ≡ φ2 → φ

C; Γ; ∆ ⊢ e1 e2 ∶ φ

AbsD
C; Γ; ∆, (d, δ) ⊢ e ∶ φ
C; Γ; ∆ ⊢ λd.e ∶ δ → φ

Let
C1 ∧C2; Γ, (v, φ); ∆ ⊢ e1 ∶ φ

d # FD(C2) ∪ FD(Γ) α # FV(C2) ∪ FV(Γ) C2; Γ, (v,∀αd.C1 ⇒ φ); ∆ ⊢ e2 ∶ φ2

C2 ∧ ∃αd.C1; Γ; ∆ ⊢ let v = e1 in e2 ∶ φ2

Dim
∆(δ) = δ1

C; Γ; ∆ ⊢ δ ∶ δ1

Chc
C1; Γ; ∆ ⊢ e1 ∶ φ1 C2; Γ; ∆ ⊢ e2 ∶ φ2 ∆(δ1) = δ

δ⟨C1,C2⟩; Γ; ∆ ⊢ δ1⟨e1, e2⟩ ∶ δ⟨φ1, φ2⟩

Sel

C; Γ; ∆ ⊢ e ∶ φ ∆(δ) = δ1 C ⊩ δ1⟨φ`, φr⟩ ≡ φ
⎧⎪⎪⎨⎪⎪⎩

C ⊩ α ≡ φ` s = `
C ⊩ α ≡ φr s = r

C; Γ; ∆ ⊢ δs ▸ e ∶ α

Any
C; Γ; ∆ ⊢ e1 ∶ φ1

C; Γ; ∆, (d, d) ⊢ e2 ∶ φ2 C; Γ; ∆ ⊢ e3 ∶ φ3 C ⊩ φ2 ≡ φ3 C ⊩ d ∈ φ3 ⇒ d↓φ1

C; Γ; ∆ ⊢ any d from e1 in e2 else e3 ∶ φ3

The
C; Γ; ∆ ⊢ e1 ∶ φ1 ∆(δ) = δ1 C; Γ; ∆ ⊢ e2 ∶ φ2 C; Γ; ∆ ⊢ e3 ∶ φ3 C ⊩ φ2 ≡ φ3

C; Γ; ∆ ⊢ the δ from e1 in e2 else e3 ∶ φ3

Figure 8 Typing rules.

transitive. Rule T4 describes that equivalence is congruent with respect to an arbitrary
shared context. The rules T5 and T6 state that idempotent choices and dead alternatives
may be eliminated. The operation ⌊φ1⌋δ`

replaces each occurrence of a choice in dimension δ
within φ1 with its left alternative [17].

4.2 Typing Rules

We use the judgment C; Γ; ∆ ⊢ e ∶ φ to denote that under the constraint C, the type environ-
ment Γ, and the dimension environment ∆, the expression e has the type φ. The environment
∆ that collects all the assumptions for bound dimension variables that are visible for e is a
mapping from dimension variables d to dimensions δ. We frequently use the operation ∆(δ),
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which is defined as follows.

∆(δ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D if δ =D
δ1 if δ = d ∧ (d, δ1) ∈ ∆
undefined if δ = d ∧ d ∉ dom(∆)

The first three rules (Con, Var, and Abs) are standard. The rule App for function application
relaxes the usual equality constraint between the function parameter and argument and
requires only that they be equivalent (not equal). The rule AbsD is similar to Abs except
that it abstracts over dimension variables. To type dimension abstractions, we assume a
binding for (d, δ) in ∆, then type the body.

The Let rule deals with recursive let expressions. Note that we allow polymorphism
over both dimension variables and type variables. The overall typing process is standard.
However, note that we only attach the constraint (C1) that specifies requirements for α and
d to the type φ assumed for v. Since the variable v will probably be referred to many times
in the body, this helps to control the size of the constraint aggregated during the typing
process. As been noted earlier [40, 44, 13], the size of constraints has a huge impact on the
performance of type checkers. We therefore regard this optimization as necessary. Another
subtlety is that we keep the constraint ∃αd.C1 in the result typing constraint. This constraint
increases the precision of the type system. For a discussion, see [40, 44].

Rule Dim consults the binding for δ in ∆. From the definition of ∆(δ) it follows that
C; Γ; ∆ ⊢D ∶D and C; Γ; ∆ ⊢ d ∶D if (d,D) ∈ ∆. The rule Chc for choice construction
expresses the idea that the typing process can be composed over choice creation. Specifically,
if e1 and e2 are typed under the constraints C1 and C2, respectively, then δ1⟨e1, e2⟩ is well
typed under the variational constraint δ⟨C1,C2⟩, where δ = ∆(δ1). To type a selection, we
first retrieve the type φ1 of the expression being selected. Then, based on the selector given,
the constraint must ensure that the result type is equivalent to the corresponding alternative
of φ1. This idea is formalized in rule Sel.

To type an any expression, we first derive the type φ1 for e1. Then we have to consider two
different cases. First, if φ1 contains a dimension, we type the then branch e2 by extending
∆ with (d, d). Otherwise, if φ1 doesn’t contain any dimension, then the else branch e3 is
typed. The language requires that both branches have the same type. Another constraint
that needs to be satisfied is that if the result type of the expression refers to d, then d must
appear in φ1 and must be the smallest dimension according to the ordering of dimensions
defined in Section 3. This is expressed through the entailment relation C ⊩ d ∈ φ3 ⇒ d↓φ1.
The rule Any specifies this typing process.

Note that the result will be incorrect if we drop the condition and use the constraint
entailment C ⊩ d↓φ1. To illustrate, consider the expression vmin introduced in Section 2.4.
Although we will not describe the formal reasoning process, we briefly discuss how the type
for vmin can be derived. First, since vmin is a recursive function, we assume its type is α → β.
Next, the call of min of result type β forces β to be Int and the return type of the then
branch to be Int. As both branches of any need to have the same type, the else branch of
type α also has the type Int. Thus, both α and β are Int. If the any expression introduces
the constraint d↓Int, we observe that the constraint can never be satisfied since Int doesn’t
contain any dimension. However, if we introduce the constraint d ∈ Int⇒ d↓Int, then the
constraint can immediately be removed according to rule E8 in Figure 7.

The idea of typing the expressions is very similar to that of typing any expressions. Both
branches of the also need to be equivalent. The main difference is that this rule doesn’t
place a constraint on the dimension δ, as can be seen from the rule The. The reason is that δ
must be bound by a dimension abstraction. Note that while other judgments in The doesn’t
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I-App
C1; Γ; ∆ ⊢I e1 ∶ α1 C2; Γ; ∆ ⊢I e2 ∶ α2 α3 fresh
∃α1α2.(C1 ∧C2 ∧ α1 ≡ α2 → α3); Γ; ∆ ⊢I e1 e2 ∶ α3

I-Any

C1; Γ; ∆ ⊢I e1 ∶ α1
C2; Γ; ∆, (d, d) ⊢I e2 ∶ α2 C3; Γ; ∆ ⊢ e3 ∶ α3 C4 = (d ∈ α3 ⇒ d↓α1)

∃α1α2d.(C1 ∧C2 ∧C3 ∧ α2 ≡ α3 ∧C4); Γ; ∆ ⊢I any d from e1 in e2 else e3 ∶ α3

Figure 9 Constraint generation for vpc.

use δ1, we write ∆(δ) = δ1 to ensure that δ is a dimension constant or is bound in ∆.
Our type system is sound with respect to the operational semantics defined in Section 3.2.

Specifically, the following two properties hold.

▸ Theorem 2 (Progress). If C; Γ;∅ ⊢ e ∶ φ and Γ contains information for constants only
and FV(Γ) = ∅, and ⊩ C, then e is a value or there is some e′ such that eÐ→ e′.

▸ Theorem 3 (Preservation). If C; Γ; ∆ ⊢ e ∶ φ and eÐ→ e′, then C; Γ; ∆ ⊢ e′ ∶ φ.

Progress can be proved by induction on the typing derivation, and preservation by
induction on the reduction relation.

5 Constraint Generation

The type inference process consists of two steps: constraint generation and constraint solving.
This section presents constraint generation and investigates its properties. Constraint solving
will be presented in Section 6.

The goal of constraint generation is to collect constraints for a specific expression e

under the type environment Γ and dimension environment ∆. Figure 9 presents constraint
generation rules for function applications and any expressions. The full set of constraint
generation rules is presented in [18]. The rules define the judgment C; Γ; ∆ ⊢I e ∶ α, which
means that given e, Γ, and ∆, the constraint C will be collected and the result type is α.

The constraint generation rules are derived from the typing rules in Figure 8. The
constraints for a given expression e are a combination of the constraints of its subexpressions
and constraints relating the types of its subexpressions. For example, in the I-App rule,
the constraints for e1 e2 are obtained as the conjunction of the constraints C1, C2, and
α1 ≡ α2 → α3, where C1 and C2 are the constraints for e1 and e2, respectively, and the
constraint α1 ≡ α2 → α3 relates the types of e1, e2, and e1 e2.

An important observation is that the constraint generation rules collect exactly the
constraints specified in the typing relation in Figure 8—they do not forget or introduce new
constraints. This leads to the following soundness and completeness theorems for constraint
generation.

▸ Theorem 4 (Soundness of constraint generation). If C; Γ; ∆ ⊢I e ∶ α, then C; Γ; ∆ ⊢ e ∶ α.

▸ Theorem 5 (Completeness and principality of constraint generation). If C; Γ; ∆ ⊢ e ∶ φ, then
C ′; Γ; ∆ ⊢I e ∶ α with C ⊩ ∃α.C ′ and C ∧C ′ ⊩ θ(α) ≡ φ for some substitution θ.

Theorem 4 can be proved by induction over the constraint generation rules, Theorem 5
by induction over the typing rules.
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Based on the constraint generation rules, the following set of constraints (reformatted
for readability) will be generated for the expression bounded A⟨2, 3⟩ (where bounded is the
function introduced in Section 4.1). We refer to these constraints collectively as C1 (and use
C to range over constraint sets henceforth). Here α and α1 represent the return type and
argument type of bounded, respectively.

C1 ∶ α ≡ d⟨Int,Bool⟩ C2 ∶ d ∈ d⟨Int,Bool⟩⇒ d↓α1 C3 ∶ α1 ≡ α2 C4 ∶ α2 ≡ A⟨Int,Int⟩

The constraint set C2 for the application bounded 2 has the same first three constraints as
C1 and has a different last constraint C5.

C1 ∶ α ≡ d⟨Int, Bool⟩ C2 ∶ d ∈ d⟨Int, Bool⟩⇒ d↓α1 C3 ∶ α1 ≡ α2 C5 ∶ α2 ≡ Int

6 Constraint Solving

While generating constraints from the typing is straightforward, solving such constraints is
more challenging. Section 6.1 discusses these challenges, and Section 6.2 presents a constraint
solver.

6.1 Constraint Solving Challenges
There are three main challenges to address. First, rule T5 in Figure 7 specifies that we can
always simplify a type by eliminating idempotent choices. Moreover, doing so can significantly
improve the performance of type inference algorithms in practice, as has been shown in [17].
However, eagerly eliminating all idempotent choices can render some satisfiable constraints
unsatisfiable. Consider, for example, the constraint set C1 generated in Section 5. If we
solve C3 and C4 with the substitution θ = {α2 ↦ Int, α1 ↦ Int}, then C2 cannot be satisfied
since d↓Int fails because Int doesn’t contain any dimension. This is undesirable since the
expression that generates C1 is well typed. However, if we instead use the substitution
θ′ = {α2 ↦ A⟨Int, Int⟩, α1 ↦ A⟨Int, Int⟩}, then C2 can be solved by mapping d to A. Finally,
solving C1 gives us A⟨Int, Bool⟩ as the result type of bounded A⟨2, 3⟩. This result matches
our expectation since the expression is indeed well typed.

On the other hand, we shouldn’t introduce gratuitous idempotent choices, because those
might allow solving some unsatisfiable constraints. Consider, for example, the constraint
set C2 from Section 5. We again have both θ and θ′ as potential solutions for C2. Since the
expression that generates C2 is ill typed, only θ leads to the expected result since it makes
C2 unsolvable.

The second challenge regards the kind of information produced through constraint solv-
ing. This is straightforward for constraints on type variables. For example, in the case
of A⟨Int, α⟩ ≡ A⟨α, Bool⟩, we simply find a substitution for α. But what do we do about
d1⟨Int, Bool⟩ ≡ d2⟨Int, Bool⟩? At best, this constraint allows us to derive that d1 = d2. How-
ever, in general such constraints are undecidable. For example, consider A⟨Int, α⟩ ≡ d⟨Int, β⟩.
Both {d↦ A,α ↦ Int, β ↦ Int} and {d↦ B,α ↦ Int, β ↦ Int} are possible substitutions but
neither is more general than the other.

The third challenge is that, unlike in normal constraint solving [40], a set of constraints
cannot be solved in one iteration. Consider, for example, the following constraint set C3.

C6 ∶ d1⟨Int, Bool⟩ ≡ d2⟨Int, Bool⟩ C7 ∶ d1 ≡ A ∧ d2 ≡ B

For the same reason as in the previous paragraph*, solving C6 directly won’t provide useful
information. We can solve C7, however, with d1 ↦ A and d2 ↦ B. By substituting d1 with A



S. Chen, M. Erwig, and E. Walkingshaw 6:21

noelim(φ1 ≡ φ2,K) =
⎧⎪⎪⎨⎪⎪⎩

K K ∩ FV(φ1, φ2) = ∅
K ∪ FV(φ1, φ2) otherwise

noelim(∃αd.C,K) = noelim(C,K − α)
noelim(C1 ∧C2,K) = noelim(δ⟨C1,C2⟩,K) = noelim(C1,K) ∪ noelim(C2,K)

noelim(δ ∈ φ1 ⇒ δ↓φ,K) = noelim(δ↓φ,K) = K ∪ FV(φ)

noelim(C,K) =
⎧⎪⎪⎨⎪⎪⎩

K K = K′

noelim(C,K′) otherwise
where K′ = ⋃

C∈C
noelim(C,K)

Figure 10 Keeping idempotent choices.

and d2 with B in C6, we can now find that C6 is unsolvable. Overall, we need two iterations
to determine that C3 is unsolvable.

To address the first challenge, we require that idempotent choices are not reduced when
solving certain constraints. To address the second challenge and make constraint solving
decidable, we defer computing solutions for dimension variables when they are used as choice
constructors. Finally, to address the third challenge, we use iterative constraint solving, that
is we solve constraints in multiple iterations and stop when no further progress can be made.

To simplify the presentation, in addition to the constraint forms in Figure 6, we introduce
a new constraint form, d↓φ, which is satisfied if d = min(dims(φ)). We also use true to denote
a constraint that is trivially satisfied. We define the auxiliary function noelim(C,K) in Figure
10 to decide when idempotent choices shouldn’t be removed. Given C, the iterative function
noelim(C,{}) returns the set of type variables for which we must preserve idempotent choices.
Intuitively, noelim(C,{}) includes (1) the type variables found in variational types φ for
constraints of the form δ ∈ φ1 ⇒ δ↓φ or δ↓φ and (2) the type variables that share a constraint
with some other type variables in noelim(C,{}). noelim(C,{}) is complete since it handles
all different forms of the constraint.

Given this operation, we can compute noelim(C1,{}) = {α1, α2}, where C1 is from
Section 5. Note that α is not included in the resulting set since it shares no constraint with
either α1 or α2.

6.2 A Constraint Solver
We can now implement a constraint solver S. Given a constraint set C and a mapping θ,
S solves iteratively until no progress can be made, which is detected when C = C′ where
C′ is the residual constraint set of the current iteration. Note that a new noelim(C,{}) is
computed and passed to U ′ at the beginning of each iteration since constraints may have
been changed during the previous iteration.

S(C, θ) =
⎧⎪⎪⎨⎪⎪⎩

(C′, θ′) C = C′

S(C′, θ′) otherwise
where (C′, θ′) = U ′(C, θ,noelim(C,{}))

The real work of solving constraints is performed by U ′, which in turn calls U to solve each
constraint individually. Both U ′ and the main part of U are given in Figure 11. Several
simple cases, such as unifying two plain types and unifying two dimension variables, for
U are omitted. Given C, U ′ will return the same result if the constraints are solved in
different orderings. However, if C fails to solve, U ′ will fail on different constraints considering
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U ′({C1, . . . ,Cn}, θ,K) = let (C ′1, θ′1) = U(C1, θ,K)
(C′, θ′) = U ′(θ′1({C2, . . . ,Cn}), θ′1,K)

in ({C ′1} ∪ C′, θ′)

(a) U(∃αd.C, θ,K) = let (C1, θ1) = U(C, θ,K) in (∃αd.C1, θ1/{α, d})
(b) U(δ ∈ φ1 ⇒ δ↓φ2, θ,K)

∣ δ ∈ dims(θ(φ1)) = U(δ↓φ2, θ,K)
∣ FD(θ(φ1)) == ∅ ∧ FV(θ(φ1)) == ∅ ∧ δ ∉ dims(θ(φ1)) = (true, θ)
∣ otherwise = (δ ∈ φ1 ⇒ δ↓φ2, θ)

(c) U(δ↓φ2, θ,K)
∣ FD(θ(φ2)) ≠ ∅ ∨ FV(θ(φ2)) ≠ ∅ = (δ↓φ2, θ)
∣ dims(θ(φ2)) == ∅ = fail
∣ δ == d = (true,{d↦min(dims(θ(φ2)))} ○ θ)
∣ δ ≠ min(dims(θ(φ2))) = fail
∣ otherwise = (true, θ)

(d) U(D1⟨φ1, φ2⟩ ≡D2⟨φ3, φ4⟩, θ,K) =
let (θ1, r) = vunify(D1⟨φ1, φ2⟩,D2⟨φ3, φ4⟩) in if r then (true, θ1 ○ θ) else fail

(e) U(α ≡ φ, θ,K) = if α ∈ K then (true,{α ↦ φ} ○ θ) else (true,{α ↦ norm(φ)} ○ θ)
(f) U(δ⟨C1,C2⟩, θ,K) =

let (C3, θ3) = U(C1, θ,K) ; (C4, θ4) = U(C2, θ,K) in (δ⟨C3,C4⟩, δ⟨θ3, θ4⟩)
(g) U(C1 ∧C2, θ,K) =

let (C3, θ3) = U(C1, θ,K) ; (C4, θ4) = U(θ3(C2), θ3,K) in (C3 ∧C4, θ4 ○ θ3)
(h) U(C, θ,K) = (C, θ)

Figure 11 A constraint solving algorithm using pattern matching and guard expressions.

different orderings. The main solver U has the type U ∶ C × θ × 2α → C × θ, that is, it takes
three arguments—the constraint to be solved, the mapping, and the set of type variables for
handling idempotent choice eliminations—and returns as two results when constraint solving
is successful the residual constraint and the result unifier.

We go briefly over the cases in Figure 11. Case (a) deals with existential constraints of
the form ∃αd.C, which is satisfiable if C is satisfiable. For this constraint, we first solve C
and remove binding information about α and d in the result unifier. Case (b) states that
a conditional constraint δ ∈ φ1 ⇒ δ↓φ2 can be simplified in two ways: (1) if the condition
δ ∈ φ1 is satisfied, the constraint is simplified to δ↓φ2 and (2) if the condition fails, the whole
constraint is satisfied. Otherwise, the constraint is deferred for later iterations if the condition
contains free dimension or type variables, which may be substituted with concrete dimension
names or types.

Case (c), for solving constraints of the form δ↓φ2, is more interesting. This constraint is
processed only when θ(φ2) doesn’t contain any free dimensions or type variables (handled
by the first guard and its body). Otherwise, if the substituted type doesn’t contain any
dimensions, then solving fails (handled by the second guard and its body). For example,
constraint solving for δ↓Int will fail since Int doesn’t contain any dimension. Next, if δ
is a dimension variable d, then d is mapped to the minimum dimension and the result
unifier is updated (handled by the third guard and its body). For example, the solution
for δ↓A⟨Int, Bool⟩ is δ ↦ A. Otherwise, if δ doesn’t match the minimum dimension, then
the constraint is unsatisfiable (handled by the fourth guard and its body). For example,
B↓A⟨Int, Bool⟩ is unsolvable. Finally, if δ is the same as the minimum dimension of φ2, the
constraint is trivially satisfiable (last case).
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In contrast to previous situations, δ is the same as the minimum dimension, which is
handled by the last guard and the corresponding body.

Case (d) deals with type equivalence when both types are variational and contain dimension
literals only. In this case, we delegate the work to vunify, the variational unification algorithm
from [14]. Given two types φ1 and φ2, vunify(φ1, φ2) returns a pair (θ, r), where θ is
the unifier when the unification is successful and r is a boolean value indicating whether
the unification problem is solved successfully. The use of vunify, together with the fact
that type equivalence constraints containing dimension variables are deferred until they
are instantiated with dimension literals, makes the constraint solver here simpler than the
unification algorithm in VLC [17]. A detailed discussion of the relationship between the
constraint solver and VLC can be found in [18].

Case (e) solves a type equivalence constraint between a type variable α and a variational
type φ, where α doesn’t occur in φ. In this case, we further decide if α ∈ K. If so, α
is mapped to φ. Otherwise, φ is simplified with the auxiliary function norm(φ), and α

is mapped to the simplified type. The auxiliary function norm(φ) reduces idempotent
choices and dead alternatives, which are discussed in more detail in [17]. For example,
U(α ≡ A⟨Int, Int⟩,∅,{B}) yields (true,{α ↦ Int}), and U(α ≡ B⟨Int, Int⟩,∅,{B}) yields
(true,{α ↦ B⟨Int, Int⟩}).

Both cases (f) and (g) are straightforward. To solve a variational constraint, we just
solve each alternative constraint. To solve the constraint C1 ∧C2, we solve both C1 and C2.
Although the structures for these cases are very similar, there exist two subtle differences.
First, C1 and C2 are solved independently in (f) while they are solved sequentially in
(g). Second, (f) returns a variation of the substitutions for C1 and C2 while (g) returns a
composition of the substitutions. These differences reflect that the constraints in a variational
constraint are independent of each other. Other than previous cases, the constraint is deferred
to later iterations, as can be seen in case (h).
U is sound, complete, and principal, captured in the following theorems.

▸ Theorem 6 (Soundness of U). If (C2, θ2) = U(C1, θ1,K), then C2 ⊩ θ2(C1) and θ2(C2) = C2.

▸ Theorem 7 (Completeness and principality of U). Given (C1, θ1), if C3 ⊩ θ3(C1), then
(C2, θ2) = U(C1, θ1,K) and θ2 ⊑ θ3 and C3 ⊩ θ3(C2), where θ2 ⊑ θ3 if there is some θ4 such
that θ3 = θ4 ○ θ2.

Both theorems can be proved by induction on the constraint solving rules in Figure 11.
With U ′ and U , we can illustrate how S solves C1 from Section 5 through the following

sequence of transformations.

(C1,∅,K)
(e),elseÐÐÐÐ→ ({C2,C3,C4},{α ↦ d⟨Int, Bool⟩},K) (b),1ÐÐ→

({C3,C4;d↓α1},{α ↦ d⟨Int, Bool⟩},K)ÐÐÐÐ→
({C4;d↓α1},{α1 ↦ α2, α ↦ d⟨Int, Bool⟩},K) (e),thenÐÐÐÐÐ→

({d↓α1},{α2 ↦ A⟨Int, Int⟩, α1 ↦ A⟨Int, Int⟩, α ↦ d⟨Int, Bool⟩},{α1})
(c),3ÐÐ→ (true, θ4,{α1})

θ4 = {α1 ↦ A⟨Int, Int⟩, α2 ↦ A⟨Int, Int⟩, d↦ A,α ↦ A⟨Int, Bool⟩}

The constraint solving process begins with (C1,∅,K), where K = noelim(C1,{}) = {α1, α2}.
Constraint C1 from C1 is solved by the else branch of case (e) in Figure 11, as indicated by
the label “(e),else” over the arrow. Next C2 is solved by the first case of (b), which produces
the residual constraint d↓α1 that is included in the constraint set. It is separated by a “;” to
indicate that the constraint will be solved in the second iteration. Since the case of unifying
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two type variables is not included in Figure 11, the arrow for solving C3 is not labelled. The
constraint solving process ends with (true, θ4,{α1}), where θ4 is shown at the end of the
transformation. This result tells us that the expression bounded A⟨2, 3⟩ is well typed and has
the type θ4(α) = A⟨Int, Bool⟩.

On the other hand, S(C2,{}) fails because the constraint solving process leads to the
constraint d↓Int, which is unsolvable according to the second case of rule (c). Similarly,
S(C3,{}) fails in the second iteration since the constraint A⟨Int, Bool⟩ ≡ B⟨Int, Bool⟩ is
unsatisfiable.

In general, S is sound, complete, and principal since it inherits these properties from
U . Together with Theorems 4 and 5, it follows that type inference is sound, complete, and
principal.

7 Related Work

In Section 1, we provided references to many applications of variational programming.
However, there has not been much work on providing language support for variational
programming.

The choice calculus (CC) is a formal language for representing static variation in trees
and other data [23, 50], which is the basis for the choice-based variation representation
used in vpc. It provides choices for systematically representing variation, but itself offers
no constructs for transforming such representations. There have been a few attempts at
extending CC with variational programming features. The compositional choice calculus
(CCC) extends CC with functions [51]. It supports generating new variation and a form
of variation-preserving computing, but does not provide any mechanisms for eliminating,
aggregating, or transforming the variation structure. The main goal of CCC is to unify
compositional and annotative approaches to feature implementation, so it also provides a
generic mechanism for composing two ASTs. A different extension of CC adds a selection
operation to eliminate choices [22]. It focuses mostly on the interaction between selections
and a construct for declaring locally-scoped dimensions which we have omitted from vpc, and
discusses the impact of the semantics on the modularity of software product line specifications.
It does not provide any support for computing with variation.

There have also been several language-based approaches to compositionally constructing
variational programs with aspects [36], by step-wise refinement [5], or through delta-oriented
programming [42]. Each of these provide mechanisms for modularizing changes that may
be conditionally applied to a program. As with in-place variation, a substantial amount
of work has been done in the software product line community on analyzing and verifying
compositionally constructed variational programs. An excellent survey of analyses on both
varieties of product line is provided by Thüm et al. [47]. The compositional approach is
quite different from our view of in-place variation, so vpc is less applicable in this context.
However, one finding of Thüm et al.’s survey is that whole-family analyses are less common
over compositional product lines, at least in the literature.

There are a few library-based approaches to variational programming. The concept of
variational programming, independent of its applications, was first proposed via a Haskell
library [24]. This library requires data types to be explicitly extended by new cases to support
variation. Monad instances support convenient variation-preserving computations within a
single variational data type, but more advanced use cases—involving multiple variational
types or any kind of aggregation or transformation—entail quite some notational overhead
to wrap/unwrap variational types and pattern match on variation constructs. This contrasts
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with vpc where functions are mapped automatically over arbitrary variational structures.
TypeChef [29] is a system developed for parsing and type checking #ifdef-annotated source
code. To do this, it provides a library of data structures and operations to support variational
programming. As a library, it suffers similar inconveniences and limitations as [24]; however,
it has been successfully employed in a number projects for analyzing software product
lines [37, 38, 33, 30, 34]. Variational data structures and idioms to support variational
programming are described in [52], most of which are adapted from the above works.

Work on algebraic effects and effect handlers has frequently used a choice as an example
of a non-deterministic effect [4, 8, 27, 41]. These choice effects differ from vpc choices in
two key ways: (1) Each choice effect is independent—there is no concept analogous to vpc’s
dimensions to synchronize selections across choices. (2) The evaluation of an expression
with choice effects yields an unstructured set of variants, rather than a structured choice
that clarifies the relationship between a sequence of selections and the variant it yields,
as in vpc. A notable exception is the “selection functional” effect presented in [4], which
essentially implements dimensioned choices in the Eff programming language. Both choice
effects and selection functionals are more restrictive than vpc choices since they do not
permit the alternatives of the choice, or the produced variants, to be values of different types.
Additionally, the control flow enforced by these encodings of choices rules out several ways
to optimize variation-preserving computations. Since computations for different alternatives
are performed in different continuations, we lose the opportunity to perform choice reduction
to proactively eliminate unreachable alternatives [17], or to join converged execution paths
early. Finally, encoding choices as effects loses the ability to explicitly reflect on the structure
of a variational expression and perform transformations. This ability is often needed for
variational analyses, for example, the ability to commute selections with computations is
a critical transformation for analyzing SPLs [29, 28, 46, 2, 17, 16]. All of the limitations
of choice effects and selection functionals relative to vpc can likely be overcome through
more clever effect encodings. However, this would essentially amount to embedding vpc into
a host language with a rather complicated semantics, complicating our understanding of
effective variational programming.

Variation-preserving computations can also be encoded as computations in a reader monad,
where the environment identifies a single variant (for example, a predicate on dimensions)
and choices are encoded as conditional statements querying this environment. Some of the
limitations of this encoding echo the above: It does not support alternatives of different
types, and it doesn’t support optimizations or transformations since we cannot reflect on
the structure of variation in the program. The reader-based encoding has the additional
drawback of describing the variational results of a computation intensionally, rather than
extensionally. That is, the result is a function that can be used to obtain different variants by
passing in different environments, rather than an explicit choice structure as obtained from
vpc. This makes it prohibitively expensive to enumerate the variants of a result since we
must try all possible selections of the dimensions, rather than just iterating over the variants
at the leaves of a choice expression.

There are, of course, many applications that do some form of variation programming,
but without any specific programming support. The idea behind multi-execution is to run
small number of program alternatives in parallel; it has been applied to identify security
problems [21, 20, 9, 32], configuration bugs [43], and update inconsistencies [49, 26, 35] in
programs. Most of these applications synchronize the different executions externally, but
some approaches do exploit similarities between programs run in parallel [49, 45]. Most of
these approaches are limited to running two programs at a time and would not scale to
number of variants encountered in variational programming.
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8 Conclusions

Variational programming supports a wide variety of applications that must somehow deal with
variation in programs or data, but computing with and transforming variation representations
in general-purpose programming languages is effort intensive and error prone. In this paper,
we have presented vpc, a core calculus that supports the implementation of a variational
functional programming language that provides direct support for variational programming.
This language directly supports the implementation of high-level functions for aggregating
and transforming variation, as illustrated in Section 2. Additionally, it enables a very simple
implementation of a variational type unification algorithm, which is quite complicated without
built-in support for variation [17]. As future work we intend to implement other pre-existing
variational programming applications using vpc.

We have defined a small-step operational semantics for vpc, and demonstrated that it
offers flexibility in its reduction strategy. In existing variational programming applications,
much effort is often needed to demonstrate that computations and variation commute properly,
but this is built into the semantics of vpc. We presented a type system that relates variational
types with vpc expressions. The type system supports dimension polymorphism through
a restricted form of dependent types. Finally, we described a type inference algorithm for
automatically inferring most general types for vpc expressions. At the core of this algorithm
is a new variational constraint solving algorithm.
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Abstract
Previous work proposed lazy basic block versioning, a technique for just-in-time compilation of
dynamic languages which we believe represents an interesting point in the design space. Basic
block versioning is simple to implement, simple enough that a single developer can build a
complete just-in-time compiler for JavaScript in a year, yet it performs surprisingly well as it
propagates context-sensitive type information to generate type-specialized code on the fly.

In this paper, we demonstrate that lazy basic block versioning can be extended in simple ways
to propagate type information across function call boundaries. This gives some of the benefits
of whole-program analysis, or a tracing compiler, without having to implement the machinery
for either. We have implemented this proposal in the Higgs JavaScript virtual machine and
report on the empirical evaluation of this system on a set of industry standard benchmarks. The
approach eliminates 94.3% of dynamic type tests on average, which we show is more than what
is achievable with any static whole-program type analysis.
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1 Introduction

A production compiler for a widely used dynamic language such as JavaScript is an intricate
piece of software, usually the outcome of 10 to 100 developer-years of effort. The architecture
of such a compiler is one of the first design decisions made during development. This
decision is rarely revisited, as architectural changes tend to be disruptive. In previous work,
Chevalier-Boisvert and Feeley argued for an architecture based on the concept of lazy Basic
Block Versioning (BBV) [14]. They claimed that the technique hits a sweet spot in the
tradeoff between implementation complexity and performance of the generated code. As
evidence they designed and implemented Higgs, a JavaScript virtual machine and Just-In-
Time (JIT) compiler which has performance competitive with other research virtual machines
and can sometimes match the performance of production systems such as V8. Notably, the
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Higgs compiler took about a year of development time. The reduced development time is
particularly important for languages that are maintained by small teams of volunteers. Lazy
BBV occupies a point in the design space of JIT compilers that is between method-based
compilers and tracing JITs such as Mozilla’s TraceMonkey [17], and run-time specialization
of Oracle’s Truffle [36]. The simplicity of BBV is one of its main advantages. It does not
require additional infrastructure such as a static analyzer to approximate program facts, or
an interpreter to record traces.

BBV is a simple and elegant compilation technique to optimize dynamically typed
programs on the fly. The technique uses dynamic type tests which are part of the implicit
semantics of primitive operators in dynamically typed languages to capture and propagate
type information. Type-specialized versions of individual basic blocks are lazily compiled
based on the types encountered during the execution of programs. The technique, as described
in [14], is limited to optimizing type checks on local variables within a single function. The
compiler has no information on the types of arguments, return values, or object properties,
and is thus unable to eliminate some redundant dynamic type checks.

This paper extends basic block versioning with the ability to propagate type information
across function call boundaries and to specialize code based on the type of object properties.
In the framework of basic block versioning, these extensions are easy to implement and seem
to work rather well. This paper makes the following specific contributions:

1. The combination of BBV with a typed object shape mechanism which encodes property
type information including method identity, enabling the compiler to know the identity of
callees at call sites (Section 4.1).

2. The extension of BBV with specialized function entry points, which makes it possible to
pass argument types from callers to callees. This is done efficiently, without dynamic
dispatch, using method identity information provided by typed object shapes (Section 4.2).

3. A speculative technique for call continuation specialization, which enables type information
about return values to be passed from callees back to callers, without dynamic overhead
(Section 4.3).

To validate our claims we implemented these contributions in the Higgs JavaScript
compiler and evaluated its performance on industry standard benchmarks (Section 5).

A word about evaluation is in order. We considered implementing our ideas within an
existing JavaScript compiler, but quickly realized that the architectural changes required
were beyond our resources. Thus we picked Higgs as a vehicle for our experiments. This
choice comes at a cost; comparing performance of a research prototype to a production
system is tricky. A production system has a mature garbage collector, highly tuned libraries,
and performs a massive number of optimizations (many, but not all, of which are orthogonal
to this work). A research prototype is likely to not have any of those. It is thus not surprising
that Higgs runs roughly half as fast as V8. This may be a sign that our approach is inherently
limited, or that we simply lack the resources of major corporations. Cognizant of the inherent
limitations of empirical evaluations, we have chosen the following approach. We measure
the improvement of the techniques presented in this paper by the number of type tests we
are able to eliminate and the performance impact over the previous version of the Higgs
compiler. This gives us a metric of progress. We compare our implementation with two
relevant systems, one is the TraceMonkey tracing compiler. The reason for this comparison
is that basic block versioning has been compared by others to tracing compilation. It is thus
interesting to see how the two perform on the same benchmarks. Then we choose Truffle/JS
as an example of a research prototype, albeit one implemented by a large team of industrial
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researchers. For completeness we include, in Appendix A, performance results comparing
Higgs to leading commercial JavaScript implementations.

2 Influences and Related Work

The literature on just-in-time compilation is rich with, by now, decades of work. The work
presented here was influenced by many results obtained in the Self project and should be
contrasted to work on type analysis and dynamic compilation of dynamic languages.

Shapes. The notion of describing objects with shapes can be traced back to the Self
programming language [11, 22], where so-called maps group objects cloned from the same
prototype. Like shapes, maps reduce memory usage and stored metadata relating to properties
(though not type information). Today, commercial JavaScript implementations such as V8,
SpiderMonkey, Nitro and Truffle/JS have all adopted this idea. Each object contains a pointer
to its shape, which describes the layout of the object and property attribute metadata. Truffle
introduced the notion of specializing shapes based on property types to the literature [35].
This paper builds on that idea and demonstrates how to effectively integrate such a model
with basic block versioning.

Splitting. Basic block versioning bears resemblance to Self’s iterative type analysis and
extended message splitting [13] which combines static analysis with a transformation that
compiles multiple versions of loops and duplicates control flow paths to eliminate type tests.
The analysis works in an iterative fashion, transforming the control flow graph of a function
while performing a type analysis. It integrates a mechanism to generate new versions of loops
when needed, and a message splitting algorithm to try and minimize type information lost
through control flow merges. One key disadvantage is that statically cloning code requires
being conservative, generating potentially more code than necessary, as it is impossible to
statically determine exactly which control flow paths will be taken at run time, and this
must be overapproximated. The approach also has roots in Agesen’s cartesian product
algorithm [2] which avoids the loss of type information at control-flow merges by representing
program state with sets of vectors of concrete types.

Analysis. There have been multiple efforts to devise type analyses for dynamic languages.
Rapid Atomic Type Analysis [27] is an intraprocedural flow-sensitive analysis that assigns
unique types to each variable. Attempts have also been made to define formal semantics for
a subset of dynamic languages such as JavaScript [5], Ruby [16] and Python [4], sidestepping
some of the complexity of these languages and making them more amenable to traditional type
inference techniques. There are also flow-based interprocedural type analyses for JavaScript
based on sophisticated type lattices [23, 24, 25]. Such analyses are too time consuming to
be used in a just-in-time compiler. Kedlaya, Roesch et al. [26] improved the precision of
type analyses by combining them with type feedback and profiling. This shows promise,
but does not deal with object shapes and property types. Work has also been done on a
flow-sensitive alias analysis for dynamic languages [19], but it is still unclear if the analysis
can be used on-line. More recently, Brian Hackett et al. presented an interprocedural hybrid
type analysis for JavaScript suitable for use in a just-in-time compiler [21]. While this is
an important step forward, it remains vulnerable to imprecise type information polluting
analysis results. Basic block versioning can help improve on the results of such an analysis by
hoisting tests out of loops and generating multiple optimized code paths where appropriate.
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Tracing. Trace compilation, introduced by Dynamo [6] and later applied to just-in-time
compilation in HotpathVM [18], aims to record sequences of instructions executed inside
hot loops. Such sequences make optimization simpler. Type information is accumulated
along traces and used to specialize code and remove type tests [17], overflow checks [34]
or unnecessary allocations [8]. Basic block versioning resembles tracing in that context
updating works on essentially linear code fragments and code is optimized similarly to
what may be done in a tracing compiler. Code is also compiled lazily, as needed, without
compiling whole functions at once. Trace compilation [9] and meta-tracing are an active area
of research [10]. The simplicity of basic block versioning is one of its main advantages. It does
not require external infrastructure such as an interpreter to record traces. Trace compiler
implementations must deal with corner cases that do not appear with basic block versioning.
With trace compilation, there is the potential for trace explosion if there are a large number
of control flow paths going through a loop [7]. It is also not obvious how many times a loop
should be recorded or unrolled to maximize the elimination of type checks. This problem is
solved with basic block versioning since versioning is driven by type information and there is
a natural bound to the number of versions that comes from the finite number of types in the
system. Trace compilers must implement parameterizable policies and mechanisms to deal
with recursion, nested loops and potentially very long traces that do not fit in instruction
caches.

Customization. Customization is another technique developed to optimize Self pro-
grams [12]. It compiles multiple copies of methods specialized on the receiver object type.
Similarly, type-directed cloning [28] clones methods based on argument types, producing more
specialized code using richer type information. The work of Chevalier-Boisvert et al. on
just-in-time specialization for MATLAB [15] and similar work done for the MaJIC MATLAB
compiler [3] tries to capture argument types to dynamically compile optimized versions of
whole functions. All of these techniques are forms of type-driven code duplication aimed at
extracting type information. Basic block versioning operates at a lower level of granularity,
allowing it to find optimization opportunities inside of method bodies by duplicating code
paths. There are similarities between the Psyco JIT specialization work and our own. The
Psyco prototype for Python [31] interleaves execution and JIT compilation to gather run time
information about values. It then specializes code on the fly based on types and values. It
also incorporates a scheme where functions can have multiple entry points. We extend upon
this work by combining a similar approach, that of basic block versioning, with typed shapes
and a mechanism for propagating return types from callees to callers with low overhead. The
tracelet-based approach used by Facebook’s HHVM for PHP [1] bears similarities to our own.
HHVM compiles small code regions (tracelets) which are single-entry multiple-exit basic
blocks. Each tracelet is type-specialized based on variable types observed at compilation time.
Guards are inserted at the entry of tracelets to verify at run time that the types observed
are still valid for all future executions. High-level instructions in tracelets are specialized
based on the guarded types. If these guards fail, new versions of tracelets are compiled based
on different type information and chained to the failing guards. One difference with our
work is that HHVM uses an ahead-of-time type analysis pass. Another difference is that
with the approach described in [1], each tracelet re-checks the types of its inputs, whereas
BBV propagates known types to successor blocks and doesn’t usually need to re-check the
types of local variables. Finally, HHVM falls back on an interpreter when too many tracelet
versions are generated. Higgs falls back to generic basic block versions which do not make
type assumptions but are still compiled. Beyond type specialization, recent work by Costa et
al. on just-in-time value specialization has shown that specializing JavaScript functions based
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on specific argument values can lead to performance improvements [33], as many functions
are always called with the same arguments.

3 Background

The work presented in this paper is implemented in a research virtual machine for JavaScript
(ECMAScript 5) known as Higgs 1. The Higgs virtual machine includes a just-in-time
compiler built around lazy basic block versioning. This compiler is intended to be lightweight
with a simple implementation. Code generation and type specialization are performed
in a single pass. Register allocation is done using a greedy allocator. The runtime and
standard libraries are self-hosted, written in an extended dialect of JavaScript with low-level
primitives. These low-level primitives are special instructions which allow expressing type
tests, pointer manipulation, as well as integer and floating point machine instructions in the
source language.

3.1 Value Types and Type Tests
Higgs segregates values into categories based on type tags [20]. These type tags form a
simple type system that is used for versioning. The types are mostly straightforward and
correspond closely to values manipulated by JavaScript programs. The one exception is the
unknown type tag that is used by the compiler to indicate that no information is available
for the corresponding value.

int32 signed 32-bit integers
float64 64-bit floating point numbers
undef the undefined value
null the null value
bool true and false boolean values
string strings
array arrays
closure function objects
object Plain JS objects
unknown type unknown

JS is a dynamically typed and late-bound programming language. There are no static
type annotations, and the types of variables may change during the execution of a program.
As such, there are many implicit type checks hiding in even the simplest JS programs.
Figure 1 shows an iterative function which illustrates this. The sum function contains three
primitive operators: a comparison, a decrementation and an addition. Each of these operators
implicitly checks the types of its operands as part of its semantics.

In all, there are four implicit type checks hiding in the sum function:

1. The > operator checks the type of n before comparing it against the integer zero.
2. The type of s is checked before computing s += i
3. The type of i is also checked before computing s += i
4. The decrementation operator checks the type of i before computing --i

1 https://github.com/higgsjs
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function sum(n) {
var s = 0;
for (var i = n; i > 0; --i)

s += i;
return s;

}

sum (500);

Figure 1 Iterative JS sum function.

A: s = 0, i = 0
if not is_int32(n) goto stub1

B: if not gt_int32(n,0) goto I // if not (n > 0)

C: if not is_int32(s) goto stub2
D: if not is_int32(i) goto stub3
E: s = add_int32(s,i)

if overflow goto stub4

F: if not is_int32(i) goto stub5
G: i = sub_int32(i,1)

if overflow goto stub6
H: goto B

I: return s

Figure 2 Control-flow graph of the sum function before BBV.

A naive JS implementation performs these type checks every time an operator is evaluated.
In Higgs, this is done using primitive instructions which can test the type tags of values.
Figure 2 illustrates the primitive operations and implicit type tag checks executed by Higgs
with basic block versioning disabled when sum(500) is evaluated. When computing sum(500),
only small integer (int32) values are used, and so, much of these type checks are redundant.

The is_int32 primitives act as guards which verify that the type tag associated with
a given variable is int32 before executing a machine instruction specific to integer values.
Should any of these tests fail, execution will flow to a stub that generates new machine code
to handle non-integer values. The overflow test primitives serve to verify that an integer
overflow did not occur, and handle such an occurrence otherwise.

3.2 Lazy Basic Block Versioning
Basic block versioning is a just-in-time code generation technique originally applied to
JavaScript by Chevalier-Boisvert & Feeley [14], and adapted to Scheme by Saleil & Feeley [32].
The technique bears similarities to HHVM’s tracelet-based compilation approach and Psyco’s
just-in-time code specialization system [31].

BBV works at the level of individual basic blocks. We define a basic block as a single-entry
single-exit sequence of instructions. Basic blocks end with one branching instruction which
jumps to other basic blocks. In Higgs, basic blocks are usually short, sometimes just one
instruction in our Intermediate Representation (IR), due to the large number of type tests,
each of which is treated as a branching instruction which terminates the current basic block.

The BBV engine interleaves compilation and execution. It generates machine code for
basic blocks lazily, instantiating them into one or more versions, each type-specialized based
on accumulated type information. BBV propagates type information by maintaining a
context for each block version which stores known type information about live variables.
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A: s = 0, i = 0
if not is_int32(n) goto stub1

B: if not gt_int32(n,0) goto I

// s,i,n are known to be int32
C: // is_int32 (s) check eliminated
D: // is_int32 (i) check eliminated
E: s = add_int32(s,i)

if overflow goto stub2

// s,i,n are known to be int32
F: // is_int32 (i) check eliminated
G: i = sub_int32(i,1)

if overflow goto stub3
H: goto B

I: return s

Figure 3 Control-flow graph of the sum function after BBV.

This context is updated as block versions are compiled.
Type tag tests are used to capture type information and enrich the versioning context.

We know, for instance, that if we branch on the “true” side of an is_int32(n) test, then
n must have tag int32 in the successor block. This fact is exploited by instantiating a
specialized version of the successor block based on the knowledge that n is int32. Because
BBV uses lazy code generation, it never generates block versions for types that do not occur
at run time. It achieves this by delaying the compilation of conditional branch targets using
machine code stubs.

Using BBV, three of the four implicit type checks in the sum function from Figure 1 are
eliminated. The resulting optimized control flow graph is shown in Figure 3. A single type
test remains: the type of n is tested when entering the function. When first executing the
sum(500) call, Higgs takes the following steps to compile and optimize the sum function:

The sum function is entered, block A is executed. The s and i variables are initialized
to 0. The context is updated to indicate both s and i have type tag int32. The type
of n is unknown. The is_int32(n) branch is made to point to machine code stubs and
execution is resumed.
Execution resumes. The is_int32(n) check evaluates to “true”. A stub for block B is
hit. This stub calls back into the compiler.
Compilation resumes, and a version of block B with n known to be int32 is generated.
Stubs are generated for the gt_int32(n,0) branch targets.
Execution resumes. A stub of block C is hit.
Compilation resumes. A version of block C with n known to be int32 is produced. The
variables s and i are already known to be int32, hence the type tag checks in C and D
can be evaluated at compilation time and eliminated. A stub is produced for the integer
overflow check.
Execution resumes. No overflow occurs, a stub for block F is hit.
Compilation resumes. A version of block F with s, i and n as int32 is compiled. The
type check in F is evaluated at compilation time and eliminated. Stubs for the overflow
branch in G are produced.
Execution resumes. No overflow occurs, a stub of block H is hit.
Compilation resumes. Block H produces a jump to the version of B that was already
generated, where s, i and n are all known to be int32.

ECOOP 2016



7:8 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

function sumList(lst) {
if (lst == null)

return 0
return lst.val + sumList(lst.next)

}

function makeList(len) {
if (len == 0)

return null
return { val: len , next: makeList(len -1) }

}

var lst = makeList (100)
if (sumList(lst) != 5050)

throw Error(’incorrect␣sum’)

Figure 4 JS function to recursively sum the values stored in a linked list.

Execution resumes and continues until the gt_int32(n,0) test in block B fails. Note
that no more type checks are executed.
The loop test fails. A stub for block I is hit. Block I is compiled.
Execution resumes at block I, the sum function returns to the caller.

Because of its JIT nature, BBV has at least two powerful advantages over traditional
static type analyses. The first is that BBV considers only the parts of the control flow graph
that get executed, and it knows precisely which they are, as machine code is only generated
for basic blocks which are executed. The second is that code paths can often be duplicated
and specialized based on different type combinations, making it possible to avoid the loss of
precision caused by control flow merges in traditional type analyses.

3.3 Motivating Example
The example in Figure 1 is one for which plain intraprocedural BBV works particularly
well. In this section, we will provide a motivating example for our work which highlights the
limitations of the unextended BBV approach described in [14]. We will then show how we
have extended BBV to remove these limitations.

Figure 4 shows the sumList function for recursively traversing a linked list and computing
the sum of numerical values stored in each node. While this small program may appear
simplistic, there is much semantic complexity hidden behind the scenes. A correct but naive
implementation of this function contains six implicit dynamic type tag tests, which must be
eliminated to maximize performance:
1. The tag of the lst argument is checked when comparing it against null.
2. The tag of lst is re-checked before reading the lst.val property.
3. The tag of lst is checked a third time before reading the lst.next property.
4. The sumList function is a mutable global variable. Before calling it, there is an implicit

check to make sure that this is in fact a closure.
5. The tag of lst.val is checked before computing lst.val + sumList(lst.next).
6. The tag of sumList(lst.next) is also checked, because functions calls can return values

of any type.

The BBV algorithm described in [14] is limited to an intraprocedural scope, that is, it
deals with local variable types only. It cannot pass type information between callers and
callees. It also assumes that all object properties (including global variables, which are
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A: if is_null(lst) goto I

B: if not is_object(lst) goto stub1
C: val = read_prop(lst , ’val’)

if not is_object(lst) goto stub2

D: next = read_prop(lst , ’next’)
sumfn = read_prop(globalObj , ’sumList ’)
if not is_closure(sumfn) goto stub3

E: t1 = sumfn(next)
if not is_int32(val) goto stub4

F: if not is_int32(t1) goto stub5

G: t2 = add_int32(val , t1)
if overflow goto stub6

H: return t2

I: return 0

Figure 5 Implicit type checks in the sumList function.

properties of the global object) have unknown type. As such, the unextended BBV algorithm
is ill-equipped to optimize the sumList function, or object-oriented JS code in general.

The implicit tests executed by a version of Higgs without BBV are shown in Figure 5.
Once the type tag of the lst parameter has been tested and found to be object,

intraprocedural BBV can eliminate the second is_object test. Unfortunately, it cannot
eliminate any of the other type tag tests. Since nothing is known about object property
types, the type tags of the val and next properties must be tested for each call. The type
tag of sumList is also tested before every call. Lastly, the return type of the sumList call is
checked after each call. Clearly, most of these checks are provably redundant, and it should
be feasible to eliminate them. The next sections will explain the ways in which we have
extended BBV to give it the necessary capabilities.

4 Interprocedural Basic Block Versioning

This section describes the three extensions to basic block versioning that allow us to propagate
type information across procedure calls.

4.1 Typed Object Shapes
BBV, as presented in [14], deals with function parameter and local variable types only. It
has no mechanism for attaching types to object properties. This is particularly problematic
because, in JS, functions are typically stored in objects. This includes object methods and
also global functions (JS stores global functions as properties of the global object). We would
like to attach type tags to object properties, global variables included.

4.1.1 Object Shapes and Shape Tests
Currently, all commercial JS engines have a notion of object shapes, which is similar to
the notion of property maps invented for the Self VM. That is, any given object contains a
pointer to a shape descriptor providing its memory layout: the properties it contains, the
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// Linked list node shape
S: { val: slot 0, next: slot 1 }

// Global object shape
G: {

...,
Error: slot 1,
...,
makeList: slot 30,
sumList: slot 33,
lst: slot 34

}

Figure 6 Linked list node and global object shapes.

A: if is_null(lst) goto I

B: if not is_object(lst) goto stub1
C: if not is_shape(lst , S) call updatePIC // PIC 1

val = read_slot(lst , 0) // PIC 1
if not is_object(lst) goto stub2

D: if not is_shape(lst , S) call updatePIC // PIC 2
next = read_slot(lst , 1) // PIC 2
if not is_shape(globalObj , G) call updatePIC // PIC 3
sumfn = read_slot(globalObj , 33) // PIC 3
if not is_closure(sumfn) goto stub3

E: t1 = sumfn(next)
if not is_int32(val) goto stub4

F: if not is_int32(t1) goto stub5

G: t2 = add_int32(val , t1)
if not overflow goto stub6

H: return t2

I: return 0

Figure 7 Primitive operations in sumList executed by an unextended version of Higgs.

property slot index (memory offset) each property is stored at, as well as attribute flags
(i.e. writable, enumerable, etc.). For instance, linked list nodes and the global object in the
example from Figure 4 have shapes S and G, shown in Figure 6.

Traversing shape data structures on each object property access would be prohibitively
expensive. As such, Higgs and all modern JS engines optimize property accesses using
Polymorphic Inline Caches (PICs) [22]. PICs are lazily updated sequences of inlined machine
instructions which implement property reads and writes. Typically, a cascade of conditional
branch instructions establish the shape of an object in order to determine the memory offset
at which the property to be read or written is stored. A specialized machine instruction is
then executed which accesses the property at the correct offset. PICs are extended as needed
to handle previously unseen object shapes.

In the sumList function, there are three property reads, and therefore three PICs. Linked
list nodes and the global object only have one possible shape, and so there is only one shape
test inside each PIC. The primitive operations and dynamic tests executed by an unextended
implementation of Higgs which uses PICs are illustrated in Figure 7.
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// Linked list node shape
S1: { val: (slot 0, int32), next: (slot 1, null) }
S2: { val: (slot 0, int32), next: (slot 1, object) }

// Global object shape
// Closures have method identity information
G: {

...,
Error: (slot 1, closure/Error),
...,
makeList: (slot 30, closure/makeList),
sumList: (slot 33, closure/sumList),
lst: (slot 34, object)

}

Figure 8 Typed object shapes encode property type information.

4.1.2 Extending Shapes with Types
Work done on the Truffle Object Model (OSM) [35] describes how object shapes can be
straightforwardly extended to also encode type tags for object properties. Property writes
are guarded to update object shapes when a property type changes. Property reads establish
the shape of objects in order to know the memory offset at which to read properties. When
object shapes also encode the type tags of properties, establishing the shape of an object tells
us not only where to read the property, but also what type tag this property has. Hence,
the cost of guarding property writes is easily offset, because typical JS programs have many
more property reads than property writes. A small overhead is paid to guard property writes,
and in exchange, type checks after property reads are effectively eliminated.

We extend upon the original BBV work with a typed object shape system inspired by
the Truffle OSM. This model is a natural fit for the BBV algorithm. Our extended BBV
algorithm not only propagates known type tags associated with values, but also object shapes.
The shape tests which are normally part of PICs allow our JIT compiler to establish and
propagate the shape of an object in the same way that type tag tests enabled BBV to extract
and propagate the type tags of values. Once the shape associated with an object is known to
the BBV engine, then, by extension, the types of all properties read from that object are
also known.

In order to enable interprocedural type propagation, it is useful to know which function is
being called for as many call sites as possible, both for calls to global functions and method
calls. As such, we have gone one step further than the Truffle OSM, and attached not only
type tags to object shapes, but also method identity information. That is, for properties
which have the closure type tag, shapes encode a pointer to the IR node corresponding to
the function the property is a closure of. This enables us to know the identity of callees at
code generation time for the large majority of call sites.

With typed shapes, linked list nodes from the sumList have two possible shapes, one
where the next property is null, and one where it is an object. The global object encodes
not only the offsets of global variables, but also the identity of global functions. This is
illustrated in Figure 8.

In order to allow BBV to take advantage of typed shape information, we break up PICs
into their component parts. PICs, which were previously monolithic sequences of inlined
machine instructions, are now exposed in our compiler IR as separate shape test and memory
access instructions. The result is that the regular BBV mechanisms can be leveraged to
extract shape information from shape tests and propagate it. Propagating shape information
(and the associated property types), allows us to optimize the sumList function as shown in
Figure 9.
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A: if is_null(lst) goto I:

B: if not is_object(lst) goto stub1
C: if not is_shape(lst , S1) goto C2

val = read_slot(lst , 0) // val is known to be int32
next = read_slot(lst , 1) // next is known to be null

D: if not is_shape(globalObj , G) goto stub2
sumfn = read_slot(globalObj , 33) // sumfn is known to be a closure

E: t1 = sumfn(next)
if not is_int32(t1) goto stub3

G: t2 = add_int32(val , t1)
if overflow goto stub4

H: return t2

I: return 0

C2: if not is_shape(lst , S2) goto stub5
val = read_slot(lst , 0) // val is known to be int32
next = read_slot(lst , 1) // next is known to be object

D2: if not is_shape(globalObj , G) goto stub6
sumfn = read_slot(globalObj , 33) // sumfn is known to be a closure

E2: t1 = sumfn(next)
if not is_int32(t1) goto stub7

G2: t2 = add_int32(val , t1)
if overflow goto stub8

H2: return t2

Figure 9 The sumList function optimized with typed shapes.

Two separate code paths are generated inside the sumList function, one for each of the
two possible shapes of the linked list nodes. More code is generated, but on any given code
path, at most three type tag tests are executed instead of five. Since linked list nodes now
have two possible shapes, we may test the shape of linked list nodes twice instead of just once
when reading the lst.val property. However, because we no longer employ monolithic inline
caches, this shape is propagated from the property read of lst.val to that of lst.next.
Hence, as a result, we actually perform less dynamic shape tests on average.

4.2 Entry Point Versioning

Procedure cloning has been shown to be a viable optimization technique, both in ahead of
time and JIT compilation contexts. By specializing function bodies based on argument types
at call sites, it becomes possible to infer the types of a large proportion of local variables,
allowing effective elimination of type checks.

Our first extension to BBV is to allow functions to have multiple type-specialized entry
points. That is, when the identity of a callee at a given call site is known at compilation time,
the JIT compiler requests a specialized version of the entry point block for the callee. This
specialized entry point assumes the argument types known at the call site. Type information
is thus propagated from the caller to the callee.

Inside the callee, BBV proceeds as described in [14], deducing local variable types and
eliminating redundant type checks. Our approach places a hard limit on the number of
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versions that may be created for a given basic block, and so automatically limits the number
of entry points that may be created for any given function. If there are already too many
specialized entry points for a given callee, a generic entry point is obtained instead. This
does not matter to the caller and occurs rarely in practice.

Propagating types from callers to callees allows eliminating redundant type tests in the
callee, but also makes it possible to pass arguments without boxing them, thereby reducing
the overhead incurred by function calls. Note that our approach does not use any dynamic
dispatch to propagate type information from callers to callees. It relies on information
obtained from typed shapes to give us the identity of callees (both global functions and
object methods) for free. When the identity of a callee is unknown, a generic entry point is
used.

In the case of the linked list example from Section 3.3, we can specialize the sumList
function entry point based on the type tag of the lst parameter. As a consequence, we know
whether lst has tag null or object upon entering the function.

With entry point versioning, we can eliminate all type tag checks, except for the check
on the return type of the sumList call. This test seems redundant, considering that, in our
example, the sumList function only ever returns int32 values. The following section will
explain our strategy to optimize this.

4.3 Call Continuation Specialization
Achieving full interprocedural type propagation demands passing the return type information
from callees to callers. While it is fairly straightforward to establish the identity of the callee
a call site will jump to in the majority of cases, establishing where a return statement will
jump to is less straightforward. This is to say, most call sites are monomorphic and jump to
a single function, and hence, a single specialized entry point. Furthermore, versioning code
based on object shapes has the net effect that it will often split polymorphic call sites into
monomorphic ones, which is very convenient for us.

We would like to version call continuations (the code executed when we return from a
call) in accorance with the return types observed during execution. However, one return
statement can potentially jump to several call continuations within a program. This means
we cannot employ the same strategy as with entry point versioning. We cannot simply jump
from one return statement to a specialized call continuation which assumes a known return
type. Type information about return values could be propagated with a dynamic dispatch of
the return address indexed with the result type. However this would incur a run time cost.
We would be trading one form of dynamic overhead (that of type checks) for another (that
of dynamic dispatch).

Instead, we have chosen to extend BBV with an approach that has zero run time cost
(amortized overhead). Call continuations are compiled lazily when the first return to a given
continuation is executed. When a function first executes a return statement, its return type,
if known, is memorized. Call continuations are then speculatively optimized based on this
memorized return type. If later returns from this function turn out to have a different return
type, the optimized call continuations are invalidated (see Section 4.3.1).

Given the small example given in Figure 10 where a function f calls some function g,
where g always returns values of type int32, the call continuation specialization process
continuations takes the following steps:

A call to g is encountered. Assuming the identity of the callee is known from typed
shapes (otherwise this optimization is not performed), f is added to a list of callers of g.
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function f() {
// Call site
var r = g()

// Call continuation
// The addition has an implicit type check
return r + 2

}

function g() {
return 1

}

Figure 10 Function call with a fixed return type.

A stub is generated for the call continuation in f.
Machine code for the call site is generated, it is made to jump directly to a specialized
entry point in g.
Execution resumes in f and jumps to g. Execution continues until g returns.
Compilation resumes. The compiler has determined that g returns an int32 value since
the function g is annotated to indicate that it returns int32 values.
Execution resumes and g returns to the call continuation in f. The call continuation stub
is executed.
The call continuation in f is compiled. The compiler sees that g has been annotated as
returning int32 values. The code in f is optimized using this type information. No type
check is performed at the addition.

The call continuation specialization process presented so far is able to optimize recursive
calls in the sumList example and eliminate the type tag check on the return value. However,
as explained in the next section, this process is speculative and does not work for every
function.

4.3.1 Invalidating Call Continuations
The makeList function from Figure 4 is an example where the speculative call continuation
specialization process fails. This is because makeList can return both objects and null
values. As such, we cannot specialize callers of the function based on a single return type tag.
In this situation, the speculative call continuation specialization process will try to specialize
continuations, fail, and deoptimize them.

The first time that the makeList function returns, it will return a null value. This first
return will then trigger the compilation of a specialized call continuation which assumes the
return type of makeList to be null. When the function later returns a value with type tag
object, this will be detected at code generation time. Callers of the makeList function will
then have their call continuations deoptimized.

The deoptimization is done simply by writing stubs over already compiled call continu-
ations. Should another makeList call return to a deoptimized call continuation, the stub
will trigger the compilation of a new continuation. This time, the return type will not be
specialized, because we know that makeList can return values with multiple type tags.

The speculative optimization and deoptimization process we employ could be seen as
wasteful. We could have employed a static analysis instead. However, it can be difficult
to establish the return type of a JS function simply by analyzing its code. Furthermore,
the speculative approach can be more precise than a static analysis, because it is able to
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take the run time behavior of code into account. The return statements which are never
executed will not be taken into account. A static analysis does not know exactly which
return statements are executed and which are not, but BBV does.

5 Evaluation

This section reports on an empirical evaluation of interprocedural basic block versioning. This
evaluation was carried out based on an implementation of the extensions presented in this
paper, namely typed shapes, entry point specialization, and call continuation specialization,
within the Higgs JavaScript compiler.

A total of 26 industry benchmarks were selected from the SunSpider and V8 suites. The
authors decided not to use the JSBench benchmarks [29] as they are more suited to fast
interpreters (they are short running and have little computation). Benchmarks for which
performance hinges on compiling regular expressions were omitted, as this is not a feature
supported by the Higgs compiler.

To measure steady state execution time separately from compilation time in a manner
compatible with Higgs, V8, SunSpider, TraceMonkey, and Truffle/JS, the benchmarks were
modified so that they could be run in a loop. Warmup iterations are first performed so as
to trigger JIT compilation and optimization of code before timing runs take place. Unless
otherwise specified, 1000 warmup iterations and 100 timing iterations are used.

V8 version 3.29.66, SpiderMonkey version C40.0a1, TraceMonkey version 1.8.5+ and
Truffle/JS v0.9 were used for performance comparisons. Tests were executed on a system
equipped with an Intel Core i7-4771 CPU and 16GB of RAM running Ubuntu Linux 14.04.
Dynamic CPU frequency scaling was disabled to ensure reliable timing measurements.

5.1 Method Identity

The extended version of Higgs tracks object shapes. Without them, the compiler would not
be able to dermine which method is invoked at a call-site. With typed shapes, on average,
the identity of the callee method is known for 90% of calls executed dynamically. When entry
point versioning and call continuation specialization are performed, that number increases to
97.5% of calls. In practice, the identity of callees is known for most call sites. The exceptions
are dominated by implementation limitations of the current version of Higgs, which currently
treats captured closure variables as having unknown type.

5.2 Type Tests

Figure 11 shows the proportion of type tag tests eliminated with different variants of basic
block versioning. These numbers measure actual tests executed at runtime rather than tests
occuring in the program text. The first column (intra BBV) is the baseline, the number of
tests that could be eliminated with plain intraprocedural basic block versioning [14]. The
second column (typed shapes) shows the results obtained by adding support for typed object
shapes. The third column (entry spec) adds entry point specialization, and lastly, the fourth
column (entry+cont spec) adds call continuation specialization. On average, the baseline
eliminates 61% of tests, typed shapes increases this to 79%. Entry point specialization
improves the result to 89%. Finally, the addition of call continuation specialization allows
the elimination of 94.3% of dynamic tests, and, in several cases, nearly 100%.
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Figure 11 Proportion of type tests eliminated (higher is better).

5.3 Type Analysis
An obvious alternative to type propagation with interprocedural basic block versioning would
be to perform a whole-program type analysis. As there are many different analyses in the
literature with different degrees of precision, it is unclear how to evaluate the relative benefits
of this paper’s approach. It is possible to side-step the question by implementing an idealized
static analysis. Each benchmark was run and the result of all tests was recorded. The
benchmarks were then rerun with all type tests that always evaluate to the same result
removed. The second run can be seen as an upper bound for the power of static analysis
by itself. No static analysis can eliminate more tests than one that knows in advance the
outcome of each of them. Figure 12 compares interprocedural basic block versioning and
the idealized type analysis. The fact that basic block versioning outperforms type analysis
should not come as a surprise. An analysis loses precision when control flow merges whereas
basic block versioning creates separate versions to avoid this. The results suggest that no
analysis can eliminate more than an average of 91.4% whereas Higgs can avoid executing
94.3% of tests. On more than half of the benchmarks, the proportion of eliminated tests
exceeds 95%. In all benchmarks at least 80% of tests are removed.

5.4 Execution Time
The execution times of the benchmarks normalized to the unmodified version of the Higgs
compiler [14] appear in Figure 13. With the exception of navier-stokes, nsieve and
nsieve-bits (which are marginally slower), all benchmarks exhibit improvements. The
largest speed up comes from the addition of typed object shapes, they improve execution
time by an average of 26.8%. The addition of entry point specialization further improves
performance, with a combined speedup of 36.3%. Finally, adding call continuation special-
ization brings the total improvement to 37.6%. The performance improvements brought
by continuation specialization are relatively modest compared to those from entry point
specialization. This is to be expected since entry point specialization allow us to eliminate
more type tests (Section 5.2).
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Figure 12 Proportion of type tests eliminated with BBV or a type analysis (higher is better).

5.5 Shape Tests
Our implementation of typed shapes is able to propagate known object shapes from one
property access to another. There are many instances where multiple property reads on the
same object occur within a given function, and shape propagation can allow eliminating
further shape tests after the first property access on an object. Enabling typed shapes
results in an average decrease of 27% in the number of shape tests over an unextended
implementation of Higgs which uses untyped shapes and inline caches.

5.6 Call Continuation Specialization
Call continuation specialization uses a speculative strategy to propagate return type inform-
ation. Call continuations for a given callee may be recompiled and deoptimized if values are
returned which do not match previously encountered return types. Empirically, only 2% of
functions executed cause the invalidation of call continuation code. Dynamically, the type
tag of return values is successfully propagated and known to the caller 72% of the time. In
over half of the benchmarks, the type tag of return values is known over 99% of the time.

5.7 Code Size and Compile Time
Adding entry point and continuation specialization to the unmodified Higgs compiler cause
an increase in generated machine code size of 5.5% in the worst case and just 1.0% on
average. Intuitively, one may have expected a bigger code size increase given that entry
point versioning can generate multiple entry points per function. However, better optimized
machine code tends to be more compact. Compile time increases by 3.7% in the worst case
and just 0.01% on average.

5.8 Tracing Compilation
Tracing compilation bears important similarities to basic block versioning. One could expect
tracing to do better because it can optimize long linear sequences of code. Tracing compilation

ECOOP 2016



7:18 Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

bi
tw

is
e-

an
d

de
lta

bl
ue

ric
ha

rd
s

nb
od

y

re
cu

rs
iv

e

cr
yp

to
-s

ha
1

cr
yp

to
-m

d5

bi
na

ry
-tr

ee
s

sp
ec

tra
l-n

or
m

v8
-ra

yt
ra

ce

ba
se

64

co
rd

ic

ea
rle

y-
bo

ye
r

3d
-ra

yt
ra

ce

bi
ts

-in
-b

yt
e

3d
-m

or
ph

3d
-c

ub
e

v8
-c

ry
pt

o

sp
la

y

pa
rti

al
-s

um
s

fa
st

a

ns
ie

ve

3b
its

-b
yt

e

na
vi

er
-s

to
ke

s

fa
nn

ku
ch

ns
ie

ve
-b

its

ge
o 

m
ea

n

0%

20%

40%

60%

80%

100%

120%
typed shapes entry spec entry+cont spec

Figure 13 Execution time relative to baseline (lower is better).

was introduced to JavaScript with the TraceMonkey [17, 34] compiler. This compiler was in
production within Mozilla’s browser until 2011. Figure 14 compares the performance of the
two compilers. On average, Higgs is 2.7x faster than TraceMonkey, and performs better on
22 out of 26 benchmarks. The benchmarks TraceMonkey achieves the best performance on
tend to be ones which feature short and predictable loops.

The difference between the two is striking. It should be noted that TraceMonkey was built
by a considerably larger team and implements strictly more optimizations than Higgs. For
instance, it can inline while recording a trace. Even without inlining, Higgs does much better
on the largest benchmarks. The two raytrace benchmarks, for instance, make significant use
of object-oriented polymorphism and feature highly unpredictable conditional branches. The
earley-boyer benchmark is the largest of all and features complex control-flow. The splay
and binary-trees benchmarks apply recursive operations to tree data structures. We note
that Higgs performs much better than TraceMonkey on the recursive microbenchmark
which suggests TraceMonkey handles recursion poorly. While we caution against drawing
definitive conclusions, it does appear that tracing compilation in the form implemented by
TraceMonkey is mostly beneficial for computation with hot and predictable loops. Whereas
Higgs is agnostic to the vagaries of control flow. It is worth mentioning that independent
analysis of the behavior of real-world JavaScript programs suggests that hot and predictable
loops are rare [30] and that TraceMonkey does not speed up real-world JavaScript programs
such as the Google website [29].

5.9 Truffle/JS
Another interesting comparison is to look at the Truffle system from Oracle labs. Truffle/JS
is an implementation of JavaScript written in Java and running on a modified Java virtual
machine. Like Higgs, Truffle is a research prototype, but one being built by a larger team
and with a code base about 6 times larger than Higgs’. It benefits from optimizations that
are lacking in Higgs, such as method inlining and a sophisticated register allocator. For
memory management it can defer to Java’s highly tuned garbage collector.

Figure 15 shows the results of a performance comparison of Higgs against Truffle/JS.
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Figure 14 Speed relative to TraceMonkey (log scale, higher favors Higgs).

After both systems have gone through 1000 warmup iterations, Higgs is on average 69% as
fast as Truffle/JS. The time recorded on the 3bits-byte benchmark is zero, suggesting that
Truffle used side effect analysis to optimize-away the computation.

Higgs and Truffle/JS, being research virtual machines, were not optimized for fast
compilation. As a result, both systems are much slower than other engines when it comes to
compilation times. We cannot directly measure the compilation time taken by Truffle/JS,
but we can use the time it takes to warm up as a rough approximation.

Figure 16 shows the speed of Higgs relative to Truffle/JS when measuring the total
time taken for 1000 iterations of our benchmarks, with no separate warmup iterations. On
average, Higgs is 220% as fast as Truffle/JS on this comparison, indicating that the warmup
and compilation time for Higgs is much shorter. This is not surprising, since Higgs begins
generating type-specialized machine code as soon as program execution begins.

6 Conclusion

Basic block versioning is a compilation strategy for generating type-specialized machine code
on the fly. This paper demonstrates how to extend this technique to propagate information
across method call boundaries, both from callers to callees and from callees to callers, without
requiring dynamic dispatch and without a separate type analysis pass.

Across 26 JavaScript benchmarks, interprocedural basic block versioning eliminates, on
average, 94.3% of type tests. This is more than a static type analysis with access to perfect
information could achieve. The proposed extension provides an average execution time
reduction of 37.6% over an unextended basic block versioning implementation.

There is room for future work. While interprocedural basic block versioning yields
encouraging results, more could be done. Two extensions to basic block versioning are
planned: tracking types of closure variables and tracking array types. The Higgs compiler
itself currently lacks several optimizations used by commercial virtual machines. While
they are orthogonal to this paper, these optimizations may close the performance gap with
commercial systems. The first optimization to add is method inlining. Inlining is likely
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Figure 15 Speed relative to Truffle/JS (log scale, higher favors Higgs).
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Figure 16 Speed relative to Truffle/JS, no warmup iterations (log scale, higher favors Higgs).

synergistic with basic block versioning as it provides more contextual information but it
runs the risk of increasing code size as versions proliferate. Bloat can be mitigated by lazy,
incremental, inlining where basic blocks are only added when needed. This would be faster
than inlining entire control flow graphs without needing recompilation of the entire caller at
inlining-time.

Acknowledgements. Special thanks go to Laurie Hendren, Jan Vitek, Erick Lavoie, Vincent
Foley, Paul Khuong, Molly Everett, Brett Fraley and all those who have contributed to the
development of Higgs.
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Figure 17 Speed of relative to commercial JS engines (log scale, higher favors Higgs).

A Comparison with V8 and SpiderMonkey

Figure 17 compares the speed of Higgs to optimized commercial JavaScript virtual machines.
Higgs is generally slower, sometimes by an order of magnitude. There are a few benchmarks
where it outperforms V8. Notably, bits-in-byte features many function calls, and Higgs
is able to optimize this fairly well. The bitwise-and microbenchmark is also interesting
because it is a loop performing global object property accesses. Higgs outperforms every
JS engine we have tested on this benchmark, suggesting that it has faster global property
accesses, thanks to typed shapes. On the other hand, Higgs is slower everywhere else. This is
probably because Higgs lacks orthogonal optimizations such as: loop-invariant code motion,
global value numbering, bounds check elimination, automatic SIMD vectorization, method
inlining, allocation sinking, floating-point register allocation, etc. In the absence of these
optimizations, BBV is most promising for use in a baseline JIT compiler.



C++ const and Immutability: An Empirical Study
of Writes-Through-const∗

Jon Eyolfson1 and Patrick Lam2

1 University of Waterloo
Waterloo, ON, Canada
jeyolfso@uwaterloo.ca

2 University of Waterloo
Waterloo ON, Canada
patrick.lam@uwaterloo.ca

Abstract
The ability to specify immutability in a programming language is a powerful tool for developers,
enabling them to better understand and more safely transform their code without fearing unin-
tended changes to program state. The C++ programming language allows developers to specify
a form of immutability using the const keyword. In this work, we characterize the meaning of the
C++ const qualifier and present the ConstSanitizer tool, which dynamically verifies a stricter
form of immutability than that defined in C++: it identifies const uses that are either not con-
sistent with transitive immutability, that write to mutable fields, or that write to formerly-const
objects whose const-ness has been cast away.

We evaluate a set of 7 C++ benchmark programs to find writes-through-const, establish root
causes for how they fail to respect our stricter definition of immutability, and assign attributes to
each write (namely: synchronized, not visible, buffer/cache, delayed initialization, and incorrect).
ConstSanitizer finds 17 archetypes for writes in these programs which do not respect our version
of immutability. Over half of these seem unnecessary to us. Our classification and observations
of behaviour in practice contribute to the understanding of a widely-used C++ language feature.

1998 ACM Subject Classification D.3.3 Language Constructs and Features

Keywords and phrases empirical study, dynamic analysis, immutability

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2016.8

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.2.1.3

1 Introduction

Immutability is an important concept that simplifies reasoning about programs and eases
software maintenance. Most importantly, immutability circumscribes possible side effects, so
that (in some cases) a user of a function may avoid closely examining the implementation
of the function and its callees. One concrete application of immutability is: if a developer
knows that a library function does not modify one of its arguments (including transitive
arguments), then they know that it is safe to call that library function with that argument
from multiple threads, as the function only requires read access to its argument.
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C++ [6] is a popular language that allows programers to specify immutability using
const1. C++ experts such as Meyers recommend judicious use of “const-correctness” [7]
in C++ codebases. It is generally clear when developers could use const, but not (in
non-obvious cases) when they should use const.

We distinguish between two uses of C++’s const qualifier: const-qualified global/stack
objects, whose data may never change (i.e. immutable objects), and const-qualified refer-
ences/pointers to objects (i.e. read-only references [9]). (For now, assume that there are no
casts that remove const qualifiers and no mutable storage class specifiers; these language
features violate immutability.) An immutable object’s fields may never change, and mutable
references to that object may never be created. A read-only reference, on the other hand,
only guarantees immutability for accesses through qualified references. An object with a
read-only reference to it may still be mutated through other, mutable, references. C++
enforces a shallow immutability guarantee (also known as bitwise const) for writes through
the read-only reference: while it is illegal to reassign the fields of such an object, any referents
of fields may change. We expand on this in Section 3.

C++’s type system admits several workarounds to const’s supposed immutability guar-
antees. Much research defines type qualifiers similar to C++ const, but with stronger
guarantees. These type systems do not have any holes in the type system, such as unsafe
casts. Furthermore, they not only ensure that the field values do not change, but also
ensure that objects referenced through fields also do not change (i.e. deep, or transitive,
immutability; again, see Section 3 for more details).

On the other hand, our industrial contacts have indicated that, in their codebases, const
has been used to deter new developers from modifying certain variables. Such variables may
be modified by an experienced developer ready to assume the consequences [4]. In such cases,
const serves an advisory role, but does not provide any guarantees.

Our goal is to explore the space of possible meanings for immutability declarations in
C++ and to examine what guarantees developers appear to be expecting in practice. We
developed a tool, ConstSanitizer, that instruments programs to identify source locations that
modify const-qualified objects, using more restrictive semantics than guaranteed by C++.
ConstSanitizer monitors writes-through-const, i.e. writes performed on const-qualified
objects or references, either transitively (which is allowed in C++), or through C++’s const
escape hatches. To better understand const usage in practice, we ran ConstSanitizer on a
benchmark suite and manually classified all writes-through-const.

Specifically, the goal of this work is to answer the following research questions:

(RQ1) Do developers perform shallow and transitive writes-through-const?
(Answer: Yes to both.)

(RQ2) How do developers write-through-const?
(Answer: By directly writing to fields of const-qualified objects and through
transitive writes; both are about equally common.)

(RQ3) Why do developers write to fields of const-qualified objects?
(Answer: Buffers and delayed initialization were important reasons, but
over half the time, we couldn’t find any clear reason motivating developers’
decisions to write through const.)

Section 8 presents our detailed answers to these questions.

1 Some of our discussion also applies to C, but we focus on C++ in this paper.
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Listing 1 Method evil() violates the spirit of const by causing a write to an externally-visible
field of const object “a”. Circled numbers used for subsequent explanations.

class A { public: int id; };
size_t std::hash(const A& a) { return std::hash(a.id); }
std::unordered_map<A, std::string> m;
const A a;

m.insert(a, "Value");
evil(a);
m.find(a);

void evil(const A& a) { writeId(const_cast<A*>(&a)); }
void writeId(A *pa) { pa->id = 5; }

1

2 3

4

Our contributions include:

the design and implementation of a novel dynamic analysis for C++ that detects writes-
through-const-qualified variables (both shallow and transitive);
an empirical study of const usage (including writes-through-const-qualifiers) on a suite
of 7 C++ benchmarks; and,
based on the empirical study, a novel classification of writes-through-const-qualifiers in
the wild according to a root cause and a set of attributes.

2 Motivating Example

We continue with an example of a const usage that must be accepted by C++ compilers [6]
but leads to undefined behaviour when used with the C++11 standard library specification.

Listing 1 contains function writeId(), which modifies field id of its parameter. Func-
tion evil() takes a const-qualified parameter, casts away the const qualifier, and calls
writeId(). Both these functions must be accepted by C++ compilers.

Function writeId() does not perform anything unexpected. The write to id is legitimate
with respect to const: writeId() has a non-const reference to data and is therefore entitled
to write to it. (writeId() conflicts with a different part of the library specification—one
oughtn’t write to fields used as hashes—but that conflict is beyond the scope of this work.)

Function evil() accepts a const parameter “a”; the const qualifier intuitively suggests
that the state of “a” should not change across a call to evil(). (Section 3 explains the
C++ semantics of const in more detail; Section 4 explains the writes that ConstSanitizer
monitors.) evil() then casts away the const qualifier and calls writeId(), which writes to
the id field, thus changing the state of “a”.

Listing 1 also contains client code. This client code provides a hash() function for when
objects of type “A” are used with the standard library. It continues with a declaration of
an std::unordered_map m, which gets a const-qualified object “a” added to it. (In C++,
objects like “a” and m are constructed upon declaration.) Between the insert() call and the
find() call, the program calls evil(), which changes the id field, thus causing the hash()
of “a” to change. As a result, the find() call may unexpectedly return m.end(), indicating
that it did not find “a” in the expected bucket; that result should be a surprise to the client.

In our example, the client code is doing nothing wrong, yet it may get an unexpected
result from the map. The client should be entitled to believe that its const-qualified “a”
object does not change between the two map calls and that the object is still in the map.
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Shadow Value

bn+1 bn bn−1 ... b0

Is T const?

Is T * const?

Is T ** const? Is T (*)n const?

Figure 1 Our shadow values encode the const-ness of each level of an n level pointer.

Analysis of example. We informally describe how ConstSanitizer works on our example.
Our LLVM-based tool actually operates at the llvm bitcode level (assisted by metadata
from clang), but for clarity we describe shadow values and the effects of statements on them
using C++ code. Section 4 describes our analysis as-implemented on top of LLVM.

ConstSanitizer associates a shadow value with each variable. This shadow value describes
whether or not the variable, and each of its dereferences, may be written to; Figure 1 shows
how shadow values encode const-ness. We present the semantics of our shadow encoding
more thoroughly in Table 1. ConstSanitizer propagates shadow values through the program’s
execution. At each write, ConstSanitizer verifies that the shadow value permits a write, and
indicates a write-through-const-qualifier if not.

We next show how ConstSanitizer works; circled numbers refer back to Listing 1.

1 Program allocates const-qualified new object “a”. Using debug information, ConstSanit-
izer finds the const qualifier in “a”’s type, and associates shadow value (1)2 with “a”,
indicating that “a” is const.

2 ConstSanitizer then propagates shadow value (1)2 to the function call evil(). Inside
function evil(), variable “a” is a reference, so we shift the shadow value to the left and
obtain (10)2 inside the function call boundary.

3 Program casts from type const A* to type A*. Because “a” is a reference inside evil(),
the address-of operation has no effect on the shadow value. (On a non-reference, taking
the address would also result in a logical shift left of the shadow value.)
The cast of the const qualifier is invisible to LLVM, so ConstSanitizer propagates shadow
value (10)2 across the cast. (Had “a” originally not been const, a pointer to it would
have shadow value (00)2 and it would have shadow value (0)2.)
Finally, ConstSanitizer passes shadow value (10)2 for parameter “pa” of writeId().

4 Inside function writeId(), the instrumented write to field “id” observes that the shadow
value of the address of the containing object is (10)2. Because the left-hand side uses the
-> operator, ConstSanitizer shifts the shadow value back right once, giving shadow value
(1)2 for the containing object. Because the containing object is const, we also apply a
shadow value of (1)2 to all writes to fields of that object.
When executing the write, ConstSanitizer checks the right-most bit of the shadow value
for the destination. Since this value is (1)2, the program is writing a value through a
const reference. ConstSanitizer therefore signals a write-through-const.

Section 5 contains our classification of writes-through-const. We classify this write as
root cause “C”, a write after casting away a const, and assign attribute “I”, for incorrect.
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Listing 2 The const qualifier may apply to C++ member functions.

class Pointish {
private:

int x;
int * y;

public:
int getX() const { return x; }
void setX(int val) { x = val; }
void setY(int val) { *y = val; }

};

not OK if setX() were const

transitive write
OK if setY() were const

3 Meaning of const in C++

As discussed earlier, the C++ const keyword allows programmers to declare, in some sense,
that a value should not change. In this section, we explain the specific guarantees that C++
provides, and we present the deep immutability variant of these guarantees that we verify.

Meaning of const on C++ primitive and pointer types. The meaning of const in C++ is
an extension of its meaning in C. We start by describing the common meaning of const across
C and C++, applying to primitive and pointer types. In these languages, the const-ness
of a memory location depends on the qualifiers of the variable through which the location
is accessed; our motivating example illustrated a change in const-ness through a cast, in
function evil(), that is allowed by both C and C++.

Developers may const-qualify primitive types such as int, resulting in immutable object
types like const int. When variable v has primitive const-qualified type, the C++ type
system prevents developers from assigning to v after its definition; i.e. it prevents writes to
v. In this case, const behaves like final in Java, which also prevents re-assignment.

For pointer types, such as int *, developers may const-qualify both the pointee and
pointer type. The const qualifier applies to the type directly to the left of it; if there is
nothing to the left, then const applies to the right. If a variable has type int *const,
developers may not change the address value of the variable (where it points to), but they
may dereference the location and change the value it points to. A different type is int
const * (also known as const int *), which allows the address value to change, but not
the value pointed-to by the variable. This type represents a read-only reference. The const
qualifier may also apply to both the pointer and pointee types (int const * const), which
prevents writes to both the address value and the value pointed-to. If all pointers to a value
are read-only references, then the value pointed-to is immutable. C++ references can be
thought of as const-qualified pointers; a developer may not write to the reference address
value. However, in contrast with pointers, developers cannot cast away reference address
value const-ness and re-assign the address value; this property is enforced by the language.

Meaning of const on C++ object types. We continue by exploring the meaning of const
in C++-specific contexts. When a C++ object type is const-qualified, the developer may
only call member functions declared with a const qualifier.

const-qualifying a member function has two effects. First, const-qualifying a member
function allows it to be called on a const-qualified receiver object. Furthermore, inside the
function, the type qualifiers of the receiver object’s fields are treated as const.

Conceptually, each C++ class provides two interfaces: the const-qualified interface and
the non-const qualified interface. A const-qualified reference is meant to be a read-only
reference, although C++ enforces no guarantees. One of our goals is to evaluate whether read-
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only guarantees hold in practice. When an object has non-const type, then the developer
may call all methods on that object2. On the other hand, when an object has const type,
then the developer may only call methods on that object that are const-qualified.

Consider class Pointish, defined in Listing 2. As written, the developer could call all
methods on a non-const-qualified object of type Pointish. On the other hand, the developer
may only call the getX() method on a const-qualified Pointish object.

The second effect of const-qualifying a function changes the type qualifiers of fields inside
the function. In our example, field x becomes int const within const-qualified member
functions. The compiler successfully compiles getX(), since there are no writes to x or y.
But, if setX() was const-qualified, the compiler would refuse to compile the code, since the
type of x would be treated as const int and setX() contains a write to that variable.

In C++, without using const escape hatches, developers may re-assign fields in non-const
qualified methods and may not re-assign fields in const-qualified methods. In all methods,
developers are permitted to mutate state outside of re-assignment (through references or
pointers). This type of immutability is referred to as shallow immutability.

A C++ const-qualified stack/global object would be considered a shallow immutable
object. That is, without escape hatches, developers cannot create non-const references
(including through pointers) to such a const-qualified object. However, as we discuss next,
developers may indeed remove the const qualifier on references to the const-qualified object.
Therefore, C++ does not strongly enforce the concept of an immutable object.

Working around const restrictions. Practical type systems appear to require escape
hatches. C++’s escape hatches for const include casting (the sole escape hatch in C)
and mutable. Also, C++ const does not specify deep immutability. ConstSanitizer dynam-
ically observes executions to monitor uses of escape hatches and deep immutability.

Most type systems permit casting between types. C-style casts ((const A)a) and C++
const_casts can add or remove const qualifiers. const manipulation may also occur through
unions and reinterpret_casts. ConstSanitizer ignores casts, instead using the declared
type of a variable or function argument. When there is a mismatch between variable and
function argument types, we persist all const information.

For const member functions, “mutable” instructs the compiler to not add the implicit
const type qualifier otherwise imposed on fields inside those functions. In Listing 2, if x were
instead declared as mutable int x, then setX() could be const-qualified and still compile.
ConstSanitizer would then report the write to field x whenever setX() was called on a const
receiver object, as we consider the write to be a breach of that object’s immutability.

ConstSanitizer goes beyond C++’s guarantees with respect to transitivity. Consider
again Listing 2. Field y has type int *; within a const-qualified member function, its type
is int *const. C++ therefore prevents writes to y inside a const-qualified member function.
However, it does not prevent writes to *y without further explicit markup (i.e. int const
*const). We call writes to locations like *y transitive writes.

C++ only guarantees shallow immutability—that is, field values directly stored in a
const-qualified class do not change. If a field has pointer type, C++ ensures that the
pointer value does not change, but does not guarantee anything about the value pointed to.
ConstSanitizer verifies deep immutability through transitive writes, and enables us to answer
the empirical question of whether extant programs preserve deep immutability or not.

2 There is a small exception: on a non-const object, the developer cannot call const-qualified methods
that are hidden due to overloading by a non-const-qualified method of the same signature.
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Listing 3 C++ source code showing a false negative due to expression handling.

const int * x = new int(0);
int * y = const_cast<int *>(x);
*y = 1; not reported

4 Technique

Our ConstSanitizer tool generates instrumented code which, when executed, prints out noti-
fications about writes-through-const-qualifiers3. ConstSanitizer builds upon LLVM [16] and
was inspired by existing sanitizers including AddressSanitizer [13] and MemorySanitizer [14].

We implemented ConstSanitizer by extending the clang frontend and adding instru-
mentation passes on llvm bitcode. The instrumented code calls hooks in our modified
version of llvm’s compiler-rt runtime library. Figure 2 depicts our processes for compiling
instrumented code. Plain text indicates inputs and outputs; outlined boxes indicate existing
software components; and light gray boxes indicate our modifications.

We first describe our modifications to the clang frontend. When the developer enables
ConstSanitizer (using a command-line flag), our frontend adds metadata about initialization
expression extents to the bitcode. This metadata notifies the llvm-level instrumentation
about source-level constructs that would otherwise be lost in translation to bitcode.

Specifically, we modified clang’s bitcode generator at variable declaration statements.
At statements of the form type var = expr we mark the instructions making up expr so
that our llvm-level instrumentation can ignore them. The rationale for ignoring those writes
is that the primary user-visible write from a clang declaration statement is to var, on the
left-hand side. We empirically observed that other writes within expr are almost always
initialization writes to var, which ought not to be reported even if var is const. Although a
programmer may include explicit (side-effecting) writes within expr, we ignore such writes
to eliminate the false positives that otherwise occur due to initialization writes.

We use const-ness information as provided by declarations, rather than implementing
a taint-based approach. Listing 3 shows a false negative caused by our approach. The
debugging information for y gives shadow value (00)2. Hence, on the write through y, we
do not report a write-through-const, because we do not propagate const-ness information
from variable initializers. One might expect this write to trigger a report since y aliases the
read-only reference x. (We report a write if the cast is part of a function argument.)

Most of our instrumentation lives in a custom llvm pass that generates code to track
const-ness of the program’s values. The instrumentation manipulates shadow values to track
const qualifiers at every instruction that generates a pointer value. The const information
relies on type tables from DWARF 4 debugging information. In llvm, this includes all
variables in functions—all local variables are allocated on the stack and are pointers.

Our dynamic analysis returns (as one might expect) no false positives, since it observes
program executions. However, it depends on the accuracy of the debugging information and
metadata, which it uses to identify which variables are const-qualified in the source and
to identify initialization expression extents. We ran into one false positive in our results
which we believe is the result of the metadata being invalidated between LLVM passes.

3 We previously implemented a static analysis which was an unpublishable dead end. Most of its reported
violations required calling context to make sense of; context-sensitive interprocedural analysis would thus
be required to get meaningful results. Static counts of mutables and const casts were too overwhelming.
Furthermore, imprecision due to pointers made its results unusable.
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Source File(s)

clang

sanitizer flag

add metadata for
expression extents llvm

instrument
LLVM bitcode
to track const
and check stores

Object File(s)

clang

sanitizer flag

link with modified
runtime library

includes code to report writes-
through-const at runtime

compiler-rt

Executable

Figure 2 ConstSanitizer generates instrumented LLVM bitcode which reports writes through
const qualifiers at runtime.

Throughout the remainder of the section, we point out a couple of cases where our analysis
must approximate intended const-ness because actual const-ness information does not exist.

Structure of shadow values. A shadow value consists of n bits tracking const-ness (where
n is the word length of the processor architecture). Each bit represents whether a pointer or
pointee has a const qualifier or not. The rightmost bit represents the const qualifier of the
value itself. Bits to the left (if the value is a pointer) represent what the pointer transitively
points to. Our encoding supports pointers up to n − 1 levels deep on n-bit processors (64 for
our experiments). Figure 1 depicted our encoding of shadow values, while Table 1 shows
how shadow values represent sample const-ness settings and corresponding writes allowed.

Shadow value computation. We next describe how we create and propagate shadow values.
Our ConstSanitizer instrumentation dynamically propagates shadow values representing
const qualifiers through a program’s instructions. Our goal is to monitor 1) writes to
mutable fields; 2) locations where const has been cast away; and 3) transitive writes, to
pointees of fields, through const references. Table 2 summarizes the analysis rules.

llvm bitcode uses alloca instructions to introduce new pointer values. Our llvm pass
instruments each alloca instruction with the appropriate shadow value, as extracted from
the type information in the source code, using standard clang debug information.

Ultimately, our instrumentation verifies the behaviour of store instructions. Recall
that we exclude store instructions that come from the right-hand side of a declaration
statement. For all other stores, we check whether the operand—the location being written-
to—represents a const-qualified type. The rightmost bit of the shadow value provides
this information. If that bit is 1, an execution of this store instruction is a write to a
const-qualified location. We insert a call to our runtime library to check the value of the bit
and to report a write-through-const if the bit is 1. (We later discuss a special case for store
instructions where the value being stored is a function argument.)
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Table 1 Shadow values encode available const-ness restrictions on variables.

Declaration Shadow value Example statement Allowed

int x (0)2 x = 5 X
const int x (1)2 x = 5 ×
int * x (00)2 x = y X

*x = 55 X
int *const x (01)2 x = y ×

*x = 55 X
const int * x (10)2 x = y X
(or int const * x) *x = 55 ×
const int *const (11)2 x = y ×
(or int const *const) *x = 55 ×

Table 2 Dynamic analysis rules showing computation of shadow value for result %1.

Instruction New shadow value

%1 = alloca ... from const qualifiers in debugging information, consistent
with Figure 1.

%1 = getelementptr %2 by logically shifting left %2’s shadow value once for each
dereference this instruction represents.
if field access: check const qualifier of base object; for
(immutable) const base objects, new shadow value is all
ones, otherwise all zeros.

%1 = call(%2) loaded from return shadow value in Thread-Local Storage
(TLS).
for pointer arguments %2: also write shadow values
to appropriate TLS slots for the function call; if the call
and argument are marked as ignored, write all zeros for
the shadow value for the argument.

%1 = phi/select ... carry out same operation on shadow value operands.

%1 = bitcast %2 from the shadow value for %2, if compatible;
otherwise all zeros.

%1 = load %2 logical shift right of %2’s shadow value.

store %2, %1 check rightmost bit of shadow value for %1, report write-
through-const if set. (Only applies if the instruction not
ignored as an initializer.)
if %2 is function argument: load shadow value for %2
from TLS, left shifted once. New shadow value is bitwise
OR of shifted value with previously computed shadow
value for %1.
if %2 is “this” function argument: same steps as
above, except skip the bitwise OR step.
if %2 is “this” function argument for destructor:
shadow value for %1 is (00)2.

%1 = extractelement all zeros.
%1 = extractvalue
%1 = inttoptr
%1 = landingpad
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Conversely, load instructions return a pointer that represents a single pointer dereference.
To compute the returned shadow value, we right shift the operand’s shadow value.

llvm’s getelementptr (GEP) instruction accesses arrays and fields of objects. This
instruction preserves type safety through dereferences in the compilation process and is a
safe alternative to directly generating pointer arithmetic code. Our instrumentation performs
a logical shift right by one bit for every pointer dereference implied in the GEP instruction.
Our treatment of GEP implicitly handles transitive immutability as follows: when a GEP
accesses an object field, and the containing object is const-qualified, we generate a shadow
value as if the field had a const qualifer on every type for the contained field. This treatment
implies checks for transitive immutability; generating a non-const shadow value here would
generate the same bitwise immutability checks for const as specified by the C++ standard.

Our instrumentation propagates const-ness information (in shadow values) alongside
references to that location. In C++, access restrictions to a location depend on whether
the program is accessing that location through a const reference or not. Therefore, in the
presence of casts and pointer arithmetic, there is no ground truth about the const-ness of the
resulting references and we must make a reasonable under-approximation as to const-ness.

We next discuss casting-related llvm instructions. The bitcast instruction converts
a value into a specified type. If a program converts a pointer between equally-indirected
pointer types, then we copy the old shadow value to the result. (C++ const-casts do not
appear at LLVM bitcode level, nor do the component of a C-style cast that manipulates
const-ness. ConstSanitizer preserves declared const-ness for such variables.) Otherwise,
we choose to assume that the instruction’s result has no const qualifiers. We make this
assumption in all cases for the inttoptr instruction, which represents pointer arithmetic
not handled by the GEP instruction, as well as for extractvalue and extractelement.

Our instrumentation stores shadow values for function calls’ arguments and return values
using thread local storage (TLS). In the straightforward case, we store shadow values for
pointer arguments in TLS slots reserved for each argument. However, we ignore pointer
arguments’ const qualifiers if the call and the argument are both part of a variable declaration.
As for (pointer) return values: if a function was instrumented by our tool, then we read
the shadow value from the appropriate TLS slot. We also store a mutable shadow value
in the return value TLS slot, in case the function had not been instrumented by our tool.
Our instrumentation either reads the approximation or, if applicable, the actual return value
generated by the called function. In the presence of callbacks from uninstrumented code
back to instrumented code, our instrumentation may use stale shadow values and report
extraneous results based on these stale shadow values.

We have a special case for store instructions where the value stored is a function argument,
as mentioned above. Consider a store instruction “store value, location”. We compute
the shadow value for “location” as follows. First, we get the shadow value for “value” from
the TLS. Then, we adjust this shadow value to be compatible with the type of “location”:
our encoding requires one logical shift to match the type of “value” to that of “location”.
We bitwise OR the shadow value for “location” previously computed (from an alloca
instruction) with the shifted value to get the new shadow value for “location”. This preserves
const qualifiers of the original argument and of the local variables in the function.

There are two further special sub-cases for store instructions and function arguments
for (i) method and (ii) destructor calls. Listing 4 illustrates sub-case (i). Here, foo() is
declared const. The compiler will hence treat this as const within foo(). However, for
our dynamic analysis, we want to detect writes based on the const-ness of this from the
caller; in method bar() in Listing 4, receiver object nc for foo is not const, so we do not
want to report the call’s (transitive) store to x. foo’s method arguments appear as “value”
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Listing 4 C++ source code showing calls to method foo() (with its definition and associated
LLVM bitcode) from const context cc and non-const context nc.

void bar() {
C nc;
const C cc;
nc.foo();
cc.foo();

}

class C {
int *x;

public:
void foo() const {

*x = 42;
}

};

define void @C::foo(%class.C* %this) {
%1 = alloca %class.C*
store %class.C* %this, %class.C** %1
%2 = load %class.C*, %class.C** %1
%3 = getelementptr %class.C, %class.C*

%2, i32 0, i32 0
%4 = load i32*, i32** %3
store i32 42, i32* %4
ret void

}

definition

bitcode

operands of store instructions while the “location” is an alloca within the function. We
set the shadow value of the associated alloca instruction to the value of the argument after
applying a logical shift left by one (since it’s a pointer). This treatment properly ignores
const qualifiers added due to callee method signatures.

For sub-case (ii), destructors, we do not want to report any writes through this as the
object no longer exists after the call (so that writes to the object aren’t visible in any case).
We handle this case by simply assuming that the this argument is mutable. For all other
arguments, we do a bitwise OR between the alloca shadow value and the argument shadow
value logically shifted left by one, which maintains all const qualifiers.

Shadow value computation example. Listing 4 presents the C++ source code for C::foo,
a const qualified method, and the associated LLVM bitcode. Consider the bar function,
which calls foo twice, first with mutable (i.e. non-const) receiver object nc and then with
const receiver object cc. Within bar, the shadow value of nc is (0)2 and the shadow value
of cc is (1)2. Our instrumentation assigns shadow values for each LLVM instruction with a
pointer result. We instrument C::foo as follows:

The first instruction, alloca, stores its result in %1. Since it is an alloca instruction, we
obtain its shadow value from clang debugging information. The associated shadow value
is (10)2: in this const-qualified method, the type of this is that of a const pointer to
the containing class, const C *.
At the store instruction, without special handling, we would load the shadow value of
argument %this from the TLS; logically shift left the shadow value by one to account for
the fact that we are performing a store to memory allocated for that argument; and
bitwise OR the resulting shadow value with the original shadow value for %1. In our
example, whether the receiver object is cc or nc, the shadow value for %1 is (10)2.
Next, we obtain the shadow value for the result of the load, %2. As %2 returns a pointer,
we shift %1’s (the operand’s) shadow value right by one, giving a shadow value of (1)2.
Next, the getelementptr instruction results in a pointer to the class’s x field. Our
instrumentation of getelementptr could produce two different shadow values, depending
on the instruction’s operand. In this case, %2 is a const object, and the resulting shadow
value for a fully const-qualified x field is (11)2.
Next, we obtain the shadow value for the load result %4 using the same technique as for
%2. The resulting shadow value is (1)2.
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Table 3 Root causes of writes through const and our symbols for these causes.

Root Cause Symbol

Write to mutable field M
Transitive write T
Write after casting a const qualifier away C

Finally, we insert a check at the store instruction. In this case, the least significant bit
of the shadow value associated with location (%4) is 1. Therefore we would dynamically
report a write-through-const at the write to field x of the const method.

For methods, this instrumentation is not enough. We only want to report a write-through-
const for the call with const receiver object even though both objects call the same static
method. Before the call to foo, our instrumentation stores the shadow value of the receiver
object in its TLS slot. Our instrumentation of foo looks for store instructions that use the
receiver object and recomputes the shadow value of the location. Here, we load the shadow
value from its TLS slot and shift left to match the type of the expected shadow value of
%1. For nc’s call, this shadow value is (00)2. Since foo is a method, we ignore the original
shadow value of %1 ((10)2) and overwrite it with new shadow value (00)2. Following the
remaining steps in foo as above, the shadow value of %4 is now (0)2 and we do not report a
write-through-const. In the cc case, we would follow the same steps, but instead report a
write-through-const, because the shadow value would be (10)2.

5 Classification of writes-through-const

One of our contributions is a careful analysis of the const usages detected by our ConstSan-
itizer dynamic analysis tool. We propose a classification for writes-through-const-qualifiers
along 2 axes. We manually assigned each write 1) a single cause, from a set of common
root causes; and 2) a set of additional attributes. This classification distills our empirical
observations about const use in practice.

Table 3 lists all of the root causes for writes-through-const, along with a one-letter
abbreviation that we will use in Section 6’s tables. ConstSanitizer detects such writes and
reports them to the user. The causes are:

mutable field (M): the program writes to a mutable-labelled field of a const object.
class Mutable {

mutable int x;
public:

void mutator() const { x = 42; }
};

mutable permits method mutator() to write to field x even though it is a const method,
which would ordinarily prevent (at compile-time) writes to fields of the this object.
transitive write (T): the program writes through a field of a const object.
class TW {

int *x;
public:

void transitiveWrite() const { *x = 42; }
};

const-qualified method transitiveWrite() writes to field x of the this object. While
the const qualifier prevents mutation of the x field, it does not prevent transitive writes
of the memory pointed to by x.
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Table 4 Observed common attributes of writes through const and corresponding symbols.

Attribute Symbol

Write is synchronized S
Write is not visible N
Write is to a buffer/cache B
Write is delayed initialization D
Write is incorrect I

casting away const (C): the program writes through a pointer which has previously been
const but whose const-ness has been cast away using a const_cast or C-style cast.
void writeToArg(int *y) { *y = 17; }
const int *x = ...;
writeToArg(const_cast<int *>(x));

The write in writeToArg() mutates the value pointed-to by x while x is const-qualified.
ConstSanitizer reports writes-through-const-qualifiers whose const-ness has been cast
away, using the const-ness of the most recent declared type for the value.

Table 4 summarizes our attributes for writes-through-const-qualifiers. We assigned
attributes to writes based on our understanding of the code. Writes may have multiple
attributes; for instance, a write in our Protobuf benchmark is B & N & S. The attributes are:

synchronized (S): indicates that the write is always protected by a lock. This attribute is
often required under the C++11 standard: all types that are shared between threads and
that may be used with the standard library must be either bitwise const, which is clearly
not the case when we witness a write, or else protected against concurrent accesses [15].
The following example, from Protobuf, is synchronized using Google mutex primitives.
GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
_cached_size_ = total_size;
GOOGLE_SAFE_CONCURRENT_WRITES_END();

not visible (N): indicates that the result of the write is never externally visible (e.g.
private and with no accessor methods; may be accessed in the same translation unit).
Often occurs in the context of testing-related counters.
mutable int countFooCalls;
void foo() const { ++countFooCalls; }

to a buffer/cache (B): indicates that the write is of a derived value which can be computed
from other currently-available state. Such writes are often optimizations.
_cached_size_ = total_size;

delayed initialization (D): indicates that the write initializes state not initialized in the
constructor or its transitive callees. Writes with this attribute could have also occurred
in the constructor, but the written value was not yet available. Failure to call a delayed
initialization method would lead to undesired behaviours (or lack of desired behaviours).
bool Generator::Generate(const FileDescriptor* file, ...) const {

this->file_ = file;
}

incorrect (I): indicates that the write appeared to violate the const-ness of the object.

Note that S/N/B/D writes are not necessarily errors and do not necessarily violate
immutability properties. We thus chose the word “attribute” to suggest that S/N/B/D
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Table 5 We ran our experiments across 7 C++ (and 1 C) software projects; ConstSanitizer
introduces a build slowdown of 1.05×–1.40× across all projects.

Name Version Description Build
Slowdown

C++ Protobuf 2.6.1 Serialization framework 1.40×
C++ LevelDB 1.18 Key/value database 1.05×
C++ fish shell 2.2.0 UNIX shell 1.32×
C++ Mosh (mobile shell) 1.2.5 SSH replacement 1.26×
C++ LLVM TableGen 3.7.0 Domain-specific generator —
C++ Tesseract 3.04.00 OCR engine 1.10×
C++ Ninja 1.6.0 Build system 1.20×
C Weston 1.9.0 Wayland compositor 1.28×

indicate an incidental property of a write-through-const. If the code containing the writes is
properly written, an object with an S/N/B/D write-through-const can still appear to be
immutable to the client, assuming all references to that object are read-only. A write with
attribute I, however, is a client-visible violation of const.

6 Results

We evaluated our ConstSanitizer tool on 7 C++ software projects, plus 1 C project. We
attempted to choose significant benchmarks using these guidelines:

1. must span a range of application areas: applications and libraries; small, medium, and
large projects; interactive and non-interactive;

2. are used by the community: the Google projects are the most popular on GitHub; the
applications are popular among FOSS users; contributor-group sizes vary from a core
group to a large community; and,

3. must extensively use const constructs.

A ConstSanitizer report indicates that a write that would not be allowed under deep
immutability occurred through a read-only reference. Such writes are allowed under C++
semantics. They are only a departure from the const semantics that we experiment with
(i.e. deep immutability with no casts and no mutable). Our experiments classify writes-
through-const observed in actual const-using programs. Classifying these writes provides
us valuable insight about const usage in practice, which will guide future work.

Our approach was to modify the project’s build system to use our tool and to disable
optimizations. We then ran the project’s test suite, when available, and collected output from
our instrumentation. Using this output we categorized the writes that we found, assigning
root causes and attributes. Along with the number of static locations of writes that we found
(bolded), we also report the number of dynamic occurrences of each write over observed
executions. All else being equal, dynamic counts can help prioritize writes-through-const,
with more-frequent locations to be investigated first. We refer to these dynamic occurrences
of writes as “occurrences” in the sequel. Table 5 summarizes our benchmark projects.

We recorded relative overhead introduced by our instrumentation with respect to both
building and testing times on the longest-running projects, Protobuf and LevelDB. Table 5
includes build slowdowns induced by our tool, which ranged between 1.05× and 1.40×. Our
tool caused a 3.3× slowdown and 1.3× slowdown in test execution times for Protobuf and
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Table 6 Protobuf shows 5 archetypes for 76 writes through const resulting in 127 644 occurrences.

Archetype Locations Occurrences Root Cause Attributes

Generator printer 7 118464 T B & N & S
Message cache sizes 61 7158 M B & S
Source code locations 4 1898 T I
Linked list operations 2 84 M I & S
Generate initialization

method 2 40 M D & N & S

Listing 5 Protobuf’s Generator class performing transitive write-through-const to a Printer field.

bool Generator::Generate(...) const {
PrintTopBoilerplate(this->printer_, ...);

}

void PrintTopBoilerplate(io::Printer* printer, ...) {
printer->Print(...);

}

void Printer::Print(...) {
WriteRaw(text + pos, i - pos + 1);

}

void Printer::WriteRaw(..., int size)
this->buffer_ += size;
this->buffer_size_ -= size;

}

python_generator.cc

printer.cc

transitive writes
initiated by const
::Generate()

LevelDB respectively. The remaining projects were either interactive, or did not have long
enough running test suites to get meaningful results. We do not any report LLVM TableGen
numbers because we built it (with instrumentation) as part of the LLVM build process and
were not able to build the executable separately.

6.1 Protobuf
Protobuf is Google’s serializing framework for structured data, consisting of about 214 000
lines of C++ code. We analyzed version 2.6.1 of Protobuf by running its test suite, which
contains 5 tests. Table 6 summarizes the Protobuf results. ConstSanitizer found 76 static
write locations (and 127 644 occurrences). We describe 5 archetypes for these writes. An
archetype is a group of writes that we judged to be similar; the writes may happen at different
source locations.

The “Generator printer” archetype occurred most often. Listing 5 presents a representative
expanded stack trace. The function at the top of the listing shows the initiation of the write in
Generator’s const-qualified Generate method. This method calls PrintTopBoilerplate,
passing a pointer to a mutable io::Printer. Then, Printer’s WriteRaw method modifies
(root cause T) two fields: buffer_ and buffer_size_. These fields are protected by a lock,
act as a buffer, and are not visible outside the class (which is just a printer). This archetype
also includes other Print-like calls with different source locations but a common explanation.
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Listing 6 Protobuf’s Generate initialization method performing lazy initialization.

bool Generator::Generate(...) const {
this->file_ = file;
this->printer_ = &printer;

}

python_generator.cc

The “Generate initialization method” archetype is related to “Generator printer”. Listing 6
shows this archetype. The printer_ field was initialized as seen above. C++ allows this
write due to the mutable specifier. Another field, file_, is lazily initialized as well. Both of
these fields are protected by the same lock, and are not externally visible outside the class.

We show an example of the “linked list operations” archetype in Listing 7. Here, the
depart method grabs a lock, and uses a pointer with type linked_ptr_internal const
*, so that the const applies to what is pointed to, not to the pointer. The method then
modifies the next_ field of a valid object at the point indicated by the comment. The root
cause here is mutable: the next_ field is declared mutable linked_ptr_internal const*
next_. This write is a delayed initialization, not visible, and synchronized.

Listing 8 shows the “Message cache sizes” archetype. The write is protected by a lock,
and is allowed by C++ because the field is mutable. However, this write, while involved with
caching, is externally visible. The method void SetCachedSize(int size) const enables
external code to modify this field through a const reference to the containing object.

Listing 9 shows the “Source code locations” archetype. The mutable_leading_comments
method, which includes “mutable” in its name, is not declared as const, and thus allows
writes. Its implementation writes to the location_ field; we show an example of a caller
which causes such a write. The location_ field is externally-visible, so this is a clearly
incorrect externally-visible transitive write; we assign attribute I.

We also found an archetype involving writing data to a message. This included 133 unique
source locations, occurring 14 638 times in total. However, the code is heavily inlined and
the build system appears to overwrite optimization settings for this subdirectory. Manual
inspection of the code revealed no obvious writes. We believe this is a result of optimizations
causing invalid debugging information. We thus omitted this archetype from Table 6.

6.2 LevelDB
LevelDB (1.18) is Google’s lightweight key/value database library, consisting of approximately
18 000 lines of C++ code. The test suite contains 23 test drivers. There were 6 archetypes
and also 6 root source locations for these writes. These locations contributed to 13 792
occurrences over the test drivers. Table 7 shows a summary of our findings for LevelDB.

Listing 10 shows the source location that caused the majority of the occurrences. This code
extends the RandomAccessFile class to add an atomic counter field, counter_, that tracks
the number of read calls. The root cause is that counter_ is a pointer and is transitively
written to. The reason for this write is test controllability: this class is part of the test
infrastructure. Yet it must override the monitored call (and thus must be const). This class
is meant for testing purposes only, so we concluded the write was not visible outside the
class—the counter is only used in the testing code.

Listing 11 shows a modification to a caching structure that generates a new identifier.
This cache is a field, block_cache, in options, which is declared as const Options& in
Table::Open. The root cause is a transitive write, since the code dereferences a field of
a const object to do the write. This write is protected by a lock and clearly involved in
caching. However, it appears that other code outside of Options uses this block cache.
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Listing 7 Protobuf using Google test linked list that writes internally.

bool linked_ptr_internal::depart()
GTEST_LOCK_EXCLUDED_(g_linked_ptr_mutex) {

MutexLock lock(&g_linked_ptr_mutex);

if (this->next_ == this) return true;
linked_ptr_internal const* p = this->next_;
while (p->next_ != this) p = p->next_;
p->next_ = this->next_;
return false;

}

gtest-linked_ptr.h

Listing 8 Protobuf writing to a message’s cached size field.

int FieldDescriptorProto::ByteSize() const {
GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
this->_cached_size_ = total_size;
GOOGLE_SAFE_CONCURRENT_WRITES_END();

}

descriptor.pb.cc

Listing 9 Protobuf writing to a source location object.

void Parser::LocationRecorder::AttachComments(...) const {
this->location_->mutable_leading_comments()->swap(*leading);

}

std::string* SourceCodeInfo_Location::mutable_leading_comments() {
this->leading_comments_ = new ::std::string;

}

parser.cc

descriptor.pb.h

Table 7 LevelDB shows writes from 6 source locations, with 13 792 occurrences in total.

Location Occurrences Root Cause Attributes

db/db_test.cc:40 10311 T N & S
util/cache.cc:315 2841 T B & S
db/snapshot.h:54 319 T I
db/snapshot.h:55 319 T I
helpers/memenv/memenv.cc:274 1 T I & S
util/testutil.h:42 1 T N

Listing 10 LevelDB write in db_test.cc:40 incrementing counter tracking # of writes to a file.

class CountingFile : public RandomAccessFile {
virtual Status Read(...) const {

this->counter_->Increment();
}

};

db_test.cc
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Listing 11 LevelDB write in cache.cc:315 creating a new block cache in const Options object.

Status Table::Open(const Options& options, ...) {
rep->cache_id = (options.block_cache ?

options.block_cache->NewId() : 0);
}

virtual ShardedLRUCache::uint64_t NewId() {
MutexLock l(&id_mutex_);
return ++(last_id_);

}

table.cc

cache.cc

Listing 12 LevelDB write in snapshot.h deleting a list element and updates pointers.

void Delete(const SnapshotImpl* s) {
assert(s->list_ == this);
s->prev_->next_ = s->next_;
s->next_->prev_ = s->prev_;
delete s;

}

snapshot.h

Listing 12 shows a modification of a linked list node accessed through two pointer
dereferences. This corresponds to both snapshot.h locations shown in the table. This code
modifies the pointers obtained from following its own nodes, performing a transitive write
through a const qualifier. We do not know why the developers declared s as const since it
is also destroyed at the end of the method. In any case, we assigned attribute I.

Listing 13 shows a write-through-const in the InMemoryEnv class. As with the cache, the
root cause is a transitive write: in the caller, options is declared const Options&. Unlike
the caching example, this file isn’t involved in caching and appears to be a visible change to
options. This write is protected by a lock, giving attribute I & S.

Listing 14 shows the final write-through-const-qualifier that we found for LevelDB. The
caller location is the same as in Listing 13 above. In this case, however, the containing class
extends InMemoryEnv and adds a field to count the number of errors (for testing purposes
only). Therefore we attribute this write as being not visible—it is only used in tests.

6.3 fish shell
fish shell (2.2.0) is a UNIX shell providing advanced features, consisting of approximately
48 000 lines of C++ code. We compiled the project with our tool and executed an instance
of the shell. Our workload launched the shell and immediately exited. We found writes from
4 unique source locations for 98 occurrences in total. All locations are within the exchange
function. Listing 15 shows this function along with a snippet of _wgetopt_internal that
calls exchange. The root cause is that the const-qualified argv variable gets cast to non-
const and then passed to exchange. This write shows that the const-qualifier on argv is
incorrect and should not be included.

6.4 Mosh (mobile shell)
Mosh (mobile shell) (1.2.5) is a remote terminal application that is a replacement for secure
shell (SSH), consisting of about 13 000 lines of C++ code. Our workload was to launch
the mosh server and immediately terminate it. We found writes-through-const at 8 unique
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Listing 13 LevelDB write in memenv.cc changing the environment in options object.

Status DB::Open(const Options& options, ) {
s = options.env->NewWritableFile( );

}

InMemoryEnv::NewWritableFile( ) {
MutexLock lock(&mutex_);

file_map_[fname] = file;
}

...
...

... ...

this->

db_impl.cc

memenv.cc

source locations (432 occurrences). Listing 16 shows one of the writes. Mosh parsing code
sets a flag to indicate completion. However, the developers declared the parser action as
const in the same method where they modify it. The root cause is that the variable handled
is declared public mutable. We believe this is an incorrectly const qualified variable.

6.5 LLVM TableGen

We instrumented LLVM’s (3.7) TableGen executable, which uses domain-specific information
to generate files with custom backends. This part of LLVM consists of approximately
34 400 lines of C++ code. It is primarily used in building LLVM itself. We added our
instrumentation to the build system and observed reports from an instrumented version of
TableGen executing as part of the build process. LLVM itself is a large body of code with
too many writes-through-const-qualifier objects to manually classify. In TableGen, we found
writes from 3 unique source locations (282 occurrences).

The handling code for DFAs contains some puzzling writes, shown in Listing 17. The
write immediately follows an instantiation of a const State object. The State class itself
is only available in a file’s translation unit (not usable outside the file), which may indicate
that the State is not intended to be widely used. State only contains const methods and
all of its fields (except one explicitly declared const) are mutable. Since all methods are
const there is no difference in callable methods between non-const and const-qualified
access. In addition, since all other fields are mutable, developers are allowed to re-assign
the same fields in a const method as they would in a non-const method. Since only one
field doesn’t have mutable, developers could achieve the same effect by making all methods
non-const, removing all mutable specifiers on fields, and changing the one field that did not
have mutable to be const qualified.

The other write is in the code that computes a sub-register index for code generation.
Listing 18 shows the containing method. The root cause here is that the LaneMask field is
mutable. The write caches the value. However, this value is not used in any other methods.

6.6 Tesseract

Tesseract (3.04.00) is an optical character recognition (OCR) engine maintained by Google,
consisting of 147 000 lines of C++ code. This project does not contain any easy-to-run tests.
We compiled it with our tool and ran it with invalid arguments. With our limited knowledge
of Tesseract’s usage, we were not able to cause the core algorithm to execute. However, we
found a strange write, shown in Listing 19. The root cause is that the used_ field is mutable.
This write appears to be an incorrect usage of const. Strangely, however, the comments
indicate that is a defensive write against possible further writes-through-const-qualifiers.
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Listing 14 LevelDB write in testutil.h injecting faults into the test suite.

... EnvError::NewWritableFile(...) {
++this->num_writable_file_errors_;

}

testutil.h

Listing 15 fish shell writing to const-qualified argv object.

... _wgetopt_internal(..., wchar_t *const *argv, ...) {
exchange((wchar_t **) argv);

}

... exchange(wchar_t **argv) {
argv[bottom + i] = argv[top - (middle - bottom) + i];
argv[top - (middle - bottom) + i] = tem;
argv[bottom + i] = argv[middle + i];
argv[middle + i] = tem;

}

wgetopt.cpp

Listing 16 Mosh handling terminal action with a write-through-const.

void Emulator::print(const Parser::Print *act) {
act->handled = true;

}

terminal.cc

Listing 17 LLVM DFA code marks State const for no apparent reason.

void DFAPacketizerEmitter::run(raw_ostream &OS) {
const State *NewState;
NewState = &D.newState();
NewState->stateInfo = NewStateResources;

}

DFAPacketizerEmitter.cpp

Listing 18 LLVM SubReg writes to a mutable field in a const method.

unsigned CodeGenSubRegIndex::computeLaneMask() const {
if (this->LaneMask)

return this->LaneMask;
this->LaneMask = ~0u;
unsigned M = ...;
this->LaneMask = M;
return this->LaneMask;

}

CodeGenRegisters.cpp

Listing 19 Tesseract performs a strange write in its string class.

const char* STRING::string() const {
const STRING_HEADER* header = GetHeader();
header->used_ = -1;
return GetCStr();

}

/* mark header length unreliable
because tesseract might cast away
the const and mutate the string
directly. */

strngs.cpp
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Listing 20 Ninja write-through-const in test code.

TimeStamp StatTest::Stat(const string& path, ...) const {
this->stats_.push_back(path);

}

disk_interface_test.cc

Listing 21 Weston option parser modifying its const option argument.

handle_option(const struct weston_option *option, ...) {
* (char **) option->data = strdup(value);

}

option-parser.c

6.7 Ninja
Ninja (1.6.0) is a build system consisting of approximately 14 900 lines of C++ code. It
includes a modest test suite. Our tool reports 39 occurrences from calls to the standard
library. All of these warnings have a single source location outside the standard library:
src/disk_interface_test.cc:226:3. Listing 20 shows this static source location. This is
a quick hack to run the test suite with the same API as normal clients. This field stores
statistics that are checked in the test suite only. The field is mutable and not seen outside
the test suite, so we give this write the “not visible” attribute.

6.8 Weston
While we focus on C++ in this work, our technique also works on const in C programs. We
therefore evaluated it on a C application. Since this is the sole C project, we omit Weston
from the overall table of results (Table 8). Weston (1.9.0) is a reference implementation of a
Wayland compositor. It consists of approximately 85 000 lines of C code and the test suite
has 20 tests. We did not expect to see many writes, as most C standard library functions
do not require const (corresponding C++ library functions usually do), and also due to
annoyances in using const in C, which we describe below. However, even with a small test
suite, we found 4 unique source locations for writes (accounting for 115 occurrences).

All of the writes-through-const are transitive and came from parsing code. The argument
option parser accounts for 3 locations. Listing 21 shows a write in the parser. Function
handle_option does not modify the pointer value of option but modifies its transitive data
field. This does not change any data stored in the weston_option structure, maintaining
bitwise const-ness. The data field’s type is void * and the cast does not remove const.
Based on the function name, one might expect a write to the data field, not its pointee.

The final location was in the configuration file parsing code. Listing 22 shows the
weston_config_section_get_uint function dereferencing and modifying the value argu-
ment passed in from a field of a const struct. As above, based on the function naming, one
would expect any writes to happen through the dest pointer. This write does not modify
any data stored in the config_command structure and maintains bitwise const-ness as well.

We made an observation as to why const may be unattractive to C developers: there is
no clean way to initialize a structure analogous to C++ constructors/destructors. A popular
C idiom is to assign constructor-like functions signatures like rec_init(struct rec *r).
This signature prevents initialization without casting: const struct rec r; rec_init(&r)
is illegal. However, it is cumbersome to always cast for constructor-like calls. One could
change the signature of the function to rec_init(const struct rec *r) and perform the
cast in the function. However, that function would violate shallow immutability—it writes
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Listing 22 Weston config parser writing to its value argument.

struct config_command {
char *key;
uint32_t *dest;

};
const struct config_command *command = ...;

weston_config_section_get_uint(..., command->dest, ...);

... weston_config_section_get_uint(..., uint32_t *value, ...) {
*value = strtoul(entry->value, &end, 0);

}

hmi-controller.c

Table 8 Writes-through-const-qualifiers in our other benchmark programs were mainly incorrect
uses of const.

Project Location Occurrences Root Cause Attributes

fish shell wgetopt.cpp 98 C I
Mosh terminal.cc 432 M I
LLVM DFAPacketizerEmiter.cpp 112 M I
TableGen CodeGenRegisters.cpp 170 M B & N

Tesseract ccutil/strngs.cpp 1 M I
Ninja disk_interface_test.cpp 39 M N

to fields as it initializes them. Using const in C appears to require developers to ignore the
casting away of const qualifiers for constructor-like functions.

6.9 Summary

Table 8 summarizes the writes-through-const-qualifiers from benchmarks other than Protobuf
and LevelDB. Across the 7 C++ projects we instrumented and ran, we observed 17 unique
archetypes across a total of 142 288 dynamic occurrences. We manually divided these
archetypes into 17 classifications. The root causes were evenly split between writes through
mutable fields and transitive writes (8 of each) with one write-through-const due to casting.
Valid attributes were mostly with-synchronization and because the write was not visible
(7 and 6 respectively). The other valid attributes, writing to a buffer/cache and delayed
initialization, occurred 4 times and 1 time respectively. The majority attribute, in 9 cases,
was that the write was incorrect and violated intuitive notions of what const should mean.
We reported our results to developers. Within a few days the developers simply removed
incorrect const qualifiers in both fish and Mosh.

We found 3 projects (LevelDB, Mosh, and Ninja) had writes that only occurred in tests.
The writes-through-const we found were in testing code; writes were to counters only present
in test environments. In Mosh, the fact that the writes were only for test purposes was not
immediately obvious. However, discussions with the developers revealed that the handled
variable was only used for debugging. All of these writes-through-const are related to test
controllability, suggesting that this idiom should be supported directly in the programming
language.
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7 Related Work

We discuss a number of areas of related work: immutability (and related approaches) for Java;
purity analyses; and dynamic analyses that inspired our approach. The Java programming
language has no exact analog to C++’s const operator. Related work defined immutability
annotations for Java and statically and dynamically verified that programs satisfy their
annotations. Potanin et al [9] provide a recent discussion of immutability terminology
and compare research implementations in depth. (Our implementation has at its core a
dynamic analysis verifying that C++ programs satisfy a strengthened version of their const
annotations.) A different stream of related work verifies whether (Java) methods are pure,
i.e. have no visible side-effects; there is a strong connection between purity and immutability.

const for Java, and similar projects. Javari [17, 18] allows its users to specify read-only
references in Java programs. It aims to ensure that a readonly (effectively, deeply-immutable
const) typed object does not mutate its state or any state transitively reachable through its
references. Javari, like C++, includes a mutable keyword, which allows developers to specify
that a field may be modified regardless of readonly qualifiers. Javari also inserts dynamic
checks to verify that downcasts maintain the immutability qualifier of the type. Essentially,
Javari provides a safer version of C++’s const that, due to the nature of Java, maintains
deep immutability unless the developer explicitly opts out of the checks.

Our work provides similar guarantees to those provided by Javari. Since Javari does
not have an underlying C++ const specification to build on top of, it has to implement
all of those checks itself. In terms of what we check, our work matches Javari in terms of
transitivity and downcasts. Our work also reports writes to mutable fields at runtime.

Unlike Javari, we could investigate the behaviour of a set of real-world benchmark
programs, developed against the C++ const semantics (and which, by necessity, satisfy
those semantics). Our empirical study therefore points out the difference in practice between
const semantics as they exist—shallow immutability, mutable, and const casting; and a
stronger version of these semantics—deep immutability, no mutable, and no const casting.

A related concept to const is that of stationary fields, as proposed by Unkel and Lam [19].
A stationary field is similar to a Java final field. A Java final field can only be written to
in a constructor. By contrast, a stationary field is only written to before it is read. In essence,
a stationary field acts like a final field but with fewer restrictions on where initialization
may occur. Nelson et al [8] performed a follow-up study using a dynamic analysis which
determined that 72–82% of fields in Java programs are stationary. Their work, like ours,
empirically explores how programs use (or could use, in their case) language features.

Purity analyses. A pure method does not modify any state accessible before the method
was called. Pure methods may create and modify objects to return to the caller. A function
which writes to no global state and has all arguments transitively const is pure.

ReIm and its corresponding type inference system, ReImInfer [5], is similar to Javari,
except that its type system is context sensitive. ReIm was designed to find method purity.
Its type system allows the immutability of the return type to match that of the calling
reference. This allows methods to be reused without requiring mutable and read-only versions.
ReImInfer is a type inference system that maximizes the amount of methods marked as
readonly. They report that 41–69% of methods can be marked as readonly.

Other systems also verify method purity. JPPA is a combined pointer and escape analysis
for Java [12, 11]. Sălcianu and Rinard found over half the methods they analyzed were pure.
Rytz et al [10] instead use a simpler flow-insensitive analysis and find similar results.
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Artzi et al proposed a combined dynamic and static analysis for mutability [1]. Their
analysis determines the mutability of method parameters. The goal of that work was to scale
better and produce more precise results than static analysis alone.

const-correctness through abstract machines. Chisnall et al [3] propose a memory-safe
abstract machine for C which can be used to verify that immutable objects (declared with
const) are never mutated through non-const aliases. This resembles our approach of using
shadow values to track the declared const-ness of an object. (They do not investigate
transitive immutability.) Our study, by contrast, focuses solely on writes-through-const. All
of their subject programs removed a const qualifier at some point. It was beyond the scope
of their work to investigate how and why their subject programs removed the const qualifier.

Other dynamic analyses. Our dynamic analysis approach is similar to approaches used in
Umbra [20] and Dr. Memory [2]. Like Umbra and Dr. Memory, we use shadow values to
detect interesting program behaviours. However, ConstSanitizer builds directly on LLVM
and does not use a dynamic instrumentation platform. Furthermore, the properties that we
verify are novel const-related properties, compared to Dr. Memory, which looks for memory
errors such as accesses to unallocated space, and Umbra, which helps developers understand
threads’ memory access patterns and implements almost-free custom watchpoints.

8 Conclusion

The const qualifier in C++ is extensively used in real-world code, but developer intent
behind const usage is unclear. In this paper, we have presented our ConstSanitizer system.
ConstSanitizer dynamically detects writes through const qualifiers which are legal in C++
but which modify state transitively starting from a const qualifier, write to mutable fields,
or write to values whose const-ness has been cast away. Our results show that, although
writes through const are ubiquitous across our 7 C++ and 1 C benchmark programs, there
are only a small number (17) of archetypes these writes. We used our results to develop a
classification of writes according to root cause (transitivity, mutable field, or const cast) and
attributes (synchronized, not visible, buffer/cache, delayed initialization, incorrect). Our
work helps understand how the const qualifier is used in practice and leads us to conclude:

Developers definitely violate bitwise const (RQ1).
The majority of write-through-const archetypes (9/17) are incorrect code which observ-
ably change an object’s state.
On our benchmarks, programs write-through-const about equally often using transitive
writes through fields (8/17) and writes to mutable fields (8/17) (RQ2).
We observed four classes (N, B, D, S, discussed in Section 5) of valid reasons for writes-
through-const-qualifiers. For instance, sometimes developers write-through-const to
delay initialization or implement buffer caches. Such writes should be automatically
validated by yet-to-be-developed tools.
About half (9/17) of the observed usages are invalid, consisting of methods which
implemented exceptions to an object’s const-ness; perhaps the developers chose to add
one exception rather than remove const completely. (RQ3)
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Abstract
LJGS is a lightweight Java core calculus with a gradual security type system. The calculus guar-
antees secure information flow for sequential, class-based, typed object-oriented programming
with mutable objects and virtual method calls. An LJGS program is composed of fragments that
are checked either statically or dynamically. Statically checked fragments adhere to a security
type system so that they incur no run-time penalty whereas dynamically checked fragments rely
on run-time security labels. The programmer marks the boundaries between static and dynamic
checking with casts so that it is always clear whether a program fragment requires run-time
checks. LJGS requires security annotations on fields and methods. A field annotation either
specifies a fixed static security level or it prescribes dynamic checking. A method annotation
specifies a constrained polymorphic security signature. The types of local variables in method
bodies are analyzed flow-sensitively and require no annotation. The dynamic checking of fields
relies on a static points-to analysis to approximate implicit flows. We prove type soundness and
non-interference for LJGS.
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1 Introduction

Information-flow control (IFC) is a cornerstone of language-based security. A typical IFC
policy rules out the flow of information from classified sources to public sinks. The technical
property aimed for is noninterference: changing a classified source does not influence the
public sinks. Noninterference comes in different flavors depending on the observational
capabilities of an attacker (e.g., termination sensitive or not, batch or interactive).

There are also different kinds of IFC. A static system performs a static analysis, for
instance using a security type system, and guarantees noninterference for analyzed programs.
A dynamic system attaches run-time security labels to values, propagates them along with
the values, and checks them at appropriate points during program execution. Hybrid systems
employ additional static analysis to improve precision in the detection of implicit flows [23].

The choice between a static and a dynamic system is a difficult trade-off in the development
of secure software. For new software components that are designed with security in mind
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and for components that have high reliability requirements a static analysis is a good fit:
It does not impose any run-time overhead and provides hard static guarantees whereas a
dynamic system needs to manage security labels at run-time and often aborts a running
program when a security problem is detected.

For the integration of legacy components as well as for prototyping, static IFC can impede
programming productivity significantly: Simple analyses yield many false positives and thus
may reject many programs that are in fact secure. Precise analyses often require extensive
manual annotation of the source code. They rely on complex abstract domains that may be
computationally expensive or difficult to understand by non-experts. In contrast, dynamic
approaches rely on an instrumented run-time system. Thus, after specifying a security policy,
a programmer can debug policy breaches by testing and inspecting concrete program runs.

Contributions
To make the benefits of both approaches available to mainstream object-oriented programming,
we propose a type-based amalgamation of static and dynamic IFC for Java. Inspired by work
on gradual typing [26, 14], our system enables programmers to rely on the guarantees and
efficiency of a lightweight security type system and to back off to dynamic checking when
necessary. Gradual typing enables the composition of programs from typed and untyped
fragments using suitable type casts at the interfaces. It guarantees full compliance with the
type system in the typed fragments, whereas untyped fragments may raise run-time type
errors. Gradual security typing transposes this approach to an information flow setting.

Lightweight Java with Gradual Security (LJGS) is an object-oriented core calculus that
implements our ideas. LJGS is a subset of Java without threads, exceptions, or reflection. It
is inspired by Lightweight Java (LJ) [29]. Our specification of LJGS is type-based: it takes
the form of a type system and it assumes that the underlying program is well-typed. Thus,
LJGS is independent of specific Java typing features like generics. The LJGS types in this
paper amount to type annotations in an actual Java program.

Following Denning [10], LJGS specifies permissible information flows using a lattice
(Sec,v) of security levels. For each field of a class, the programmer specifies a fixed security
level or marks the field as dynamically checked. For each method, the programmer supplies
a constrained polymorphic security type signature (see examples in Section 2). The signature
relates the security types of the arguments, the result, and the effect on global variables with
each other and with fixed levels that arise from field accesses. The security types of local
variables need not be declared. Moreover, the types of local variables are flow sensitive, that
is they can change during the method; object field types are flow insensitive to keep static
checking light-weight. In contrast to other work on security type signatures for Java [30] our
type checking algorithm works directly on the constraints.

The LJGS type system is designed so that the security level of a value with a static
security type does not have to be tracked at run-time. Each value with a dynamic security
type, in a dynamic field or in a temporarily dynamic local variable, carries a run-time
security label that overapproximates its true security level. Implicit flows are detected with
an approach inspired by hybrid monitors [23]: at the join points in the control-flow graph,
security labels of variables and fields are upgraded preemptively if they could be updated
in the untaken branches. A points-to analysis assists in determining the heap references
to fields that require upgrading. Purely dynamic approaches like the no-sensitive-upgrade
(NSU) policy [3, 36] may be used as well, but with more conservative results.1

1 We used NSU in a previous version of this paper: http://proglang.informatik.uni-freiburg.de/
projects/gradual/ljgs/fcs2015.pdf

http://proglang.informatik.uni-freiburg.de/projects/gradual/ljgs/fcs2015.pdf
http://proglang.informatik.uni-freiburg.de/projects/gradual/ljgs/fcs2015.pdf
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No existing system provides a similarly powerful combination of static and dynamic
IFC for a Java-like language. In particular, prior work [12, 13] illustrates the principles of
gradual security typing with toy languages. While LJGS is the result of extrapolating similar
principles to an object-oriented setting, extensions required in practice, like polymorphic
signatures and avoiding run-time checks for static code, yield a type- and run-time system that
differs significantly from prior designs. The differences are further elaborated in Section 9.

Technical results: Besides proving type preservation and progress (up to breaches of the
security policy in dynamic updates), our key result is batch termination insensitive non-
interference (BTINI), as defined by Askarov et al [2]. We assume that an attacker can
only access the public part of the heap, may construct the public arguments of any LJGS
method, run it, and inspect only the public part of the result and the heap afterwards. If the
method diverges or aborts, the attacker receives no information. There is no way to obtain
intermediate results.

Scope of the LJGS calculus

LJGS supports the features of class-based, typed object-oriented languages that pose fun-
damental challenges for information flow control: mutually recursive methods and classes,
mutable local variables, mutable objects, and virtual method calls. In the following, we
summarize these challenges and then discuss features omitted from LJGS, namely exceptions,
and Java-style downcasts and type-tests. Furthermore, Section 7 discusses how a practical
language based on LJGS could deal with reflective and otherwise hard-to-analyze code.
Mutually recursive classes and methods complicate global, inter-procedural inference
of types and information flow. LJGS supports local type inference, only. It avoids the need
for global inference with annotations on methods and classes. The issue of mutable local
variables arises already in simple imperative languages [24], but it is not addressed by
previous work on gradual security [12, 13]. For LJGS, we adapt best practice in maintaining
a program counter type to track implicit flows and in handling variables flow-sensitively
[17, 23] to improve precision.

Mutable objects may lead to global implicit flows, as the following example shows:

class C { int F; void setF (){ this .F = 1; };}
C c = new C(); C d = c;
i f ( secret == 42) {d.setF ();}
printPublic (c.F); // <- information leak

Here, secret has a high-security type and printPublic is a low-security sink. The field F of
the object c is updated under a high-security program counter by calling method setF() on
d which is an alias of c. Afterwards, c.F is publicly exposed by printPublic(). However,
there is no local indication for the leak: the program does not directly change c.F. The
reason for the leak is that c, d, and this in the method call to setF are aliases for the same
object during the execution of the program. Sound information flow control has to prevent
low-security access to the field c.F after the update, even if the update is performed on a
different alias or in a different method.

In LJGS and other security-typed languages [21, 22] this requirement is enforced by
fixed, flow-insensitive security types for fields and by write-effect annotations on methods
that indicate the types of fields that a method updates. For static, high-security program
counters, low-security or dynamic effects are forbidden. Dynamic program counters admit
only dynamic effects and dynamic fields updates. LJGS treats mutable objects differently
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than previous work[13], where run-time labels are required even for statically typed object
references.

Virtual method calls cause conditional control flow and thus may create implicit
information flows: the run-time type of the receiver object selects the implementation of a
method to execute. While dynamic enforcement of information flow copes naturally with
dynamic dispatch, statically checking a virtual method requires a sound, static approximation
of the security properties of all possible implementations that might be executed. LJGS
supports dynamic dispatch for Java-like class derivation and method overriding. To soundly
type-check method calls, the type system imposes a restriction on signatures of overriding
methods (cf. Definition 5, Section 4.4).

Among the features that LJGS omits, support for (catchable) exceptions is the most
challenging for information flow control:2 throwing an exception introduces non-local implicit
information flows from the program counter of the throw-site to any exception handler in
the call stack. Practical languages with type-based support for information flow control
like JIF [21] and FlowCaML [22] solve this problem with additional effect annotations on
methods that track the program counter type at the throw-site. This exception effect is an
appropriate lower bound for the program counter type of exception handlers. To simplify
the presentation in this paper, we do not consider catchable exceptions, but we expect the
extension of LJGS’s type system with exception effects to be unsurprising, as the typing
constraints of LJGS are similar to FlowCaML’s constrained type schemes.

Banerjee and Naumann identify (down-)casting of classes and type test as potential
sources of information flow [6]. A conditional based on a type test creates an information
flow from the tested object to the program counter of the branches. For example, the body
of the condition in line 5 executes with a high-security program counter, as the run-time
class of c depends on the value of the high-security variable secret (line 4).

1 class C { }
2 class D extends C { }
3 C c;
4 i f ( secret == 42) { c = new D(); } else { c = new C(); }
5 i f (c instanceof D) {
6 ... // <-- high - security program counter
7 }

LJGS does not support type tests directly, but as the objects involved in branch conditions
are already tracked, the feature would be straightforward to add as a primitive operation.
Downcasts may result in additional exceptional flows when a cast error is recoverable. As we
currently do not consider exceptions for LJGS, we also omit downcasts for simplicity.

2 A Taste of LJGS

This section demonstrates the salient features of LJGS. The security lattice used in the
examples has at least two points, LOW and HIGH, where LOW v HIGH and HIGH 6v LOW.

Figure 1 illustrates how to specify information flow policies via security signatures. The
method max calculates the maximum of its parameters x and y. Clearly, the method’s result
depends on both parameters. To express this dependency, method max carries polymorphic
constraints in the where clause of its signature. It indicates that information may flow from
x and y to the result by asserting that the parameters’ security types are lower bounds for
the type of the return value. The variables x, y, and ret stand for the security type of

2 It is unproblematic to extend LJGS with uncatchable exceptions, as abrupt program termination does
not violate BTINI.
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1 int max( int x, int y) where { x ≤ ret , y ≤ ret } {
2 i f (x ≤ y) {x = y;} return x;
3 }
4
5 class Logger { String [LOW] buf; String [HIGH] hbuf; String [?] dbuf; }
6
7 int maxMsg ( Logger log , int x, int y)
8 where { x ≤ ret , y ≤ ret , log ≤ LOW} and { LOW } {
9 i f (x ≤ y) { x = y; }

10 log.buf = "max was called ";
11 return x;
12 }

Figure 1 Examples of method definitions and polymorphic signatures.

1 Logger log = new Logger (); int x = (? W HIGH) secret ; int y = (? W LOW) 42; int r;
2
3 r = this . maxMsg (log , secret , 42);
4 r = this . maxMsg (log , x, y);
5
6 // type error : uncontrolled mix of dynamic and static arguments
7 // r = this . maxMsg (log , secret , y);
8
9 i f (x == 42) {

10 // type error : program counter is statically unknown
11 // r = this . maxMsg (log , x, y);
12 }

Figure 2 Calling polymorphic methods.

the parameters x, y, and the return value. As the variables are not bounded by concrete
security levels, the signature is polymorphic and max may be called under any program
counter type with arguments that satisfy the constraints. It may also be called with two
dynamic arguments.

Line 5 of Figure 1 defines a class Logger with three fields: buf has with static security
type LOW, hbuf with static security type HIGH, and dbuf with dynamic type ?. The method
maxMsg is a version of max with global side effects; it writes to the low-security field of a
Logger object. The signature of the method indicates this global effect to a LOW field in
the and part of the where clause. LJGS requires that the program counter type at all call
sites is smaller than the declared effect {LOW}, which guarantees that maxMsg is only called
securely in contexts where the program counter security level is LOW. The signature of maxMsg
additionally enforces that the log parameter is a low-security reference by upper-bounding it
with LOW. The parameters x and y remain polymorphic, as they do not influence the global
side effect. Typically, parameters have concrete security types as upper bound, like log in
method maxMsg, if either the method requires read or write access to a field of that type or
if the parameter flows into a program counter for a field update.

Figure 2 illustrates the use of polymorphic methods in dynamic and static code. Dy-
namically checked values are created with a value cast like (? W HIGH)secret. The two
casts in line 1 create a dynamic version of the high-security value in variable secret and a
low-security constant 42, storing them in x and y, respectively. The source type of a cast,
here HIGH and LOW, respectively, indicates what run-time label to attach to the cast value.
The destination type is the dynamic type, ?. The polymorphic method maxMsg may be called
with arguments that are either all static (line 3) or all dynamic (4). The recipient r is typed
flow-sensitively and has type HIGH in line 3 and type ? in line 4.

Calling maxMsg with mixed static and dynamic arguments, as shown in line 7, is not
allowed in this example: The dynamics of LJGS (cf. Sections 5 and 6) do not represent static
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1 int maxMsgDyn ( Logger log , int x, int y)
2 where { x ≤ ret , y ≤ ret , log ≤ ?} and { ? } {
3 i f (x ≤ y) { x = y; }
4 log.dbuf = "max was called "; return x; }
5
6 void logResults ( Logger log , boolean privMode , int h, int l)
7 where { HIGH ≤ h , l ≤ LOW ,
8 , privMode ≤ ?, privMode ≤ LOW , log ≤ ?, log ≤ LOW}
9 and { ?, LOW } {

10 log.dbuf = " public result :" + (? W LOW) l;
11 i f ( privMode ) {log.dbuf += " secret result :" + (? W HIGH) h; }
12 /* ... */
13 i f (! privMode ) {log.buf = (LOW W ?) log.dbuf; }
14 }
15
16 boolean high = ...; // a high -sec . value
17 maxMsgDyn (log , x ,y);
18 i f (high) {( HIGH V ?) { maxMsgDyn (log , x ,y); }}

Figure 3 Examples of methods using dynamic IFC.

security information at run-time. Thus, information flow between static and dynamic types
cannot be controlled only by inspecting run-time security labels and the type system forbids
flows from static to dynamic entities except when they are explicitly controlled by casts.
Uncontrolled flows from dynamic to static entities are also forbidden, as dynamic labels are
not available at type-checking time. To enforce both restrictions, constraints of the form
x ≤ y are not satisfiable if x is static and y is dynamic, or vice-versa. Thus the call in Line 7
violates the signature of maxMsg which relates both arguments with ret.

LJGS imposes similar restrictions for implicit flows. For example, the call to maxMsg in
line 11 would be rejected. Testing the dynamic variable creates a dynamic program counter
that cannot be checked against the static effect of maxMsg’s signature.

Figure 3 illustrates the distinguishing feature of LJGS: the integration of dynamic and
static enforcement of security policies.

The method maxMsgDyn is a less restrictive version of maxMsg that relies on dynamic IFC.
As before, its signature states that x and y flow into the return value. But instead of a LOW
effect, it asserts a dynamic effect and requires that the log object admits dynamic access
(i.e., is smaller that ?). While maxMsg writes to a low-security field and is thus incompatible
with high-security program counters, maxMsgDyn uses the dynamic field dbuf. Dynamic fields
are checked flow-sensitively at run-time, so that LJGS permits calls to maxMsgDyn in low-
and high-security program counters (lines 16 to 18 in Figure 3). After line 17, log.dbuf
contains a dynamic low-security string. The statement starting with “(HIGH V?)” in line 18
is a context cast which instructs the run-time system to propagate a high-security program
counter label for the statements contained in the cast. As a result, the dynamic label of
log.dbuf can be updated to a high-security label after the call in line 18 to reflect the
implicit flow from the program counter into log.dbuf.

The method logResults (also in Figure 3) shows how to adapt information flow behavior
dynamically using a boolean flag. It takes as arguments a log object, a boolean flag privMode
and two integers h and l. The method’s purpose is to write the values of l and h to various
buffers in the log object, depending on the flag privMode (“private mode”). The signature
states that h is HIGH3 and l is LOW. It also states that the method has both, an effect of type
dynamic (?) and static-low (LOW). Similarly it requires log to admit accesses to fields of type

3 A concrete security type as lower bound to a parameter is never required in LJGS. Here it is specified
to make h a high-security value for the sake of the example.
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1 interface Modifier { int modify ( int x) where { x ≤ ret }; }
2
3 int maxMod ( int x , int y, Modifier ymod) where { x ≤ ret , y ≤ ret , ymod ≤ ret }{
4 z = ymod. modify (y);
5 i f (x ≤ z) { return z } else { return x }
6 }

Figure 4 Example of object-oriented code.

? and LOW, and that privMode can flow into fields of type ? and LOW. The reason for these
constraints become clear when inspecting the method’s body: in line 11 there is a dynamic
write of a dynamic high-security value to dbuf in the context of privMode and log and in
line 13 there is a static write to buf using the value of dbuf cast to LOW in the context of
privMode and log. Despite the copy of the potentially high-security content of dbuf to buf
in line 13, the method is actually secure: the flag privMode guards the field updates such
that a high-security content of dbuf is never written to buf. If the author of logResults
would have failed to guard the field updates correctly, for example by accidentally omitting
the negation of privMode in line 13, the value cast from ? to LOW would have aborted the
program by signalling a dynamic security violation. Using boolean flags in such a way is only
possible in the dynamic fragment of LJGS; if log.dbuf were static, the type system would
require it to have a high-security type and unconditionally forbid the copy to log.buf.

It remains to explain how the constraints for privMode and log can be possibly satisfied,
given the premise that a value cannot be implicitly converted between static and dynamic
types. LJGS includes a special bottom type, called the public type (•), for this purpose. The
type systems ensures that such a public value carries no confidential information so that it
can be used in dynamic code without carrying a run-time label.

Figure 4 shows a final example that illustrates the interaction of LJGS’ gradual security
typing with object-oriented code. The interface Modifier specifies a method modify with a
signature that asserts no global side effects and where the input flows into the output. The
method maxMod calculates the maximum of its arguments x and y after modifying y using
the Modifier object ymod. Its signature contains the same constraints as max in Figure 1
and adds the additional requirement that ymod is less confidential than the result.

The following code snippet implements the polymorphic max method with maxMod:
class Id extends Modifier { int modify ( int x) where { x ≤ ret } { return x; }}
// re - implementation of max
int max2( int x, int y) where {x ≤ ret , y ≤ ret} { return maxMod (x, y, new Id ()); }

Class Id implements an identity modification. Its modify method inherits the constraints
of the Modifier interface. In LJGS, freshly create objects are always public. By passing
a new Id instance to maxMod, max2’s signature is as flexible as that of max: the constraint
ymod ≤ret of maxMod is trivially satisfied and can be omitted from the signature of max2.

Semantically, the result of max2, or of max for that matter, always has a security level
that is the least upper bound of x and y. Thus, calling max2 with statically or dynamically
typed arguments makes little difference. In the following call to maxMod, however, a static
call is more conservative than a dynamic one.
class Erase extends Modifier { int[•] def; int modify ( int y) { return def; }}
/* ... */ z = maxMod (42 , y, new Erase (0)); /* ... */

Here we use an Erase modifier that replaces the value of y value with a public constant. The
signatures of maxMod and Erase.modify still assert a dependency on the argument y but
dynamically the connection is cut by the particular implementation of Erase.modify. Thus,
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prog ::= cld1 .. cldns

cld ::= classC extends cl{F1[a1] .. Fn[an]md1 ..mdm} cl ::= C | Object
a ::= • | A | ? md ::= M(var1, .. , varn)whereS andG{s return y}
x, y ::= var | this
e ::= x | x.F | N | x+ y | newC(x1, .. , xn) | (aW a′)x

s ::= var = e | x.F = y | var = x.M(y1, .. , yn) | s; s
| if [sl,L,G](x == y){s}{s} | while [sl,L,G](x == y){s} | (aV a′){s}

sl ::= unique identifiers for branching statements

Figure 5 Syntax of LJGS.

the following call succeeds without security problems when printPublic is a low-security
sink and secret a static high-security variable.
y = (? W HIGH) secret ; z = maxMod (42 , y, new Erase (0)); printPublic (( LOW W ?)z);

A corresponding static call without the typecasts would be rejected by the type checker:
maxMod’s signature would type z as HIGH, even though no information flows from y to z.

3 Syntax of LJGS Programs

LJGS extends Lightweight Java with annotations for security types and casts.
To better focus on the security aspects and to avoid notational clutter, we omit the Java

types and signatures for fields, local variables, and methods; we only write the annotations
relevant for security typing.4 Nevertheless, we assume that all programs are well-typed Java
programs where types, signatures, and declarations of local variables are erased.

An LJGS program (see Figure 5) consists of a set of class definitions, cld, followed by a
statement s, the entry point to the program. Class definitions consist of field declarations,
Fi[ai], and method declarations, mdi. Classes form a hierarchy with Object at its root. For
simplicity, all method and field names are unique and we assume that the relationship of
method overrides is externally defined.

A field declaration relates a field name with a security type a. A security type is either
the public type •, a static security level A, or the dynamic type ?.

A method definition declares the method name, M , a list of parameters, a set of method
constraints S, the global effect G, a statement s that serves as method body, and a single local
variable y for the return value. We write params (M), constraints (M), and effects (M) to
refer to the parameters, method constraints and effects, respectively. Method constraints and
effects are discussed in detail in Sections 4.1 and 4.3. Further local variables are implicitly
defined by their first assignment.

A variable x is either user-defined, var, or references the receiver of the method call, this.
An expression e can be a variable access, x, field access x.F , an integer constant, N , integer
addition, x+ y, object instantiation, newC(x1, .. , xn), or a value cast. A cast expression
(aW a′)x converts the value of x from source type a′ to destination type a. We omit a null
value for simplicity. It would be straightforward to add, however, as null behaves like an
integer constant with respect to information flow.

4 In an implementation, we have to write Java types and signatures as well as security annotations.



L. Fennell and P. Thiemann 9:9

S ::= {sc1, .. , scn}
sc ::= st ≤ st | st ∼ st
st ::= a | x | ret

C ::= {c1, .. , cn}
c ::= sec ≤ sec | sec ∼ sec
sec ::= st | α
tvar ::= x | ret | α

Figure 6 Components of method constraints and typing constraints.

A local update, var = e assigns the value of an expression e to a variable. A field update
x.F = y writes the value of y to field F of the object referenced by x. A method call
var = x.M(y1, .. , yn) stores the result of calling method M with arguments y1, . . . , yn in
variable var. The if and while statements are standard except for three annotations, a
source location sl and effects L and G. The role of the effects is further explained in Sections
4.3 and 5.4. The external write effect analysis that backs the dynamic IFC uses source
locations to identify branching statements. The role of the effect analysis is further explained
in Section 5.3. The examples of Section 2 do not show locations or effects on if statements as
they can be inferred. Finally, the context cast statement (aV a′){s} embeds a computation
with inner program counter type a′ into a context with outer program counter type a.

4 Security Constraints and Typing Rules

In LJGS, a programmer specifies information-flow properties by providing suitable method
signatures. As illustrated in Section 2, a signature relates parameters, return values, and
side effects of methods with security types. The type system ensures that the signature
specifications are adequate and that operations depending on statically typed parameters
and fields have no security leaks. Its design also ensures that the security levels of statically
typed values need not be tracked at run-time.

Security types form a lower semi-lattice induced by the following ordering.

I Definition 1 (Partial order on security types).

• ≤ a A ≤ A′ if A v A′ ? ≤ ?

By embedding the lattice of security levels into security types, LJGS supports the usual
notion of security subtyping: values with a low security level are implicitly promoted to a
higher one and contexts with a low-security program counter type admit computations that
perform side effects on a higher security level. To ensure a clean boundary between static
and dynamic code, implicit conversion between static types and the dynamic type is not
allowed; that is, the supremum of A and ? is not defined. However, the public security type
• may act polymorphically as the dynamic type and the static type at the bottom of the
security lattice (⊥).

4.1 Method Constraints
The constraints in a method signature represent the information flow dependencies between
parameters and return values: flows into the return value are represented by lower bounds
on a return symbol, whereas flow restrictions on the arguments are represented by upper
bounds on parameter symbols. Figure 6 defines the syntax for method constraints S. A
constraint relates its method constraint types, st1 and st2, either by subsumption, st1 ≤ st2,
or by compatibility, st1 ∼ st2. Method constraint types st are literal security types a or
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symbols for a method’s formal parameters x (including this) and return value, ret. For
simplicity, we require that all method constraints mention exactly the parameters of their
respective methods, as well as ret and this.

The constraint st1 ≤ st2 (“st2 subsumes st1”) specifies that st1 and st2 should be ordered
according to Definition 1. For example, the constraint HIGH ≤ ret requires the return value
of a method to be a statically known security level that is at least HIGH. The constraint
st1 ∼ st2 (“st1 is compatible with st2”) specifies that if st1 is dynamic then st2 should be
dynamic or public and vice versa. If both components are static, then they are compatible.

Compatibility constraints appear rarely in signatures, but here is an example. Consider a
method, const42, that contains the same statements as max, but subsequently cuts the flow
from parameters to the result by overwriting the x with a constant.

int const42 ( int x, int y) where { x ∼ y } {
i f (x ≤ y) {x = y;}
x = 42; return x;

}

Although const42 ignores the parameters and does not constrain ret, the parameters x and
y cannot have arbitrary types: If const42 is called with a dynamic first argument, the second
argument needs to be dynamic or public to enable the run-time system to track implicit flows
arising from the conditional. The compatibility constraint x ∼ y expresses this requirement.

4.2 Typing Constraints and Constraint Interpretation

To type-check a method’s body against its signature, LJGS’ typing rules (cf. Section 4.4)
generate sets of typing constraints, C. Typing constraints c (see Figure 6) are like method
constraints but relate statement constraint types, sec, which extend method constraint types
with local type variables α. Local type variables represent the flow-sensitive security types
for the local variables before and after the statements of a method body. A method body
complies to a signature if the generated typing constraints refine the information flow between
parameters, fields and return value that the signature represents.

We now formalize the intuitive notion of constraints that we used in the examples in
Section 2 and Section 4.1. In the following, we let C range over sets of typing constraints, α,
β, γ over local type variables, and we write α† for a fresh local type variable. We also let
tvar range over statement constraint types that are not literal security types (cf Figure 6).

I Definition 2 (Assignment, solution, solvability). An assignment is a total function from type
variables to security levels. An assignment θ is extended to a total function from components
to security levels, θ∗, by mapping security levels to themselves:

θ∗(sec) = a if sec = a θ(tvar) if sec = tvar

An assignment θ is a solution of a constraint set C, written θ |= C, iff (i) for all constraints
sec1 ≤ sec2 ∈ C, it holds that θ∗(sec1) ≤ θ∗(sec2), and (ii) for all constraints sec1 ∼ sec2,
it holds that there exists a type a such that θ∗(sec1) ≤ a and θ∗(sec2) ≤ a.

A constraint of the form • ≤ sec imposes no restriction on solutions. A compatibility
constraint that contains a static and a dynamic component, like ? ∼ LOW, is never solvable.

Type checking of LJGS requires that the typing constraints generated for method bodies
refine the constraints of the respective signatures. For method- and typing constraints,
refinement amounts to checking entailment of constraints modulo local type variables.
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I Definition 3 (Refinement of typing constraints). Let C1, C2 be two constraint sets. C2 refines
C1, written C2 <: C1, if for each solution θ |= C1 there exists an assignment θ′ such that (i)
θ′ |= C2, (ii) θ′(x) = θ(x) for all parameters x, and (iii) θ′(ret) = θ(ret).

Example: the constraints {LOW ≤ ret} and {LOW ≤ α, α ≤ ret, HIGH ≤ β} both refine the
(more restrictive) constraint {HIGH ≤ ret}.

4.3 Effects
Typing of LJGS method bodies includes the generation of two kinds of effects, L and G. The
local effect L is a set of variables. It appears as annotation on branching statements. If a
local variable is listed in L then the branching statement may modify that variable and thus
potentially taint it with information from the branch condition. The run-time system uses L
to update local variables in untaken branches.

The global effect G is a set of security types. It appears on method definitions and
branching statements. If a security type is listed in G, then the method or branching
statement may perform a side effect that leaks information into a (globally) accessible field
of that type. The type system uses G to track implicit flows to the heap.

There is a refinement relation for global effects that amounts to checking subsumption
contravariantly on the contained security types.

I Definition 4 (Subsumption of global effects). G2 refines G1, written G2 <: G1, if for all
a ∈ G2 there exists a′ ∈ G1 such that a′ ≤ a.

For example, the global effects {high, ?} and {low, high, ?} both refine {low, ?}. In contrast
{high, ?} does note refine G = {low}, as there is no type in G that is smaller or equal to ?.

4.4 Typing Rules
We are now in a position to define the rules for LJGS. In addition to the typing requirements
for Java-like languages, well typed LJGS programs satisfy three conditions: all method
constraints are satisfiable, the signatures of overriding methods of every subclass refine the
corresponding signatures of its superclass, and, for every method, LJGS’ statement typing
rules generate constraints and effects that refine the method’s signature.

The following definition captures the refinement requirement for subclassing:

I Definition 5 (Well-typed class hierarchy). Let constraints (M) and effects (M) be the
constraints and the effects that are given by the signature of method M . Method M1 refines
method M2 if constraints (M1) <: constraints (M2) and effects (M1) <: effects (M2).

The class hierarchy of an LJGS program is well-typed if for every method M1 that
overrides a method M2 method M1 also refines method M2.

The following judgment summarizes the requirements for method bodies:

Γ1 = [var1 7→ var1, .. , varn 7→ varn, this 7→ this]
γ ` s : Γ1 ⇒ Γ2, C, (L,G′) α = Γ2(y) C ∪ {α ≤ ret} <: S G′ <: G

`M(var1, .. , varn)whereS andG{s return y}

Its central requirement is the judgment γ ` s : Γ1 ⇒ Γ2, C, E which generates constraints
C and effects E for well-typed statements. Effects E have the form (L,G). Γ1 and Γ2 are
typing environments that map local variables to the type variables. The environments
connect a local variable with the variable that represents its type before and after a particular
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statement. Together with C, the initial environment Γ1 describes the typing constraints for
local variables before s is executed, whereas the final environment Γ2 describes local variable
types after executing s. The type variable γ represents the type of the program counter. The
method typing judgment pre-initializes the environment for the parameters and checks if the
generated constraints and effects refine the constraints and effects of the signature.

4.4.1 Statement Typing: Overview
Section 4.4.2 explains some of the typing rules in detail. A complete listing of rules can be
found in a technical report5. Although the details of the typing rules may seem complex the
basic principles behind the constraint generation are rather simple: To track explicit flows
in assignment statements, the rules generate constraints where each read variable or field
is a lower bound to the variable written. For example, the statement x = z.F; x = x + y
yields constraints that include C = {z ≤ β1, a ≤ β1, β1 ≤ β2, y ≤ β2}. Here, a is the type of
the field F , z and y are parameters and β1, β2 are the type variables that the environment
maps to x after the first and second assignment, respectively. The typing rules consider
implicit flows by checking with the program counter variable γ. Each assignment generates
an additional constraint where the program counter variable is a lower bound of the updated
variable. In the example, C would be extended with the constraints γ ≤ β1, γ ≤ β2. If, for
example, the result of a branch condition flows into the branches of an if statement, a new
program counter variable is introduced. Program counter variables establish the implicit
flows from local variables and parameters to results and field writes. For example, the
statement if (x = y) { z.F = 42; }, where x, y, z are parameters and the type of field
F is a, and the initial program counter type is γ, generates the constraints C2 = {γ ≤ γ′, x ≤
γ′, y ≤ γ′, γ′ ≤ z, γ′ ≤ a}. A method constraint like {x ≤ z, y ≤ z, z ≤ a} that subsumes C2,
take the flows through γ′ into account without mentioning the program counter variables.

Casts hide information flows from the type system. The constraints generated by
assignments with value casts do not connect the type of the right-hand-side variable with that
of the result. Instead, they connect the right-hand-side type with the source type of the cast
and the cast’s destination type with the result. For example, the statement x = (?W LOW)y
has the constraints {γ ≤ α1, y ≤ LOW, ? ≤ α2} which do not relate the type of y with that
of x (α1). Similarly to value casts, context casts break up the connection between program
counters and insert their respective source and destination types, instead.

4.4.2 Statement Typing: Details
Figure 7 gives the rules for assignments. The rule for local assignment, st-local, yields the
constraints for a fresh type variable, α†, that represents the type of the updated local variable
after the assignment. The final type environment is updated accordingly. An expression
typing judgment generates the constraints for explicit flows to α† while additional constraint
γ ≤ α† takes care of implicit flows. Writing to variable var generates a singleton local effect
{var}. No global effects are generated, as local updates are not visible outside of the method.

Rule st-putfield types write operations to a field F . It requires that F ’s type, indicated
by fsec (F ), subsumes the type of the source variable, the type of the accessed object reference
x, as well as the type of the program counter. The statement’s effect is a global effect with
F ’s type. As no local variables are modified, initial and final environments are identical.

5 http://proglang.informatik.uni-freiburg.de/projects/gradual/ljgs/ecoop2016-tr.pdf

http://proglang.informatik.uni-freiburg.de/projects/gradual/ljgs/ecoop2016-tr.pdf
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γ ` s : Γ1 ⇒ Γ2, C, E

st-local
Γ1, α

† ` e : C Γ2 = Γ1[var 7→ α†]

γ ` var = e : Γ1 ⇒ Γ2, C ∪ {γ ≤ α†}, ({var},∅)

st-putfield
C = {Γ(x) ≤ fsec (F ),Γ(y) ≤ fsec (F ), γ ≤ fsec (F )}

γ ` x.F = y : Γ⇒ Γ, C, (∅, {fsec (F )})

Figure 7 Statement typing: updates.

rt-new
a1 .. an = fieldsecs (C)

C = {Γ1(x1) ≤ a1, .. ,Γ1(xn) ≤ an}
Γ, α ` newC(x1, .. , xn) : C

rt-local
C = {Γ(x) ≤ α}

Γ, α ` x : C

rt-cast
a . a′

C = {Γ(x) ≤ a, a′ ≤ α}
Γ, α ` (a′ W a)x : C

? . a a . ? • . A ⊥ . •

Figure 8 Expression typing Γ, α ` e : C and castability a . a′ .

Figure 8 gives some of the constraint generation rules for expressions. The constraints for
object allocation, rule rt-new, state that constructor arguments flow into their corresponding
field. The meta-function fieldsecs yields the security types of a class’ fields. The new object
reference is considered public on creation. Constants (rule not shown) are also considered
public in LJGS and impose no constraints. For variable access, rule rt-local requires that
the result type subsumes the type of the accessed local variable. The rules for addition and
field access (not shown) are similar. The rule for casts, rt-cast, requires that the result
type subsumes the destination type of the cast and that the source type subsumes that of the
accessed variable. Additionally the source type needs to be castable into the destination type,
written a . a′. Castability, defined in Figure 8, rules out casts that are either unnecessary
or are guaranteed to fail: casts from A to A′ trivially succeed when A v A′ and fail when
A 6v A′. Casts from A to • also trivially fail when A 6= ⊥.

Figure 9 shows rules for statements that create new contexts. Rule st-call in Figure 9
covers method calls. It extracts the formal parameters, the method constraints, and the
effects of the callee M with the operations params (M), constraints (M), and effects (M).
Then, it instantiates the information flows stated in the method constraints for the current
context by simultaneous substitution of parameters with arguments and of ret with the
fresh local type variable α†. Otherwise the rules behave like assignments. The global effect
of the method signature is treated analogously as in rule st-putfield. The operation⊔γG := {γ ≤ a | a ∈ G} generates the corresponding constraints. The rule for conditionals,
st-if, types the branches s1 and s2 under a fresh program counter variable β†. Types assigned
to β† need to subsume the old program counter type γ and the types of the condition variables
x and y (cf. C′). The effects of the conditional is the union of the effects of both branches.
The final environment is a join of the final environments of s1 and s2. The join operation
Γ′2 t Γ′′2 generates additional constraints to be included in the final constraints C.
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st-call
S = constraints (M) G = effects (M) var1, .. , varn = params (M)

C′ = S[this 7→ Γ1(x), var1 7→ Γ1(x1), .. , varn 7→ Γ1(xn), ret 7→ α†]

C = C′ ∪ {Γ1(x) ≤ α†, γ ≤ α†} ∪ ⊔γG Γ2 = Γ1[var 7→ α†]

γ ` var = x.M(x1, .. , xn) : Γ1 ⇒ Γ2, C, ({var},G)

st-if
β† ` s1 : Γ1 ⇒ Γ′2, C1, (L1,G1)

β† ` s2 : Γ1 ⇒ Γ′′2 , C2, (L2,G2) C′ = {γ ≤ β†,Γ1(x) ≤ β†,Γ1(y) ≤ β†}
Γ2, C′′ = Γ′2 t Γ′′2 C = C1 ∪ C2 ∪ C′ ∪ C′′ L = L1 ∪ L2 G = G1 ∪ G2

γ ` if [sl,L,G](x == y){s1}{s2} : Γ1 ⇒ Γ2, C, (L,G)

st-cxcast
β† ` s : Γ1 ⇒ Γ2, C′, (L,G) C = {a ≤ β†, γ ≤ a′} ∪ C′ a′ . a

γ ` (a′ V a){s} : Γ1 ⇒ Γ2, C, (L, {a′})

Figure 9 Statement typing: branching, method calls and context casts, γ ` s : Γ1 ⇒ Γ2, C, E .

I Definition 6 (Join of typing environments). An environment Γ together with a constraint
set C form the join of two environments Γ1 and Γ2, written Γ, C = Γ1 t Γ2, iff

C = {Γ1(x) ≤ αx | x ∈ dom(Γ1)} ∪ {Γ2(x) ≤ αx | x ∈ dom(Γ2)}
Γ = {x 7→ αx | x ∈ dom(Γ1) ∪ dom(Γ2)}

where {αx | x ∈ dom(Γ1) ∪ dom(Γ2)} is a set of fresh type variables, one for each variable in
the domain of Γ1 and Γ2.

Rule st-while (not shown) works similarly to rule st-if. Rule st-cxcast deals with the
cast between program counters: The program counter type of the cast context needs to
subsume the outer type a′ given in the cast. The outer type also defines the global effect of
the statement. The body of the cast is typed under a fresh program counter type variable
β†. The constraints require that β† subsumes the inner type a. Together with the typing
rules st-putfield and st-call, this restriction guarantees that the global effect G of the
body is subsumed by {a}. Also, a′ has to be castable to a.

The rule for sequences (not shown) is unsurprising: it combines constraints and effects of
its components, as expected.

5 Dynamics

To enforce non-interference in dynamically checked code, LJGS’ dynamics propagate and
check run-time security labels. Before explaining the full operational semantics, we first
discuss the interpretation of security labels and their operations.

5.1 Security Labels
Security labels (see Figure 10) are the mirror image of security types: a security label is
either the static label, S, a dynamic label, D(A), carrying a security level or, the public label,
•. The level of a static label is absent at run-time because it has been checked by the type
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ς, `, g ::= S | D(A) | •
s ::= . . . | done
E ::= 〈〉 | E; s | cx [L,G,R, `]{E}

| cx [a/`/g V a′/`/g′]{E}
| call [M, var, x, y1, .. , yn, L]{E}

rs ::= E(s)

v ::= rv[ς]

rv ::= oref | N
L ::= ∅ | L⊕ x 7→ v

| L⊕ x 7→ null
µ ::= ∅ | µ⊕oref 7→ obj

Figure 10 Dynamic domains and run-time statements.

system already. The dynamic subset of security labels form a lattice based on the attached
security levels. The entire set of labels forms a lower semi-lattice with • as bottom element,
analogously to the semi-lattice of security types.

During the execution of an LJGS program, every value carries a value label ς. To track
implicit flows, the semantics maintains two labels for each execution context, a local program
counter label, `, and a global program counter label, g. For value labels, this security level
indicates the current run-time confidentiality of a labeled value. A program counter label
approximates the confidentiality of information that implicitly flows into the current program
counter. Thus, the dynamic label on a program counter gives a lower bound on the side
effects.

When information flows into a value or program counter from multiple sources, the
dynamic semantics employs a partial join operation on the labels involved. The judgment
ς := ς1 t ς2 determines the label ς that joins ς1 and ς2.

S := StS D(A1 tA2) := D(A1) tD(A2) ς := • t ς ς := ς t •

Joining static labels is trivial. Dynamic labels are joined by joining the security levels they
contain. The public label is a neutral element for the join operation. Joining static and
dynamic labels is undefined, as the security level of a static labeled entity cannot be recovered
at run-time. A well typed LJGS program only performs well-defined joins.

5.2 Configurations
The execution of a method manipulates configurations rs/L/µ of run-time statements
rs, stack frames L, and heaps µ. Run-time statements, defined in Figure 10, consist of
execution contexts E applied to source statements s. For technical reasons, the statements
previously defined in Section 3 need to be extended with the marker statement done. An
execution context is a hole 〈〉, a sequence of an execution context and a source statement,
a run-time security context cx [L,G,R, `]{E}, a cast context cx [a/`/g V a′/`′/g′]{E}, or a
calling context call [M,var, x, x1, .. , xn, L]{E}. The run-time statement 〈done〉 signals that
execution of the current context is complete. A sequence context focuses the first component
of a statement sequence. A run-time security context remembers metadata that is needed to
track the dynamic implicit flows that arise from branching statements and virtual method
calls: the program counter label ` that is active during its execution, and local and global
effects, L, G, that were analyzed for its body. It also remembers a set of field references R
which we explain in Sections 5.3 and 5.4. A cast context stores the old and new program
counter types and labels during the execution of a block subject to a context cast. A calling
context stores the method name and stack frame of the callee and the return variable of
the caller during a method call. It also contains the method call receiver x and the call
arguments x1, . . . , xn for technical reasons.
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A stack frame is a finite map from local variables to values. Stack frames have a fixed size
and bind exactly the local variables that occur in the body of their method. Uninitialized
variables are bound to null.

A value consists of a raw value rv and value label ς. A raw value is either a number
N ∈ N or an object reference, oref. A heap is a finite map from references to objects. An
object consists of its run-time class C and the values of its fields.

5.3 Effect Analysis Support for Dynamic IFC
Information flow control in the dynamic fragment of LJGS copes with implicit flows by relying
on statically analyzed information about write effects in untaken control flow branches.6 As
in Russo and Sabelfeld’s work [23] the basic principle is to upgrade the labels of dynamic
variables and fields if they may be updated in the untaken branches.

For upgrades of local variables the typing rules generate sufficient information with the
local effect L. For object oriented languages like LJGS, obtaining precise information about
heap write effects is more involved. Including such an analysis in LJGS would go beyond
the scope of this paper. Instead, we rely on an external static analysis for write effects
that provides (abstract) references to potentially updated fields in branching statements
and method calls. In the semantics, we encapsulate the analysis result in the meta-function
call R = updaterefs (sl, L, µ). The function updaterefs takes as arguments the location of a
branching statement (or the name of a method), a stack frame, and a heap, and returns a
set R of (concrete) field references oref.F . The result R contains references to all fields that
may be updated by the statement labelled sl, the concretization of the externally analyzed
write effect for L and µ. The technical report gives a precise specification of updaterefs.

There are a number of interprocedural points-to analyses for languages with heap references
[18, 28] from which a write effect analysis suitable for implementing updaterefs can be derived.
We limit the static analysis to write effects for simplicity; it should also be possible to directly
incorporate points-to information into the dynamic IFC policy, as illustrated by Moore and
Chong [20], to gain precision.

5.4 Reduction rules
The judgment `; g ` rs/L/µ −→ rs′/L′/ µ

′ defines the small step reduction of a configuration
under the local program counter label ` and global program counter label g. Apart from the
rules for casts, reduction mostly follows the principles of other dynamic IFC systems [3, 23].
Figures 11 and 12 show some of the rules. The technical report contains the full semantics.

Figure 11 shows the rules for evaluating expressions and for updating local variables. The
judgment ` e/L/µ ⇓ v/ µ′ evaluates expression e to a result and an updated heap. Rule
step-upd-plus illustrates evaluation. It reads the operands from the stack frame L, and
returns a raw value, here N +N ′, that has an updated security label attached. The updated
label is the join of the operands’ labels. Allocations, covered by rule stepupd-new, extend
the heap with a fresh reference which has the public label. Other expressions that are not
shown work similarly. A cast expression converts the value label of its subject according to
the label conversion judgment aV a′ ` ς V ς ′, also defined in Figure 11. Label conversion

6 IFC techniques where the label propagation relies on static analysis are typically called hybrid IFC.
Given our setting, we still refer to these approaches as dynamic IFC because they are based on run-time
propagation of security labels and because LJGS employs such an approach in the dynamically typed
fragments of programs.
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stepupd-plus
N [ς1] = L[x]

N ′[ς2] = L[y] ς := ς1 t ς2
` x+ y/L/µ ⇓ N +N ′[ς]/ µ

stepupd-new
v1 = L[x1] .. vn = L[xn]

oref′ = fresh v′ = oref′[•]
µ
′

= µ⊕oref′ 7→ {C, v1 .. vn}
` newC(x1, .. , xn)/L/µ ⇓ v′/ µ′

stepupd-cast
rv[ς] = L[x] a′ V a ` ς V ς ′

` (aW a′)x/L/µ ⇓ rv[ς ′]/ µ

estep-local
` e/L/µ ⇓ rv[ς]/ µ

′

ς ′ := ς t ` L′ = L[var 7→ rv[ς ′]]

`; g ` 〈var = e〉/L/µ −→ 〈done〉/L′/ µ′

aV a ` ς V ς AV ? ` ς V D(A)

A v A′

?V A′ ` D(A) V S •V A ` ς V S

•V ? ` ς V D(⊥) ⊥V • ` S V • ?V • ` D(⊥) V •

Figure 11 Local updates (excerpt) ` e/L/µ ⇓ v/ µ′ and label conversion a′ V a ` ς ′ V ς .

changes a label ς that corresponds to a cast’s source type a to a label ς ′ corresponding to the
destination type a′. A trivial cast results in a trivial label conversion. The conversion from a
static type to the dynamic type creates a dynamic label that contains the source type as
security level. A static-to-dynamic conversion always succeeds in a well-typed LJGS program.
A conversion from dynamic to a static type A′ returns the static label, if the dynamic source
label contains a security level subsumed by A. Otherwise, the static-to-dynamic conversion
fails. The public type may be converted to a dynamic type and a low-security label or any
static type. Converting to the public type requires either a static source type of bottom or
a dynamic bottom label. Finally, rule estep-local stores the result of an evaluation in a
local variable after joining its label with the current program counter label.

Figure 12 shows illustrative cases of reductions that enter and leave contexts. Rule
estep-if-true covers if-statements where the branch condition is satisfied. Selecting a
branch potentially creates an implicit flow from the condition to the execution context of the
branch. Thus, the reduction results in a run-time security context that stores a program
counter label `′′ which includes the value labels of the operands and the label of the program
counter in the outer context. The run-time context also stores the effect annotations of
the conditional and the field reference set R that points to the heap locations that are
potentially modified during the execution the untaken branch s2. The rules for failing
conditions, while loops and method calls (not shown) are similar. Method calls additionally
create a calling context call [M, var, x, y1, .. , yn, L]{E} that initializes new stack frames and
copies the method result into the caller’s stack frame in a straightforward way.

Rule estep-cx-done exits the run-time context and, to counter illegal implicit flows,
performs a preemptive upgrade of local variables and fields mentioned in the context. The
meta functions upgr(µ,R,G, `) and upgr(L,L,G, `) perform these upgrades for all field
references in R and all (dynamic) variables in L, respectively. The functions use the program
counter label for upgrading, if it is dynamic. But, due to context casts, upgrades may also
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estep-if-true
rv[ς1] = L[x]

rv[ς2] = L[y] ς ′ := ς1 t ς2 `′′ := ` t ς ′ R = updaterefs (sl, L, µ)

`; g ` 〈if [sl,L,G](x == y){s1}{s2}〉/L/µ −→ cx[L,G,R, `′′]{〈s1〉}/L/µ

estep-cx-done
µ
′

= upgr(µ,R,G, `′) L′ = upgr(L,L,G, `′)
`; g ` cx[L,G,R, `′]{〈done〉}/L/µ −→ 〈done〉/L′/ µ′

estep-cxcast
aV a′ ` `V `′ aV a′ ` g V g′

`; g ` 〈(aV a′){s}〉/L/µ −→ cx[a/`/g V a′/`′/g′]{〈s〉}/L/µ

Figure 12 Reduction: entering and leaving contexts (excerpt) `; g ` rs/L/µ −→ rs′/L′/ µ′ .

be necessary in static contexts where the program counter label ` carries no information. For
example, consider the following statement that contains a context cast inside of a conditional:

i f ( this .high) {( HIGH V ?) { this .dyn = 42; }}

Here, the type of field high is the static level HIGH and that of dyn is dynamic. According to
the IFC principle outlined above, the semantics should upgrade this.dyn after executing
the statement, as a dynamic field is conditionally updated with a high-security program
counter. In those situations, the upgrade functions use the greatest lower bound of the global
effects G for upgrading. This choice is safe because the source type of context casts are
always reflected in the global effects (cf. typing rule st-cxcast). The technical report gives
a complete definition of the upgr functions.

Context casts, covered by rule estep-cxcast, determine the local and global program
counter labels for executing their body with the same label conversion judgment used for
value casts. A cast execution context stores the converted and original types and labels.
Reduction under a run-time security context, covered by rule estep-cx-step, uses the stored,
modified program counter label. The global program counter label is joined with the stored
label such that global effects also respect the augmented context. When a run-time security
context is completely executed, it is discarded (not shown). Cast contexts (not shown) work
similarly, but use the stored converted labels to reduce their bodies. Sequence execution
contexts, also not shown, completely execute the first context before moving on to the second.

6 Execution Model

The dynamics of LJGS attach security labels to static and dynamic values alike. Fortunately,
LJGS is designed such that static labels can be erased in a realistic implementation. In this
section, we sketch a compilation strategy from Java with LJGS security annotations to plain
Java. The actual implementation of a compiler to bytecode is ongoing work.

Figure 13 shows an LJGS class with a dynamic field F, a statically LOW field G and a
method m that includes typecasts. LJGS specific annotations and casts are coloured blue.
The Figure also shows, in red, the Java code that an LJGS compiler would produce according
to our execution model. The blue parts would be removed from the the compilation result.
First, the required datastructures are brought into scope: Line 5 retrieves a LocalMap locals
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1 class C { int F[?]; int G[LOW];
2
3 void m( int y) where { y ∼ ? }
4 and {?, LOW} {
5 LocalMap locals = getCall ();
6 ObjectMap objects = getObjects ();
7 PcStack lPC = new PcStack ();
8 PcStack gPC = getGlobalPC ();
9 int g = this .G;

10 int x = (? W HIGH) g;
11 locals .put("x", Levels .HIGH );
12 x = x + y;
13 locals .put(
14 "x", join( locals .get("x"),
15 locals .get("y")));

16 lPC.push( locals .get("x"));
17 gPC.push( locals .get("x"));
18 i f [ this .F] (x == 5) {
19 this .F = 42;
20 objects .put(this , "F", gPC.get ());
21 }
22 objects .put(this , "F",
23 join( objects .get(this , "F"),
24 gPC.get ()));
25 lPC.pop (); gPC.pop ();
26 int y = this .F
27 locals .put("y", objects .get(this , "F"));
28 cast( locals .get("y"), Level .LOW );
29 this .G = (LOW W ?) y;
30 }
31 }

Figure 13 An LJGS class compiled to plain Java code.

that maps local variables to security levels. Each executing method call possesses its own
LocalMap. The caller initializes the LocalMap with the security levels of the dynamic method
arguments and publishes it for the callee using the method setCall as illustrated with the
following code fragment:
int x = ... /* some dynamic variable */
LocalMap localsForM = new LocalMap ();
localsForM .put("x", locals .get("x"));
setCall ( localsForM );
m(x);

The globally accessible ObjectMap objects (line 6) is a weak map from objects and field
names to security levels which stores the dynamic labels of all non-null dynamic fields.

Lines 7 and 8 retrieve the PcStack objects to track the levels of dynamic local and
global program counters. A PcStack is a stack of security levels that stores the level of each
dynamic branch condition or method call receiver. The join of all security levels on a stack,
calculated by PcStack.get(), yields the level of the current, dynamic program counter. The
local program counter stack is freshly initialized for the method while the global program
counter stack is available through the static method getGlobalPC().

Line 9 is the first statement taken from the original LJGS program. As it is a static
update, no instrumentation is needed. Lines 10 and 11 perform the cast from HIGH to ?.
As casts from static to dynamic never fail, the value of g is copied to x. Line 11 stores the
source level mentioned in the cast for x in locals. Similarly, line 14 updates the local map
for x with the join of the labels of x and y, using locals and the static method join.

Line 18 starts a context with a dynamic program counter. Thus, the dynamic label of the
tested variable x gets pushed to the local and global PcStacks. The field update in line 19
with a low-security constant requires an update to the object map with the label of the global
pc (line 20). Line 22 forms the join point for the conditional. To protect against implicit
flows, the label of field F is joined with the level of the global program counter. Afterwards,
line 25 pops the program counter stacks. The cast of the dynamic variable to the static
security level LOW compiles to lines 28 and 29. The static method cast checks if y’s label can
be converted to LOW. If not, as is the case in this example, the program is aborted. Otherwise
line 29 performs the field update no further dynamic security tracking of y’s value.

The compilation of LJGS can rely on the typing derivation of m to determine whether
code is dynamic or static and thus whether label tracking code should be emitted: For
example, line 9 in Figure 13 does not require tracking code as it is a static update with a
public program counter, whereas line 10 is a dynamic update that needs to be tracked.
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Polymorphic methods, like method max of Figure 1, can be called with dynamic or static
arguments. To avoid overhead in the static case, a compilation procedure can generate
different versions of max, say max_STATIC_STATIC and max_DYN_DYN, for static and dynamic
calls, respectively. The Java method max_STATIC_STATIC would not contain any tracking
code whereas max_DYN_DYN would track all updates and program counters. The corresponding
results are not shown here for lack of space but included in the technical report. It is not
necessary to generate versions for other combinations of parameters, like max_STATIC_DYN,
as they are ruled out by the method constraints.

7 Unanalyzable Code

LJGS, as presented in the previous sections, relies on two kinds of static analysis: A type
analysis checks the typing rules of Section 4. It requires all classes to be annotated with
field types and method signatures, and checks all method bodies for compliance with their
signature. Additionally, a write effect analysis supports the dynamic IFC (cf. Section 5.3).

From a practical standpoint, a major use case for gradual typing is the integration of
legacy code that is hard to type and analyze statically. In addition, one might expect
that dynamically typed code could take advantage of highly dynamic language features like
reflection. This section explains how to extend LJGS to accommodate for code that cannot
be easily annotated or analyzed. We require, however, that it is possible to instrument
this unanalyzable code, either by source- or bytecode-transformation or by integrating a
corresponding monitor to the virtual machine. We thus do not consider legacy code that is
impractical to instrument, like precompiled C-libraries.

7.1 Default, Dynamic Type Annotations
The type-checking of unanalyzeable code can be avoided by assuming dynamic annotations
by default and using dynamic IFC during its execution. Consider the following example
where LegacyClass represents a class that should not be subject to (security-) type-checking.

1 class LegacyClass { int legacyField ; int legacyMethod ( int x, int y) {...}}
2 class LJGSClass {void m() {z = reflectiveCall ("any" + " Method ", x, y); }}

The default annotation for the field legacyField would be ? and the default constraints
and effect for method legacyMethod would be {? ≤ ret, x ≤ ?, y ≤ ?} and {?}, respectively.
As long as legacyMethod does not use LJGS specific features like casts and only accesses
other legacy classes, the method’s body will comply with the default signature; type-checking
would only generate trivial constraints that classify all entities as dynamic.

Care has to be taken in the presence of abstraction-breaking features like reflection which
could allow legacy methods to access statically typed fields and methods of LJGS classes that
derive from legacy classes. If these features are required, the run-time enforcement needs to
be extended to dynamically block access to non-legacy classes.

A reflective call, as illustrated in line 2, has to be treated in the same way as legacy
code. Thus, the run-time enforcement needs to check dynamically if the called method, here
anyMethod, complies to a default signature.

7.2 Avoiding the Analysis of Write Effects
If a precise write effect analysis is infeasible for legacy code, a more conservative approximation
can be used, for example, by assuming that all fields of all exposed classes of a legacy Java
library are updated when calling a legacy method.
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Another possibility is to use a purely dynamic enforcement, like Austin and Flanagan’s
non-sensitive-upgrade policy (NSU, [3]). However, a purely dynamic approach may report
false positives that would pose no problems for flow-sensitive static typing [23] whereas a
hybrid approach, as the one taken by LJGS, is strictly more flexible.

Instead of falling back to purely dynamic IFC, it is possible to assert a particular write
effect for legacy method calls and reflective calls and check compliance dynamically using a
dynamic effect analysis, like access permission contracts [15].

8 Correctness

To guarantee that the statics and dynamics presented in the previous sections enforce security
according to our attacker model, we need to prove termination insensitive non-interference.
As the dynamics only check the security labels of dynamically typed values, non-interference
also relies on the soundness of the type system which guarantees that statically typed data
is not responsible for program crashes caused by security violations. We always implicitly
assume that an LJGS program is well-formed according to the standard typing principles
of Java. In particular we rely on the fact that no variables or object fields are accessed
uninitialized. Also, we implicitly assume that the class hierarchy in an LJGS program is
well-typed, according to Definition 5. Proof sketches of the theorems stated in this section
can be found in the technical report.

8.1 Soundness of the type system
Simple typing judgments for values and annotations connect static and dynamic domains.

I Definition 7 (Typing of Dynamic Domains). A security label ς has type a, written
` ς : a, if either (i) ς = •, (ii) ς = D(A) and a = ?, or (iii) ς = S and a = A. A security
label is typed by a type variable α under constraints C, written C ` ς : α, if there exist
a and θ such that θ |= (C ∪ {α ≤ a}) and ` ς : a. A stack frame L is well-typed under
constraints C and environment Γ, written Γ, C ` L if for all bindings x 7→ rv[ς] in L it holds
that C ` ς : Γ(x). This judgment essentially checks that dynamically typed variables have
either dynamic or public labels. A heap µ is well-typed, written ` µ, if for all field values it
contains, the value label has the type of the corresponding field declaration.

The type soundness and non-inference lemmas require a typing judgment for execution
contexts, γ, `, g ` E : Γ1 ⇒ Γ2, C, E|`′, g′. The judgment describes the typing environment
of the execution context, and, given its program counter labels `, g, it defines the program
counter labels `′, g′ that are active at its hole. For example, starting with labels `, g, the
context cx [L,G,R, `′]{〈〉} has the labels `′ and `′ t g active at its hole. The constraints,
effect and environments that make up a context typing are the same as for statement typing.
The technical report contains the corresponding rules. They are unsurprising; the premises
for each context (e.g. cx) are similar to those of the statements that enter the context (if).

A typed configuration E(s)/L/µ combines the typings of its individual components.
Thus we write γ, `, g ` E(s)/L/µ : Γ1 ⇒ Γ2, C, E|`′, g′ if (i) Γ1, C ` L (ii) ` µ and γ, `, g `
E : Γ1 ⇒ Γ2, C, E|`′, g′, (iii) γ ` s : Γ1 ⇒ Γ2, C, E and C ` ` : γ (iv) ` ≤ g. As usual for a
gradually typed system, a well typed LJGS program guarantees a refined progress property.
While (security related) run-time errors in static code are ruled out, a program may run into
a dynamically stuck configuration where dynamic code goes wrong.

I Definition 8 (Dynamically stuck). A well-typed configuration γ, `, g ` E(s)/L/µ : Γ1 ⇒
Γ2, C, E|`′, g′ is dynamically stuck iff it attempts either: (i) an insecure value cast from
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dynamic to static, s = (var = (aW ?)x), a ∈ {•, A}, L[x] = rv[D(A′)], and a 6≤ A, or (ii) an
insecure context cast from dynamic to static s = ((?V a){s′}), `′ = D(PC), a ∈ {•, PC}and
PC 6v A

The progress result for LJGS states that well typed programs that are not able to make a
reduction step are either done, or dynamically stuck. The preservation result is standard: a
well typed LJGS configuration that can be reduced yields another well-typed configuration
with possibly more permissible constraints and effects. The precise definitions for progress
and preservation are given in the technical report.

8.2 Non-Interference
The non-interference theorem for LJGS states that methods run under low-equivalent envir-
onments, that is, environments that an attacker cannot distinguish, produce low-equivalent
results. First we define the notion of low-equivalence and subsequently state the non-
interference theorem. In the following, we assume that low is the upper bound of security
levels that an attacker can observe. We refer to a security level A as high if A 6v low.

I Definition 9 (Low-equivalent values, objects, heaps and stack-frames). Let B be a (partial)
bijective mapping on heap references (orefs). Two values rv1[ς], rv2[ς] are equivalent under
B, written rv1[ς] =B rv2[ς] iff either rv1/2 are equal integers, or rv1 ∈ dom (B) and B(rv1) =

rv2. Two objects obj1, obj2 are low-equivalent under B, written obj1 =B,low obj2, if for all
fields F where getfield (F, obj1) 6=B getfield (F, obj2) it holds that either (i) fsec (F ) = A and
A 6v low, or (ii) fsec (F ) = ?, getfield (F, obj1) = rv1[D(A1)], getfield (F, obj2) = rv1[D(A2)],
and A1 6v low and A2 6v low. Two heaps µ1, µ2 are low-equivalent, written µ1 ≡B,low µ2

if (i) dom (µ1) ⊇ dom (B) and dom (µ2) ⊇ dom (B−1), and (ii) the objects stored at the
references listed in B are low-equivalent with respect to B. Two environments L1, L2

are low-equivalent with respect to environment Γ, solution θ, and bijection B, written
L1 ≡Γ,θ,B,low L2 if dom (L1) = dom (L2), L1[this] = L2[this], and for all var ∈ dom (L1)

either (i) L1[var] = rv1[ς1],L2[var ] = rv2[va2]], and rv1 =B rv2, (ii) θ(Γ(var)) = A, and
A 6v low, or (iii) θ(Γ(var)) = ? and ς1 = D(A1), ς2 = D(A2), and A1 6v low and A2 6v low

I Theorem 10 (Non-interference). Let E(s)/L1/ µ1, E(s)/L2/ µ2 be two configurations with
typings γ, `, g ` E(s)/Li/ µi : Γ1 ⇒ Γ2, C, E|`′, g′, (i ∈ {1, 2}) and solution θ |= C. Let B
be a bijection such that L1 ≡Γ1,θ,B,low L2 and µ1 ≡B,low µ2. Given two executions `; g `
E(s)/Li/ µi −→∗ 〈done〉/L′i/ µ

′
i there exists a bijection B′ ⊇ B such that L′1 ≡Γ2,θ,B′,low L′2

and µ′1 ≡B′,low µ
′
2.

9 Related Work

There is a large body of prior work on security type systems that ultimately goes back to
Denning and Denning’s classic paper on information flow security [11]. We focus on discussing
works on security type systems and dynamic security enforcement designed for “main-stream”
programming languages and defer the reader to the overview articles of Sabelfeld and Myers
[24] and Hedin and Sabelfeld [16] for other aspects of language based security.

FlowCaML [22] is an ML dialect supporting static polymorphic security types with
security constraints similar to those of LJGS. FlowCaML additionally supports higher-
order types and complete type inference. Sun, Banerjee and Naumann describe a modular
polymorphic type system for a Java-like, object oriented language [30]. The polymorphic
method signatures are comparable to the static fragment of LJGS, but they do not specify a
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constraint-based typechecking algorithm. Instead, they apply a standard algorithm to all
instances of signatures. Their system additionally supports class definitions with security
type parameters and full type inference. Both approaches seem compatible with LJGS and
we plan to investigate how they could be adapted for gradual security typing in future work.
Barthe et al describe an information flow type system for Java Bytecode and develop a
corresponding certified type checker [7]. Their system supports Objects, virtual, monomorphic
methods, exceptions and arrays. JIF [21] is an extension to Java with static security types
and first-class dynamic security-labels. In JIF, security types may depend on dynamic labels
and the interaction of labels and types is verified statically during type checking. In contrast,
LJGS does not restrict dynamically labeled values statically but enforces non-interference at
run-time. Also, while JIF’s dynamic labels may be used to implement some form of ad-hoc
dynamic IFC, LJGS aims for the integration of principled dynamic IFC techniques.

LJGS’ run-time security enforcement for values with dynamic labels is an adaption of
Russo and Sabelfeld’s technique for hybrid information flow control [23]. Chandra and Franz
[9] present an implementation of a hybrid IFC framework for Java Bytecode that is based on
the same principles and closely resembles LJGS’ enforcement for dynamic fragments. The
updaterefs function that supports dynamic IFC in LJGS can be implemented with off-the-
shelf points-to analysis like that proposed by Khedker et al [18]. We refer the interested
reader to the survey paper of Smaragdakis and Balatsouras [28] for further related work on
static points-to analysis. Moore and Chong [20] studied the applicability of static points-to
analyses to improve the efficiency of hybrid IFC. Using the points-to information in the
hybrid monitor allows their system to infer when heap values do not need tracking anymore.
Although their ideas seem compatible with LJGS, our hybrid enforcement settles for an
analysis of simple write effects and we rely on explicit static typing for optimization.

Austin and Flanagan propose a series of sound, purely dynamic IFC techniques, the most
basic being the no-sensitive-upgrade policy, that do not rely on prior static analysis [3, 4, 5].
These approaches are also compatible with LJGS’ type system.

Recently, Bedford et al proposed a type system for a simple imperative core language
that also includes types for entities with statically unknown security levels [8]. Their work
focuses on inferring program points for run-time instrumentation based on the typing results.
In contrast, LJGS’ focus is on giving the programmer explicit control over the boundaries
between static and dynamic checking.

The original work on gradual typing [32, 19, 27, 34] focuses on simple types with extensions
like refinement predicates, polymorphism [1], and union types [33]. More recently, researchers
started to gradualize type systems that check properties unrelated to the structure of values,
like type annotations [14], ownership [25], typestate [35], and session types [31]. Gradual
security type systems also fall into this category. Disney and Flanagan study gradual security
types for a pure lambda calculus [12] and we describe MLGS, a system for a calculus with
ML style references, in our prior work [13]. Compared with LJGS treatment of object fields,
MLGS treats mutable references in a more liberal way because it admits casts between
reference types with static and dynamic content. However, this liberality comes at the cost
of requiring pervasive run-time labelling even for static values and it blurs the separation of
static and dynamic code, which, although sound, runs contrary the execution model and
design goal of LJGS.
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10 Conclusion and Future Work

LJGS is a sequential Java core calculus with gradual security typing. The calculus strictly
separates statically verified and dynamically checked code which enables running statically
checked code without run-time security labels. Methods may have polymorphic security
signatures that accept static or dynamic arguments.

There are several avenues for future work. We are currently implementing the type
checking and run-time enforcement for (sequential) Java based on the principles of LJGS. A
type checker is already available as an accompanying artifact to this paper but the run-time
instrumentation is still work in progress. With this implementation we want to investigate the
practicality of the type system for realistic applications and to evaluate different compilation-
and execution strategies for dynamic code. We also want to extend the system with security
type parameters for classes and methods, and type inference.
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“Java generics are 100% pure syntactic sugar,
and do not support meta-programming”1

Abstract
This paper is a theoretical study of a practical problem: the automatic generation of Java
Fluent APIs from their specification. We explain why the problem’s core lies with the expressive
power of Java generics. Our main result is that automatic generation is possible whenever the
specification is an instance of the set of deterministic context-free languages, a set which contains
most “practical” languages. Other contributions include a collection of techniques and idioms
of the limited meta-programming possible with Java generics, and an empirical measurement
demonstrating that the runtime of the “javac” compiler of Java may be exponential in the
program’s length, even for programs composed of a handful of lines and which do not rely on
overly complex use of generics.
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1 Introduction

Ever after their inception2 fluent APIs increasingly gain popularity [20,28,31] and research
interest [16,29]. In many ways, fluent APIs are a kind of internal Domain Specific Language:
They make it possible to enrich a host programming language without changing it. Advan-
tages are many: base language tools (compiler, debugger, IDE, etc.) remain applicable,
programmers are saved the trouble of learning a new syntax, etc. However, these advan-
tages come at the cost of expressive power; in the words of Fowler: “Internal DSLs are
limited by the syntax and structure of your base language.”3. Indeed, in languages such
as C++ [37], fluent APIs often make extensive use of operator overloading (examine, e.g.,
Ara-Rat [23]), but this capability is not available in Java [4].

1 Found on stackoverflow: http://programmers.stackexchange.com/questions/95777/
generic-programming-how-often-is-it-used-in-industry

2 http://martinfowler.com/bliki/FluentInterface.html
3 M. Fowler, Language Workbenches: The Killer-App for Domain Specific Languages?, 2005
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from("direct:a").choice()
.when(header("foo").isEqualTo("bar"))

.to("direct:b")
.when(header("foo").isEqualTo("cheese"

))
.to("direct:c")

.otherwise()
.to("direct:d");

create
.select(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME, count

())
.from(AUTHOR)
.join(BOOK).on(AUTHOR.ID.equal(BOOK.AUTHOR_ID))
.where(BOOK.LANGUAGE.eq("DE"))
.and(BOOK.PUBLISHED.gt(date("2008-01-01")))
.groupBy(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
.having(count().gt(5))
.orderBy(AUTHOR.LAST_NAME.asc().nullsFirst())
.limit(2)
.offset(1);

(a) Apache Camel (b) jOOQ

Figure 1 Two examples of Java fluent API.

Despite this limitation, fluent APIs in Java can be rich and expressive, as demonstrated
in Figure 1 showing use cases of the DSL of Apache Camel [27] (open-source integration
framework), and that of jOOQ4, a framework for writing SQL in Java, much like Linq [33].

Other examples of fluent APIs in Java are abundant: jMock [20], Hamcrest5, EasyMock6,
jOOR7, jRTF8 and many more.

1.1 A Type Perspective on Fluent APIs
Figure 1(B) suggests that jOOQ imitates SQL, but, is it possible at all to produce a flu-
ent API for the entire SQL language, or XPath, HTML, regular expressions, BNFs, EBNFs,
etc.? Of course, with no operator overloading it is impossible to fully emulate tokens; method
names though make a good substitute for tokens, as done in
“.when(header(foo).isEqualTo("bar")).” (Figure 1). The questions that motivate this re-
search are:

Given a specification of a DSL, determine whether there exists a fluent API that
can be made for this specification?
In the cases that such fluent API is possible, can it be produced automatically?
Is it feasible to produce a compiler-compiler such as Bison [17] to convert a lan-
guage specification into a fluent API?

Inspired by the theory of formal languages and automata, this study explores what can
be done with fluent APIs in Java.

Consider some fluent API (or DSL) specification, permitting only certain call chains
and disallowing all others. Now, think of the formal language that defines the set of these
permissible chains. We prove that there is always a Java type definition that realizes this
fluent definition, provided that this language is deterministic context-free, where

In saying that a type definition realizes a specification of fluent API, we mean that call
chains that conform with the API definition compile correctly, and, conversely, call chains
that are forbidden by the API definition do not type-check, resulting in an appropriate
compiler error.

4 http://www.jooq.org
5 http://hamcrest.org/JavaHamcrest/
6 http://easymock.org/
7 https://github.com/jOOQ/jOOR
8 https://github.com/ullenboom/jrtf

http://www.jooq.org
http://hamcrest.org/JavaHamcrest/
http://easymock.org/
https://github.com/jOOQ/jOOR
https://github.com/ullenboom/jrtf
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Roughly speaking, deterministic context-free languages are those context-free languages
that can be recognized by an LR parser9 [2].
An important property of this family is that none of its members is ambiguous. Also,
it is generally believed that most practical programming languages are deterministic
context-free.

A problem related to that of recognizing a formal language, is that of parsing, i.e.,
creating, for input which is within the language, a parse tree according to the language’s
grammar. In the domain of fluent APIs, the distinction between recognition and parsing
is in fact the distinction between compile time and runtime. Before a program is run, the
compiler checks whether the fluent API call is legal, and code completion tools will only
suggest legal extensions of a current call chain.

In contrast, a parse tree can only be created at runtime. Some fluent API definitions
create the parse-tree iteratively, where each method invocations in the call chain adding
more components to this tree. However, it is always possible to generate this tree in “batch”
mode: This is done by maintaining a fluent-call-list which starts empty and grows at runtime
by having each method invoked add to it a record storing the method’s name and values of
its parameters. The list is completed at the end of the fluent-call-list, at which point it is
fed to an appropriate parser that converts it into a parse tree (or even an AST).

1.2 Contribution
The answers we provide for the three questions above are:

1. If the DSL specification is that of a deterministic context-free language, then a
fluent API exists for the language, but we do not know whether such a fluent API
exists for more general languages.
Recall that there are universal cubic time parsing algorithms [13,18,40] which can
parse (and recognize) any context-free language. What we do not know is whether
algorithms of this sort can be encoded within the framework of the Java type
system.

2. There exists an algorithm to generate a fluent API that realizes any deterministic
context-free languages. Moreover, this fluent API can create at runtime, a parse
tree for the given language. This parse tree can then be supplied as input to the
library that implements the language’s semantics.

3. Unfortunately, a general purpose compiler-compiler is not yet feasible with the
current algorithm.

One difficulty is usual in the fields of formal languages: The algorithm is com-
plicated and relies on modules implementing complicated theoretical results,
which, to the best of our knowledge, have never been implemented.
Another difficulty is that a certain design decision in the implementation of the
standard javac compiler is likely to make it choke on the Java code generated
by the algorithm.

Other concrete contributions made by this work include
the understanding that the definition of fluent APIs is analogous to the definition of a
formal language.
a lower bound (deterministic pushdown automata) on the theoretical “computational
complexity” of the Java type system.

9 The “L" means reading the input left to right; the “R" stands for rightmost derivation
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an algorithm for producing a fluent API for deterministic context-free languages.
a collection of generic programming techniques, developed towards this algorithm.
a demonstration that the runtime of Oracle’s javac compiler may be exponential in the
program size.

1.3 Related Work
It has long been known that C++ templates are Turing complete in the following precise
sense:

I Proposition 1. For every Turing machine, m, there exists a C++ program, Cm such
that compilation of Cm terminates if and only if Turing-machine m halts. Furthermore,
program Cm can be effectively generated from m [25].

Intuitively, this is due to the fact that templates in C++ feature both recursive invocation
and conditionals (in the form of “template specialization”).

In the same fashion, it should be mundane to make the judgment that Java’s generics
are not Turing-complete since they offer no conditionals. Still, even though there are time
complexity results regarding type systems in functional languages, we failed to find similar
claims for Java.

Specialization, conditionals, typedefs and other features of C++ templates, gave rise to
many advancements in template/generic/generative programming in the language [5, 7, 15,
34], including e.g., applications in numeric libraries [38, 39], symbolic derivation [22] and a
full blown template library [1].

Garcia et al. [21] compared the expressive power of generics in half a dozen major pro-
gramming languages. In several ways, the Java approach [11] did not rank as well as others.

Not surprisingly, work on meta-programming using Java generics, research concentrating
on other means for enriching the language, most importantly annotations [36].

The work on SugarJ [19] is only one of many other attempts to achieve the embedded
DSL effect of fluent APIs by language extensions.

Suggestions for semi-automatic generation can be found in the work of Bodden [10] and
on numerous locations in the web. None of these materialized into an algorithm or analysis
of complexity. However, there is a software artifact (fluflu10) that automatically generates
a fluent API that obeys the transitions of a given finite automaton.

Outline. Section 2 is a brief reminder of method chaining, and fluent APIs, accompanied a
discussion of how this work is related to type states. It is followed by a similar reminder of
context-free languages, pushdown automata, and such in Section 3. Based on the vocabulary
established this far, the main result is stated in Section 4.

Towards the proof in Section 7, Section 5 shows idioms and techniques for encoding
computation with the Java type-checker. Section 6 makes use of these for encoding “jump-
stack”, a non-trivial data-structure, which is used, with suitable modifications, in the proof.

In Section 9, we discuss the challenges in translating the proof into a compiler-compiler
for fluent APIs. In particular, this section demonstrates our claim (that may be surprising
to some) that the standard Java compiler may spend an exponential time on compiling
rather simple programs. Section 10 concludes with directions for further research.

10 https://github.com/verhas/fluflu

https://github.com/verhas/fluflu
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String time(int hours, int minutes, int seconds)
{

final StringBuilder sb = new StringBuilder();
sb.append(hours);
sb.append(’:’);
sb.append(minutes);
sb.append(’:’);
sb.append(seconds);
return sb.toString();

}

String time(int hours, int minutes, int seconds)
{

return new StringBuilder()
.append(hours).append(’:’)
.append(minutes).append(’:’)
.append(seconds)
.toString();

}

(a) before (b) after

Figure 2 Recurring invocations of the pattern “invoke function on the same receiver”, before,
and after method chaining.

2 Method Chaining, Fluent APIs, and, Type States

The pattern “invoke function on variable sb”, specifically with a function named append,
occurs six times in the code in Figure 2(a), designed to format a clock reading, given as
integers hours, minutes and seconds.

Some languages, e.g., Smalltalk [24] offer syntactic sugar, called cascading, for abbre-
viating this pattern. Method chaining is a “programmer made” syntactic sugar serving the
same purpose: If a method f returns its receiver, i.e., this, then, instead of the series of
two commands: o.f(); o.g();, clients can write only one: o.f().g();. Figure 2(b) is
the method chaining (also, shorter and arguably clearer) version of Figure 2(a). It is made
possible thanks to the designer of class StringBuilder ensuring that all overloaded variants
of append return their receiver.

The distinction between fluent API and method chaining is the identity of the receiver:
In method chaining, all methods are invoked on the same object, whereas in fluent API the
receiver of each method in the chain may be arbitrary. Fluent APIs are more interesting for
this reason. Consider, e.g., the following Java code fragment (drawn from JMock [20])

allowing(any(Object.class)).method("get.*").withNoArguments();

Let the return type of function allowing (respectively method) be denoted by τ1 (respec-
tively τ2). Then, the fact that τ1 6= τ2 means that the set of methods that can be placed
after the dot in the partial call chain allowing(any(Object.class)). is not necessarily
the same set of methods that can be placed after the dot in the partial call chain

allowing(any(Object.class)).method("get.*")..

This distinction makes it possible to design expressive and rich fluent APIs, in which a
sequence of “chained” calls is not only readable, but also robust, in the sense that the
sequence is type correct only when it makes sense semantically.

There is a large body of research on type-states (See e.g., review articles such as [3, 9]).
Informally, an object that belongs to a certain type, has type-states, if not all methods
defined in this object’s class are applicable to the object in all states it may be in. As it
turns out, objects with type states are quite frequent: a recent study [8] estimates that
about 7.2% of Java classes define protocols, that can be interpreted as type-state.

In a sense, type states define the “language” of the protocol of an object. The protocol of
the type-state Box class defined in Figure 3 admits the chain new Box().open().close()
but not the chain new Box().open().open().

ECOOP 2016
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open() close()

“closed” become
“open”

runtime
error

“open” runtime
error

become
“closed”

closed opened

runtime
error

open()

close()

close() open()

start

(a) Definition by table (b) Definition by DFA

Figure 3 Fluent API of a box object, defined by a DFA and a table.

As mentioned above, tools such as fluflu realize type-state based on their finite automaton
description. Our approach is a bit more expressive: examine the language L defined by the
type-state, e.g., in the box example,

L =
(
.open().close()

)∗(.open() | ε).
If L is deterministic context-free, a fluent API can be made for it.

To make the proof concrete, consider this example of fluent API definition: An instance
of class Box may receive two method invocations: open() and close(), and can be in either
“open” or “closed” state. Initially the instance is “closed”. Its behavior henceforth is defined
by Figure 3.

To realize this definition, we need a type definition by which new Box().open().close(),
more generally blue, or accepting states in the figure, type-check. Conversely, with this type
definition, compile time type error should occur in new Box().close(), and, more generally,
in the red state.

Some skill is required to make this type definition: proper design of class Box, perhaps
with some auxiliary classes extending it, an appropriate method definition here and there,
etc.

3 Context-Free Languages and Pushdown Automata: Reminder and
Terminology

Notions discussed here are probably common knowledge (see e.g., [26, 32] for a text book
description, or [6] for a scientific review). The purpose here is to set a unifying common
vocabulary.

Let Σ be a finite alphabet of terminals (often called input characters or tokens). A
language over Σ is a subset of Σ∗. Keep Σ implicit henceforth.

A Nondeterministic Pushdown Automaton (NPDA) is a device for language recognition,
made of a nondeterministic finite automaton and a stack of unbounded depth of (stack)
elements. A NPDA begins execution with a single copy of the initial element on the stack.
In each step, the NPDA examines the next input token, the state of the automaton, and
the top of the stack. It then pops the top element from the stack, and nondeterministically
chooses which actions of its transition function to perform: Consuming the next input
token, moving to a new state, or, pushing any number of elements to the stack. Actually,
any combination of these actions may be selected.

The language recognized by a NPDA is the set of strings that it accepts, either by
reaching an accepting state or by encountering an empty stack.
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A Context-Free Grammar(CFG) is a formal description of a language. A CFG G

has three components: Ξ a set of variables (also called nonterminals), a unique start vari-
able ξ ∈ Ξ, and a finite set of (production) rules. A rule r ∈ G describes the derivation of
a variable ξ ∈ Ξ into a string of symbols, where symbols are either terminals or variables.
Accordingly, rule r ∈ G is written as r = ξ → β, where β ∈ (Σ ∪ Ξ)∗. This description is
often called BNF. The language of a CFG is the set of strings of terminals (and terminals
only) that can be derived from the start symbol, following any sequence of applications of
the rules. CFG languages make a proper superset of regular languages, and a proper subset
of “context-sensitive” languages [26].

The expressive power of NPDAs and BNFs is the same: For every language defined by a
BNF, there exists a NPDA that recognizes it. Conversely, there is a BNF definition for any
language recognized by some NPDA.

NPDAs run in exponential deterministic time. A more sane, but weaker, alternative is
found in LR(1) parsers, which are deterministic linear time and space. Such parsers em-
ploy a stack and a finite automaton structure, to parse the input. More generally, LR(k)
parsers, k > 1, can be defined. These make their decisions based on the next k input char-
acter, rather than just the first of these. General LR(k) parsers are rarely used, since they
offer essentially the same expressive power11, at a greater toll on resources (e.g., size of the
automaton). In fact, the expressive power of LR(k), k ≥ 1 parsers, is that of “Deterministic
Pushdown Automaton” (DPDA), which are similar to NPDA, except that their conduct is
deterministic.
I Definition 1 (Deterministic Pushdown Automaton). A deterministic pushdown automaton
(DPDA) is a quintuple 〈Q, γ, q0, A, δ〉 where Q is a finite set of states, γ is a finite set of
elements, q0 ∈ Q is the initial state, and A ⊆ Q is the set of accepting states while δ is the
partial state transition function δ : Q× γ × (Σ ∪ {ε}) 9 Q× γ∗.

A DPDA begins its work in state q0 with a single designated stack element residing on
the stack. At each step, the automaton examines: the current state q ∈ Q, the element γ ∈ γ
at the top of the stack, and σ, the next input token, Based on the values of these, it decides
how to proceed:

1. If q ∈ A and the input is exhausted, the automaton accepts the input and stops.
2. Suppose that δ(q, γ, ε) 6= ⊥ (in this case, the definition of a DPDA requires

that δ(q, γ, σ′) = ⊥ for all σ′ ∈ Σ), and let δ(q, γ, ε) = (q′, ζ). Then the automaton
pops γ and pushes the string of stack elements ζ ∈ γ∗ into the stack.

3. If δ(q, γ, σ) = (q′, ζ), then the same happens, but the automaton also irrevocably
consumes the token σ.

4. If δ(q, γ, ε) = δ(q, γ, σ) = ⊥ the automaton rejects the input and stops.

A configuration is the pair of the current state and the stack contents. Configurations
represent the complete information on the state of an automaton at any given point during its
computation. A transition of a DPDA takes it from one configuration to another. Transitions
which do not consume an input character are called ε-transitions.

As mentioned above, NPDA languages are the same as CFG languages. Equivalently,
DCFG languages (deterministic context-free grammar languages) are context-free languages
that are recognizable by a DPDA. The set of DCFG languages is still a proper superset of
regular languages, but a proper subset of CFG languages.

11 they recognize the same set of languages [30].
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4 Statement of the Main Result

Let java be a function that translates a terminal σ ∈ Σ into a call to a uniquely named
function (with respect to σ). Let java(α), be the function that translates a string α ∈ Σ∗
into a fluent API call chain. If α = σ1 · · ·σn ∈ Σ∗, then

java(α) = java(σ1)(). · · · .java(σn)()

For example, when Σ = {a, b, c} let java(a) = a, java(b) = b, and, java(c) = c. With these,

java(caba) = c().a().b().a()

I Theorem 1. Let A be a DPDA recognizing a language L ⊆ Σ∗. Then, there exists a Java
type definition, JA for types L, A and other types such that the Java command

L ` = A.build.java(α).$(); (1)

type checks against JA if an only if α ∈ L. Furthermore, program JA can be effectively
generated from A.

Equation 1 reads: starting from the static field build of class A, apply the sequence
of call chain java(α), terminate with a call to the ending character $() and then assign to
newly declared Java variable ` of type L.

The proof of the theorem is by a scheme for encoding in Java types the pushdown
automaton A = A(L) that recognizes language L. Concretely, the scheme assigns a type τ(c)
to each possible configuration c of A. Also, the type of A.build is τ(c0), where c0 is the
initial configuration of A,

Further, in each such type the scheme places a function σ() for every σ ∈ Σ. Suppose
that A takes a transition from configuration ci to configuration cj in response to an input
character σk. Then, the return type of function σk() in type τ(ci) is type τ(cj).

With this encoding the call chain in Equation 1 mimics the computation of A, starting
at c0 and ending with rejection or acceptance. The full proof is in Section 7.

Since the depth of the stack is unbounded, the number of configurations of A is un-
bounded, and the scheme must generate an infinite number of types. Genericity makes this
possible, since a generic type is actually device for creating an unbounded number of types.

There are several, mostly minor, differences between the structure of the Java code in
Equation 1 and the examples of fluent API we saw above,e.g., in Figure 1:
Prefix, i.e., the starting A.build variable. All variables and functions of Java are defined

within a class. Therefore, a call chain must start with an object (A.build in Equation 1)
or, in case of static methods, with the name of a class. In fluent API frameworks this
prefix is typically eliminated with appropriate import statements.
If so desired, the same can be done by our type encoding scheme: define all methods in
type τ(c0) as static and import static these.

Suffix, i.e., the terminal .$() call. In order to know whether α ∈ L the automaton recog-
nizing L must know when α is terminated.
With a bit of engineering, this suffix can also be eliminated. One way of doing so is
by defining type L as an interface, and by making all types τ(c), c is an accepting
configuration, as subtype of L.

Parameterized methods. Fluent API frameworks support call chains with phrases such as:
“.when(header(foo).isEqualTo("bar")).”,
“.and(BOOK.PUBLISHED.gt(date("2008-01-01"))).”, and,
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“.allowing(any(Object.class)).”.
while our encoding scheme assumes methods with no parameters.
Methods with parameters contribute to the user experience and readability of fluent APIs
but their “computational expressive power"’ is the same. In fact, extending Theorem 1
to support these requires these conceptually simple steps
1. Define the structure of parameters to methods with appropriate fluent API, which

may or may not be, the same as the fluent API of the outer chain, or the fluent API
of parameters to other methods. Apply the theorem to each of these fluent APIs.

2. If there are several overloaded versions of a method, consider each such version as a
distinct character in the alphabet Σ and in the type encoding of the automaton.

3. Add code to the implementation of each method code to store the value of its argu-
ment(s) in a record placed at the end of the fluent-call-list.

5 Techniques of Type Encoding

This section presents techniques and idioms of type encoding in Java partly to serve in
the proof of Theorem 1, and partly to familiarize the reader with the challenges of type
encoding.

Let g : γ 9 γ be a partial function, from the finite set γ into itself. We argue that g can
be represented using the compile-time mechanism of Java. Figure 4 encodes such a partial
function for γ = {γ1, γ2}, where g(γ1) = γ2 and g(γ2) = ⊥, i.e., g(γ2) is undefined.12

The type hierarchy depicted in Figure 4(a) shows five classes: Abstract class γ 13 rep-
resents the set γ, final classes γ1, γ2 that extend γ, represent the actual members of the
set γ. The remaining two classes are private final class ¤ that stands for an error value, and
abstract class γ′ that denotes the augmented set γ ∪{¤}. Accordingly, both classes ¤ and γ
extend γ′.14

The full implementation of these classes is provided in Figure 4(b). This actual code
excerpt should be placed as a nested class of some appropriate host class. Import statements
are omitted, here and henceforth for brevity.

The use cases in Figure 4(c) explain better what we mean in saying that function g is
encoded in the type system: An instance of class γ1 returns a value of type γ2 upon method
call g(), while an instance of class γ2 returns a value of our private error type γ′.¤ upon
the same call.

Three recurring idioms employed in Figure 4(b) are:
1. An abstract class encodes a set (alternatively, one can use interfaces). Abstract

classes that extend it encode subsets, while final classes encode set members.
2. The interest of frugal management of name-spaces is served by the agreement that if a

class X extends another class Y , then X is also defined as a static member class of Y .
3. Bodies of functions are limited to a single return null; command (with interfaces the

method body is redundant). This is to stress that at runtime, the code does not carry

12Unless otherwise stated, all code excerpts here represent full implementations, and automatically ex-
tracted, omitting headers and footers, from Java programs that compile correctly with a Java 8
compiler.

13Remember that Java admits Unicode characters in identifier names
14The use of short names, e.g., γ instead of γ′.γ, is made possible by an appropriate import statement
omitted here and henceforth.
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Stack<Rest>

Stack.E

Stack.P<Top,Rest>

Stack.¤

public static abstract class Γ′ {
private static abstract class ¤ extends Γ′ {

// Empty private class, cannot be used by clients.
private ¤() { /∗ Private constructor hinders extension by clients ∗/

}
}
public static abstract class γ extends γ′ {

public abstract γ′ g();
public static final class γ1 extends γ {
// Covariant return type in overriding:
@Override public γ2 g() { return null; }

}
public static final class γ2 extends γ {
// Covariant return type in overriding:
@Override public γ′.¤ g() { return null; }

}
}

}

(a) type hierarchy (b) implementation
public static void five_use_cases_of_function_g() {
γ2 _1 = new γ1().g(); // 3
γ1 _2 = new γ2().g(); // 7 type mismatch
γ′.¤ _3 = new γ2().g(); // 7 class ¤ is private
γ′ _4 = new γ2().g(); // 3
_4.g(); // 7 g() undefined in type γ′

}

(c) use cases

Figure 4 Type encoding of partial function g : γ 9 γ, defined by γ = {γ1, γ2}, g(γ1) = γ2

and g(γ2) = ⊥.

out any useful or interesting computation, and the class structure is solely for providing
compile-time type checks. 15

Having seen how inheritance and overriding make possible the encoding of unary func-
tions, we turn now to encoding higher arity functions. With the absence of multi-methods,
other techniques must be used.

Consider the partial binary function f : R× S 9 γ, defined by

R = {r1, r2} f(r1, s1) = γ1 f(r2, s1) = γ1
S = {s1, s2} f(r1, s2) = γ2 f(r2, s2) = ⊥ . (2)

A Java type encoding of this definition of function f is in Figure 5(a); use cases are in Fig-
ure 5(b).

As the figure shows, to compute f(r1, s1) at compile time we write f.r1().s1(). Also,
the fluent API call chain f.r2().s2().g() results in a compile time error because

f(r2, s2) = ⊥.

Class f in the implementation sub-figure serves as the starting point of the little fluent
API defined here. The return type of static member functions r1() and r2() is the
respective sub-class of class R: The return type of function r1() is class R.r1; the return
type of function r2() is class R.r2.

15A consequence of these idioms is that the augmented class γ′ is visible to clients. It can be
made private. Just move class γ to outside of γ′, defying the second idiom.
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public static abstract class f { // Starting point of fluent API
public static r1 r1() { return null; }
public static r2 r2() { return null; }

}
public static abstract class R {

public abstract γ′ s1();
public abstract γ′ s2();
public static final class r1 extends R {

@Override public γ1 s1() { return null; }
@Override public γ2 s2() { return null; }

}
public static final class r2 extends R {

@Override public γ2 s1() { return null; }
@Override public γ′.¤ s2() { return null; }

}
}

(a) implementation (except for classes γ, γ′, γ1, and γ2, found in Figure 4).
public static void four_use_cases_of_function_f() {
γ1 _1 = f.r1().s1(); // 3 f(r1, s1) = γ1
γ2 _2 = f.r1().s2(); // 3 f(r1, s2) = γ2
γ2 _3 = f.r2().s1(); // 3 f(r2, s1) = γ2
f.r2().s2().g(); // 7 method s2() undefined in type Γ’

}

(b) use cases

Figure 5 Type encoding of partial binary function f : R × S 9 γ, where R = {r1, r2}, S =
{s1, s2}, and f is specified by f(r1, s1) = γ1, f(r1, s2) = γ2, f(r2, s1) = γ1, and f(r2, s2) = ⊥.

interface ID<T extends ID<?>> {
default T id() { return null; }

}
class A implements ID<A> { /∗∗/ }
abstract class B<Z extends B<?>> implements ID<Z> { /∗∗/ }
class C extends B<C> { /∗∗/ }

Figure 6 Covariant return type of function id() with Java generics.

Instead of representing set S as a class, its members are realized as methods s1()
and s2() in class R. These functions are defined as abstract with return type γ’ in R.
Both functions are overridden in classes r1 and r2, with the appropriate covariant change
of their return type,

It should be clear now that the encoding scheme presented in Figure 5 can be generalized
to functions with any number of arguments, provided that the domain and range sets are
finite. The encoding of sets of unbounded size require means for creating an unbounded
number of types. Genericity can be employed to serve this end.

Figure 6 shows a genericity based recipe for a function whose return type is the same
as the receiver’s type. This recipe is applied in the figure to classes A, B, and C. In each of
these classes, the return type of id is, without overriding, (at least) the class itself.

It is also possible to encode with Java generic types unbounded data structures, as
demonstrated in Figure 7, featuring a use case of a stack of an unbounded depth.

In line 3 of the figure, a stack with five elements is created: These are popped in order
(ll.4–7,l.9). Just before popping the last item, its value is examined (l.8). Trying then to
pop from an empty stack (l.10), or to examine its top (l.11), ends with a compile time error.

Stack elements may be drawn from some abstract set γ. In the figure these are either
class γ1 or class γ2 (both defined in Figure 4). A call to function γi pushes the type γi into

ECOOP 2016
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1 public static void use_case_of_stack() {
2 // Create a stack a with five items in it:
3 P<γ1, P<γ1, P<γ2, P<γ1, P<γ1, E>>>>> _1 = Stack.empty.γ1().γ1().γ2().γ1().γ1();
4 P<γ1, P<γ2, P<γ1, P<γ1, E>>>> _2 = _1.pop(); // 3 Pop one item
5 P<γ2, P<γ1, P<γ1, E>>> _3 = _2.pop(); // 3 Pop another item
6 P<γ1, P<γ1, E>> _4 = _3.pop(); // 3 Pop yet another item
7 P<γ1, E> _5 = _4.pop(); // 3 Pop penultimate item
8 γ1 _6 = _5.top(); // 3 Examine last item
9 E _7 = _5.pop(); // 3 Pop last item

10 Stack.¤ _8 = _7.pop(); // 7 Cannot pop from an empty stack
11 γ′.¤ _9 = _7.top(); // 7 empty stack has no top element
12 }

Figure 7 Use cases of a compile-time stack data structure.

the stack, for i = 1,. The expression

Stack.empty.γ1().γ1().γ2().γ1().γ1()

represents the sequence of pushing the value γ1 into an empty stack, followed by γ1, γ2, γ1,
and, finally, γ1. This expression’s type is that of variable _1, i.e.,

P<γ1,P<γ1,P<γ2,P<γ1,P<γ1,E»»>

A recurring building block occurs in this type: generic type P, short for “Push”, which
takes two parameters:
1. the top of the stack, always a subtype of γ,
2. the rest of the stack, which can be of two kinds:

a. another instantiation of P (in most cases),
b. non-generic type E, short for “Empty”, which encodes the empty stack. Note that E

can only occur at the deepest P, encoding a stack with one element, in which the rest
is empty.

Incidentally, static field Stack.empty is of type E.
Figure 8(a) gives the type inheritance hierarchy of type Stack and its subtypes. Fig-

ure 8(b) gives the implementation of these types.
The code in the figure shows that the “rest” parameter of P must extend class Stack,

and that both types P and E extend Stack. Other points to notice are:
The type at the top of the stack is precisely the return type of top(); it is overridden
in P so that its return type is the first argument of P. The return type of top() in E is
the error value γ′.¤.
Pushing into the stack is encoded as functions γ1() and γ2(); the two are overridden
with appropriate covariant change of the return type in P and E.
Since an empty stack cannot be popped, function pop() is overridden in E to return the
error type Stack.¤. This type is indeed a kind of a stack, except that each of the four
stack functions: top(), push(), γ1(), and, γ2(), return an appropriate error type.

In fact, this recursive generic type technique can used to encode S-expressions: In the spirit
of Figure 8, the idea is to make use of a Cons generic type with covariant car() and cdr()
methods.

A standard technique of template programming in C++ is to encode conditionals with
template specialization. Since Java forbids specialization of generics, in lieu we use covariant
overloading of function return type (e.g., the return type of s2() in Figure 5 and the return
type of top() in Figure 8).

Figure 9 shows that a similar covariant change is possible in extending a generic type.
The type of the parameter M to Heap is “? extends Mammals”. This type is specialized as
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Γ′

Γ′.Γ Γ′.¤

Γ′.Γ.γ1 Γ′.Γ.γ2

public static abstract class Stack<Rest extends Stack<?>> {
public abstract γ′ top();
public abstract Rest pop();
public abstract Stack<?> γ1(); // Push type Γ′.Γ.γ1
public abstract Stack<?> γ2(); // Push type Γ′.Γ.γ2
public static class P<Top extends γ, Rest extends Stack<?>>

extends Stack<Rest> { // Type of a non−empty stack:
@Override public Top top() { return null; }
@Override public Rest pop() { return null; }
@Override public P<γ1, P<Top,Rest>> γ1() { return null; }
@Override public P<γ2, P<Top,Rest>> γ2() { return null; }

}
public static final class E

extends Stack<¤> { // Type of an empty stack
@Override public γ′.¤ top() { return null; }
@Override public ¤ pop() { return null; }
@Override public P<γ1, E> γ1() { return null; }
@Override public P<γ2, E> γ2() { return null; }

}
public static final E empty = null;
private static final class ¤

extends Stack<¤> { // Type of pop from empty stack
@Override public γ′.¤ top() { return null; }
@Override public ¤ pop() { return null; }
@Override public ¤ γ1() { return null; }
@Override public ¤ γ2() { return null; }

}
}

(a) type hierarchy (b) implementation (except for classes γ, γ′, γ1, and γ2, from
Figure 4).

Figure 8 Type encoding of an unbounded stack data structure.

class Mammals { /∗ . . . ∗/ }
class Heap<M extends Mammals> { /∗ . . . ∗/}
class Whales extends Mammals { /∗ . . . ∗/}
class School<W extends Whales>

extends Heap<W> { /∗ . . . ∗/}

Figure 9 Covariance of parameters to generics.

School extends Heap: parameter W of School is of type “? extends Whales”. Covariant
specialization of parameters to generics is yet another idiom for encoding conditionals.

Overloading gives rise to a third idiom for partial emulation of conditionals, as can be
seen in Figure 10.

The figure depicts type Peep and overloaded versions of peep() which together make it
possible to extract the top of the stack. The first generic parameter to Peep is the top of the
stack, the second is the stack itself. Indeed, we see (l.11) that peeping into an empty stack,
places a ? in the first parameter, thanks to the first overloaded version of peep() (l.2).

The second overloaded version of peep() (ll.3–6) matches against all non-empty stacks.
The return type of this version encodes in its first parameter the top of the stack, and in its
second parameter, the parameter’s type. A use case is in line 9.

Let τ be the type of the top of a given stack. Then, both top() and peep() can be
used to extract τ . There is a subtle difference between the two though: Obtaining τ from
top() does not make it possible to define variables, function return types, and parameters
to functions and generics whose type is τ or depends on it in any way. However, since Peep
is a type that receives τ as parameter, the body of Peep is free to define e.g., functions
signature includes on τ , or pass τ further to other generics.
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1 public static class Peep<γ extends γ′, S extends Stack<? extends Stack<?>>> {}
2 public static Peep<?, E> peep(E _) { return null; } // First overloaded version of peep()
3 public static // Second overloaded version of peep()
4 <Top extends γ, Rest extends Stack<?>> // Two generic parameters
5 Peep<Top, P<Top, Rest>> // Function return type
6 peep(P<Top, Rest> _) { return null; } // Function parameters and body
7 public static void peeping_into_a_stack_use_cases() {
8 P<γ2, P<γ1, P<γ2, P<γ1, P<γ2, E>>>>> _1 = Stack.empty.γ2().γ1().γ2().γ1().γ2();
9 Peep<γ2, P<γ2, P<γ1, P<γ2, P<γ1, P<γ2, E>>>>>> _2 = peep(_1);

10 E _3 = Stack.empty;
11 Peep<?, E> _4 = peep(_3);
12 }

Figure 10 Peeping into the stack.

1 public interface JS< // 1 + k generic parameters
2 Rest extends JS, // As a convention, we use JS
3 J_γ1 extends JS, // with its raw type when no
4 J_γ2 extends JS // parameters are introduced
5 > {
6 γ′ top();
7 Rest pop();
8 JS γ1();
9 JS γ2();

10 J_γ1 jump_γ1();
11 J_γ2 jump_γ2();
12 interface ¤ extends JS<¤, ¤, ¤> { . . . }
13 public interface E extends JS<¤, ¤, ¤> { . . . }
14 public static final E empty = null;
15 public interface P<// 2 + k generic arguments:
16 Top extends γ,
17 Rest extends JS,
18 J_γ1 extends JS,
19 J_γ2 extends JS
20 > extends P′<Top, Rest, J_γ1, J_γ2,
21 P<Top, Rest, J_γ1, J_γ2>
22 > { /∗∗/ }
23 }

Figure 11 Skeleton of type encoding for the jump-stack data structure.

6 The Jump-Stack Data-Structure

A jump-stack is a stack data structure whose elements are drawn from a finite set γ, except
that jump-stack supports jump(γ), γ ∈ Γ operations (which means “repetitively pop elements
from the stack up to and including the first occurrence of γ”).

Figure 11 shows the skeleton of type-encoding, in parameterized type JS, of a jump-stack
whose elements are drawn from type γ (Figure 4(b)), i.e., either γ1 or γ2.

Just like Stack (Figure 8(b)), JS takes a Rest parameter encoding the type of a jump-
stack after popping. In addition JS takes k = |γ| type parameters, one for each γ ∈ γ, which
is the type encoding of the jump-stack after a jump(γ) operation. In the figure, there are
two such parameters: J_γ1, and J_γ2.

Functions defined in JS include not only the standard stack operations: top(), pop(),
γ1() and γ2() (encoding a push of γi, i = 1, 2, in general, there are k), but also k func-
tions encoding jump(γ), γ ∈ γ. In our case, these are jump_γ1 and jump_γ2, which en-
code jump(γi) thanks to their return type being J_γi, i = 1, 2.

The type hierarchy rooted at JS is similar to that of Figure 8(a): Two of the specializa-
tions are parameter-less and are almost identical to their Stack counterparts: JS.E encodes
an empty jump-stack; JS.¤ encodes a jump-stack in error, e.g., after popping from JS.E.
The body of these two types is omitted here.

Type JS.P (lines 16–23 in Figure 11) makes the third specialization of JS, encoding a
stack with one or more elements. Just like in Figure 6, there are no overridden functions in
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1 private interface P′<
2 // 2 + k + 1 generic arguments:
3 Top extends γ,
4 Rest extends JS,
5 J_γ1 extends JS,
6 J_γ2 extends JS,
7 Me extends JS
8 > extends JS<Rest, J_γ1, J_γ2> {
9 public Top top();

10 P<γ1, Me, Me, J_γ2> γ1();
11 P<γ2, Me, J_γ2, Me> γ2();
12 }

Figure 12 Auxiliary type P’ encoding succinctly a non-empty jump-stack.

public static void jump_stack_use_cases(){
P<
γ1, // Top
P<γ1,P<γ2,E,¤,E>,P<γ2,E,¤,E>,E>,// Rest
P<γ1,P<γ2,E,¤,E>,P<γ2,E,¤,E>,E>,// jump(γ1)
E // jump(γ2)

> _1 = JS.empty.γ2().γ1().γ1();
E _2 = _1.jump_γ2();
P<
γ1, // Top
P<γ2,E,¤,E>, // Rest
P<γ2,E,¤,E> // jump(γ1)
,E // jump(γ2)

> _3 = _1.jump_γ1();
}

Figure 13 Use cases for the JS type hierarchy.

JS.P; it fulfills its duties through the type parameters it takes and the types it passes to P’
the generic type it extends.

Specifically, JS.P takes the same Top and Rest parameters (ll.17–18) as type Stack.P: as
well as k additional parameters: J_γ1 and J_γ2 (ll.19–20) which are the types encoding the
jump-stack after the execution jump(γi), i = 1, 2. Type JP.P passes these four parameters
to type P’ which it extends (l.21). The fifth parameter to P’ (l.22) is the current incarnation
of P, i.e., P<Top, Rest, J_γ1, J_γ2.

The auxiliary (and private) type P’ itself is depicted in Figure 12. By extending type JS
and passing the correct Rest (respectively, J_γ1, J_γ2) parameter to it, P’ inherits correct
declaration of function pop() (l.8 Figure 11) (respectively jump_γ1 (l.11 ibid), jump_γ2 (l.12
ibid)).

More importantly, the Me type parameter to P’ represents type JP.P that extends P’.
Type Me also captures the actual parameters included to JP.P, which makes it possible to
write the return type of γ1() and γ2()more succinctly. Let, e.g., τ = P<γ1, Me, Me, J_γ2>
be the return type of γ1(). The first two parameters to τ say that pushing γ1, results in
a compound jump-stack, whose top element is γ1, and where the rest of the jump-stack is
the current type. The third parameter to τ says that since γ1 was pushed the result of
a jump(γ1) is the type of the receiver. The fourth parameter is J_γ2 since a push of γ1 does
not change the result of jump(γ2).

Some use cases for the encoded jump-stack data structure are in Figure 13. The type of
variable _1 encodes a stack into which γ2, γ1, γ1 were pushed (in this order). Examining
the type of _2 we see that executing jump_γ2 on _1, yields the empty stack in a single step.
The type of _3 is that state of the same stack after executing jump_γ1; it is exactly the
same as popping a single element from the stack.
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7 Proof of Theorem 1

On a first sight, the proof of Theorem 1 could follow the techniques sketched in Section 5 to
type encode a DPDA (Definition 1). The partial transition function δ may be type encoded
as in Figure 5(a), and the stack data structure of a DPDA can be encoded as in Figure 8.

The techniques however fail with ε-transitions, which allow the automaton to move be-
tween an unbounded number of configurations and maneuver the stack in a non-trivial
manner, without making any progress on the input. The fault in the scheme lies with com-
pile time computation being carried out by the java(σ)() functions, each converting their
receiver type to the type of the receiver of the next call in the chain. We are not aware of a
Java type encoding which makes it possible to convert an input type into an output type,
where the output is computed from the input by an unbounded number of steps. 16

The literature speaks of finite-delay DPDAs, in which the number of consecutive ε-
transitions is uniformly bounded and even of realtime DPDAs in which this bound is 0,
i.e., no ε-transitions. Our proof relies on a special kind of realtime automata, described by
Courcelle [14].

I Definition 2 (Simple-Jump Single-State Realtime Deterministic Pushdown Automaton). A
simple-jump, single-state, realtime deterministic pushdown automaton (jDPDA, for short)
is a triplet 〈γ, γ1, δ〉 where γ is a set of stack elements, γ1 ∈ γ is the initial stack element,
and δ is the partial transition function, δ : γ × Σ 9 γ∗ ∪ j(γ),

j(γ) = {instruction jump(γ) | γ ∈ γ}.

A configuration of a jDPDA is some c ∈ γ∗ representing the stack contents. Initially, the
stack holds γ1 only. For technical reasons, assume that the input terminates with $ 6∈ Σ, a
special end-of-file character.

At each step a jDPDA examines γ, the element at the top of the stack, and σ ∈ Σ, the
next input character, and executes the following:

1. consume σ
2. if δ(γ, σ) = ζ, ζ ∈ γ∗, the automaton pops γ, and pushes ζ into the stack.
3. if δ(γ, σ) = jump(γ′), γ′ ∈ γ, then the automaton repetitively pops stack ele-

ments up-to and including the first occurrence of γ′.

If the next character is $, the automaton may reject or accept (but nothing else), de-
pending on the value of γ.

In addition, the automaton rejects if δ(γ, σ) = ⊥ (i.e., undefined), or if it encounters an
empty stack (either at the beginning of a step or on course of a jump operation).

As it turns out, every DCFG language is recognized by some jDPDA, and conversely,
every language accepted by a jDPDA is a DCFG language [14]. The proof of Theorem 1
is therefore reduced to type-encoding of a given jDPDA. Towards this end, we employ the
type-encoding techniques developed above, and, in particular, the jump-stack data structure
(Figure 11).

16With the presumption that the Java compiler halts for all inputs (a presumption that does not hold
for e.g., C++, and was never proved for Java), the claim that there is no Java type encoding for all
DPDAs can be proved: Employing ε-transitions, it is easy to construct an automaton A∞ that never
halts on any input. A type encoding of A∞ creates programs that send the compiler in an infinite loop.
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Table 1 The transition function of a jDPDA A, Σ = {σ1, σ2, σ3}, γ = {γ1, γ2} where γ1 is the
initial element.

γ1 γ2

σ1 push(γ1, γ1, γ2) push(γ2, γ2)
σ2 ⊥ push(ε)
σ3 ⊥ jump(γ1)
$ accept reject

Henceforth, let k = |γ|, ` = |Σ|. The simple k = 2, ` = 3 jDPDA A defined in Table 1
will serve as our running example. Let L be the language recognized by A.17

7.1 Main Types

Generation of a type encoding for a jDPDA starts with two empty types for sets L, Σ∗,
where L represents the languages accepted by the jDPDA and Σ∗ represents all words:

private static class ΣΣ // Encodes set Σ∗, type of reject
{ /∗ empty ∗/ }

static class L extends ΣΣ // Encodes set L ⊆ Σ∗, type of accept
{ /∗ empty ∗/ }

(The full type encoding is in Figure 15 below; to streamline the reading, we bring excerpts
as necessary.)

A configuration is encoded by a generic type C. Essentially, C is a representation of the
stack, but k + 1 type parameters are required:

Rest, a type encoding of the stack after a pop (or jump with the top element), and,
k types, named JRγ1, . . . ,JRγk, encoding the type of Rest after jump(γ1),. . . jump(γk).

Note that these k + 1 parameters are sufficient for describing a configuration, i.e., if the
top is γj , then for all j 6= i

jump(γj) = Rest.jump(γj)

In the special case of jump(γi) the returned type is still Rest, this is due to the fact that
before a jump operation, we do not pop an element from the stack.

All instantiations of C must make sure that actual parameters are properly constrained,
to ensure that they are (the type version of) pointers into the actual stack, not a trivial
task, as will be seen shortly.

17 Incidentally,

L =
{
w∗ | w = (σn

1 σ
m
2 σ3|σn

1 σ
n
2 ) , n > m,n > 1

}
which is clearly not-regular; the equivalent BNF for L is:

S →WS | ε ; W → D |ADσ3 ; D → σ1Dσ2 |σ1σ2 ; A→ Aσ1 |σ1

Neither the BNF nor the representation are material for the proof.
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static void isL(L l) {/∗∗/}
static void accepts() {

isL(A.build.$());
isL(A.build.σ1().σ3().$());
isL(A.build.σ1().σ2().$());
isL(A.build.σ1().σ1().σ2().σ3().σ1().σ2().$());

}
static void rejects() {

isL(A.build.σ1().$());
isL(A.build.σ2().σ1().$());
isL(A.build.σ1().σ2().σ3().$());
isL(A.build.σ1().σ1().σ2().σ3().σ1().$());

}

Figure 14 Accepting and non-accepting call chains with the type encoding of jDPDA A (as
defined in Table 1). All lines in accepts() type-check, while all lines in rejects() do not type-
check.

In the running example, C is defined as:

interface C< // Generic parameters:
Rest extends C, // The rest of the stack, for pop or jump(γ) operations
JRγ1 extends C, // Type of Rest.jump(γ1), may be rest, or anything in it.
JRγ2 extends C // Type of Rest.jump(γ2), may be rest, or anything in it.

>
{

ΣΣ $(); // δ transition on end of input; invalid language by default
C σ1(); // δ transition on σ1; dead end by default
C σ2(); // δ transition on σ2; dead end by default
C σ3(); // δ transition on σ3; dead end by default
public interface E extends C<¤,¤,¤> { /∗ Empty stack configuration ∗/ }
interface ¤ extends C<¤,¤,¤> { /∗ Error configuration. ∗/ }

}

This excerpt shows also classes E and ¤ which encode (as in Figure 11) the empty and the
error configurations.

Type C defines `+ 1 functions (4 in the example), one for each possible input character,
and one for the end-of-file character defined as $. Since C encodes an abstract configuration,
return types of functions in it are the appropriate defaults which intentionally fail to emulate
the automaton’s execution. The return type of $() is ΣΣ (rejection); the transition functions
σ1(), . . . σ`(), return the raw type C.

7.2 Top-of-Stack Types
Types Cγ1, . . . ,Cγk, specializing C, encode stacks whose top element is γ1, . . . ,γk. In A
there are two of these:

interface Cγ1< // Configuration when γ1 is at top
Rest extends C, JRγ1 extends C, JRγ2 extends C

> extends
C<Rest, JRγ1, JRγ2>

{
}
interface Cγ2< // Configuration when γ2 is at top

Rest extends C, JRγ1 extends C, JRγ2 extends C
> extends

C<Rest, JRγ1, JRγ2>
{
}
static Cγ1<E,¤,¤> build = null;

In A, types Cγ1 and Cγ2 take three parameters; in general “Top of Stack" types take the
aforementioned k + 1 parameters.
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The method signatures of these types are generated using the mentioned parameters.
The generating of methods will be discussed next.

The code defines the static variable build, the starting point of all fluent API call
chains, to be of type Cγ1<E,¤,¤>, i.e., the starting configuration of the automaton is a stack
whose top is γ1, and its Rest parameter is empty (E). Any of the two jumps possible on
this rest results with, ¤, an undefined stack. Examples of accepting and rejecting call chains
starting at A.build can be seen in Figure 14.

7.3 Transitions

It remains to show the type encoding of δ, the transition function. Overall, there are a total
of k · (` + 1) entries in a transition table such as Table 1. Conceptually, these are encoded
by selecting the correct return type of functions σ1(), . . . ,σk() and $() in each of the k
“Top of Stack” types. Thanks to inheritance, we need to do so only in the cases that this
return type is different from the default.

Overall, there are six kinds of entries in a transition table:
reject The default return type of $() in C is ΣΣ, which is not a subtype of L. Normally

the result of a call chain that ends with $() cannot be assigned to a variable of type L.
Moreover, since ΣΣ is private, there is little that clients can do with this result.

accept The only case in which fluent call chain ending with $() can return type L is when
the type returned of the call just prior to .$() covariantly changes the return type of $()
to L.18
Recall that a jDPDA can only accept after its input is exhausted. In Table 1 we see that
accept occurs when the top of the stack is γ1. We therefore add to the body of type Cγ1
the line
@Override L $();

⊥ When a prefix of the input is sufficient to conclude it must be rejected however it con-
tinues, the transition function returns ⊥. In A this occurs when the top of the stack
is γ1 and one of σ2 or σ3 is read. To type encode δ(γ1, σ2) = ⊥, one must not override
σ2() in type Cγ1; the inherited return type (l.15 Figure 15) is the raw C. Subsequent
calls in the chain will all receive and return a raw C (Recall that all σi(), i = 1, . . . , `,
are functions in C that return a raw C). Therefore, the final $() will reject.
Two other situations in which a jDPDA rejects but not demonstrated in A are: a jump
that encounters an empty stack, and reading a character from when the stack is empty.
In our type encoding these are handled by the special types E and ¤ (ll.17–18 ibid), both
extend C without overriding any of its methods. Again, remaining part of the call chain
will stick to raw Cs up until the final $() call rejects the input.

jump(γi) The design of the generic parameters makes the implementation of jump(γi) op-
erations particularly simple. All that is required is to covariantly change the return type
of the appropriate σj() function to the appropriate JRγi or Rest parameter (recall that
a jump occurs after popping the current element from the stack, so we refer to JR type
parameters rather than J’s).
In Table 1 we find that δ(γ2, σ3) = jump(γ1). Accordingly, the type of σ2() in Cγ2 (l.34)
is JRγ1.

18This is not to be confused with dynamic binding; types of fluent API call chains are determined
statically.
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push(ζ) Push operations are the most complex, since they involve a pop of the top stack
element, and pushing any number, including zero, of new elements. The challenge is in
constructing the correct k+ 1-parameter instantiation of C, from the current parameters
of the type. Each of these k + 1 is also an instantiation of C which may require more
such parameters. Even though the number of ingredients is small, the resulting type
expressions tend to be excessively long and unreadable.
The predicament is ameliorated a bit by the idea, demonstrated above with auxiliary
type P’ (Figure 12), of delegating the task of creating a complex type to an auxiliary
generic type. The task of this sidekick is simplified if some of its generic parameters are
sub-expressions that recur in the desired result.
Cases in point are δ(γ1, σ1) = push(γ1, γ1, γ2), and δ(γ2, σ1) = push(γ2, γ2) of Table 1.
The corresponding sidekick types, (γ1σ1_Push_γ1γ1γ2 and γ2σ1_Push_γ2γ2) can be
found in lines 36–43 of Figure 15. The first of these define the correct return type of
σ1() in case γ1 is the top element, the second of σ2, in case γ2 is the top element.
Examine now the definition of types Cγ1,Cγ2 in the figure, and in particular lines 21–23
and 29–31 which define the list of types they extend. Notice that each extends one of
the sidekicks, inheriting the covariant overrides of σ1().
More generally, economy of expression may require that for each case of δ(γ, σ) = push(ζ)
in the transition table, one creates a sidekick type which overrides the appropriate σ()
function. The appropriate Cγ type then inherits the definition from the sidekick.

Conclusion

The proof of Theorem 1 is an algorithm, taking as input some jDPDA, and returning as
output a set of Java type definitions. The returned types, allow a call chain java(α), such
that the type of the returned object represents the configuration of the input automaton
after reading α. If the automaton rejects after α, then the returned type is the illegal ΣΣ,
and if the automaton accpets, the type shall be L.

8 The Prefix Theorem

I Theorem 2. Let A be a DPDA recognizing a language L ⊆ Σ∗. Then, there exists a Java
type definition, JA for types L, A, C and other types such that the Java command

C c = A.build.java(α); (3)

type checks against JA if an only if there exists β ∈ Σ∗ such that αβ ∈ L and type C is the
configuration of A after reading α. Furthermore, for any such β, Theorem 1 applies such
that the Java command

L ` = A.build.java(αβ).$(); (4)

always type-checks. Finally, the program JA can be effectively generated from A.

Informally, a call chain type-checks if and only if it is a prefix of some legal sequence.
Alternatively, a call chain won’t type-check if there is no continuation that leads to a legal
string in L.

The proof resembles that of Theorem 1. We provide a similar implementation for a
jump-stack 19, that will not compile under illegal prefixes.

19 recall that the two formal constructs have the same expressive power
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1 class A { // Encode automaton A
2 private static class ΣΣ // Encodes set Σ∗, type of reject
3 { /∗ empty ∗/ }
4 static class L extends ΣΣ // Encodes set L ⊆ Σ∗, type of accept
5 { /∗ empty ∗/ }
6 // Configuration of the automaton
7 interface C< // Generic parameters:
8 Rest extends C, // The rest of the stack, for pop or jump(γ) operations
9 JRγ1 extends C, // Type of Rest.jump(γ1), may be rest, or anything in it.

10 JRγ2 extends C // Type of Rest.jump(γ2), may be rest, or anything in it.
11 >
12 {
13 ΣΣ $(); // δ transition on end of input; invalid language by default
14 C σ1(); // δ transition on σ1; dead end by default
15 C σ2(); // δ transition on σ2; dead end by default
16 C σ3(); // δ transition on σ3; dead end by default
17 public interface E extends C<¤,¤,¤> { /∗ Empty stack configuration ∗/ }
18 interface ¤ extends C<¤,¤,¤> { /∗ Error configuration. ∗/ }
19 interface Cγ1< // Configuration when γ1 is at top
20 Rest extends C, JRγ1 extends C, JRγ2 extends C
21 > extends
22 C<Rest, JRγ1, JRγ2>
23 ,γ1σ1_Push_γ1γ1γ2<Rest,JRγ1,JRγ2,Cγ1<Rest, JRγ1, JRγ2>>
24 {
25 @Override L $();
26 }
27 interface Cγ2< // Configuration when γ2 is at top
28 Rest extends C, JRγ1 extends C, JRγ2 extends C
29 > extends
30 C<Rest, JRγ1, JRγ2>
31 ,γ2σ1_Push_γ2γ2<Rest,JRγ1,JRγ2>
32 {
33 @Override Rest σ2();
34 @Override JRγ1 σ3();
35 }
36 interface γ1σ1_Push_γ1γ1γ2<Rest extends C,JRγ1 extends C,JRγ2 extends C,
37 P extends Cγ1<Rest, JRγ1, JRγ2 >>{
38 // Sidekick of δ(γ1, σ1) = push(γ1, γ1, γ2)
39 Cγ2<Cγ1<P, Rest, JRγ2>,P,JRγ2> σ1();
40 }
41 interface γ2σ1_Push_γ2γ2<Rest extends C,JRγ1 extends C,JRγ2 extends C>{
42 // Sidekick of δ(γ2, σ1) = push(γ2, γ2)
43 Cγ2<Cγ2<Rest, JRγ1, JRγ2>, JRγ1, Rest> σ1();
44 }
45 }
46 static Cγ1<E,¤,¤> build = null;
47 }

Figure 15 Type encoding of jDPDA A (as defined in Table 1).

The main difference between the two theorems is: in Theorem 1 we allowed illegal call
chains to compile, but not return the required L type, while in Theorem 2 the illegal chain
won’t compile at all.

Since the code suggested by the proof is similar to the code presented above, only the
differences will be discussed.

We will use the same running example, defined by Table 1.

8.1 Main Types
The main types here are a subset of the previously defined main types.

static class L // Encodes set L ⊆ Σ∗, type of accept
{ /∗ empty ∗/ }

public interface E { /∗ Empty stack configuration ∗/ }
interface ¤ { /∗ Error configuration. ∗/ }

First, type ΣΣ is removed. A call chain that doesn’t represent a valid prefix won’t
compile, thus, there is no need for an error return type such as ΣΣ. Second, interface C is
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static void accepts() {
A.build.$();
A.build.σ1().σ3().$();
A.build.σ1().σ2().$();
A.build.σ1().σ1().σ2().σ3().σ1().σ2().$();

}
static void rejects() {

A.build.σ1().$();
A.build.σ2();
A.build.σ1().σ2().σ3();
A.build.σ1().σ1().σ2().σ3().σ1().$();

}

Figure 16 Accepting and non-accepting call chains with the type encoding of jDPDA A (as
defined in Table 1). All lines in accepts type-check, and all lines in rejects cause type errors.

removed. Without it, the configuration types won’t have the methods σ1(), . . . ,σk() and
$() from the supertype. These inherited methods, is what differentiates the previous proof
from the current. Classes ¤ and E are defined similarly, except now they don’t extend any
type.

8.2 Top-of-Stack Types
Types Cγ1, . . . ,Cγk, still represent stacks with γ1, . . . ,γk as their top element, this time,
the methods are defined ad-hock, in each type (they are not added in this figure as they are
added with the use of sidekicks). In A there are two such types:

interface Cγ1< // Configuration when γ1 is at top
Rest, JRγ1, JRγ2

> extends
γ1σ1_Push_γ1γ1γ2<Rest,JRγ1,JRγ2,Cγ1<Rest, JRγ1, JRγ2>>

{
}
interface Cγ2< // Configuration when γ2 is at top

Rest, JRγ1, JRγ2
> extends
γ2σ1_Push_γ2γ2<Rest,JRγ1,JRγ2>

{
}
static Cγ1<E,¤,¤> build = null;

Note, that the type parameters of the former types hasn’t changed, since the model we
are trying to implement, hasn’t changed. These k + 1 parameters still suffice for our cause.

In Figure 16, call chains in the accepts() method correctly type-checks (i.e., in L), while
the chains in rejects() do not type-check (i.e., these prefixes have no continuation that
can lead to a legal word in L), where the last method invocation generates an

“method . . . is undefined for the type . . . ”

error message.
The main difference between Figure 16 and Figure 14 is that there is no need to use an

auxiliary function isL() as in Figure 16 since now illegal prefixes do not type-check.

8.3 Transitions
Due to the changes we expressed, the transition table is encoded slightly different.

Encoding of the legal operations accept, jump(γi) and push(ζ) remains as in Theorem 1,
since we want the same behavior for legal call chains. The minor differences are in the illegal
operations reject and ⊥:
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1 static class A { // Encode automaton A
2 static class L // Encodes set L ⊆ Σ∗, type of accept
3 { /∗ empty ∗/ }
4 public interface E { /∗ Empty stack configuration ∗/ }
5 interface ¤ { /∗ Error configuration. ∗/ }
6 // Configuration of the automaton
7 interface Cγ1< // Configuration when γ1 is at top
8 Rest, JRγ1, JRγ2
9 > extends

10 γ1σ1_Push_γ1γ1γ2<Rest,JRγ1,JRγ2,Cγ1<Rest, JRγ1, JRγ2>>
11 {
12 L $();
13 }
14 interface Cγ2< // Configuration when γ2 is at top
15 Rest, JRγ1, JRγ2
16 > extends
17 γ2σ1_Push_γ2γ2<Rest,JRγ1,JRγ2>
18 {
19 Rest σ2();
20 JRγ1 σ3();
21 }
22 interface γ1σ1_Push_γ1γ1γ2<Rest,JRγ1,JRγ2,P extends Cγ1<Rest, JRγ1, JRγ2 >>{
23 // Sidekick of δ(γ1, σ1) = push(γ1, γ1, γ2)
24 Cγ2<Cγ1<P, Rest, JRγ2>,P,JRγ2> σ1();
25 }
26 interface γ2σ1_Push_γ2γ2<Rest,JRγ1,JRγ2>{
27 // Sidekick of δ(γ2, σ1) = push(γ2, γ2)
28 Cγ2<Cγ2<Rest, JRγ1, JRγ2>, JRγ1, Rest> σ1();
29 }
30 static Cγ1<E,¤,¤> build = null;
31 }

Figure 17 Type encoding of jDPDA A (as defined in Table 1) that allow a partial call chain, if
and only if, there exists a legal continuation, that leads to a word in L (the language of A).

reject Since we add the methods ad-hock to each type, the reject entry means that the
corresponding type, won’t have a $() method, i.e., type Cγ2 doesn’t have a method $().

⊥ We encounter ⊥ on the transition function when some input character σ is not allowed
for the top of the stack element γ. In that case, the corresponding type Cγ must not
have a method for σ, this way, invoking the methods will result in type error. In Table 1
a ⊥ may occur when the top of the stack is γ1 and the input character is σ2, thus, no
method σ2 is introduced in type Cγ1.

The use of sidekicks is still allowed and recommended to improve readability of code.

Conclusion

In this section, a proof, similar to the one in Section 7 is provided. An algorithm was
introduced, to not only emulate the running of some jDPDA A, but also to “halt it” in the
earliest time possible, i.e., only if there is no legal call chain from this point to result in a
legal word in the language of A.

9 Notes on Practical Applicability

Theorem 1 and its proof above provide a concrete algorithm for converting an EBNF spec-
ification of a fluent API into its realization:

1. Convert the specification into a plain BNF form 20.

20 http://lampwww.epfl.ch/teaching/archive/compilation-ssc/2000/part4/parsing/node3.html
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static interface Cons<Car,Cdr>{
Cons<

Cons<Car,Cdr>,
Cons<Car,Cdr>

> d();
}
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vs. length of call chain.

a measured on an Intel i5-2520M CPU @ 2.50GHz ×4, 3.7GB memory, Ubuntu 15.04 64-bit, javac 1.8.0_66

Figure 18 Exponential compilation time for a simple Java program.

2. Convert this BNF into a type of DPDA (using parsing algorithms e.g., LR(k),
LALR, LL(k)). This conversion might fail 21.

3. Convert this DPDA into a jDPDA. (Conversion is guaranteed to succeed)
4. Apply the proof to generate appropriate Java type definitions, making sure to

augment methods with code to maintain the fluent-call-list. Parsing the fluent-
call-list can be done either in each method, or lazily, when the product of the fluent
API call chain is to be used.

Although possible, a practical tool that uses the proof directly is a challenge. Part of
the problem is the complexity of the algorithms used, some of which, e.g., the DPDA
and jDPDA equivalence have never been implemented. Yet another issue that clients of
compiler-compiler have grown to expect facilities such as means for resolving ambiguities,
manipulation of attributes, etc. Also, for a fluent API to be elegant and useful, it should
support method with parameters whose parameters are also defined by a fluent API: these
two APIs may mutually recursive and even the same. Support of these features through
four or so algorithmic abstractions may turn out to be a decent engineering task.

Yet another challenge is controlling the compiler’s runtime. Learning that linear time
parsers and lexical analyzers are possible, and being accustomed to seeing these in practice,
one may expect the compiler would run in linear, or at least polynomial time. As it turns out,
this time is exponential in the worst case (at least for javac). An encoding of a S-expression
in type Cons (Figure 18(a)) is a not terribly complex such worst case.

Type Cons takes two type parameters, Car and Cdr (denoting left and right branches).
Denote the return type of d() by

τ = Cons< Cons<Car, Cdr>, Cons<Car, Cdr> >.

Let σ denote the type of the this implicit parameter to d. Now, since τ = Cons<σ, σ>, we
have |τ | ≥ 2|σ|, where the size of a type is measured, e.g., in number of characters in its
textual representation. Therefore, in a chain of n calls to d()

(Cons<?,?>(null)).
n times︷ ︸︸ ︷

d(). · · · .d() ; (5)

the size of the resulting type is O(2n).

21 In the LR case, we know [30] there exists an equivalent grammar for which the conversion will succeed
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Figure 18(b) shows, on the doubly logarithmic plane, the runtime (on a Lenovo X220) of
the javac compiler (version 1.8.0_66) in face of a Java program assembled from Figure 18
and Equation 5 placed as the single command of main(). Exponential growth is demon-
strated by the right-hand side of the plot, in which curve converges on a straight line. (In
fact, a variation of the construction may lead to even super-exponential growth rate of the
size of types.)

We believe that this exponential growth is due to a design flaw in the compiler. Had the
compiler used a representation of types that allows sharing of expression types, compilation
time would be linear.

Still, with current compiler technology, the type encoding scheme demonstrated in Fig-
ure 15 might not be scalable.

10 Conclusion and Future Work

The main contribution of this work is the proof that most useful grammars have a fluent API.
This brings good news to library designers laboring at making their API slick, accessible,
and more robust to mistakes of clients: If your API can be phrased in terms of a “decent”
BNF, do not lose hope; the task may be Herculean, but it is (most likely) possible.

Other practitioners may appreciate the toolbox of type encodings offered here gaining
better understanding of the computational expressiveness of Java generics and type hierar-
chy, and, a better tool for designing, experimenting with and perfecting fluent APIs.

However, once possibility was demonstrated theoretically, the next research challenge is
in an actual fluent API compiler based on lighter weight parsing algorithms. Precisely, the
challenge is in developing a parsing (or at least recognition) algorithm which is not only
efficient but also falls within the limited computing power of the Java types.

On the theoretical front, one may ask whether our result is the best possible: Can the
Java type system be coerced to recognize general (that is, nondeterministic) context-free
languages?

As mentioned earlier, to the best of our knowledge, the complexity of the Java type
checker has never been analyzed. In light of the empirical finding in Section 9, research in
this direction may be worthwhile.

Other directions include formalizing the proof in Section 7 here and extensions to other
languages.

On a philosophical perspective, several modern programming languages acquire high-
level constructs at a staggering rate (C++ and Scala [35] being prominent examples). The
main yardstick for evaluation these is “programmer’s convenience”. This work suggests an
orthogonal perspective, namely computational expressiveness, or, stated differently, ranking
of a new construct by its ability to recognize languages in the Chomsky hierarchy [12].
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Abstract
Derived values are values calculated from base values. They can be expressed in object-oriented
languages by means of getters calculating the derived value, and in relational or logic databases by
means of (materialized) views. However, switching to a different calculation strategy (for example
caching) in object-oriented programming requires invasive code changes, and the databases limit
expressiveness by disallowing recursive aggregation.

In this paper, we present IceDust, a data modeling language for expressing derived attribute
values without committing to a calculation strategy. IceDust provides three strategies for cal-
culating derived values in persistent object graphs: Calculate-on-Read, Calculate-on-Write, and
Calculate-Eventually. We have developed a path-based abstract interpretation that provides
static dependency analysis to generate code for these strategies. Benchmarks show that different
strategies perform better in different scenarios. In addition we have conducted a case study that
suggests that derived value calculations of systems used in practice can be expressed in IceDust.
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1 Introduction

Derived values are values calculated from base values (provided by users). When a base
value changes, the derived values depending on it should change accordingly. Hence, the
important events for interacting with derived values are writes to base values and reads of
derived values. This specification of derived values leaves room for multiple strategies for
calculating derived values. Derived values can be calculated when they are read or they can
be cached and updated when the underlying base values change. The performance of these
strategies depends on characteristics of the data model and usage scenarios. When neither
of these calculation strategies provides acceptable performance, updates can be postponed,
temporarily allowing reads to return outdated derived values.

Object-oriented programming languages express derived values through getters containing
code that calculates a derived value, implying that the derived value is recalculated each
time it is read. Switching to calculating the derived value when an underlying value changes,
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or switching to eventually calculating the derived value, requires invasive code changes.
By contrast, most relational databases allow easy switching between calculate-on-read
and calculate-on-write as they support both materialized and non-materialized views for
calculating derived values. However, relational databases only provide limited expressiveness
for recursion, and do not support eventual calculation of derived values. Datalog provides
more expressiveness than relational database views, but also limits recursion, and does not
support eventual calculation of derived values.

This paper presents IceDust, a language supporting definition of attributes with derived
values without committing to a calculation strategy. The compiler provides three different
implementation strategies for calculating derived values: (1) Calculate-on-Read, which
calculates the derived value every time it is read, (2) Calculate-on-Change, which maintains
a cache incrementally by calculating the derived value every time an underlying value is
changed, and (3) Calculate-Eventually, which schedules calculations of derived values, and
thus sacrifices consistency temporarily. All these strategies allow unrestricted recursion, but
do not provide termination guarantees. In particular, our contributions are:

The IceDust language for data modeling with derived values (Section 2)
A formal analysis of the dependencies in IceDust programs (Section 3)
Three calculation strategies to satisfy different non-functional requirements (Section 4)
Benchmarks showing the performance differences between the strategies (Section 5)
A case study of migrating a custom eventual calculation system to IceDust (Section 6)

2 Declarative Data Modeling with Derived Values

This section discusses three issues of data modeling with derived values in object-oriented
programming languages and show how data modeling in IceDust addresses these issues and
leads to concise specifications. As running example we use (an aspect of) a learning manage-
ment system in which students solve assignments. Figure 1 shows a Java implementation
with classes Assignment and Question, where assignment represents a collection of questions
and its progress is the average of the progress on the individual questions.

Bidirectional Relations. Object-oriented languages model bidirectional relations as prop-
erties in classes on both sides of the relation. Keeping these properties consistent re-
quires code that has to be repeated for every bidirectional relation. Figure 1 includes five
methods concerned with keeping the relation Assignment-Question consistent on updates:
setAssignment, addQuestion, removeQuestion, _addQ, and _remQ. This pattern is identical
for all one-to-many relations, but cannot be abstracted over in an object-oriented language.
To avoid such boilerplate code, IceDust supports bidirectional relations as a language feature:

entity Assignment { }
entity Question { }
relation Assignment.questions * <−> 1 Question.assignment

These bidirectional relations are named on both sides of the relation, inspired by Object-Role
Modeling [17]. The IceDust compiler keeps both sides of the association consistent without
additional boilerplate code.

Native Multiplicities. Explicit collections and possible null values in object-oriented lan-
guages lead to boilerplate code to deal with the cardinalities of values returned by an
expression. Operators in object-oriented languages are defined for operands with a cardinality
of exactly one. Safely applying an operator to a nullable operand, requires a null-check.
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public class Assignment {
public Double getAverageProgress() { return calculateAverageProgress(); }
public Double calculateAverageProgress() {
Stream<Double> progresss =

questions.stream().map(q −> q.getProgress()).filter(p −> p != null);
OptionalDouble average = progresss.mapToDouble(p −> p).average();
return average.isPresent() ? average.getAsDouble() : null;

}
private Collection<Question> questions;
public Collection<Question> getQuestions(){ return new HashSet<>(questions); }
public void addQuestion(Question q) { q.setAssignment(this); }
public void removeQuestion(Question q) { q.setAssignment(null); }
protected void _addQ(Question q) { questions.add(q); }
protected void _remQ(Question q) { questions.remove(q); }

}
public class Question {

private Assignment assignment;
public Assignment getAssignment() { return assignment; }
public void setAssignment(Assignment a) {
if(assignment != null) { assignment._remQ(this); }
if(a != null) { a._addQ(this); }
assignment = a;

}
private Double progress;
public Double getProgress() { return progress; }
public void setProgress(Double p) { progress = p; }

}

Figure 1 Object-oriented assignment system (implementation strategy: Calculate-on-Read).

Applying an operator to a collection of values, requires lifting it to a map. For example,
accessing the progress of each individual question in Figure 1 is encoded as

questions.stream().map(q −> q.getProgress()).filter(p −> p != null)

IceDust adopts native multiplicities [18], delegating the handling of the cardinality of values
returned by an expression to the language. For example, retrieving the progress for all
questions is simply a projection:

questions.progress

Language constructs to get expressions of cardinality exactly one, such as map, filter, and
!= null, are no longer required, as the type system knows how many values an expression
returns (multiplicity denoted by ~, where * is [0,n), + is [1,n), ? is [0,1], and 1 is [1,1]):

mathAssignment // : Assignment ~ 1
mathAssignment.questions // : Question ~ *
mathAssignment.questions.progress // : Float ~ *
avg(mathAssignment.questions.progress) // : Float ~ ?

Sometimes it is still necessary to reflect explicitly on the cardinality of a value. To that end
one can use the count operator, for example, for counting the number of questions:

count(questions)

Reflection on the cardinality of values is also often used to select an alternative if no value is
present. For specifying alternatives the choice operator (<+) can be used:

input <+ myDefault //if (count(input) > 0) input else myDefault

ECOOP 2016
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//Take all Code from Calculate−on−Read and add/change the following:
public class Assignment {
private Double cachedAvgProgress;
public Double getAverageProgress() { return cachedAvgProgress; }
public void updateAvgProgress(){cachedAvgProgress = calculateAverageProgress();}
protected void _addQ(Question q){ questions.add(q); updateAvgProgress(); }
protected void _remQ(Question q){ questions.remove(q); updateAvgProgress(); }
}
public class Question {
public void setProgress(Double p){progress = p; assignment.updateAvgProgress();}
}

Figure 2 Object-oriented assignment system (implementation strategy: Calculate-on-Write).

Derived Value Attributes. Last but not least, object-oriented languages force early decisions
on the implementation strategy for calculating derived values. In an object-oriented language,
a derived value calculation can be expressed with a method that computes the value.
However, this encodes a Calculate-on-Read implementation strategy. For cheap calculations
or calculations that are done infrequently that may be fine. But for others, it may be
necessary to cache the calculated value. Such an alternative computation strategy requires
an invasive redefinition of the implementation. For example, Figure 2 implements a caching
strategy for the getAverageProgress computation of Figure 1. Instead of computing the
average on read, it is computed on writes of progress and questions. For this example,
the impact of the change was relatively minor because in Figure 1 we had already factored
calculateAverageProgress into a separate method. However, in real code the impact is
typically non-trivial. In particular, because the introduction of a cached value requires taking
into account all of its dependencies in order to trigger recomputation on any change that
affects it. For example, averageProgress depends on progress and questions. Thus,
setProgress, _addQ, and _remQ need to trigger recalculation of averageProgress.

IceDust provides derived value attributes for declarative specification of the value of
attributes in terms of other attributes without committing to an implementation strategy:

entity Assignment { avgProgress : Float? = avg(question.progress) }

This separation of concerns enables focusing on specification of the logic of the derived value.
The derived value expression specifies what the value of the attribute should be. Derived
value attributes in IceDust support recursive definitions, including recursive aggregation
(which is not supported in materialized views or stratified Datalog):

entity Assignment { progress : Float? = avg(children.progress) }
relation Assignment.parent ? <−> * Assignment.children

Language Definition. We have combined the ideas for improving data modeling by means
of bidirectional relations, native multiplicities, and derived value attributes in the design of
the experimental IceDust language. In order to embed IceDust data models in full fledged
web applications the compiler generates code in the WebDSL programming language [36].

The design of IceDust was heavily influenced by previous work on relations as a first-
class language construct. From Rumer [4] and RelJ [5] we adopt the restriction to binary,
bidirectional relations. From the Relations language [18] we adopt the syntax of declarations
and property access, integrating multiplicities in relations. Multiplicities derive from the work
of Steimann [32, 33], which extends an object-oriented language with multiplicity annotations
to support uniform treatment of values of different cardinality and avoids the boilerplate code
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Program ::= model Entity* Relation*
Entity ::= entity E { Attribute* }

Relation ::= relation E.r m <−> m E.r

Attribute ::= a : T m

| a : T m = e

| a : T m = e (default)

T ∈ PrimitiveType ::= Boolean | Int | Float | Datetime | String
m ∈Multiplicity ::= ? | 1 | * | * (ordered) | + | + (ordered)

e ∈ Expr ::= f ( e ) | e1 ⊕ e2 | ! e | e1 ? e2 : e3 | e .a | e .r | e as T | this | Literal
Literal ::= true | false | null | int | float | datetime | string

f ∈ AggrOp ::= min | max | avg | sum | concat | count | conj | disj
⊕ ∈ BinOp ::= + | − | * | / | % | && | || | > | >= | < | <= | == | =! | <+ | ++

Figure 3 Syntax of the IceDust data modeling language.

required to support different multiplicities. We adopt the integration of such multiplicities in
the type system (dubbed native multiplicities) of the Relations language [18].

Figure 3 defines the grammar of IceDust. E, a and r are entity, attribute and relation
names respectively. An IceDust program consists of entities and relations. Entities contain
three kinds of attributes: ‘normal’ attributes (a : T m), derived value attributes (a : T
m = e), and default value attributes (a : T m = e (default)). Users can set the value
of ‘normal’ attributes and read the value later. Users cannot set the value of derived value
attributes, but they can read the value calculated with expression e. Finally, users can set the
value of default value attributes and read the value later, but they can also set the value to
null (or not set it all) and read the value calculated by e. Attributes are limited to primitive
types, as an entity type would create a unidirectional relation (which would give problems
in the dependency analysis). A relation defines a bidirectional relation with a name and
multiplicity on both sides. The domain of the expression language is primitive types (Boolean,
Int, Float, Datetime and String) and objects. The language covers object graph navigation
and calculations over the primitive types. Note the aggregation operations over primitive
types to deal with multiplicities * and +. The expression language is expressive enough to
specify derived values, and simple enough to allow multiple implementation strategies.

The type system of IceDust is mostly concerned with native multiplicities. A type in
IceDust is a tuple of two lattice values (Figure 4). The primitive types, the declared entities,
the null and error type form a lattice. Multiplicity and ordering form another lattice. During
derived value calculation all values are read-only in IceDust. A value which is lower or equal
in both lattices can be used in a place where a certain type, multiplicity, and ordering is
expected. For example, a Float? can be supplied where a Float* is expected.

3 Dependency and Data Flow Analysis

IceDust specifications define the value of attributes in terms of other attributes. These
definitions are declarative in the sense that they abstract from the implementation strategy
used to calculate the values. In the next section we define three implementation strategies
for the calculation of attribute values: Calculate-on-Read, Calculate-on-Write, and Calculate-
Eventually. The latter two strategies require dependency and data flow information. In this
section we define the computation of dependencies between attributes by means of a path-
based abstract interpretation of expressions. Since IceDust does not have statements, data
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Figure 4 IceDust’s type lattice (left), and multiplicity and ordering lattice (right).

flow coincides with control flow, and the data flow relation is the inverse of the dependency
relation. The static dependency and data flow analysis is performed in three steps: (1)
compute attribute dependencies by means of path-based abstract interpretation, (2) reverse
the dependencies to construct the data flow relation, and (3) organize the data flow in a
graph and extract strongly connected components with a topological ordering.

Example. To illustrate the analysis we use a more complex version of the learning manage-
ment system (Figure 5). This example features a tree of assignments, and grade calculation
logic for submissions by students to these assignments. Assignments are structured in a tree
through the parent-children relation. A Submission represents the solution created for
an assignment by a student. Leaf submissions are graded by assigning a grade to the grade
attribute (overriding the default value), while the grades of non-leaf submissions depend
(indirectly) on the grades of their child submissions:

grade : Float? = if(childPass) childGrade else null (default)
pass : Boolean = grade >= (assignment.minimum<+0.0) && childPass <+ false
childGrade : Float? = avg(children.grade)
childPass : Boolean = conj(children.pass)

Note that students only receive a grade for a collection-submission if all of the child
submissions are pass, and a submission is only a pass when its grade is above the minimum
assignment grade and all its children pass. The minimum for an assignment is optional,
without minimum the grade should be higher than or equal to 0.0, which is always true.
Submissions are (one of) the best of an assignment when their grade equals the highest
grade. Finally, every assignment has an average grade and pass percentage. This example is
interesting for dependency analysis as it features mutually recursive definitions of grade,
pass, childGrade and childPass through the parent-child relation of Submission.

Step 1: Dependencies. The dependencies of an attribute are all the attributes and relations
that are needed to compute the derived value of that attribute. The dependencies are reachable
from the entity of the attribute via a path. A dependency is denoted by (Ent.Attr ← π),
where Ent.Attr is the attribute and π is the path to an attribute or relation.

Computing the dependencies requires extracting paths from expressions defining derived
values. The path-based abstract interpretation relation (Figure 6) defines the dependency
paths of an expression. We use the notation Expr ↘ {π}{ρ}, where Expr is the expression
that is abstractly interpreted, and {π} and {ρ} are the sets of paths defined by the abstract
interpretation. The paths in {π} are extensible, while the paths in {ρ} are not. All paths
start with this [This] or with object graph navigation [NavStart]. When navigating the
object graph by means of e.attrOrRel all dependency paths {π} in e are extended with
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entity Assignment {
name : String
question : String
minimum : Float?
avgGrade : Float? = avg(submissions.grade)
passPerc : Float? = sum(submissions.passInt) / count(submissions) * 100.0

}
entity Student {

name : String
}
entity Submission {

name : String = assignment.name + " " + student.name
answer : String?

grade : Float? = if(childPass) childGrade else null (default)
pass : Boolean = grade >= (assignment.minimum<+0.0) && childPass <+ false
childGrade : Float? = avg(children.grade)
childPass : Boolean = conj(children.pass)

passInt : Int = if(pass) 1 else 0
best : Boolean = grade == max(assignment.submissions.grade) <+ false

}
relation Assignment.parent ? <−> * Assignment.children
relation Submission.parent ? <−> * Submission.children
relation Submission.student 1 <−> * Student.submissions
relation Submission.assignment 1 <−> * Assignment.submissions

Figure 5 Example program for dependency analysis.

attrOrRel [Nav]. The if [If] only allows extension of paths in the second and third operand,
so Π1 is passed to {ρ}. Operators with multiple operands take the union of the paths of their
operands [Op], unary operators pass on paths [Not,Cast,Aggr], and literals do not contain
any paths at all [Literal]. Path-based abstract interpretation of the expression defining pass

grade >= (assignment.minimum <+ 0.0) && childPass <+ false

produces a set containing the following paths:
grade
assignment.minimum
childPass

The dependencies relation (Figure 6) defines the dependencies of an attribute, entity and
program. We use the notation Attr |Ent|Prog ↘↘ {(Ent.Attr ← π)}, where Attr |Ent|Prog is
an attribute, entity or program, and {(Ent.Attr ← π)} is a set of dependencies. When an
attribute depends on a value at the end of a path, it also depends on the relations en route.
So, the rule for attributes [Att] takes the transitive prefix of the paths of its expression. As
paths are concatenated later, and a this keyword in the middle would produce an invalid
path, the this is removed from paths. As an example, the dependencies of pass are:

(Submission.pass ← grade)
(Submission.pass ← assignment.minimum)
(Submission.pass ← assignment)
(Submission.pass ← childPass)

The dependencies in for the individual attributes together constitute the dependencies for a
full program [Ent,Prog].

ECOOP 2016
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Path-based abstract interpretation Expr ↘ {π}{ρ}

this ↘ {this}{}
[This]

attrOrRel↘ {attrOrRel}{}
[NavStart]

e↘ Π P

e . attrOrRel↘ {π . attrOrRel | π∈Π} P
[Nav]

⊕∈BinOp e1 ↘ Π1 P1 e2 ↘ Π2 P2

e1 ⊕ e2 ↘ Π1 ∪Π2 P1 ∪ P2

[Op]

e1 ↘ Π1 P1 e2 ↘ Π2 P2 e3 ↘ Π3 P3

e1 ? e2 : e3 ↘ Π2 ∪Π3 Π1 ∪ P1 ∪ P2 ∪ P3

[If]

e ∈ Literal

e ↘ {}{}
[Literal]

e↘ Π P

! e ↘ Π P
[Not]

T ∈ PrimitiveType e↘ Π P

e as T ↘ Π P
[Cast]

f ∈ AggrOp e↘ Π P

f(e) ↘ Π P
[Aggr]

Dependencies Attr|Ent|Prog ↘↘ {(Ent.Attr ← π)}

e↘ Π P E = entity-of(attr) Π2 =
⋃
{trans-pref(remove-this(π)) | π ∈ Π ∪ P}

attr : T m {= e,= e (default)} ↘↘ {(E.attr ← π) | π ∈ Π2}
[Att]

entity t {a∗} ↘↘
⋃
{dep | a↘↘ dep, a ∈ a∗}

[Ent]

model E∗ R∗ ↘↘
⋃
{dep | E ↘↘ dep, E ∈ E∗}

[Prog]

remove-this(this . π) = π
remove-this(attrOrRel . π) = attrOrRel . π
trans-pref(π . attrOrRel) = {π . attrOrRel} ∪ trans-pref(π)
trans-pref(attrOrRel) = {attrOrRel}

Figure 6 Dependency analysis step 1: path-based abstract interpretation

Dependency inversion (Ent.Attr ← π)↗ (Ent.AttrOrRel→ π)
E2 = entity-of(attrOrRel)
(E . attr ← π . attrOrRel) ↗ (E2 . attrOrRel→ inv-path(π) . attr)

[InvDep]

inv-path(π . attrOrRel) = attrOrRel−1 . inv-path(π)
inv-path(attrOrRel) = attrOrRel−1

inv-path(null) = null

Data flow Prog ↗↗ {(Ent.AttrOrRel→ π)}
model E∗ R∗ ↘↘ Dep

model E∗ R∗ ↗↗ {df | dep ↗ df, dep ∈ Dep}
[Prog]

Figure 7 Dependency analysis step 2: data flow

Data flow graph Prog ↗↗↗ ({AttrOrRel}, {(AttrOrRel,Attr)})
model E∗ R∗ ↗↗ DFlow
E={(x, y) | (Ent.x→ π.y) ∈ DFlow} V ={x | (x, y) ∈ E} ∪ {y | (x, y) ∈ E}
model E∗ R∗ ↗↗↗ (V,E)

[Prog]

Figure 8 Dependency analysis step 3: data flow graph.
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Step 2: Data Flow. The data flow of an attribute or relation is the set of all the attributes
that depend on it to compute their derived value. The data flow relation is the inverse of the
dependency relation. We write (Ent.AttrOrRel → π) to denote the data flow relation from
the source, Ent.AttrOrRel, to the target, the end of the path π.

The dependency inversion relation, (Ent.Attr ← π)↗ (Ent.AttrOrRel → π), in Figure 7
defines the inverse of a dependency. A dependency is inversed by swapping source and target,
and inverting the path π to get the path from target to source. The function inv-path(π)
inverts the names in on path, and inverts their order. Name inversion is selecting the name
on the opposing side of a relation; all relations in IceDust are bidirectional, and have names
on both sides. All names in π can be inverted because they are relations. (π is the prefix of
a full path, and only the last name of a path can be an attribute.) If the dependencies of the
attribute pass are inversed the resulting data flow is:

(Submission.grade → pass)
(Assignment.minimum → submissions.pass)
(Submission.assignment → pass)
(Submission.childPass → pass)

Step 3: Data Flow Graph. The data flow graph relation Prog ↗↗↗ (V ,E) in Figure 8,
defines a data flow graph in terms of the data flow relation. The nodes in the graph are
the attributes and the relations in an IceDust program. The edges (x, y) in the graph are
(AttrOrRel,Attr) from the data flow relation (Ent.AttrOrRel → π.Attr). Using Tarjan’s
algorithm [35] we find strongly connected components and a topological ordering for the
data flow. The strongly connected components correspond to recursive dependencies.

The data flow graph for our example application is shown in Figure 9. The attributes
grade, pass, childGrade, and childPass mutually depend on each other, a cycle in the
graph (group 6). (The data flow is not cyclic: data flows up the submission tree.) The
minimum precedes group 6 in the topological ordering, as pass in group 6 depends on it but
minimum itself depends on nothing. On the other hand, the passPerc, averageGrade, and
best depend on the results in group 6. The derived name for submissions is disconnected from
the grade calculation, as the name of the submission does not have anything to do with the
grade calculation. Relations only flow to attributes, and not vice versa. In IceDust, relations
cannot be derived. This limits the expressiveness of IceDust, but also avoids ‘dynamic
dependencies’, dependencies that are discovered while computing derived values.

Topological ordering can be used to statically schedule the computation of derived values.
This is used in stratified Datalog, where a topological sort of the dependencies between rules
is used to determine the order of computation [3, 13]. We will elaborate on computation
scheduling, and on similarities with existing approaches, in later sections.

4 Implementation Strategies

The declarative specification of derived values in IceDust allows deferring the decision about
implementation strategy from implementation to compilation time, and allows switching
strategies to realize different non-functional requirements without invasive code changes.
In this section we present three implementation strategies: Calculate-on-Read, Calculate-
on-Write, and Calculate-Eventually. For each of these we have a compilation scheme that
specifies what code to generate for IceDust’s concepts.

On a high level the difference between the generated code for the different implementation
strategies is the point in time at which derived values are calculated. Figure 10 shows the
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Figure 9 Step 3 example: strongly connected components and topological ordering in data flow.
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Figure 10 Thread activation diagrams for code generated by different implementation strategies.

differences by means of thread activation diagrams in response to incoming HTTP requests.
The code generated by Calculate-on-Read calculates derived values when they are read. This
means that writes to base values, on which derived values can depend, will be fast, but reads
of derived values will be slow. The code generated by Calculate-on-Write calculates the
derived values that depend on changed base values right away. Writes will be slow, but reads
will be fast. The code generated by Calculate-Eventually schedules calculation of derived
values on a separate thread. Writes and reads will be fast, but consistency is not guaranteed:
possibly outdated derived values might be read.

Compiling to WebDSL IceDust is used to specify the data model and derived values for web
applications. Our compiler compiles IceDust specifications to the WebDSL web programming
language [36], which is a high-level target language for the implementation of data models.
WebDSL persists its data in a relational database. This provides (1) data safety in case
of a power outage, (2) enables large data sets, and (3) enables concurrent data access for
concurrent HTTP requests. WebDSL’s data modeling language is close to IceDust; it features
entities and attributes (including Calculate-on-Read derived values):
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entity Assignment {
name : String
avgGrade : Float := avg([s.grade | s:Submission in subs where s.grade!=null])

}

Note the list comprehension syntax for applying a map to access the grade for each submission
and filter on null values. WebDSL does not have bidirectional relations like IceDust, but it
does have inverse properties:

entity Submission { assignment : Assignment (inverse = submissions) }
entity Assignment { submissions : Set<Submission> }

If a property is an inverse of another property, WebDSL keeps the values in the properties
consistent. Our compiler targets these inverse properties for bidirectional relations, giving us
the consistency of bidirectional relations for free.

With WebDSL already providing data persistence, large data sets, concurrency, Calculate-
on-Read derived values, and inverse property consistency, our compilation schemes can
focus on the essentials: default value behavior, multiplicities, bidirectional relations, and the
Calculate-on-Write and Calculate-Eventually implementations for derived values.

The rest of this section describes the three implementation strategies in detail, using
MorphJ[20]-style code generation templates for the compilation schemes. The templates
use WebDSL (black with purple keywords) as target language and template-level control
statements (blue italic) that iterate over entities, attributes, relations, and data flow edges
(orange italic). We explain WebDSL code along the way, using callouts (for example: 1) to
refer to specific parts of generated WebDSL code.

Calculate on Read. Figure 11 defines the Calculate-on-Read compilation scheme. To
translate IceDust with Calculate-on-Read to WebDSL we need to translate three IceDust
features: (1) multiplicities, (2) default value attributes, and (3) bidirectional relations.

Multiplicities ? and 1 are translated to WebDSL primitives, while multiplicities * or + are
translated to lists. The getter for a normal attribute 2 (see Figure 11) is static for null-safety,
it might be called on a null value, for example: Assignment.get_passPerc(null). The
getter is lifted to deal with a list of entities for which the attribute is referenced 10. Attributes
can only have multiplicity ? or 1, so there is no generation for multiplicity * or +. (List
typed attributes would create overhead in WebDSL’s mapping to the underlying database.)

Default value attributes are translated to two attributes 6,7 and one getter 9 in WebDSL.
The first attribute 6 corresponds to the value possibly set by the user. The second attribute
7 corresponds to the default value expression. The getter 9 will return the user provided
value, if any, and otherwise the default value. When only 6 is used to write values, and only
9 is used to read values the default value attribute will have IceDust’s semantics. WebDSL
features no private attributes and methods, so this behavior cannot be encapsulated.

Bidirectional relations are translated to properties and inverse properties (which are
kept consistent by WebDSL). The right-hand side of the relation is translated to a normal
WebDSL property 12,14,16, and the left-hand side is translated to a property with an inverse
11,13,15. Unordered to-many relations are translated to sets, while the ordered relations are
translated to lists. It would suffice to translate them all to lists, but WebDSL’s relational
database mapping has more overhead for lists than for sets. Relation navigation is overloaded
on multiplicity: navigate from single entity via a to-one relation 17, or via a to-many relation
19, and navigate from multiple entities via a to-one relation 18, or via a to-many relation 20.
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for E in Entities
entity E {

for a : T m in E.attributes
a : T (default=null)1

static function get_a(e : E) : T { return if(e == null) null else e.a; }2

for a : T m = e1 in E.attributes
a : T := calculate_a()3

function calculate_a() : T { return e1; }4

static function get_a(e : E) : T { return if(e == null) null else e.a; }5

for a : T m = e1 (default) in E.attributes
a : T (default=null)6

a_default : T := calculate_a()7

function calculate_a() : T { return e1; }8

static function get_a(e : E) : T {
return if(e == null) null else if(e.a == null) e.a_default else e.a;

}9

for a : T m {, = e1, = e1 (default)} in E.attributes
static function get_a(entities : [E]) : [T] {

return [E.get_a(e) | e : E in entities where E.get_a(e) != null];
}10

for relation E.l {1,?} <−> m2 E2.r in Relations
l : E2 (inverse=r)11

for relation E2.r m2 <−> {1,?} E.l in Relations
l : E212

for relation E.l {*,+} (unordered) <−> m2 E2.r in Relations
l : {E2} (inverse=r)13

for relation E2.r m2 <−> {*,+} (unordered) E.l in Relations
l : {E2}14

for relation E.l {*,+} (ordered) <−> m2 E2.r in Relations
l : [E2] (inverse=r)15

for relation E2.r m2 <−> {*,+} (ordered) E2.r in Relations
l : [E2]16

for relation E.l {1,?} <−> m2 E2.r
and relation E2.r m2 <−> {1,?} E.l in Relations
static function get_l(e : E) : E2 { return if(e == null) null else e.l; }17

static function get_l(entities : [E]) : [E2]{
return [E.get_l(e) | e : E in entities where E.get_l(e) != null];

}18

for relation E.l {+,*} <−> m2 E2.r
and relation E2.r m2 <−> {+,*} E.l in Relations
static function get_l(e : E) : [E2]{

return if(e == null) null else [e2 | e2 : E2 in e.l];
}19

static function get_l(entities : [E]) : [E2]{
return [e2 | e : E in entities, e2 : E2 in e.l];

}20

}

Figure 11 Compilation scheme for Calculate-on-Read implementation strategy.
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Calculate on Read Properties. The compiled Calculate-on-Read programs have the follow-
ing properties: (1) derived value reads are consistent, (2) transactions might fail, and (3)
cyclic derived values cause a stack overflow exception at runtime.

Derived value consistency is based on database transactions. HTTP requests see all
changes to base data from previous requests, and no changes to base data from concurrent
requests. They compute the derived values, so these are consistent. The database performs
optimistic locking, consequently transactions with concurrent edits to the same values are
rejected. A cycle in the static dependency graph, such as group 6 in Figure 9, can admit
a cyclic attribute value definition (for example a submission being a child of itself, and its
grade being the average of its child grades). Such a cyclic derived value cannot be computed.
The generated code will keep recursing into the getters until stack space is exhausted.

Calculate on Write. Figure 12 defines the Calculate-on-Write compilation scheme. The
Calculate-on-Write compilation scheme builds on the Calculate-on-Read compilation scheme,
only mentioning the new or changed WebDSL code. The general idea for Calculate-on-Write
is caching all derived values, and incrementally maintaining the cached values on writes (like
materialized views [14]). Updating a derived value can lead to having to update other derived
values. This behavior is realized by dirty flagging (and updating) all dependent attributes
on updating an attribute or relation (like push-based reactive programming [27]). To avoid
unnecessary recomputation, updates are scheduled using the topological sort of the data flow
graph (like stratified Datalog [3, 13]). So, to translate IceDust with Calculate-on-Write to
WebDSL, we need to generate caches, dirty flagging, and recalculation.

Derived value caches store the derived values 22,25. The properties containing the cached
derived values are managed by code keeping track of dirty values 29,30,36, and code for
updating dirty values 27,28.

Dirty flagging of derived values happens when underlying values are updated. WebDSL
provides extend function hooks to intercept calls to setters. When a setter is called, all
dependent values are dirty flagged by traversing the data flow paths 31-34. Attributes and
relations with multiplicity ? and 1 only dirty flag when the value changes 31, while relations
with multiplicity * and + dirty flag on additions and removals 32,33. As relations have two
names, dirty flagging is done for both names. Moreover, updating a relation can also implicitly
remove another relation. For example, moving a submission to a different assignment

bobsSubmissionToMath.assignment := logicAssignment;

will trigger:
bobsSubmissionToMath.set_assignment(logicAssignment);
mathAssignment.remove_from_submissions(bobsSubmissionToMath);
logicAssignment.add_to_submissions(bobsSubmissionToMath);

Recalculation of derived values 35 is performed after user code is run, and before the flush
to database. The computation is scheduled statically by means of the topological sort of
the connected components in the data flow graph. Within a connected component, a while
continues computing derived values until none of the derived values is dirty anymore.

Calculate on Write Properties. This compilation scheme yields programs with the following
properties: (1) the derived value reads are consistent, (2) transactions might fail, (3) cyclic
derived values can cause non-termination, (4) scheduling is optimal for acyclic dependency
graphs, and (5) scheduling is naive for connected components inside the dependency graph.

Consistency of derived values is based on consistency of derived values within a single
HTTP request, and database concurrent transaction semantics. For any changed attribute
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//All code from Calculate−on−Read, except generated fields for attributes.
for E in Entities
entity E {

for a : T m in E.attributes
a : T (default=null)21

for a : T m = e1 in E.attributes
a : T (default=calculate_a())22

function update_a() { a := calculate_a(); }23

for a : T m = e1 (default) in E.attributes
a : T (default=null)24

a_default : T (default=calculate_a())25

function update_a() { a_default := calculate_a(); }26

for a : T m {= e1, = e1 (default)} in E.attributes
static function a_update_all() {

for(e in E.get_and_empty_a_dirty()){ e.update_a(); }
}27

static function get_and_empty_a_dirty() : {E} {
var values := E_a_dirty; E_a_dirty := Set<E>(); return values;

}28

static function a_has_dirty() : Bool { return E_a_dirty.length != 0; }29

static function a_flag_dirty(entities : {E}){ E_a_dirty.addAll(entities);}30

for E.a −> path.a2 in DataFlow where a.multiplicity in {?,1} and E2=a2.entity
extend function set_a(newV : T){ if(a != newV){ E2.a2_flag_dirty(path); }}31

for E.l −> path.a2 in DataFlow where l.multiplicity in {*,+} and E2=a2.entity
extend function add_to_l (n:T){ if(l != n){ E2.a2_flag_dirty(path); }}32

extend function remove_from_l(n:T){ if(l != n){ E2.a2_flag_dirty(path); }}33

for E.a −> path.a2 in DataFlow where a2 : T m = e1 (default) and E2=a2.entity
extend function set_a_default(newValue : T) {

if(a == null && a_default != newValue){ E2.a2_flag_dirty(path); }
}34

}

// update_derivations gets called before flush to database
function update_derivations(){
var not_empty : Bool;
for ConnectedComponent cc in DataFlowGraph topologically sorted

not_empty := true;
while(not_empty){
for a : T m {= e1, = e1 (default)} in cc where E = a.entity

E.a_update_all();
not_empty := false;
for a : T m {= e1, = e1 (default)} in cc where E = a.entity

not_empty := not_empty || E.a_has_dirty();
}

}35

for a : T m {= e1, = e1 (default)} in Attributes and E = a.entity
request var E_a_dirty : {E} := Set<E>()36

Figure 12 Compilation scheme for Calculate-on-Write implementation strategy.
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or relation, all the values that depend on it are dirty flagged and recomputed. By induction,
all values that depend transitively on a changed value get dirty flagged and recomputed.
Computation only stops if all dirty flags are processed. As such, for a specific HTTP request,
all derived values in memory are up to date when computation terminates. Flushing to the
database only succeeds if previously read data remains unchanged, guaranteeing consistency.
Failing transactions occur more often in Calculate-on-Write than in Calculate-on-Read, as
both the updates to base values, and the updates to derived value caches can cause conflicts.

Cyclic derived values, such as the average submission grade depending on itself, can
cause non-termination. If an updated value dirty flags itself (transitively), and its new
value is different, the computation loops. A diverging value causes non-termination, while a
converging value is a fix point calculation. Incremental Datalog implementations guarantee
termination by disallowing recursive aggregation and negation: stratified negation [3] and
stratified aggregation [26]. We allow recursive aggregation, but do not guarantee termination.

Derived values should only be recomputed after all values they depend upon are already
updated. With acyclic data flow graphs, topological scheduling completely removes unnec-
essary recomputation. With cyclic data flow graphs, topological scheduling only partially
removes unnecessary recomputation: the connected components are statically scheduled, but
the derived values inside a connected component are updated without scheduling.

Calculate Eventually. Figure 13 defines the Calculate-Eventually compilation scheme. The
Calculate-Eventually compilation scheme builds on the Calculate-on-Write compilation
scheme, only stating additions and changes. The idea is to take the dirty flags from Calculate-
on-Write, but pass these on to a separate, dedicated thread, allowing the HTTP request
handlers to finish early. The writes to base values will still be synchronous, but the updates
to derived values will be asynchronous. So, to translate to WebDSL we need to generate
code that (1) dirty flags cross-thread, and (2) updates derived values in a separate thread.

Cross-thread dirty flagging communicates dirty flags from request handlers to the updater
thread. WebDSL abstracts over concurrent handling of requests by running request handlers
completely separated from each other. Communication between the threads handling HTTP
requests, normally, is through the database. However, the database cannot notify the updater
thread, so in memory communication is required. To communicate in memory between
threads in WebDSL we need native Java code. For each derived value attribute we generate
a ConcurrentLinkedQueue 45, and make this queue available in WebDSL by means of a
static function in a native class 44. As an HTTP request is handled, derived values get
dirty flagged locally (as in Calculate-on-Write). After the changes are flushed to database,
the local dirty flags are communicated cross-thread. Because an entity can be mapped from
the relational database to an object in memory multiple times (once per request handler),
the cross-thread dirty flagging needs to communicate an entity’s unique identifier (UUID) 39.

The derived value recalculation thread is started with WebDSL’s recurring tasks mechanism
42. Every millisecond the thread is started, if not still running. The thread performs the
same calculations as Calculate-on-Write, but uses the cross-thread dirty flags 43. It loads
entities with dirty flagged derived values into memory 37, then updates derived values, and
finally propagates its own local dirty flags to the cross-thread dirty flags 39.

Calculate Eventually Properties. The Calculate-Eventually programs have the following
properties: (1) derived values will eventually be up to date, (2) derived value reads are not
glitch-free, (3) derived value calculation can starve under load, (4) after load subsides only
relevant updates are calculated, and (5) cyclic values can cause non-termination.

Eventual calculation is guaranteed by the invariant that outdated derived values are

ECOOP 2016



11:16 Incremental and Eventual Computation of Derived Values

//All code for Calculate−on−Write, except for update_derivations.
for E in Entities
entity E {

for a : T m {= e1, = e1 (default)} in E.attributes
static function get_and_empty_a_dirty_async() : {E} {

var queue := DirtyQueues.get_E_a_queue(); var values : {E};
while(!queue.isEmpty()){
values.add(loadEntity(E, UUIDFromString(queue.poll() as String)) as E);

}
return values;

}37

static function a_has_dirty_async() : Bool {
return !DirtyCollections.get_E_a_queue().isEmpty();

}38

static function a_flag_dirty_async() {
var dirty := E.get_and_empty_a_dirty();
DirtyCollections.get_E_a_queue().addAll([v.id.toString()|v : E in dirty]);

}39

static function a_update_all_async() {
for(e in E.get_and_empty_a_dirty_async()){ e.update_a(); }

}40

}

//flag_dirty_async is called on every request after write to database
function flag_dirty_async() {
for a : T m {= e1, = e1 (default)} in Attributes and E = a.entity

E.a_flag_dirty_async();
}41

invoke update_derivations() every 1 milliseconds42

function update_derivations(){
var not_empty : Bool;
for ConnectedComponent cc in DataFlowGraph topologically sorted

not_empty := true;
while(not_empty){
for a : T m {= e1, = e1 (default)} in cc where E = a.entity

E.a_update_all();
flagDirtyAsync();
not_empty := false;
for a : T m {= e1, = e1 (default)} in cc where E = a.entity

not_empty := not_empty || E.a_has_dirty();
}

}43

native class derivations.DirtyQueues as DirtyQueues {
for a : T m {= e1, = e1 (default)} in Attributes and E = a.entity

static get_E_a_queue() : Queue44

}

public class DirtyQueues {
for a : T m {= e1, = e1 (default)} in Attributes and E = a.entity

private static Queue<String> E_a_queue =new ConcurrentLinkedQueue<String>();45

public static Queue<String> get_E_a_queue(){ return E_a_queue; }46

}

Figure 13 Compilation scheme for Calculate-Eventually implementation strategy.
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always accompanied by a dirty flag. Dirty flags are only sent by request handling threads after
their changes are flushed to the database, ensuring the updater thread never processes dirty
flags without seeing the changes. During updates (the same) derived values might be dirty
flagged again. To ensure new dirty flags are processed, the updater thread copies and empties
the dirty flag queues before processing flags. New flags will be processed subsequently.

Glitch-freedom is not provided inside connected components, as there is no topological
ordering on the instance level. Also, derived value calculation starvation happens when
server load is high. However, successive changes to the same base values will not create extra
dirty flags. So when the system has spare resources, it will just compute the derived values
based on the latest base values, and ignore all the intermediate base values. And finally, like
Calculate-on-Write, cyclic derived values can cause non-termination.

5 Evaluation

The declarative specification of derived values in IceDust allows switching implementation
strategies to realize different non-functional requirements without invasive code changes. In
this section we benchmark different generated implementations, to evaluate whether they
are indeed able to satisfy different non-functional requirements. The benchmarks differ in
(1) the read/write ratio, (2) the number of base values derived values depend upon, and (3)
the number of fully unrelated derived values. The measured non-functional properties are
(1) throughput of derived value reads and base value writes per second, (2) the number of
failing writes per second, and (3) the response time for reading derived values and writing
base values. In this section we will discuss the benchmark setup and results.

Benchmark Setup. In the case study (Section 6) we encounter derived values that depend
on up to 60000 values transitively. The essence of the calculation is a tree-like structure with
aggregations on every level. For the benchmark evaluation of the different implementation
strategies we use a simplified model, a simple tree with an average on each level:

entity Node { avgValue : Float? = avg(children.avgValue) (default) }
relation Node.parent ? <−> * Node.children

The tree branches out with a factor of 10, up to 6 deep (size 1, 11, . . . , 111111).
The benchmarks consist of read and write requests. Read requests retrieve the average

at the top node of the tree. Write requests update a value at a random leaf node of the
tree. Benchmarks are warmed up for 10 seconds, and then measured for 15 minutes. The
Siege1 tool is used to execute the benchmark requests. It is configured to use 10 concurrent
threads, which initial benchmarks indicated to be a reasonable concurrency level. If the
concurrency level is too low, the computer is not using maximum resources; if it is too high,
too many requests will queue up increasing response times but not improving throughput.
The benchmarks were performed on an early 2013 Macbook Pro laptop with Intel Core i7
2,7Ghz, 4 cores (8 threads), and 16 GB memory. The Java servlet web application generated
by WebDSL was deployed on OS X 10.11, Java 1.8.0_60, MySQL 5.6.27, and Tomcat 7.0.40.

Benchmark Results. The first two benchmarks determine the behavior in extreme workloads
with only read or only write requests. Figure 14 shows that the performance for a workload
of 100% decreases as the tree gets deeper. Beyond depth 4 the response takes longer than

1 https://www.joedog.org/siege-home/
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Figure 14 Read-only workload benchmark throughput (left) and latency (right).
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Figure 15 Write-only workload benchmark throughput (left) and latency (right).

0.1 second, and is noticeable for users. Calculate-on-Read response times increase linearly
with the number of read objects, indicating that this is the limiting factor. The other
implementation strategies stay at a steady high throughput with low latency, because they
only retrieve a single node with a cached value on each request. The maximum throughput
is around 1900 transactions per second, indicating the general overhead of the system.

The benchmark in Figure 15 shows the performance for write-only workloads. In addition
to the throughput of successful requests, the failed requests are indicated by the dashed lines.
When a database transaction fails due to conflicting writes, WebDSL retries it up to 3 times
before failing the entire request. This improves usability for typical scenarios where a single
transaction conflict may occur occasionally. Multiple subsequent failed transactions only
occur in extreme situations where many concurrent requests conflict. For example, in this
benchmark at tree depths 1 (1 object) and 2 (11 objects), all implementation strategies have
repeated transaction failures resulting in failed requests. In general, the maximum throughput
the system supports for concurrent edits on a single object is close to 300 edits per second
(tree depth 1, all implementation strategies). Calculate-on-Write has many request failures
(around 60%) at all tree depths, which makes the implementation unusable in practice for
this use case. Calculate-on-Read and Calculate-Eventually have overall high throughput and
low latency, except for the low tree depths where transaction failures occur.

Figure 16 shows the trade-off between Calculate-on-Read and Calculate-on-Write in
mixed read/write ratio workloads. Calculate-on-Write suffers from many transaction failures,
except for 100% reads. So, it is unusable if all base values aggregate into a single value, even
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Figure 16 Varying workload benchmark throughput (left) and latency (right) with tree depth 5.
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Figure 17 Separate trees benchmark throughput (left) and latency (right) with 50-50 workload.

with a small number of concurrent writes. Calculate-on-Read improves when the workload
shifts from reads to writes. However, the average response time for anything except 100%
writes is unacceptebly high. Calculate-Eventually has stable high throughput and low latency
for all the different workload scenarios. If all base values in a system aggregate transitively
into a single derived value, the only viable strategy is Calculate-Eventually.

In the final benchmark, shown in Figure 17, we investigate whether not aggregating all
base values into the same derived value makes the Calculate-on-Write strategy viable. We
compare the implementation strategies when there are up to 256 separate trees of depth
4. Calculate-on-Write performs better indeed in scenarios with more disconnected derived
values. With 16 trees, the number of failed transactions drops below 0.5%. If consistency is
desired, and derived values depend on roughly 1000 base values, the trade-off throughput-
wise between Calculate-on-Read and Calculate-on-Write is at 2 separate trees. However,
Calculate-on-Write still has many failing requests. Only at around 16 trees the number of
failing transactions falls below 0.5%, and Calculate-on-Write becomes a viable option. When
eventual calculation is acceptable, it is always the most performant solution.

Discussion. We could perform many more benchmarks (for example with other data
structures than trees, or with workloads with more structure than a read/write ratio).
However, the presented benchmarks show that each implementation strategy is useful in
specific cases.

The form of non-functional requirements determines the form of verification required
[10]. The verification for quantitative requirements is measurements, and for operational
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requirements is review, test or formal verification [10]. Consistency and eventual calculation
are operational requirements. We tested whether our implementations satisfy consistency
and eventual calculation. In future work this can be improved with formal verification.

6 Case Study

We applied IceDust to the grading policies in a learning management system in which students
can submit assignments that get graded semi-automatically. The system contains complex
derived value calculations, contains a lot of data (hundreds of thousands of entities, with
millions of derived values), and is subject to intense workloads on a small subset of the data.
The complex derived value calculations were specified in IceDust’s declarative derived value
attributes, and the Calculate-Eventually strategy was used to generate an implementation.
In this section we (1) reflect on the expressiveness of IceDust, based on the experiences from
the case study, and (2) highlight parts of the resulting declarative specification that are quite
different from the original imperative implementation.

First, let us introduce the learning management system in more detail. The system is a
much more complicated version of the one introduced in Section 3. It features semi-automatic
grading, programming assignments with test cases, and automatically graded multiple choice
questions. Assignments are structured in a tree, and students get a weighted average for each
node in the tree up to the top, which is their final grade for the course. The grading logic
also includes deadlines, deadline extensions, late penalties, minimum grades, and alternative
assignments. The courses, and their assignments, have statistics such as the percentage of
students with a passing grade. For the largest course in the system, the statistics depend
transitively on Â± 60000 individual submissions (Â± 250 students, with Â± 15 assignments
per week, running for 12 weeks, and exams with multiple questions in the end).

Explicit Not Yet Calculated Values. Expressing the grading logic in IceDust forced us to
look at previously implicit things. Students which did not attempt an assignment get a 0.0
on a scale of 1.0 to 10.0. The other students would get a 1.0, as grading would be triggered:

// only call calculateGrade if submission is attempted
function calculateGrade() { grade := max(1.0, calculatedGrade); }

The grading logic states that grades cannot be lower than 1.0, but if grading is not triggered
the float default value is used. As the compiled code from IceDust detects everything that
should be calculated, these grades would be changed from 0.0 to 1.0. To model assignments
that are not attempted by students, attempted should be explicitly mentioned:

grade : Float = if(not attempted) 0.0 else max(1.0, calculatedGrade)

Explicit Stateful Calculations. The imperative code, also implicitly, kept old grades when
grades where published and a newly calculated grade was lower:

if(assignment.statsPublic()) { newgrade := max(oldgrade, newgrade); }

In the new specification this requires an explicit self-reference:
grade : Float = if(public) max(grade, calculatedGrade) else calculatedGrade

Note that the IceDust specification only works for push-based implementations: Calculate-
on-Write or Calculate-Eventually. Calculate-on-Read would throw a stack overflow exception.
The sentence ‘only update when grade is higher’ implies push-based calculation: the previous
calculated grade needs to be cached for when a new grade becomes available. It is arguable
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whether someone should express logic like this, as once grades are visible, it is not traceable
anymore how a grade was calculated. This is on the border of what is expressible in IceDust.

Code Factorization Differences. In IceDust the value of an attribute is defined in a single
place: the derived value expression. In imperative code, assignments to attributes can happen
in multiple places, which means assignments can be distributed over ifs:

if(assignment.passOne){
passSub := disj([s.pass() | s:Submission in submissions]);
grade := max([s.grade() | s:Submission in submissions]);

} else{
passSub := conj([s.pass() | s:Submission in submissions]);
grade := avg([s.grade() | s:Submission in submissions]);

}

In IceDust ifs need to be distributed over derived value attributes:
grade : Float? = if(assignment.passOne) max(children.grade)

else avg(children.grade)

passSub : Boolean = if(assignment.passOne) disj(children.pass) // pass one
else conj(children.pass) // pass all

Whether the old or new specification is preferable is arguable. If the cases would be more
complex than a single if it would lead to repeated code in IceDust.

Application Analysis. Finally, we made a more analytic observation: even though the
data-flow graph of the specification in IceDust contains more than 100 nodes, it contains just
a single connected component. Grades, weightedGrades (weighted averaging is used), pass,
and child-pass are mutually recursive (like Figure 9). All other dependencies are acyclic. This
system has derived value-wise just a single complex part: the grade calculation. Intuitively
we already knew this, but now we can quantify this with properties of the data-flow graph.

7 Related Work

The related work is organized along language design and the three implementation techniques
(Calculate-on-Read, Calculate-on-Write, and Calculate-Eventually).

Languages with Relations. There are multiple languages that feature relations as a language
construct. We will cover closely related languages and highlight the differences.

Rumer [4] features first-class citizen relations with queries for navigation. IceDust relations
are not first-class citizen, and navigation is through member access instead of queries. In
Rumer multiplicities can be specified in constraints which are enforced at runtime, while in
IceDust these are part of the type system. Rumer does not support derived value attributes,
but queries can be used to specify Calculate-on-Read derived values. Finally, Rumer is an
imperative in-memory language, while IceDust is declarative and persists its data.

RelJ [5] also features first-class citizen relations. In RelJ participants of relations do not
have names, so navigation is positional (using from and to). RelJ features only multiplicity
upper bounds, no lower bounds. These multiplicities are enforced at runtime: either by
throwing exceptions, or by implicitly removing previous relations. RelJ does not feature
derived value attributes, and RelJ is an imperative in-memory language like Rumer.

Relations [18] features multiplicities as part of the type system and derived value attributes
like IceDust. Its derived values are, however, only Calculate-on-Read. Relations is declarative,
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like IceDust, but its data is only in memory, not persistent. Relations in this language
are first-class citizen like Rumer and RelJ, but feature navigation through member access.
IceDust relations are not first-class citizen, but feature the same member access navigation.

Alloy [21] is a language for bounded model checking which features language constructs
similar to IceDust: bidirectional relations, multiplicities, and derived values. Alloy is more
expressive than IceDust: it features n-ary relations, and its derived values specify derived
relations (as opposed to derived attribute values). However, Alloy’s bounded model checker
only works on small data sets, and primitive values (only integers in Alloy) should be avoided
as they blow up the state space. IceDust, on the other hand, supports derived values over
arbitrary primitive values (int, string, float, datetime, and boolean), and admits efficient
implementation strategies applied to large data sets. To compute derived values in large
data sets from an Alloy specification, Alloy would need an operational semantics not based
on bounded model checking or SAT solving. An approach for an operational semantics for
Alloy was proposed in [9], but this approach is not complete. As Alloy has much greater
expressive power (first-order logic), we also expect such an Alloy operational semantics to
not be efficient. Finally, another difference is that in IceDust the multiplicities are checked
in the type system, while in Alloy these are only checked during bounded model checking.

Calculate on Read. We do not cover Calculate-on-Read extensively, as it is the default
implementation for many formalisms. We cover only the object-oriented approaches.

Object-oriented languages lend themselves for various Calculate-on-Read optimization
techniques. Wiedermann and Cook take imperative code with for loops and if statements
and convert those to SQL queries [37]. Their approach is similar to our work in that it
operates on persistent objects by means of an object-relational mapper. Also their approach
for analyzing dependencies is similar: path-based abstract interpretation. They optimize
imperative code that can be expressed as queries. Our approach, on the other hand, treats
code that cannot be expressed as queries, recursive aggregation. The Java Query Language
(JQL) adds queries to Java [38]. The rationale for queries is that these are more succinct to
write, and more efficient than nested for loops. JQL has been incrementalized, we will cover
this in the next subsection. This paper adds over these approaches the possibility to easily
switch to an incremental or eventual calculation implementation strategy.

Incremental Computation (Calculate on Write). Incremental computation is present in
many fields in computer science. We relate our Calculate-on-Write implementation scheme
to existing incremental approaches.

Materialized views in relational databases can be incrementally maintained [14]. Recursion
and stratified aggregation can be supported [15]. Stratified aggregation does not admit
recursive aggregation. (See next paragraph for relaxations of stratified aggregation in logic
databases.) Switching between implementation strategies in relational database also do not
require invasive code changes: the definitions for materialized and non-materialized views
are identical. Relational databases do, however, not support eventually-calculated views.

Logic Databases or Deductive Databases are a more expressive than relational databases.
Logic Databases support stratified aggregation like relational databases [26]. Since stratified
aggregation does not support recursive aggregation, more relaxed notions of aggregation have
been introduced, such as Monotone Aggregation [29]. Monotone Aggregation has also been
incrementalized [28]. A recent survey [13] states that at present, the Datalog community
seems not to have converged on any of the proposed semantics for aggregation through
recursion. This means that in practice recursive aggregation is often not supported. For
example LogiQL [12], the language of LogicBlox, does not support recursive aggregation.
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Functional reactive programming (FRP) [8], with for example REScala [30], Scala.React
[23], or i3QL [25], provides incremental computation. Calculate-on-Read style code wrapped
with FRP libraries behaves as Calculate-on-Write. FRP abstractions provide single-threaded,
in-memory derived values. In contrast, IceDust provides concurrent, persistent derived values.

Spreadsheets provide incremental computation. The data structure in a spreadsheet is a
2d grid. IceDust’s data structure is an object graph. Moreover our object graph is typed,
while spreadsheets are free form. Spreadsheets do mostly have an implicit structure [19].
IceDust with Calculate-on-Write can be seen as a structured spreadsheet without a 2d grid.

Object-oriented programs can also be incrementalized. Incremental Updates for Material-
ized OQL views [11] proposes to generalize incremental view maintenance from relational
databases to support the Object Query Language (OQL) as view definition language. MOVIE
[2] develops this work further. They also provide an overview of relational incremental view
maintenance implementations, with either a relational or an object-oriented surface syntax.
These approaches, even though some have an object-oriented surface syntax, are part of the
relational paradigm (with the limitations previously mentioned for materialized views).

The Java Query Language is incrementalized [39]. Their benchmarks show, like ours,
that for different read-write ratio workloads the incremental or calculate-on-read solution
offers better performance. Demand-Driven Incremental Object Queries [22] improves over
JQL by using auxiliary indices for incrementality. Similar to [37] they transform imperative
code to a relational calculus. But instead of performing relational queries like [37] they
use the relational model to generate code that incrementally maintains the caches. Our
approach uses path-based abstract path interpretation instead of a relational calculus to
generate maintenance code. Both of the above approaches slightly differ in use cases from
our approach: they target set membership of objects e.g. whether an object belongs to a set
specified by a query, while our approach targets derived value attributes.

Graph queries can be incrementally evaluated in IncQuery [34]. IncQuery’s data structure
is a graph, like ours, but its goal is to pattern match. Our approach does not support pattern
matching on graph structures, rather it computes derived attribute values.

Attribute grammars feature a declarative style of specifying derived values. Attribute
grammars can also be incrementally computed [7]. As attribute grammars only support trees,
one could look at reference attribute grammars to support full blown graphs [31]. Reference
attribute grammars do support graph structures, but there is a clear distinction between the
tree, and the derived graph edges. In our approach the graph is the basis. Fitting our data
models onto attribute grammars would require extracting a spanning tree, and deriving the
other edges. In this process we would lose the correspondence to the data flow graph, and
derived edges would become dynamic dependencies, which would complicate scheduling.

Self-adjusting computation [1] does not cover a single programming paradigm as it features
multiple languages (including SLf, for functional programming, and SLi, for imperative
programming). Self-adjusting computation automatically transforms a Calculate-on-Read
style program to a Calculate-on-Write style program. Our approach does not take Calculate-
on-Read as basis, but instead provides a declarative language to express derived values.

Eventual Calculation. The code generated by the Calculate-Eventually implementation
scheme makes derived values of attributes eventually consistent with base values. We cover
existing work on eventual (or asynchronous) computation of derived values in this subsection.

Event and Actor programming, with for example Akka [16] or RX [24], provide an
asynchronous update mechanism for calculating derived values. Updates to derived values
are asynchronous, meaning that there is no consistent view of base values and derived values
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at the same time. As such, these do not provide consistency, like the code produced by our
Calculate-Eventually implementation strategy.

Eventual consistency for distributed data also features eventual calculation, but is un-
related. As a recent survey on Eventual Consistency states: “shared data is updated at
different replicas, updates are transmitted asynchronously, and conflicts are resolved consis-
tently” [6]. Our approach does not have different replicas of data, there is a single database.
Our approach does not have asynchronous updates, the update is synchronous as a HTTP
response is only sent after the transaction in the database is completed. And finally, our
approach does not have conflicts during the calculation of derived values, as the base values
define unambiguously what the derived values of attributes should be.

8 Conclusion

Data modeling with declarative derived value attributes in IceDust allows deferring the
decision about implementation strategy from implementation to compilation time, and allows
switching strategies without invasive code changes. We have demonstrated that these different
strategies provide different non-functional properties, so that a specific strategy can be chosen
to realize certain non-functional requirements. Finally, a case study indicated our approach
is useful for expressing derived values of systems used in practice.

In future work, we would like to explore more implementation strategies, such as transitive
dirty flagging on writes with recalculation on reads, or eventually calculated with flags
indicating whether the values are up to date or not. We also would like to explore more
flexibility in implementation strategies by allowing composition of different strategies, and
live switching between strategies. A type system should restrict compositions to only sound
ones: consistent values cannot depend on eventually calculated values, and calculate on
write values cannot depend on calculate on read values. Finally, we would like to guarantee
termination by specifying non-circular relations and runtime non-circularity checking.
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Abstract
Modern software systems are not built from scratch. They use functionality provided by

libraries. These libraries evolve and often upgrades are deployed without the systems being
recompiled. In Java, this process is particularly error-prone due to the mismatch between source
and binary compatibility, and the lack of API stability in many popular libraries. We propose a
novel approach to mitigate this problem based on the use of invokedynamic instructions for cross-
component method invocations. The dispatch mechanism of invokedynamic is used to provide
on-the-fly signature adaptation. We show how this idea can be used to construct a Java compiler
that produces more resilient bytecode. We present the dynamo compiler, a proof-of-concept
implemented as a javac post compiler. We evaluate our approach using several benchmark
examples and two case studies showing how the dynamo compiler can prevent certain types of
linkage and stack overflow errors that have been observed in real-world systems.
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For instance, if the signature of a library method changes, attempts to link and run a
client program using this method generate a NoSuchMethodError. Some other language and
execution platform combinations such as C# / CLR exhibit similar behaviour.

The relevant part of the signature used to resolve method references is called the descriptor
[26, sect 4.3.3]. The descriptor consists of the parameter and return types without generic
type parameters. Changes to descriptors cause linkage errors. This leads to a behaviour
that is very different from the compiler that reasons about the type hierarchy, associations
between primitive and wrapper types, and narrowing and widening rules. In other terms,
there are different types of compatibility [8]: source compatibility is used by the compiler
when a system is compiled against a set of libraries, while binary compatibility is used when
a system is linked against libraries that may have been compiled separately. The notion of
binary compatibility is explicitly defined in the Java Language Specification with respect to
linking [22, sect 13].

There are a number of empirical studies all indicating that this leads to problems
[13, 6, 11, 32, 33]. It turns out that binary compatibility issues are surprisingly common
when libraries evolve, and the majority of developers lack understanding of these issues [12].

There are several possible approaches to tackle this problem. First, meta-object protocols
and patterns could be used. For instance, in the presence of protocols like Smalltalks
doesNotUnderstand [21] or Ruby’s method_missing [18], adapters can be easily integrated
into library code. But this requires that the respective classes override doesNotUnderstand.
And anyway, such a protocol is not available in Java. The second option is to change the
runtime (i.e. the VM): either by instrumenting code that is being loaded or by changing the
linking process in the virtual machine itself. This is possible, but expensive and invasive - the
runtimes must be configured accordingly, and the instrumentation imposes a performance
penalty. Moreover, the same code is sometimes accessed from different contexts (other
libraries or applications), with different lifecycle dependencies on the library containing the
code that is being adapted. Instrumenting library code does not support such scenarios. The
third option is to access objects instantiating library classes via proxies and to use reflection
within these proxy classes to resolve methods. This has two disadvantages: the proxies must
either be generated or a dynamic proxy pattern must be used which requires some type
abstraction. Furthermore, the use of reflection is slow.

In this paper, we suggest a simple yet elegant solution to this problem that tries to
combine the advantages of the other methods discussed. Our approach is based on the idea
of replacing existing invoke instructions of library methods (“cross-component invocations”)
by invokedynamic instructions. The runtime bootstrap mechanism we propose mimics the
behaviour of a solution based on a doesNotUnderstand-like protocol. While we use a reflection
protocol to locate target methods, the use of the protocol based on invokedynamic allows
us to avoid much of the runtime overhead of traditional reflection. Bytecode is manipulated
at compiletime and not when classes are loaded, thus avoiding runtime performance and
configuration overhead. Also, the generated bytecode can be further optimised and analysed
by the standard Java runtime (JIT, HotSpot). Due to the use of invokedynamic, the
bytecode produced by our method is less prone to linkage errors than the bytecode produced
by the standard Java compiler.

Our contributions are as follows:
We present the dynamo enhancer, a bytecode manipulation framework that can be used
to replace invocation instructions.
We present the dynamo compiler, a Java compiler based on the dynamo enhancer.
We present the DynamoDSL, a lightweight declarative language that can be used to
specify when to replace invocations.
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We present a set of benchmarks used to measure the compile- and runtime performance
overhead of dynamo.
We present a case study that shows how the use of the dynamo compiler can prevent
linkage errors that occur in the evolution of the jasperreports and jfreechart open source
libraries.
We present a second case study that shows how the use of the dynamo compiler can
prevent stack overflow errors that can occur when methods are overridden with covariant
return types.

The rest of this paper is structured as follows: first we discuss related work in Section 2
followed by a background in Section 3 where we discuss some key concepts used later. In
Section 4, we present the actual compiler and its components, followed by a discussion of
the runtime behaviour in Section 5. This is followed by Section 6 discussing benchmarks
used for quality assurance and performance assessment, and two case studies in Section 7
extracted from problems encountered with real world systems. We finish our contribution
with a brief conclusion.

2 Related Work

Our work addresses issues related to binary compatibility. The study of binary compatibility
goes back to the work by Forman et al. [19], in the context of IBM’s SOM object model.
For Java, binary compatibility is formally defined in the language specification [22, sect 13].
Drossopoulou et al. have proposed a formal model of binary compatibility in [17].

Our work is motivated by issues that result from inconsistencies between source, binary and
to some extent behavioural compatibility. These issues have been catalogued and studied by
several authors, including des Rivières [10], Dietrich et al. [11, 12] and Raemakers et al. [32].
In particular, they include empirical studies [11, 32] showing that binary compatibility issues
occur in practice when programs and libraries used by these programs evolve independently.
Dig and Johnson [13] have conducted an API evolution case study on five real world systems
(struts, eclipse, jhotdraw, log4j and a commercial application). They found that the majority
of API-breaking changes were caused by refactoring, but did not distinguish between different
types of compatibility. Mens et al. [27] have studied the evolution of Eclipse (from version
1.0 to version 3.3). The focus of this study was to investigate the applicability of Lehmann’s
laws of software evolution [25]. They found significant changes. Cosette and Walker have
studied the evolution of APIs on a set of five Java open source programs [6]. They focused
on generating change recommendation techniques that could then be used to give developers
advice on how to refactor client code in order to adapt to API changes.

Several authors looked into how binary compatibility problems in Java programs can be
avoided. Our work is somehow similar to binary component adaptation (BCA) by Keller et al.
[24] as bytecode is modified in order to overcome certain compatibility problems. However,
there are important differences: (1) BCA does not support changes to method descriptors,
(2) changes must be specified by the user in the form of delta files while our approach is
completely automated (3) BCA modifies libraries (components) whereas we transform the
program itself (4) BCA can alter types and their relationships and is therefore rather invasive
as it changes the semantics of client programs using reflection (for instance, when interfaces
are added to classes, and the client program uses instanceof guards)1

1 In a trivial sense, the dynamo compiler also changes the semantics of programs as method invocations
that used to result in errors succeed after compilation with dynamo. But this effects are intended and
local as they only impact the objects aliased at the call site, whereas changing types will affect other,
unrelated parts of the program as well.
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Other related works include Dmitriev’s proposal to use binary compatibility checks in
order to optimise build systems [16], Barr and Eisenbach’s rule-based tool to compare library
versions in order to detect changes that cause binary incompatibility [2], and refactoring-based
approaches by Dig et al. [14] and Savga and Rudolf [7], aiming at generating a compatibility
layer that ensures binary compatibility when used libraries evolve. Corwin et al. [5] have
proposed a modular framework that uses a higher level API on top of the Java classpath
architecture. This is somehow similar to how the OSGi framework [40] operates.

Our work relies on the use of the invokedynamic instruction. One of the key features
of invokedynamic is that it adds reflection-like features to the language without incurring
the performance overhead imposed by the use of traditional reflection. The low performance
overhead has been confirmed by several authors including Kaewkasi [23] and Ortin and
Conde [29, 3].

Within the Java standardisation process, JEP 276: Dynamic Linking of Language-Defined
Object Models [38] is related to this research. The focus of JEP 276 is on supporting the
compilation of object expressions often used in applications that require templating, while
we suggest different compilation for standard Java call sites. The JEP 276 proposal does
explicitly state that it does “not wish to provide linking semantics for operations for any
single programming language or execution environment for any such language”.

There is one open source project we are aware of with a similar aim – Kohsuke Kawaguchi’s
Bridge Method Injector 2. The idea behind this project is to address one particular evolution
problem we also consider - source-compatible changes of the return type. This is achieved by
generating additional bridge methods in a post compilation step, a technique also used by the
compiler when encountering co-variant return types. This will be discussed in more detail in
section 7.2. The bridge method injector relies on an annotation that has to be added by the
author of the library that evolves. This requires that the author understands the effects this
change has on client code, and this might not always be the case [12]. On the other hand,
our approach is completely automated and covers a wider range of evolution patterns.

This work is part of a wider trend towards self-adaptive software [36, 37].

3 Background

3.1 Binary vs Source Compatibility
The compiler and the linker use sets of rules to establish whether a method invocation can
be resolved. These rule sets define source compatibility (in the case of the compiler) and
binary compatibility (in the case of the linker). As far as Java (version 8) is concerned, binary
compatibility is generally stricter than source compatibility as the compiler can reason about
subtype relationships, the associations between primitive types and their respective wrapper
types via auto-boxing and unboxing conversions [22, sects 5.1.7, 5.1.8] and invocations of
static methods from non-static contexts 3.

For instance, consider Listing 14. This example has a client program with a class
Main invoking Foo.get() defined in a library that has two versions lib-v1.jar and
lib-v2.jar. Main can be compiled against both versions of the library. However, when
Main is compiled against lib-v1.jar and then executed with lib-v2.jar, a linkage error

2 http://bridge-method-injector.infradna.com/
3 There are some exceptions to this rule – situations where a program is binary but not source compatible
with a library. For instance, the use of erasure can cause such scenarios.

4 Package declarations and imports are omitted.

http://bridge-method-injector.infradna.com/
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1 // lib-v1.jar
2 public class Foo {
3 public static java.util.Collection get() {return new java.util.ArrayList();}
4 }
5 // lib-v2.jar
6 public class Foo {
7 public static java.util.List get() {return new java.util.ArrayList();}
8 }
9 // client program

10 public class Main {
11 public static void main(String[] args) {
12 java.util.Collection coll = Foo.get();
13 System.out.println(coll);
14 }
15 }

Listing 1 Specialising the return type of a method.

1 // lib-v1.jar
2 public class Foo {
3 public static void bar(int i) {System.out.println(i);}
4 }
5 // lib-v2.jar
6 public class Foo {
7 public static void bar(Integer i) {System.out.println(i);}
8 }
9 // client program

10 public class Main {
11 public static void main(String[] args) {new Foo().bar(42);}
12 }

Listing 2 Boxing of a parameter type.

(NoSuchMethodError) is thrown as the descriptor get()Ljava/util/Collection; found at
the call site does not match the new descriptor get()Ljava/util/List; and can therefore
not be resolved.

Listing 2 is similar, but this time the sole parameter type of bar() is changed from int to
java.lang.Integer. The compiler deals with this situation by applying auto-boxing. But
since the descriptor changes from bar(I)V to bar(Ljava/lang/Integer;)V, this change is
not binary compatible.

Finally, consider Listing 3. Main still compiles against Foo in lib-v2.jar, but this time
the compiler has to apply two adaptation rules: auto-boxing and type generalisation. The
type of the invocation must also be changed as the static modifier has been added to bar.

Evolution patterns and their impact on binary compatibility have been catalogued by
ddes Rivières [10]. Some of these problems could be avoided if linking was more consistent
with compilation. In particular, we are interested in the following evolution patterns that
are source compatible, but not binary compatible:
1. the specialisation of a reference return type of a method
2. the narrowing of a primitive return type of a method
3. the generalisation of a reference parameter type of a method
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1 // lib-v1.jar
2 public class Foo {
3 public void bar(int i) {System.out.println(i);}
4 }
5 // lib-v2.jar
6 public class Foo {
7 public static void bar(Object i) {System.out.println(i);}
8 }
9 // client program

10 public class Main {
11 public static void main(String[] args) {new Foo().bar(42);}
12 }

Listing 3 Complex (but still compatible) evolution.

4. the widening of a primitive parameter type of a method
5. replacing the primitive return or parameter type of a method by the respective wrapper

type
6. replacing the wrapper return or parameter type of a method by the respective primitive

type
7. changing a non-static method to a static method
8. changing a class to an interface or vice-versa
9. some combinations of any number of evolution patterns from this list5

3.2 The invokedynamic Instruction
Prior to version 7, Java used four different bytecode instructions for method invocation. First,
invokestatic is used to call static methods. Static methods are resolved at compile time.
Next, invokespecial is used for special cases including constructor and private method
invocations and invocations via super. Finally, invokevirtual and invokeinterface are
used to call non-static, non-private methods. Dynamic dispatch is used here, i.e. the method
which is invoked is only computed at runtime based on the actual type of the receiver.

Starting with Java 1.7, invokedynamic was added to the instruction set [35]. The
motivation was to give programmers more control over the dispatch process, in particular to
facilitate the implementation of dynamic languages like Ruby on the JVM [28]. The Java 7
JVM supports the invokedynamic instruction, it is not emitted by the Java 7 compiler. The
Java 8 compiler uses invokedynamic to compile lambdas.

With invokedynamic, the method reference is resolved by means of a bootstrap method.
This user-implemented method is then used to locate the actual method being invoked. This
is fast as the bootstrap method is only invoked by the linker during the resolution phase
[26, 5.4.3.6] and following method invocations skip the bootstrap process. At this point it is
possible to implement adapters.

The bootstrap method represents the target method as an instance of a java.lang.-
invoke.MethodHandle. The method handles support transformations that can be used to
achieve a linking behaviour that is similar to the behaviour of the compiler. This mapping
behaviour is exposed in the API of MethodHandle by the invoke method (as opposed to
the invokeExact method). The overall goal of this work is to use this API to perform

5 See also section 5 for a discussion on which of those combinations are supported.
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appropriate type conversions to match the call site with the method found in a library that
may have evolved. The difficult part is to lookup the best method which is suitable for
re-typing.

4 Compilation

The mechanism we are proposing is based on the idea of swapping invoke instructions in
bytecode. Our aim is to do this at compile time, so that the bytecode produced by the
compiler can be transparently used at runtime with minimal additional configuration needed.
However, there is another use case: to retrofit existing code only available in compiled
form. We address this use case first and introduce the dynamo enhancer - the tool that
performs the bytecode transformations. We can then use the enhancer to design the actual
dynamo compiler, implemented as a post compiler / wrapper around the enhancer and the
standard Java compiler. This design gives the dynamo compiler almost instantly the quality
attributes needed for real world application. In particular, most Java compiler optimisations
are available to us. An additional benefit of this design is that the enhancer can be used as a
post compiler for other compilers emitting JVM bytecode, such as scalac. In the final part
of this section, we discuss Dynamo DSL, a lightweight domain-specific language that can be
used to customise the dynamo-specific part of the compilation via a simple command line
argument.

4.1 The Dynamo Bytecode Enhancer
The bytecode enhancer is used to transform the bytecode emitted by a standard Java
compiler, and replaces selective invokestatic, invokevirtual, invokeinterface and
invokespecial instructions (from hereto referred to as classical invocations) by invoke-
dynamic. The intention of the selection is to only replace invocations where the target is
located in a library that may have a separate update cycle. This is achieved through filters,
described in more detail below.

Any classical invocation can be expressed by a tuple t = (opcode, C, m, desc) where opcode

represents one of the classical invocations, C is an owner class containing the method, m is
the method’s name and desc is the methods descriptor consisting of the formal parameter
types and the return type of the method. To convert a method invocation to invokedynamic,
the original instruction from the tuple t must be changed to fit the invokedynamic call site
specifier [26, sect 4.7.23]. In particular, a reference to a bootstrap method must be provided
that is then used at link time to locate the actual target of the invocation.

Given a tuple t containing call site information, a dynamic call site can be created as
follows. An invokedynamic instruction is created that has an index pointing to a constant
pool entry of the type CONSTANT_InvokeDynamic. This entry defines a bootstrap method
with the following three parameters: (1) the MethodHandles.Lookup factory used to locate
and check access to methods, (2) the method name, (3) and a MethodType representing the
descriptor. Any number of additional user parameters may follow.

The JVM Specification provides information about descriptors used by the classical
invocations and the descriptors required by method handles [26, sect 5.4.3.5]. By combining
these two parts of the specification, we infer the transformation rules listed in Table 1.

As discussed earlier, C and m represent the method owner type and its name, respectively.
Furthermore, A∗ is a set of input parameter types, T represents the return type, and V

represents the void type (used in the descriptors of constructors). For virtual and interface
invocations, the owner type is prepended to the list of argument types in the target descriptor.
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Table 1 Translation from method descriptors to method handles.

opcode source C,m,desc target desc parameters
invokevirtual C,m,(A*)T (C,A*)T
invokestatic C,m,(A*)T (A*)T C
invokeinterface C,m,(A*)T (C,A*)T
invokespecial (new) C,<init>,(A*)V (A*)C
invokespecial (super) C,m,(A*)T (C,A*)T

1 bipush 10
2 istore_1
3 ... // new lib/Foo()
4 iload_1
5 invokevirtual lib/Foo.setValue:(I)V

Listing 4 Bytecode for new
Foo().setValue(10) before enhance-
ment.

1 bipush 10
2 istore_1
3 ... // new lib/Foo()
4 iload_1
5 invokedynamic setValue:(Llib/Foo;I)V

Listing 5 Enhanced bytecode for code in
listing 4.

This is necessary to check the type of the this reference passed as the first argument to the
respective method handle. For constructors, C becomes the return type. The descriptors of
method handles for static invocations do not contain owner types at all. For this reason, we
pass the owner type as an additional, user defined, parameter to the bootstrap method.

The translation of the first three instructions in Table 1, invokevirtual, invokestatic
and invokeinterface is straightforward as they all have similar semantics. For this reason
the transformation only requires to swap instructions and customise descriptor according to
the table. See Listings 4 and 5 for an example presenting simplified byte-code instructions.
These instructions may all be used in cross-component invocations and thus each occurrence
is a candidate for replacement by the bytecode enhancer.

The situation is less obvious for invokespecial. In this case, the instruction has several
usages, including the invocation of private methods, the invocation of methods via the
super keyword, and the invocation of constructor using the this keyword [26, sect 6.5].
We support the transformation of invokespecial used with super and constructors 6. For
invokespecial (super), the transformation is equivalent to the transformations applied to
invokevirtual and invokeinterface.

The transformation of invokespecial used in conjunction with the new keyword at
object allocation sites is less straightforward. In bytecode, the respective methods invoked
all have a special name <init>. A correct transformation requires the detection of a usage
pattern that consists of a certain sequence of instructions, the so-called bytecode behaviour.
The pattern for constructors consists of the following three instructions (1) new C (2) dup
(3) invokespecial C.<init>:(A*)V [26, sect 5.4.3.5], possibly with some intermediate
instructions. The semantics of this sequence is: (1) create a new object of type C and
push it onto the stack, (2) duplicate the object on the top of the stack and (3) invoke the
constructor. The object on the top of the stack is duplicated because one element is consumed
(popped) by the constructor invocation and the object must remain on top of the stack
so that the value can be assigned to a variable (usually using an astore instruction). To

6 Invocations of private methods are out of scope as they can not be used for cross-component invocations.
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1 new lib/Foo
2 dup
3 bipush 10
4 invokespecial lib/Foo."<init>":(I)V

Listing 6 Bytecode for new
lib.Foo(10).

1 bipush 10
2 invokedynamic C$D:(I)Llib/Foo;

Listing 7 Enhanced bytecode for code in
listing 6.

1 java -cp dynamo<..>.jar org.dynamo.compiler.Compiler -sourcepath ./src -d ./bin

Listing 8 Basic use of dynamo to compile all Java source code files in the src folder and store
the .class files in the bin folder.

replace this sequence, it must be changed to a standard method invocation, which means
that the instructions new C and dup must be dropped and invokespecial must be replaced
by invokedynamic. Note that invokedynamic returns a value, this value is pushed onto
the stack and effectively replaces the two dropped instructions. If the constructor contains
parameters, the transformed sequence will retain the instructions to push these parameters
onto the stack before the invokedynamic instruction is executed. An example transformation
is shown in Listings 6 and 7.

Since invokedynamic cannot use <init> as the name parameter for the bootstrap method
[26, sect 4.10], an artificial name set to C$D, meaning “constructor dynamic”, is used instead.
The use of the $ sign in method names is legal, but according to the language specification
“The $ sign should be used only in mechanically generated source code or, rarely, to access
pre-existing names on legacy systems” [22, sect 3.8]. By complying with this rule it is very
unlikely that this name choice will create conflicts with user code.

The actual bootstrap methods referenced in the modified bytecode are defined as static
methods in the class com.dynamo.rt.DynamoBootstrap. There is one method for each
instruction type (bootstrapInterface, bootstrapStatic, etc). The semantics of these
methods is described in section 5.

4.2 The Dynamo Compiler

The dynamo compiler is implemented as a post compiler. It is a wrapper around the dynamo
enhancer, combined with the standard Java compiler accessed via the compiler API (JSR-199)
[1]. More explicitly, the dynamo compiler first uses the standard Java compiler through
JSR-199 to compile compilation units in memory. The resulting bytecode is represented
using a map that associates fully qualified class names with byte arrays. The compiler then
uses the enhancer to apply bytecode transformations using information from (1) the compiler
runtime parameters specifying the classpath, (2) compiler runtime parameters specifying
filters.

The classpath information is used to determine component boundaries. The filters are
described in the next section, the options of the compiler command line interface (CLI) are
described in appendix B.

Figure 1 shows the design of the dynamo compiler; Listing 8 shows the basic usage of the
compiler via its CLI.
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Figure 1 Compiler Design.

4.3 The Dynamo Filter DSL
It is often desirable for users to retain fine-grained control over the compilation process. One
of the more common use cases is not to use invokedynamic when invoking functionality
from Java platform libraries, due to the strong emphasis on backward compatibility in these
libraries [8, 9].

For this reason, we have developed a lightweight domain-specific language that can be
used to filter the methods and call sites where invokedynamic is used. These filters are used
to select invocation records consisting of two methods, the method containing the call site,
and the target method invoked before enhancement takes place.

The method filter is composed of individual filters that all have the following properties:
1. a kind (+, -) defining whether a filter is an include or an exclude filter
2. a role (callsite, target) defining whether a filter applies to the client method that has

the call site, or to the target method to be invoked
3. a class pattern defining the classes to which the filter applies. Class names are fully

qualified, with a dot used as package separator
4. an optional method name pattern defining the methods to which the filter applies
5. an optional descriptor pattern defining the descriptors to which the filter applies. This

allows for the discrimination of overloaded methods. Descriptor patterns use the syntax
defined in the JVM specification [26, sect 4.3.3] plus optional wild card characters.

Filters can be defined using a simple domain specific language; the grammar of this
language is given in appendix A. The * and ? wild cards can be used in class names, method
names and descriptor patterns. The default filter is defined using the patterns listed in Table
2.

The intention of this filter is to exclude all invocations of target methods defined in the
Java Development Kit. A user-defined filter can modify the default filter by using additional
exclude and include patterns. The main use case for include patterns is to selectively permit
the enhancement of JDK method invocations. With additional exclude patterns, users can
manually specify that enhancements for certain targets are not required since the libraries in
which the respective methods are defined are known to be API stable. In case additional
include and exclude filters conflict, we resolve this as follows: invocation records are accepted
if they are accepted by at least one of the include filter and not accepted by any of the exclude
filters. This resolution is consistent with how include and exclude patterns are handled in
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Table 2 The default filter.

Filter definition Description
+callsite *,+target * include all invocation records
-target java.*

then exclude all packages included in the Java develop-
ment kit.

-target javax.*
-target com.sun.*
-target sun.*
-target com.oracle.*
-target org.ietf.*
-target org.omg.*
-target org.w3c.*
-target org.xml.*

Table 3 Filter examples.

Filter definition Description
-callsite com.foo.Bar exclude invocations from call sites within

com.foo.Bar
-target com.foo.* exclude invocation of targets in methods in

packages starting with com.foo
+target java.lang.String#substring include invocations of the substring methods

defined in String
+target java.lang.String#substring(I)* include invocations of the substring(int)

method defined in String

popular build tools, and we assume that developers are familiar with the practice. Some
examples of filters are given in Table 3.

The definition of the default filter is relatively coarse. For instance, the filter would also
include a package with the prefix com.oracle that is not part of the Java developer kit, such
as certain JDBC drivers. In order to override this behaviour, users must use custom filters.

5 Linking

In this section, we describe the bootstrap process. We first discuss the strategy we are using
to locate and select the target method. In a nutshell, we use an algorithm that aims at
aligning linking behaviour with compile time behaviour to facilitate program comprehension
by developers. We then describe the complexity of the algorithm, and some implementation
issues.

5.1 Resolution
At runtime, we need to resolve the reference in the bootstrap method and locate an actual
target method. This method must be adaptable to the original method. We only look for
methods that are non-abstract, visible from the call site and have the same name and arity,
but may have a different descriptor or are defined in a super type. This is similar to the
problem the compiler has to solve when it selects the most specific method [22, sec 15.12.2.5].
However, we also have to take the return type into account. Not only can the return type
change as we allow specialisation or narrowing of the return type, but we potentially also
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have to deal with return type overloading, a situation that can only arise in bytecode. In
particular, the standard Java compiler uses synthetic [26, sec 4.7.8] bridge methods to deal
with co-variant return types. This means that any runtime method resolution has to be able
to deal with a situation where there are multiple methods with the same name, the same
parameter types but different return types within one class. Since return type overloading
is not supported by the Java language, we can make the assumption that if this situation
arises, only one of these methods is non-synthetic.

We refer to the selection of an adaptable method as runtime resolution, or in this context
just resolution for short. Resolution is defined with respect to adaptations that can be
performed by method handles [35]. Different resolution strategies are possible: (1) a greedy
strategy that locates any adaptable method and selects it, (2) an optimal strategy that tries to
find the “best match” according to some metric and (3) an unambiguous best match strategy
that tries to find a method that is not only the best match in the sense of being optimal with
respect to some order, but must also be strictly better than other candidates with respect to
this order.

As one of our objectives is to address inconsistencies between source and binary com-
patibility, we decided to use strategy (3) to mimic the compiler behaviour of choosing the
most specific method [22, sect 15.12.2.5]. While the overall aim is somehow similar to how
the compiler processes method invocation expressions [22, sect 15.12], there are important
differences caused by the differences in representation of language features such as generic
types, static imports and varargs in source code and bytecode.

For a concise formulation of the algorithm, we propose a simple model, the type conversion
graph (TCG). This graph captures subtype relationships between classes and interfaces, boxing
and unboxing relationships between wrapper types and their respective primitive types, and
widening conversion relationships between primitive types [26, sect 5.1.2]. We build the TCG

for a program by applying the following rules:
1. All (primitive and reference) types except annotation types but including array types

that occur in the program are added as vertices to TCG.
2. If T1 and T2 are (non-generic) class, interface or array types and T1 is a direct subtype of

T2 as defined in [22, sects 4.10.2, 4.10.3] then an edge T1 → T2 with a label r is added to
TCG.

3. If T1 and T2 are primitive types and there is a widening conversion from T1 to T2 as
defined in [22, sect 5.1.2] then an edge T1 → T2 with a label p is added to TCG.

4. If T is a primitive type, and Cl is the wrapper type of T , then an edge T → Cl with a
label b (for boxing) and an edge Cl→ T with a label u (for unboxing) are added to TCG.

Figure 2 shows an example TCG. The intention behind the TCG is that paths between
types represent valid (potentially composite) conversions. However, the compiler imposes
additional constraints. For instance, a widening primitive conversion followed by a boxing
conversion is not permitted in assignment and invocation contexts [22, sects 5.2, 5.3]. As our
motivation is to align compilation and linking behaviour, we impose the same restrictions.
We do so by defining a valid path between two types considered as vertices in the TCG as a
path such that the labels of the edges in this graph spell a word defined by the following
simple regular grammar: p|r*|br*|up. This grammar is derived from the rules used in [22,
sects 5.2, 5.3]7.

7 The identity conversion is represented by a path of length 0. The primitive widening conversion rules
in [22, sect 5.1.2] use the transitive closure for primitive widening conversions, we can therefore use p
instead of p* in the grammar
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Figure 2 Example Type Conversion Graph.

When we try to locate an adaptable method, we only consider methods that are non-
synthetic8. Given the TCG, the adaptability relationship between types vtype⊆ T × T

can be easily defined as t1 vtype t2 iff there is a valid path from t1 to t2 in the TCG.
In order to identify, compare and select adaptable methods, we need to analyse their
(1) defining type (2) parameter types and (3) return types. We define an order between
methods based on their extended descriptor (XD) comprising the type where the method
is defined, followed by the parameter types and the return type. We use the syntax
<defining_type>(parameter_type*)return_type for XDs.

The relation vtype can be easily promoted to a relationship between XDs of the same arity:
T 1(A1

1, .., A1
n)R1 vdesc T 2(A2

1, .., A2
n)R2 iff R2 vtype R1 and T 1 vtype T 2 and A1

i vtype A2
i

for each i. Note that the direction of vtype is reversed (“contravariant”) for return types. By
treating the defining type as a virtual first parameter, we include possible target methods
defined in super types. For instance, this allows adaptations in cases where methods have
been pushed up the type hierarchy by refactoring9.

We can then define a simple disambiguation algorithm as follows: given an extended
descriptor ∆ = T (A1, .., An)R and a set of adaptable descriptors {∆i}, where ∆ vdesc ∆i,
we chose a descriptor ∆k from {∆i} if ∆k vdesc ∆i for all i 6= k. This captures the intention
of selecting the most specific method that is adaptable. In case there is more than one
minimal XD with respect to vdesc, and the respective methods have the same parameter
types, we chose the method with the more specific return type following the compiler [22,
sect 15.12.2.5]. If resolution fails to detect a unique XD, the process will result in a linkage
error (instance of java.lang.NoSuchMethodError).

An example where this occurs is when a method Object foo(java.util.ArrayList) is
replaced by two methods String foo(java.util.AbstractList) and Object foo(java-
.io.Serializable)10 within the same class. Both methods are suitable targets, but disam-
biguation fails to detect a best method that is strictly better than the other one.

A side effect of the resolution algorithm just described is that the only possible targets
for replaced constructor invocations are constructors defined within the same class. This

8 This will remove ambiguity if several methods with the same name and parameter type but different
return types are present. This is discussed in more details in section 7.2

9 The standard JVM runtime method resolution already includes superclass lookup [26, sect 5.4.3.3]
10The class ArrayList extends AbstractList and implements the interface Serializable.
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follows from the fact that we only look for targets with the same name as the original target
(i.e., <init>). While we also consider constructors from super classes as possible targets,
these methods have a more general return type, and therefore do not qualify. It follows
further that the type returned by the invokedynamic invocation is the same as the type of
the original (invokespecial (new)) invocation.

5.2 Algorithm Complexity
Adaptability is defined with respect to reachability in the TCG. Reachability is a potentially
expensive operation. The worst case complexity of standard shortest path algorithms used
to query adaptability between two types is quadratic [15], while the pre-computation of a
reachability index that enables constant time queries is super-quadratic but sub-cubic [4].
However, the paths that need to be traversed by the algorithm are generally short because
of the flat hierarchies found in most Java programs [39], and the complexity of standard
shortest path and many reachability algorithms is near linear for sparse graphs.

We provide further evidence of the performance of our approach in the evaluation section.

5.3 Implementation Issues
The runtime component is implemented as a small library that must be included in the class
path of applications compiled or enhanced with dynamo. The method lookup algorithm
is implemented in org.dynamo.rt.DynamoBootstrap. This class has five static bootstrap
methods corresponding to the different instructions (bootstrapVirtual, bootstrapStatic,
bootstrapInterface) and the two variants of invokespecial supported (bootstrap-
SpecialNew, bootstrapSpecialSuper). These methods differ slightly in terms of decoding
and interpreting method types according to Table 1. They all invoke a common method
which finds the most suitable method as described in section 5.1.

We use reflection to gather information about types, their relationships and members,
and to reason about this information. Although reflection is not ideal as it may trigger
some unnecessary class loading if classes are analysed for members that are not used at
the end, it facilitates the implementation of bootstrap methods. The actual target finder
algorithm produces an instance of java.lang.reflect.Method which is easily converted to
a method handle using the MethodHandles.Lookup.unreflect() protocol and its variants
for constructors and special methods. The actual conversion of types is then easily performed
by MethodHandle.asType(). At the end of this process, a constant call site wrapping this
handle is instantiated.

The method MethodHandle.asType() supports all of the type conversions we use and
therefore effectively performs the transformation of both return and parameter types. Since
we replace classic invocations with invokedynamic, we automatically support cases where
interfaces are converted to classes or vice-versa. Finally, changes where non-static target
methods have evolved to static methods are handled by ignoring the first parameter when
the method is invoked. This way, the descriptor described in Table 1, row 2 is produced.
The transformation is achieved by using the MethodHandles.dropArguments API. The
(simplified) implementation of a bootstrap method is shown in Listing 9.

6 Benchmarks

In this section we discuss sets of benchmarks used to test various dynamo components, and
to assess the performance overhead induced by dynamo.
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1 import java.lang.invoke.*;
2 import java.lang.reflect.Method;
3 import java.lang.reflect.Modifier;
4

5 ...
6 CallSite bootstrapVirtual(Lookup caller, String name, MethodType type) {
7 Class<?> owner = type.parameterType(0);
8 Method method = find(owner, name, type); // use resolution with TGC
9 MethodHandle handle = lookup.unreflect(method);

10 if (Modifier.isStatic(method.getModifiers())) {
11 handle = MethodHandles.dropArguments(handle, 0, method.getDeclaringClass());
12 }
13 return new ConstantCallSite(handle.asType(type));
14 }
15 ...

Listing 9 Bootstrap method implementation example (simplified).

6.1 Compiler Benchmarks
The compiler benchmarks are based on a comprehensive set of unit tests we have developed to
quality assure dynamo. Tests are based on scenarios, each scenario consists of three classes:
1. version1/lib/Foo.java - the source code of version 1 of a class lib.Foo providing a

method
2. version2/lib/Foo.java - the source code of version 2 of a class lib.Foo providing a

modified method
3. client/Main.java - the source code of the client program using the method provided

by Foo

During testing, the following sequence is executed for each scenario:
Compile both versions of Foo and package them in different libraries (lib-v1 and lib-v2).
This should succeed.
Compile Main with javac against lib-v1. This should succeed.
Run the compiled class Main with lib-v1. This should succeed.
Run the compiled class Main with lib-v2. This should fail.
Recompile Main with dynamo against lib-v1. This should succeed.
Run the recompiled class Main with lib-v2. This should succeed, except for the last two
“ambiguous” benchmarks designed to produce linkage errors.

Scenarios are identified by self-descriptive unique names. For instance invokeinterface-
_narrow_ret is a scenario that contains an invokeinterface instruction with a reference
to a method that evolves by narrowing the return type. Table 4 shows an overview of the
scenarios used for testing, the first column describes the change pattern, the other columns
show the type of invocation that is being converted. These scenarios were designed to obtain
full coverage of all possible combinations for common scenarios, and good partial coverage for
more exotic cases such as chained conversions (like boxing and then generalising a parameter
type). A check mark in the row-column intersection means that there is such a scenario, n/a
indicates that such a scenario is impossible (example: return type conversions for constructor
invocations) or does not make sense (example: converting an invocation of a certain type to
an invocation of the same type without adapting parameter or return types).
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Table 4 Benchmark overview.

invoke-
static

invoke-
virtual

invoke-
inter-
face

invoke-
special
(super)

invoke-
special
(new)

narrow return type X X X X n/a
specialised return type X X X X n/a
specialised array return type X X X X n/a
box return type X X X X n/a
unbox return type X X X X n/a
widen parameter type X X X X X

generalise parameter type X X X X X

generalise array parameter type X X X

generalise array parameter to Object X

generalise array parameter to Serializable X

generalise array parameter to Cloneable X

box parameter type X X X X X

unbox parameter type X X X X X

multiple methods w/ generalised parameters X

convert to invokestatic n/a X X n/a n/a
convert to invokeinterface n/a X n/a n/a n/a
convert to invokevirtual n/a n/a X n/a n/a
unbox and widen parameter type X X X X

box and narrow return type X X X n/a
box and generalised parameter type X X X X X

method ambiguous parameter X

method ambiguous two parameters X

We use the test scenarios as compiler micro-benchmarks. However, as we do not test
linking at this stage, for some scenarios the code compiled with dynamo (Main.java) is
identical. For instance, this is the case for the various “generalise array parameter .. ”
scenarios. We remove these scenarios from the set of 65 scenarios listed in Table 4 in order
to avoid double counting, the result is a set of 49 scenarios we can use for benchmarking.

Performance measurement in Java is not straightforward as Java uses runtime optimisation
(JIT, HotSpot). To account for this, repeated invocations and JVM warm-up runs are
necessary to produce statistically meaningful results [20]. For this reason, we used JMH,11 a
tool that provides the respective features. For each experiment, we executed 15 warm-up
and 30 trial runs. For the experiments, we used the Java(TM) SE Runtime Environment
(build 1.8.0_20-b26) with a Java HotSpot(TM) 64-Bit Server VM (build 25.20-b23, mixed
mode) on a MacBook with OSX 10.5.5, an 2.8 GHz Intel Core i7 processor, 16 GB 1600
MHz DDR3 and SSD disk.

Table 5 summarises the performance results. We compare the dynamo compiler with the
standard Java compiler accessed through JSR199. To achieve a fair comparison, we compile
in memory in both cases and try to measure the net effect of the post compilation step when
bytecode is manipulated. We report average, standard deviation and confidence intervals, all
in ms. The fourth column contains the number of benchmarks tested, and column 5 is the
average divided by this number, i.e., the typical time a single compilation takes. The results

11 http://openjdk.java.net/projects/code-tools/jmh/

http://openjdk.java.net/projects/code-tools/jmh/
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Table 5 Dynamo vs classic compiler performance.

benchmarks
average
runtime
(ms)

stdev (ms)
bench-
mark
count

average
runtime single
benchm. (ms)

confidence interval
(ms) (99.9%)

classic 1923 65 49 39.24 [1857, 1988]
dynamo 2142 91 49 43.71 [2051, 2233]

Table 6 Method resolution performance.

benchmarks
average
runtime
(ms)

stdev (ms)
bench-
mark
count

average
runtime single
benchm. (ms)

confidence interval
(ms) (99.9%)

all 0.180 0.001 14 0.013 [0.179, 0.181]

clearly show that the compile time overhead imposed by dynamo is very small.

6.2 Runtime Benchmarks
We have also created a benchmark for runtime resolution. As the low performance overhead of
invokedynamic is known and has been reported in previous research [29, 3], the benchmark
is based on unit tests that only compute the target methods using the resolution algorithm
described in 5.1 from a set of candidate methods. Therefore, the design of the benchmarks
is driven by the following considerations: (1) a benchmark has a (significant) number of
candidate target methods scattered across several classes within the type hierarchy, (2)
candidate methods are detected via conversions represented by non-trivial paths within the
TCG including combinations of different edge types.

The individual benchmark scenarios are implemented as standard JUnit tests, and used
for quality assurance as well as to assess performance. Each test case has a self-explanatory
name to express its purpose. The packages and respective test cases are:

specstaticreturntype – a simple scenario with a test to locate a static target method
with a specialised return type
boxunbox – a scenario with tests that require the following conversions to locate the
target method: (1) boxing, (2) un-boxing, (3) boxing and widening of parameter types
and (4) un-boxing and narrowing of the return type
methodoverloading – a scenario with multiple d potential target methods, and tests
checking different resolution strategies to select target methods
overloadinghierarchy – a scenario with multiple overloaded potential target methods
scattered across a class and its direct and indirect super classes
disambiguatebyreturntype – a scenario to test situations where the target method is
selected based on the return type, simulating a scenario similar to what will be further
discussed in section 7.2

Table 6 summarises the performance results, using the same format as table 5 described
above. This result confirms that the performance overhead of runtime resolution is negligible.

7 Case Studies

To demonstrate the applicability of our approach, we present two case studies sourced from
real world scenarios.
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client.jar

org.dynamo.casestudy.jasper.
JFreeChartApp

jasperreports-1.1.0.jar

net.sf.jasperreports.charts.fill.
JRFillTimeSeriesDataset

jfreechart-1.0.12.jar

org.jfree.data.time.TimeSeries

+TimeSeries(java.lang.Comparable name)
+TimeSeries(java.lang.Comparable name, Class timePeriodClass)

String title = ’Series’;
 TimeSeries s = new TimeSeries(title);

 new TimeSeries(
seriesName.toString(), timePeriod);

jfreechart-1.0.0.jar

org.jfree.data.time.TimeSeries

+TimeSeries(java.lang.String name)
+TimeSeries(java.lang.String name, Class timePeriodClass)

update

Figure 3 Case study 1 application design.

7.1 Solving Compatibility Issues between Jasperreports and Jfreechart
The first case study is sourced from a real world scenario using the popular Java report-
ing library jasperreports12. Jasperreports uses several other libraries including jfreechart13,
which evolve independently, and this can lead to incompatibilities. In particular, a problem
occurs when jfreechart evolves from version 1.0.0 to 1.0.12. In this upgrade, the con-
structor TimeSeries(String) in the class org.jfree.data.time.TimeSeries is changed
to TimeSeries(Comparable). There are several overloaded variants of this constructor, but
for all of them the type of the first parameter is changed from String to Comparable.

This change is particularly dangerous for two reasons: (1) The change happens between
two micro versions, such evolutions are widely regarded as being compatible in accordance
with popular semantic versioning schemes [30, 31]. These schemes are widely used to represent
compatibility contracts between collaborating components, and tools and frameworks like
Maven and OSGi support them. (2) This change only affects binary compatibility, and its
implications therefore depend on the mode of deployment. The issue does not occur when
jasperreports is built, but only if a dynamic system upgrade mechanism like OSGi or Java
WebStart is used. The key observation here is that String implements the Comparable
interface, and that generalising a parameter type generally preserves source compatibility.14

The system used in the case study is depicted in Figure 3. The system is represented using
a model resembling a UML class diagram. However, the arrows represent the invocation of a
method or constructor in the target class, and the dashed box represents the older version
of the library. Labels on edges show the Java code at the respective call site. The model
contains an application client.jar, which is a simple client application producing a basic
report containing a chart. The example illustrates both compile and runtime dependencies.
While the client application is compiled and invoked against both libraries, jasperreports
runs only against jfreechart-1.0.0 and this dependency is not resolved at compile time.

This setting allows for at least three scenarios: (1) the client is compiled and executed
with jfreechart-1.0.0, (2) the client is compiled against jfreechart-1.0.0 and executed with
jfreechart-1.0.12, (3) the client is compiled and executed with jfreechart-1.0.12. Only the first
scenario succeeds with the standard Java compiler. In the second scenario, both dependencies
client → jfreechart and jasperreports → jfreechart will fail due to the incompatible change in
TimeSeries(..). In the third scenario, the problem will be solved for the client as it can

12 http://community.jaspersoft.com/project/jasperreports-library
13 http://www.jfree.org/jfreechart/
14There are exceptions where generalising a parameter type can create ambiguities in the presence of

overloading that lead to compilation errors.

http://community.jaspersoft.com/project/jasperreports-library
http://www.jfree.org/jfreechart/
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1 ldc #10 // String ’Series’
2 astore_2
3 new #11 // class org/jfree/data/time/TimeSeries
4 dup
5 aload_2
6 invokespecial #12 // Method org/.../TimeSeries."<init>":(Ljava/lang/String;)V

Listing 10 Client code compiled with javac.

1 ldc #10 // String ’Series’
2 astore_2
3 aload_2
4 invokedynamic #130, 0 // InvokeDynamic #3:C$D:(Ljava/../String;)Lorg/../TimeSeries;
5

6 BootstrapMethods:
7 3: #126 invokestatic org/dynamo/rt/DynamoBootstrap.bootstrapSpecialNew:(
8 Ljava/lang/invoke/MethodHandles$Lookup;
9 Ljava/lang/String;

10 Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;

Listing 11 Client code compiled with dynamo.

now be compiled, although invocations of TimeSeries(..) from jasperreports will still fail.
However, the working client will remain prone to similar problems as jfreechart may evolve
further.

To solve this problem, we compiled the client with the dynamo compiler. This produces
a client program that is compatible with both versions of jfreechart and resilient to any
possible future change of a similar nature. We also processed the jasperreports library with
the dynamo enhancer, demonstrating the application to third party or legacy software where
only bytecode is available. Finally, we invoked the program and verified by inspection that
both versions produce the same report. Listings 10 and 11 show the bytecode of the original
client compiled with the standard Java compiler followed by the enhanced bytecode. The
output is provided in the format produced by the javap tool, with comments revealing values
defined in the constant pool. The modifications follow the process described above: the
instructions creating the object and invoking its constructor are replaced by invokedynamic,
which refers to the respective bootstrap method.

We have also used this case study as a macro benchmark in order to measure the overhead
of using dynamo on a real-world program. Again, JMH was used to conduct these experiments,
with 15 warm-up and 30 trial runs. Table 7 summarises the compiler results, and confirms
that the performance overhead of using dynamo is small.

We have also measured the runtime overhead. In this benchmark, a simple report is
generated first by running a simple demo program that uses jasperreports compiled with
the classic compiler, and then by running it again with jasperreports compiled by dynamo.
We do use the same version of jfreechart (1.0.0) in both cases in order to avoid a bias that
would be caused by the different performance characteristics of different versions of this
library. Therefore, the same classes are used in both cases, but the generated bytecode and
the method used for linking differs. The respective results are reported in table 8. This again
confirms that the overhead of dynamo runtime resolution is small.
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Table 7 Dynamo vs classic compiler performance for jasperreports.

benchmark average runtime (ms) stdev (ms) confidence interval (ms) (99.9%)
classic 1278 52 [1255,1302]
dynamo 1330 56 [1305,1355]

Table 8 Runtime performance of simple report generation with jasperreports.

benchmark average runtime (ms) stdev (ms) confidence interval (ms) (99.9%)
classic 168 9 [165,172]
dynamo 175 12 [154,218]

7.2 Avoiding the Hazards of Covariant Return Types and Bridge
Methods

In a second case study, we demonstrate how compilation with dynamo can avoid an error
that was encountered when the JDK was refactored to use more covariant return types when
overriding clone() methods15. We use the formulation of this problem presented in [34].
The scenario consists of three simple classes, Wrapper, WrapperChild and WrapperGrand-
child, the source code is shown in listing 12. Both WrapperChild and WrapperGrandchild
override wrap, but WrapperGrandchild does so using a covariant return type. When a
client calls wrap on an object that is an instance of WrapperGrandchild but declared as
Wrapper, an invokevirtual instruction pointing to a wrap method with the descriptor
(LObject;)LCollection; (package names omitted) is used. Therefore, a method with
such a descriptor must exist in WrapperGrandchild. The compiler solves this problem by
generating a synthetic bridge method with the descriptor (LObject;)LCollection; that
then just delegates to the actual method with the descriptor (LObject;)LList;. This is
therefore a case of return type overloading. The respective bytecode is shown in listing 1316.

The problem occurs when Wrapper and WrapperChild on the one hand and Wrapper-
Grandchild on the other hand are deployed in different libraries. When WrapperChild is
refactored to also use a covariant return type, it too gets two wrap methods - the actual
method with the descriptor (LObject;)LList; and the synthetic methods with the descriptor
(LObject;)LCollection;. Now assume we execute the code in listing 14.

Executing this line invokes WrapperGrandchild.wrap:(LObject;)LList;. This method
calls WrapperChild.wrap:(LObject;)LCollection; via super as this was the only method
in WrapperChild that was available when WrapperGrandchild was compiled against the
old version of WrapperChild. This method is now a bridge method, and therefore calls
WrapperChild.wrap:(LObject;)LList using an invokevirtual instruction. Since the
actual type of the receiver object is WrapperGrandchild, this call is dispatched to Wrapper-
Grandchild.wrap:(LObject;)LList;. This causes the program to loop infinitely and
terminate with a StackOverflowError. The respective call graph is shown in Figure 4.

Using the dynamo compiler prevents this from happening not because of the sig-
nature adaptation, but due to the disambiguation strategy used during runtime resol-
ution. Resolution only considers non-synthetic methods. Therefore, we have two ad-

15 http://mail.openjdk.java.net/pipermail/core-libs-dev/2012-January/009119.html [Accessed:
October 20, 2015]

16The repeated checkcast instruction is a Java compiler bug reported in http://bugs.java.com/
bugdatabase/view_bug.do?bug_id=6246854[Accessed: May 3, 2016]

http://mail.openjdk.java.net/pipermail/core-libs-dev/2012-January/009119.html
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6246854
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6246854
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1 public class Wrapper {
2 public Collection wrap(Object o) {
3 Collection c = new ArrayList();
4 c.add(o);
5 return c;
6 }
7 }
8

9 public class WrapperChild extends Wrapper {
10 @Override public Collection wrap(Object o) {
11 return super.wrap(o);
12 }
13 }
14

15 public class WrapperGrandchild extends WrapperChild {
16 @Override public List wrap(Object o) {
17 return (List) (super.wrap(o));
18 }
19 }

Listing 12 Case study 2 source code (imports omitted).

1 // access flags 0x1
2 public wrap(Ljava/lang/Object;)Ljava/util/List;
3 ALOAD 0
4 ALOAD 1
5 INVOKESPECIAL WrapperChild.wrap (Ljava/lang/Object;)Ljava/util/Collection;
6 CHECKCAST java/util/List
7 CHECKCAST java/util/List
8 ARETURN
9

10 // access flags 0x1041
11 public synthetic bridge wrap(Ljava/lang/Object;)Ljava/util/Collection;
12 ALOAD 0
13 ALOAD 1
14 INVOKEVIRTUAL WrapperGrandchild.wrap (Ljava/lang/Object;)Ljava/util/List;
15 ARETURN

Listing 13 Case study 2 bytecode of WrapperGrandchild.

1 new WrapperGrandchild().wrap("x");

Listing 14 Case study 2 client code.
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1 public wrap(Ljava/lang/Object;)Ljava/util/List;
2 aload_0
3 aload_1
4 invokedynamic #31 // wrap:(LWrapperChild;Ljava/lang/Object;)Ljava/util/Collection;
5 checkcast java/util/List
6 checkcast java/util/List
7 areturn
8

9 public synthetic bridge wrap(Ljava/lang/Object;)Ljava/util/Collection;
10 aload_0
11 aload_1
12 invokevirtual #4 // Method wrap:(Ljava/lang/Object;)Ljava/util/List;
13 areturn
14

15 Constant pool:
16 #4 = Methodref // WrapperGrandchild.wrap:(Ljava/lang/Object;)Ljava/util/List;
17 #31 = InvokeDynamic// wrap:(LWrapperChild;Ljava/lang/Object;)Ljava/util/Collection;

Listing 15 Bytecode of WrapperGrandchild generated by dynamo.

<<bridge>>
WrapperGrandchild.wrap(LObject;)LCollection;

WrapperGrandchild.wrap(LObject;)LList;

invokevirtual

<<bridge>>
WrapperChild.wrap(LObject;)LCollection;

invokespecial invokevirtual

Figure 4 Call graph after refactoring, com-
piled with javac.

bootstrap

<<bridge>>
WrapperGrandchild.wrap(LObject;)LCollection;

WrapperGrandchild.wrap(LObject;)LList;

invokevirtual

invokedynamic

WrapperChild.wrap(LObject;)LList;

Wrapper.wrap(LObject;)LCollection;

invokespecial

Figure 5 Call graph after refactoring, com-
piled with dynamo.

aptable candidate methods with the extended descriptors Wrapper:(Object)Collection
and WrapperChild:(Object)List. Both are minimal (most specific), but because they
both have the same parameter types, the method with the more specific return type
WrapperChild:(Object)List is selected. The replacement pattern used is invokespecial
(super) as the call via super is the cross-component call. The bytecode produced by dynamo
is shown in Listing 15, the respective call graph is shown in Figure 5.

8 Conclusion

In this paper, we have proposed the dynamo framework consisting of a bytecode enhancer, a
compiler, a filter DSL and a runtime component. We have demonstrated the benefits of using
dynamo using a set of benchmarks and two case studies sourced from real-world scenarios. In
both case studies, unintuitive runtime errors can be avoided by using the dynamo compiler.
The benchmarks show that the overhead of using dynamo is low.

While we have discussed dynamo in the context of the Java language and compilation
targeting the JVM, the same idea can be potentially applied to other languages and platforms.
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The enhancer can be used as a tool kit to improve other compilers targeting the JVM, such
as scalac. Dynamo could also be ported to other language / platform combinations facing
similar problems related to binary compatibility, such as C#/CLR/.NET.

In the context of Java, the same idea could also be applied to support compatible type
changes for fields exposed by libraries. We did not include this in our work as direct field
access in Java programs is discouraged. Other possible extensions include to restrict constant
inlining across components.
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Appendices
A Dynamo DSL Grammar

kind ::= ’+’ | ’-’
role ::= ’callsite’ | ’target’
filters ::= filter ( ’,’ filter )*
className ::= NAME
methodName ::= NAME
descriptor ::= ’(’ NAMES ’)’ NAME
filter ::= kind role className ( ’#’ methodName descriptor? )?
NAMES ::= ( NAME ( ’,’ NAME )* )+

NAME is used as defined in [22, sect 6], but with added support for the * and ? wildcard
characters.

B Dynamo Compiler Options

Table 9 Dynamo Compiler Options.

parameter required description
-cp yes Specify where to find user class files and annotation processors
-d yes Specify where to place generated class files
-sourcepath yes Specify where to find input source files
-classic no Classic compilation without enhancement - same as javac
-encoding no Specify character encoding used by source files
-filter no Specify which methods to enhance as defined in section 4.3
-help no Print instructions
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Abstract
Which comes first: the object or the class? Language designers enjoy the conceptual simpli-
city of object-based languages (such as Emerald or Self) while many programmers prefer the
pragmatic utility of classical inheritance (as in Simula and Java). Programmers in object-based
languages have a tendency to build libraries to support traditional inheritance, and language
implementations are often contorted to the same end. In this paper, we revisit the relationship
between classes and objects. We model various kinds of inheritance in the context of an object-
oriented language whose objects are not defined by classes, and explain why class inheritance
and initialisation cannot be easily modelled purely by delegation.
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1 Introduction

Class-based object-oriented languages have a simple story about the relationships between
objects and the classes that create them: an object is an instance of a class [2]. A specialised,
‘one-off’ object is just an instance of a specialised, one-off, anonymous class [27]. Inheritance
is between classes, and new objects are constructed and initialised by their classes.

This simple story comes at the expense of a more complicated story about classes —
especially so if classes are themselves objects. Thirty years ago, Alan Borning identified eight
separate roles that classes can play in most class-based object-oriented languages [4], each of
these roles adding to the complexity of the whole language, which typically leads inexorably
to various kinds of infinite regress in meta-object systems [21, 29, 44].

To address this problem, prototype-based object-oriented languages, beginning with
Lieberman’s work inspired by LOGO [32] and popularised by Self [51], adopted a conceptually
simpler model in which objects were the primary concept, defined individually, without any
classes. Inheritance-like sharing of state and behaviour was handled by delegation between
objects, rather than inheritance between their defining classes. Special-purpose objects could
be defined directly, while new objects could be created in programs by cloning existing objects.
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method graphic(canvas) {
object {

method image { abstract }
method draw { canvas.render(image) }
var name
canvas.register(self)
draw // Local method request

}
}

def amelia = object {
inherit graphic(canvas)
// Override using a field getter
def image = images.amelia
// Assign to inherited field
name := "Amelia"

}

Figure 1 An example object constructor method and an inheriting object.

Emerald [3] went one step further and aimed to eschew all implicit sharing mechanisms,
supporting neither inheritance nor delegation.

Programmers using object-based languages have found the need to reintroduce classes —
several times over in many of these languages. The Emerald compiler, and later the Self IDE,
added explicit support for class-style inheritance. Languages with object inheritance such
as Lua [34], JavaScript [46], and Tcl [52] have a variety of libraries implementing classes in
terms of objects. Most recently classes have been added explicitly to the recent ECMAScript
standard [53], to bring some order to the profusion of libraries already offering classes.

The problem we address in this paper is precisely the tension between the conceptual
simplicity of objects and the practical utility of classes: can a language be based conceptually
on ‘objects first’ and include a relatively familiar notion of inheritance? In this paper
we present models of eight inheritance mechanisms for a language without an inherent
class construct: forwarding, delegation, concatenation, merged identity, uniform identity,
multiple uniform identity, method transformations, and positional inheritance. The first
three correspond to the foundational object-based models, while merged identity and uniform
identity introduce more classical behaviour that parallels C++ and Java, and the remaining
models introduce multiple object inheritance with different conflict resolution techniques.

We evaluate the tradeoffs between power and complexity of these models, particularly in
their object initialisation semantics, and compare them to the behaviour of other languages,
demonstrating that the typical class initialisation semantics are fundamentally at odds
with prototypical object inheritance. We have also implemented all of the models in PLT
Redex [17], making the models executable and allowing direct comparison of the differences
in execution for any program.

2 Inheritance Without Classes

The term ‘inheritance’ typically refers to reuse relationships between classes, but there are
also a number of ‘objects-first’ languages that eschew classes and permit reuse relationships
directly between objects. Consider the example graphic method in Figure 1: the method
constructs a fresh object with some methods and a mutable (var) field, and runs some
initialisation code including a local call to the draw method before returning. If we can inherit
from objects created by this method, what is the resulting program behaviour? Results vary
for different interpretations of inheritance. We can inherit from the objects this method
creates, or assign special semantics to methods which directly construct fresh objects like
this and inherit from the method itself. Because of the presence of initialisation code in the
class, these interpretations have different — and potentially unexpected — behaviours.
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In its most basic form, inheritance permits reuse by providing a mechanism for an object
to defer part of its implementation to an already implemented part of the program, but the
reality is that there is much more to consider: the value of ‘self’ in method bodies and during
initialisation, intended and accidental method overriding, whether objects are composed of
several object identities in an inheritance chain or a single unified identity, the meaning of
method requests which are not qualified with a receiver, and so on. We can draw different
conclusions about the state of our program after amelia in Figure 1 is constructed, depending
on which inheritance semantics is in play. We group these into our relevant concerns:

Registration. Is the identity of a super-object stored during initialisation, either
explicitly or through lexical capture, the same as the final object? This is clearly the
intention of the call to register in graphic’s initialisation.
Down-calls. Can a method in a super-object call down into a method in a lower object?
Can it do so during initialisation? The implementation of the draw method relies on a
down-call to the image method.
Action at a Distance. Can operations on an object implicitly affect another object?
If the registered graphic object is different to amelia, what is the value of its name field
after amelia is initialised?
Stability. Is the implementation of methods in an object the same throughout its
lifetime? Which image method will be invoked by the request to draw at the end of
graphic? Can the structural type of an object change after it has been constructed?
Preëxistence. Can an object inherit from any other object it has a reference to? Does
amelia have to inherit a call to the graphic method, or will a preëxisting object suffice?
Multiplicity. Can an object inherit from multiple other objects? If amelia also wished
to have the behavior of another object, can a second inherit clause be added? If so, how
are multiple methods with the same name resolved, and where are fields located?

We are also interested in the general semanticses of the inheritance systems, such as what
order the parts of initialisation execute in, what visibility and security concerns arise, and
how local method requests are resolved. We also point out particular curiosities, such as the
absence of overloaded methods from super references and inheriting from definitions already
inherited from some other parent, but these features are specific to individual models.

These are the concerns that we will judge in the following object inheritance models.
While our graphic example clearly assumes some of these features in its implementation,
these features are not universally desirable, and each provides certain abilities or guarantees
at some cost. Our intention is to use these concerns to provide an accurate description of the
tradeoffs involved with each inheritance model. Some of our models of inheritance attempt
to interpret graphic as a class, but only in the sense that it is a factory that guarantees fresh
graphic objects. We also compare the models to existing languages that use each form of
inheritance, particularly JavaScript, which is capable of implementing all of the models.

3 Graceless

In order to provide a formal semantics for the various object inheritance systems, we first
present a base model of the Grace programming language without inheritance, and then
proceed to extend this base model in different ways to construct the different behaviours.
Grace is a useful language to model object inheritance features in, as it is not class-based,
and it does not permit mutation of an existing object’s structure, so we can consider pure
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Syntax

e ::= o | r.m(e) | m(e) | self | v | e; e | f x−→ | f x←− e (Expression)

S ::= def x = e | var x | var x := e | e (Statement)

M ::= method m(x) { e; e } (Method)

m ::= x | x:= (Method name)

o ::= object {M S } (Object expression)

σ ::= · | ` 7→ 〈F ,M〉, σ (Object store)

v ::= done | ` (Value)

r ::= e (Method receiver)

f ::= self | ` (Field receiver)

F ::= x 7→ v (Field)

s ::= v/x | self.m/m (Substitution)

Evaluation context

E ::= [] | E.m(e) | v.m(v,E, e) | m(v,E, e) | E; e | ` x←− E

Figure 2 The grammar of the Graceless base model, with runtime-only components boxed .

object concerns without being overcome by ‘open objects’ with trivially mutable structure,
as found in JavaScript.

Our core model resembles the existing Tinygrace language [28], but with more features,
such that ‘Tiny’ is not an appropriate moniker. As the language is still not a complete
implementation of Grace, we have opted to name it Graceless. We have modelled object
references, mutable and immutable fields, and method requests unqualified by a receiver, in
order to demonstrate the wide-ranging effects of changes to the behaviour of inheritance.
Explicit types have been removed, in order to focus on the dynamic semantics.

The grammar for Graceless is provided in Figure 2. The boxed areas in the grammar
represent forms which only exist at runtime, not in the user-side syntax of programs. As
in Grace, we omit empty argument and parameter parentheses, making some method
requests indistinguishable from local variables and field lookups per Meyer’s uniform access
principle [37]. Within an object are method definitions M and statements S. A statement
is either a field declaration or an expression, the latter allowing method requests in object
initialisation code. Field declarations are either constant definitions or variable, and var
fields may be declared without an initial value.

Expressions e in the user-side syntax are object expressions o, method requests either
qualified or unqualified by a receiver, or the sentinel value done. At runtime, expressions
can also include references ` to locations in the heap, sequences e; e, field fetch self x−→, and
field assign self x←− e, with self eventually substituted for some `. The field operations are
distinguished from method calls e.x and e.x := e.

Objects can be nested inside of each other (as method bodies) and unqualified requests
can be made on the resulting local scope. We assume Barendregt’s rule [1] for self references,
such that each self variable introduced by nested object expressions is unique. Because
method names appear in the local scope as well as the public interface of their directly
surrounding object, we cannot assume Barendregt’s rule that their names are unique — an
object may need to shadow an outer object’s method in order to conform to a given interface
— so substitution cannot continue past a shadowing definition.

Graceless has two forms of substitution. The typical substitution [v/x]e replaces the term x

with the value v in the term e. A qualifying substitution [self.m/m]e replaces any local request
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〈σ, e〉 〈σ, e〉 (E-Context)
〈σ, e〉 〈σ′, e′〉

〈σ,E[e]〉 〈σ′, E[e′]〉

(E-Request)
method m(x) { e } ∈ σ(`)

〈σ, `.m(v)〉 〈σ, [`/self][v/x]e〉

(E-Next)

〈σ, v; e〉 〈σ, e〉

(E-Fetch)

〈σ, ` x−→〉 〈σ, σ(`)(x)〉

(E-Assign)

〈σ, ` x←− v〉 〈σ(`)(x 7→ v), done〉

(E-Object)
` fresh m = names(M,S) 〈Mf , e〉 = body(S)

〈σ, object {M S }〉 〈σ(` 7→ 〈∅, [self.m/m]M Mf 〉), [`/self][self.m/m]e; `〉
m unique

Auxiliary Definitions

names(method m(x) { e }, S) = m ∪mf where 〈method mf (y) { ef }, e〉 = body(S)

body(∅) = 〈∅,∅〉

body(def x = e, S) = 〈accessors(def, x, y) M, self y←− e e〉 where y fresh and 〈M, e〉′ = body(S)

body(var x, S) = 〈accessors(var, x, y) M, e〉 where y fresh and 〈M, e〉′ = body(S)

body(var x := e, S) = 〈accessors(var, x, y) M, self y←− e e〉 where y fresh and 〈M, e〉′ = body(S)

body(e, S) = 〈M, e e〉 where 〈M, e〉′ = body(S)

accessors(def, x, y) = method x { self y−→ }

accessors(var, x, y) = method x { self y−→ } method x:=(z) { self y←− z }

Figure 3 Term reduction.

m(e) with the qualified form self.m(e) in the term e. Both forms of substitution are ended
by a shadowing definition, which can be either an adjacent method name or a surrounding
parameter definition: substitutions into an object expression [v/x]o and [self.m/m]o do not
modify o if it contains a method x or m respectively, and the substitutions into a method
[v/x]M and [self.x/x]M do not modify the method body if M has a parameter x. Because
the local variable x and the local method request x are indistinguishable, the ordering of the
substitution matters: [self.x/x][v/x]x produces v, but [v/x][self.x/x]x produces self.x.

The reduction judgment 〈σ, e〉 〈σ′, e′〉 is defined in Figure 3, indicating an expression
e with store σ is reduced to an expression e′ with a potentially modified store σ′. Rule E-
Context uses the evaluation context to perform congruence reduction, and Rule E-Next
evaluates to the next expression in a sequence when the current one has finished evaluating.
Rules E-Fetch and E-Assign handle operations on a field store. The store access σ(`)(x)
looks up the field x in the object at location `, getting stuck if the field has not been initialised
yet. The store update σ(`)(x 7→ v) sets the field x to the value v in the object at location `,
introducing a new field if one was not already present.

Rule E-Request processes requests by looking up the corresponding method in the
receiver. In the method body, it substitutes both the arguments for parameter names, and
the receiver for the name self. Rule E-Object takes an object expression and builds a
corresponding object in the store, with no fields, the methods in the object expression, and
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Extended Syntax

I ::= inherit e s (Inherit clause)

o ::= · · · | object { I M S } (Object expression)

s ::= · · · | (` as self)/super (Substitution)

v ::= · · · | (` as v) (Value)

r ::= · · · | super | (` as e) (Receiver)

〈σ, e〉 〈σ, e〉 (E-Request/Super)
method m(x) { e } ∈ σ(`↑)

〈σ, (`↑ as `↓).m(v)〉 〈σ, [`↓/self][v/x]e〉

(E-Inherit/Context)
〈σ, e〉 〈σ′, e′〉

〈σ, object { inherit e s M S }〉 〈σ′, object { inherit e′ s M S }〉

(E-Inherit)
〈F ,M↑〉 = σ(`) M ′

↑ = override(M↑,names(M,S))

〈σ, object { inherit ` s M S }〉 〈σ, object {M ′
↑ [s][(` as self)/super](M S) 〉 }

Auxiliary Definitions
override(∅,m) = ∅

override(method m(x) { e } M,m) =

{
m ∈ m override(M,m)

m /∈ m method m(x) { e } override(M,m)

Figure 4 Object inheritance extension.

the generated getter and setter methods for the fields. The rule also converts the fields in the
object expression into a series of assignments, which ultimately result in the new reference.
The internal field names are (globally) fresh to avoid having to worry about overridden
names under inheritance. Both the methods and the assignments have the relevant qualifying
substitutions applied, and the body of the object has self bound to the new reference.

Note that we could bind self in the bodies of an object’s methods either in the Rule E-
Object (early binding, when the object is allocated) or in Rule E-Request (late binding,
when a method is requested). In this model, either choice produces the same behaviour. As
we add inheritance to Graceless, our choice to use late binding in the base model will matter:
it is trivial to overwrite by also using early binding, but not the other way around.

4 Object Inheritance

We now extend Graceless with various implementations of object inheritance, and consider
the complexity and impacts of the changes. The extensions are presented in a rough ordering
of implementation complexity. These represent the three foundational strands of object
inheritance: forwarding, as used in E; delegation, as found in JavaScript [53], Lua [25], and
Self [51, 10]; and concatenation, as in Kevo [48, 49] and numerous libraries and idioms for
languages with open objects.

The extended syntax for object inheritance is given in Figure 4. The extension introduces
two new components of user-facing syntax: the bodies of object expressions may now begin
with an inherit e clause, and requests can now be qualified by the special variable super.
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These two components each result in a runtime complication. This intermediate extension of
Graceless already implements a form of object inheritance similar to concatenation with all
fields reset to uninitialised, but we do not know of any language with this behaviour, nor can
we see why it would be desirable.

Inheritance introduces the methods from the super-object into the local scope of the
inheriting object using an ‘up, then out’ rule: inherited definitions take precedence over
those introduced in a surrounding scope. Because the inherit clause contains an arbitrary
expression, we might not know what the names are that the clause will introduce. To
counter this, substitutions are delayed by an inherit clause in an object expression: while the
substitution will transform the expression in the clause itself, it will not proceed into the
body of the object expression, and gets ‘stuck’ on the clause instead. Once the expression
in an inherit clause is resolved to an object reference, the substitution can proceed into the
body of the surrounding object expression, where it may be removed by shadowing.

Although there is an explicit super-object in this model of inheritance, making a request
to super is not the same as making a direct request to the super-object, as the value of self
will be bound to the inheriting object. At runtime, the variable super is substituted for a
special ‘up-call’ receiver (` as self), which indicates the method to call should be sourced
from the object at location `, but self in the body of that method should be bound to the
eventual value of self at the site of the request.

The evaluation context has not been extended as expected, to avoid issues in the future
with constraints on what can be evaluated in an inherit clause. Evaluation in an inherit
clause is instead handled by Rule E-Inherit/Context, which is modified by future models.
Rule E-Inherit transforms an object expression with an inherit clause into one without,
by copying the methods from the super-object which are not overridden by a method
with the same name into the body of the inheriting object (directly copying the methods
has the same behaviour as creating new methods which delegate to the super-object with
the same arguments, or searching through a chain of objects for the method, which is
representative of typical object inheritance implementations). It also applies the delayed
substitutions to the body, after substituting super for an up-call receiver to the inherited
object. Rule E-Request/Super simply applies an up-call as described.

By making subtle modifications to the existing rules in this extended form of Graceless,
we can produce models for various implementations of object inheritance.

4.1 Forwarding
Under forwarding, inherited methods are simply redirected to the super-object. The super-
method receives the same arguments and self binding. In the example from earlier, if amelia
receives a request for the draw method, which is not implemented directly inside of amelia,
the request is passed on to the graphic super-object instead. The value of self in the resulting
invocation is the identity of the super-object: in this example, the draw method crashes,
complaining the graphic has not implemented its image method, because the local request to
image has been resolved to the graphic object and not passed back down to amelia.

The modification to the existing Graceless dynamic semantics to implement forwarding
is provided in Figure 5. The modification makes one subtle change (highlighted ) to the
Rule E-Object, by early-binding the value of self when an object is created in both its
methods and field accessors. The result of this change is that the late-binding of self in
requests (both normal and to super) no longer achieves anything, because self has already
been bound to the object that the method or field originally appeared in. Any forwarded
request behaves as though the original object had received the request directly.
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(E-Object/Forwarding)
` fresh m = names(M,S) 〈Mf , e〉 = body(S)

〈σ, object {M S }〉 〈σ(` 7→ 〈∅, [`/self]([self.m/m]M Mf )〉), [`/self][self.m/m]e; `〉
m unique

Figure 5 Forwarding modifications.

The value of self is always the object a method was defined in, so down-calls are not
possible; similarly, the value of self during initialisation is the distinct identity of the
super-object, so registration cannot occur then. In this model, an object can only inherit
from another before it has run any of its own initialisation, so every object has a stable
structure, but one object may be inherited many times. While this model does not permit
multiple super-objects, it would only require updating Rule E-Inherit to include methods
from multiple inherited objects, with some arbitrary mechanism to resolve multiply-defined
methods (such as placing significance on the order of the inherit clauses, or requiring that a
multiply-defined method be overridden in the inheriting object).

There is no concept of confidential access of methods between implementations, as a
forwarded request is sent as a regular request, and so will only be handled by the public
interface of the super-object. Forwarding also does not permit downcalls: an inherited object
cannot invoke an inheriting object’s method. On the other hand, an object can forward
messages to a preëxisting object, and many forwarding objects can share a single target.
Inherited fields are shared between all inheriting objects, and the mutation of an inherited
field will implicitly affect the super-object and all of its heirs.

In the E language, there is no explicit self reference, as all object definitions are explicitly
named. The authors of E refer to the language’s inheritance mechanism as “delegation”, but
in the absence of self references the behaviour aligns with what we have called forwarding.

def graphic { to draw() { canvas.render(graphic.image()) } }
def amelia extends graphic { to image() { images.cat() } }

Even though amelia defines a method image, the call in draw clearly looks for the method in
the graphic object. Methods cannot be requested on the local scope, so the receiver must
always be explicit. In order to achieve down-calls, the inheriting object must explicitly be
passed to the super-object, which is a standard pattern for simulating class behaviour in E.

4.2 Delegation
Delegation is an implementation of object inheritance that aimed to be at least as powerful as
inheritance, if not more so [32, 51, 33]. Delegation has a subtle distinction from forwarding:
a self request in a method called under delegation goes back to the original object, while
under forwarding a self request to a delegatee will be handled only by that delegatee. This
allows delegation to support down-calls, where forwarding cannot.

In the previous example, it was not safe to request the draw method on amelia under
forwarding, as the implementation of draw expects to be able to see an overridden implement-
ation of the image method. Under delegation, this now works as expected: draw executes
with self as amelia, so the local request to image calls down into amelia and successfully
retrieves the image of Amelia.

The modification to the existing Graceless dynamic semantics to implement delegation is
provided in Figure 6. Like forwarding, the modification early-binds the value of self in the
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(E-Object/Delegation)
` fresh m = names(M,S) 〈Mf , e〉 = body(S)

〈σ, object {M S }〉 〈σ(` 7→ 〈∅, [self.m/m]M [`/self]Mf 〉), [`/self][self.m/m]e; `〉
m unique

Figure 6 Delegation modifications.

Rule E-Object, but this time only in the field accessors. The value of self remains late-bound
in the bodies of methods to the receiver of a method request, allowing super-objects to
perform down-calls to methods implemented in a sub-object. Fields are shared between the
original object and any inheriting objects, and, as under forwarding, mutation of any field
which originated in a super-object is reflected in all of its heirs.

Delegation makes no requirement of freshness, which combined with down-calls produces
a further complication to information hiding in a language with confidential methods that
can only be called on self. These methods may provide access to secret data or capabilities,
and the ability to access them from arbitrary code could be a security concern. Delegation to
preëxisting objects opens the way for the ‘vampire’ problem: any object to which a reference
has been obtained can be taken over and fully controlled from the outside, merely by defining
a new child object. If access to confidential methods is instead not provided to delegators,
simulating common classical patterns becomes difficult or impossible, and an odd asymmetry
is introduced: the delegator can override an inherited method, changing its behaviour, but
has no access to use the overridden method in its own implementation.

Unlike forwarding, delegation permits down-calls after the object has been constructed,
but not during initialisation. Objects under delegation cannot perform registration during
initialisation, as a captured self reference in a super-object refers to that super-object, which
may have no other references and will not have access to any overriding definitions from the
child. These two limitations of object initialisation are the major barriers to simulating the
typical behaviour of class-based inheritance under delegation.

Object structure and behaviour is not stable during construction, as new methods may
appear on self and existing methods may have different implementations depending on the
stage of inheritance. Like forwarding, delegation permits inheritance from a preëxisting
object; if this is allowed, stability does not exist after construction either. Delegation, like
forwarding, can be easily extended to multiple inheritance by introducing multiple inherit
clauses and some resolution of multiply-defined methods.

Including the inherit clause in the object constructor ensures that objects can delegate
either to a preëxisting prototype object or construct a new object with custom arguments
and delegate to that, as an equivalent to calling a super-constructor in a class system. This
distinguishes it from the prototypical inheritance in JavaScript, which requires that the
prototype property of the constructor be set before any inheriting object is constructed. In
Self, object expressions can set their parents as a fresh object constructor call:

( | parent* = factory new. | )

This has the same semantics in terms of self binding in the super-constructor as presented in
our model of delegation.

ECOOP 2016



13:10 Object Inheritance Without Classes

(E-Inherit/Concatenation)
〈x 7→ v,M↑〉 = σ(`) M ′

↑ = override(M↑, names(M,S))

〈σ, object { inherit ` s M S }〉 〈σ, object {M ′
↑ [s][(` as self)/super](M self x←− v S) 〉 }

Figure 7 Concatenation modification.

4.3 Concatenation
Concatenation is an alternative approach to both forwarding and delegation that aimed
to have the power of inheritance without the drawbacks of delegation [48, 49]. Under
concatenation, one object inherit from another by (conceptually) taking a shallow copy of the
methods and fields of its parent into itself, and then appending local overriding definitions.
Concatenation supports down-calls, but unlike delegation does not allow subsequent changes
in either the parent or the child to affect each other.

The modification to the existing Graceless dynamic semantics to implement concatenation
is provided in Figure 7. Unlike the previous two models, this modification instead changes
the Rule E-Inherit, to copy the fields from the super-object into the inheriting object as
assignments. The existing late-binding of self in methods is sufficient to provide the desired
behaviour: any inherited method executes in the context of the inheriting object, and any
request to an inherited field accessor will access the copied field in the inheriting object as well.
The only relationship the inheriting object has with its super-object is explicit up-calls, but
it is impossible to access or modify the state of the super-object without explicitly referring
to it through an existing reference. The resulting behaviour is equivalent to delegating to a
clone of the super-object.

Concatenation also makes no requirement of freshness. Concatenation with preëxisting
objects does not quite permit the ‘vampirism’ of delegation, but does allow ‘mind reading’:
any confidential state in an object can be read simply by inheriting from it, but the existing
object cannot be manipulated by the child. Unlike the two previous models, mutations to
inherited fields do not cause action at a distance, as the mutation will always affect a field in
the actual receiver of the request (even for super-calls). With lexical scoping, the two objects
are also not as independent as they seem: methods exist in the same scope in both objects,
and any lexically captured state is shared between the two.

Like delegation, concatenation permits down-calls after the object has been constructed,
but still not during construction. Concatenation does not allow registration, as a captured
self reference in a super-object refers to the parent. Object structure and behaviour is not
stable during construction; as for delegation, if inheritance from preëxisting objects is allowed
then stability does not exist afterwards either. Concatenation can be straightforwardly
extended to multiple inheritance by inserting the contents of each parent into the child, with
some resolution of multiply-defined methods.

Objects with mutable structure can trivially implement concatenation, by manually
copying the structure of the inherited object into the inheriting one. JavaScript complicates
this story with unenumerable properties, implicit field accessors, and existing delegation
relationships, but for the most part this is a valid implementation of concatenation:

for (var name in inherited) { inheriting[name] = inherited[name]; }

It is also possible to use mutable object structure to implement either forwarding or delegation,
by assigning methods (or field accessors) to the inheriting object that directly forward or
delegate to the inherited object, as in our models. In a JavaScript constructor:
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(E-Inherit/Context)
〈σ, e〉 〈σ′, e′〉 e = v.m(v) =⇒ e′ = e; o

〈σ, object { inherit e s M S }〉 〈σ′, object { inherit e′ s M S }〉

Figure 8 Fresh inheritance modification.

var self = this;
this.foo = function () { self.bar(); };

If the foo method is called on a sub-object, the call to bar is guaranteed to not perform a
down-call, because self is bound directly to the original object.

JavaScript’s built-in object inheritance otherwise works the same way as Graceless
delegation, but field assignments are directly available in the language instead of only
through accessor methods. The result is that an object shares each field of its inherited
object, but when a field is assigned to it, the field is unique to that object, shadowing the
inherited one. In any language where the objects have mutable structure it is necessary
to retain a parent reference in order to implement delegation, in order to accurately defer
to the current implementation of a parent object. Implementing more complicated forms
of inheritance in JavaScript, such as with traits or mixins, tends to involve combining the
built-in delegation alongside manual concatenation.

5 Emulating Classes

The inheritance models in the previous section represent the three foundational strands
of purely object-based inheritance. Class-based languages tend to provide different se-
mantics, and programmers and language designers may wish to use those behaviours, or may
unconsciously expect object-based languages to behave similarly.

It is possible to construct object-based models that parallel many of these classical
behaviours. In some languages with very flexible semantics, such as JavaScript and Lua,
libraries exist to provide “classes” as a second-class construct by mutating objects or leveraging
specially-constructed objects with the existing inheritance systems [46, 34]. The two models
in this section approximate the inheritance behaviour of C++ (Section 5.1) and Java
(Section 5.2) in an object-based system. They remain purely object-based, but trade off
some of the flexibilities of the object inheritance models for the classical functionalities they
provide, such as registration, down-calls, and stability.

The new models use as their base a further extension to Graceless inheritance, provided
in Figure 8, which enforces that the inherited object is a ‘fresh’ reference. This extension
modifies Rule E-Inherit/Context so that method requests ready to be computed directly
in an inherit clause may only be reduced if they syntactically return an object expression.
This modification to the rule still permits the object constructor to then be resolved to a
reference before handling the inherit clause.

The requirement of strict syntactic freshness is not required for merged identity, but it pre-
vents potentially dangerous manipulation of object identity from outside of an object’s creator.
Merged identity builds directly on the new extension, while uniform identity further modifies
the context rule to also prevent an object expression from being computed in an inherit clause.
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(E-Inherit/Merged)
〈F ,M↑〉 = σ(`) `↑ fresh m↓ = names(M,S)

M ′
↑ = override(M↑,m↓) m = m↓ ∪ names(M ′

↑,∅) 〈Mf , e〉 = body(S)

〈σ, object { inherit ` s M S }〉 
〈σ( `↑ 7→ 〈∅,M↑〉 )(` 7→ 〈F ,M ′

↑ [s][self.m/m][(`↑ as self)/super]M Mf 〉),
[s][`/self][self.m/m][(`↑ as self)/super]e; ` 〉

m unique

Figure 9 Merged identity modification.

5.1 Merged Identity

In this model, an inheriting object takes over the identity of its parent, ‘becoming’ that object
but putting in place all of its own method definitions, in effect the reverse of concatenation.
The parent object is constructed and initialised before the child, and then mutated at the
point of inheritance. Rather than mutating preëxisting objects, inheritance must now occur
from a fresh object, one newly created and immediately returned from a method call. Without
the requirement of freshness, objects can directly steal the identity of any existing object: the
resulting ‘body-snatchers’ problem is substantially worse than delegation’s vampirism, which
can only control objects internally. Overridden methods from the parent remain accessible
through super, and will always execute with the final identity of the object.

Merged identity provides essentially the C++ inheritance behaviour: the apparent type
of the object changes during construction, as each layer of inheritance is processed. After
object construction is complete, down-calls resolve to their final overridden method, but until
then they obtain the most recent definition from ((great-)grand)parent to child.

The use of self for registration in graphic will now correctly store the value of amelia
when initialising the super-object. Although the object is not amelia when it is registered,
amelia becomes the object that was registered once it has finished initialising, merging the
two identities together. The initialisation of amelia will still fail at the local request of draw,
because amelia’s overriding of the abstract method has not yet been merged into the identity
of the object.

The modification to Graceless with fresh inheritance to implement merged identity is
provided in Figure 9. The Rule E-Inherit/Merged overwrites the existing Rule E-Inherit.
Where the old rule resulted in a new object expression with some of the methods from
the super-object, this new rule skips straight to returning the resulting reference. This is
necessary because the resulting reference is not fresh: it is the reference of the inherited
object. The inherited object is updated with the new methods in the store, including keeping
all of the old field values, but removing overridden methods.

The new rule is a combination of the behaviour of the old E-Inherit and Rule E-Object.
We have highlighted the changes to their combined behaviour. There is no longer an object
which corresponds to super to perform an up-call substitution on the body of the object as in
Rule E-Inherit, so rather than creating a fresh location for the resulting object, we create
a fresh location for the super-object instead. The super-object has all of the methods of
the inherited object before it was modified, while the merged object retains its own fields
instead of beginning with an empty field store. All of the models which emulate classes with
super-references create these ‘part-objects’, which exist purely to store the super-methods for
super calls, never have any fields of their own, and are only ever referenced under an alias
for the ‘real’ object that is bottom-most in the hierarchy.
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Like delegation, merged identity enables down-calls after, but not during, initialisation.
Unlike delegation, a single identity is preserved throughout the construction process, so
registration is possible. It does not provide classical stability during initialisation, but once
objects are complete they cannot change again. The meta-mutation of merging objects
means that it unsafe to permit inheritance from arbitrary objects, so only freshly-constructed
objects are valid parents. Merged identity is really the only model presented in this paper
that does not lend itself well to multiple inheritance, because only a single parent can have
its identity preserved.

As a reverse form of concatenation, merged identity is just as easy to implement for objects
with mutable structure. A constructor can call into the super-constructor, then concatenate
its own definitions into the resulting object. Copying the original object beforehand ensures
that a super-reference is still available.

5.2 Uniform Identity
The uniform identity design is a direct attempt to match as closely as possible the behaviour
of a typical class-based inheritance system, but based on objects rather than on classes. In
this design, the first observable action is to create a new object identity in the bottom-most
‘child’ object constructor; this exactly mirrors the merged identity design, which creates a
single identity of the topmost parent. All inherited declarations are assembled in a single
object associated with this identity, but no fields are initialised and no inline code run
until the direct inheritance completes. Inheritance occurs with the identity “passed along”:
declarations are attached to the original object, without initialisation, until the topmost
object with no parent is reached. Finally, the initialisation code runs from top to bottom.

All initialisation occurs in the context of the final object, including its behaviour. No new
methods or overrides are added visibly during construction. While initialisation code always
sees objects as a consistent type, it may observe uninitialised fields, including constant fields.
We model uninitialised field access as a fatal error, and leave static detection to a higher layer
in the language. This model essentially aligns with the semantics of Java-like languages.

The behaviour of amelia is the same as in the merged identity semantics, except that
the local request to draw in the initialisation of graphic now successfully down-calls into
amelia’s implementation, as the object is amelia during all initialisation in the hierarchy. The
result is still an error, as amelia’s initialisation of the image field has not yet been executed.
Super-constructors may still encounter uninitialised fields that will be assigned to in some
sub-constructor, particularly when methods can be overridden by fields.

The modification to Graceless with fresh inheritance to implement uniform identity is
provided in Figure 10. As with merged identity, the Rule E-Inherit/Uniform overwrites
the existing Rule E-Inherit. The Rule E-Inherit/Context has been further refined to
also prevent the evaluation of object expressions directly inside an inherit clause.

Where Rule E-Inherit/Merged was a modified application of E-Inherit and then E-
Object, the uniform identity modification applies this in reverse. As the body of the inherit
clause is an object expression, we have to apply many of the same processes for reducing a
regular object expression, but then move the sequence of expressions resulting from the body
of the super-object down into the body of the inheriting object. The evaluation does create a
new object reference for the super-object, but only for up-calls to super. All fields will end
up in the ultimate inheriting object.

Because the inherited object expression has not been processed into a runtime object,
the rule needs to manually build its field methods and body. The substitutions to local
definitions m need to be applied to the inherited methods (both those in the store, and the
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(E-Inherit/Context)
〈σ, e〉 〈σ′, e′〉 e = v.m(v) =⇒ e′ = e; o e 6= o

〈σ, object { inherit e s M S }〉 〈σ′, object { inherit e′ s M S }〉

(E-Inherit/Uniform)
` fresh m = names(M,S) M↑ = [self.m/m]M

〈Mf , e〉 = body(S) m↓ = names(M↓, S↓) M ′
↑ = override(M↑ Mf ,m↓)

〈σ, object { inherit object {M S } s M↓ S↓ }〉 〈σ(` 7→ 〈∅,M↑ Mf 〉),
object {M ′

↑ [s][(` as self)/super]M↓ [self.m/m]e [s][(` as self)/super]S↓ }〉

m unique

Figure 10 Uniform identity inheritance modification.

non-overridden methods in the inheriting object). The same substitution into the body of the
inheriting object occurs as before, but now self is not bound in the body: self will be bound
by the ultimate application of Rule E-Object. The substitutions applied simultaneously to
M↓ and S↓ in the inheriting object by Rule E-Inherit now have to be split between the
two, as the super-body e appears in between, but it amounts to the same behaviour.

Uniform identity permits down-calls both after and during construction, as well as
registration, as the identity and structure of the object are both constant, also guaranteeing
stability. It does not allow inheriting from preëxisting objects, instead requiring that parents
be fresh. It does not support multiple inheritance, but there is a logical extension to do so.

Constructors have a special role in JavaScript, and must have their prototype property
set before they are used to construct a new object. As a result, inheriting from a preëxisting
prototype object is simple, but inheriting from another constructor, particularly one that
requires arguments specific to a particular inheriting object, is more difficult. Object.create
allows the creation of an object from a prototype without actually invoking the constructor:

function Bar(arg) { Foo.call(this, arg); }
Bar.prototype = Object.create(Foo.prototype);

The ability to bind the value of this in a function call allows JavaScript to implement uniform
identity, ensuring that the initialisation code in a super-constructor can be executed in the
context of the inheriting object instead of creating a fresh object and inheriting from that.
JavaScript’s class syntax, introduced by ECMAScript 2015, is just sugar for this behaviour.

The most natural forms of inheritance in JavaScript are the built-in single delegation
and, by extension, single uniform inheritance, now codified directly in the language with the
class syntax. Our primary concern is that without the particular dynamism of the necessary
JavaScript features, simulating class initialisation is impossible without reinterpreting factory
methods as constructors with special semantics, at which point the language has arguably
just implemented classes.

6 Multiple Inheritance

Reusing behaviour from multiple parents is a widespread desire, but is less commonly
supported in language designs in practice. In this section we show three logical extensions
enabling multiple object inheritance. The first extends the uniform identity model with
multiple inherit statements. The second is a separate model following the tradition of trait
systems, where method names are unique in any object. The third extends any of the
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base models with the ability to include multiple inherit statements in an object, processed
imperatively. All of these extensions process inherit clauses as under uniform identity,
but they could all be simplified to perform inheritance from preëxisting objects as per
forwarding, delegation, or concatenation. We have demonstrated this by constructing all
possible combinations in our Redex implementation.

All systems enable code reuse from arbitrarily-many parents. All parents are treated
symmetrically in the first two models, but further restrictions or privileges could be accorded
to some parents without substantially affecting the models. In order to handle conflicts in
symmetric inheritance, methods can be abstract in their body, which causes an error if that
method is called. Alternatively, the implementations could ban the construction of an object
with abstract methods, but this would only be valid for uniform identity, as the overriding of
a concrete implementation would not take effect until the object was inherited under any of
the other interpretations.

6.1 Multiple Uniform
The multiple uniform model allows a sequence of inherit statements to appear at the start of
an object body. Each statement includes an as name clause, which binds name locally to have
super semantics with regard to that inheritance tree. The single-inheritance uniform identity
model is recovered with inherit parent as super. When the same method name is inherited
from multiple parents, none has priority and an abstract method of that name is inserted
instead. The programmer must provide a local override calling the version from a particular
named parent if desired. All methods are collected and installed before any initialisation
code from the object bodies executes, so a consistent set of method implementations is seen
throughout the initialisation.

The implementation of multiple uniform identity is presented in Figure 11, as an extension
to Graceless inheritance with the caveat that super is no longer a special form of receiver.
The Rule E-Inherit/Context implements fresh inheritance in objects with potentially
multiple inherit clauses, ensuring each clause is evaluated in order.

Rule E-Inherit/Multiple is essentially the same as Rule E-Inherit/Uniform, but
processing multiple inherit clauses at once (hence the extra multiplicities for many of the
bindings). Once all of the super-methods are collected, conflicting methods are resolved with
the join auxiliary function that, for each unique method name in the collection of methods,
accepts exactly one concrete implementation of a method with that name and removes all
of the abstract implementations, or provides a single abstract method with that name and
removes all other implementations.

Multiple uniform supports registration and downcalls exactly as in uniform identity. It
supports multiple inheritance from freshly-created parents, and is stable because methods
are collected first. These are all properties of uniform inheritance: applying this modification
to the simpler object inheritance models each retains their own particular properties as well.

6.2 Method Transformations
Multiple inheritance under method transformations resembles trait-like composition of
objects, representing object values as a single mapping of method names to methods, with
no equivalent to super in the previous designs. Instead, an inherit statement can have any
number of alias or exclude clauses associated, which respectively create an alternative name
for an inherited method and exclude its implementation. If a method is overridden locally
and still needs to be accessed, the inherited method can be aliased to a different name and

ECOOP 2016



13:16 Object Inheritance Without Classes

Extended Syntax
I ::= inherit e as x (Inherit clause)

e ::= · · · | abstract (Expression)

o ::= object { I s M S } (Object expression)

s ::= · · · | (` as self)/x (Substitution)

Io ::= inherit object {M S } as x (Evaluated inherit clause)

(E-Inherit/Context)
〈σ, e〉 〈σ′, e′〉 e = v.m(v) =⇒ e′ = e; o e 6= o

〈σ, object { Io inherit e I M S }〉 〈σ′, object { Io inherit e′ I M S }〉

(E-Inherit/Multiple)
` fresh m = names(M,S) M ′ = [self.m/m]M 〈Mf , e〉 = body(S)

M↑ = join(M ′ Mf ) m↓ = names(M↓, S↓) M ′
↑ = override(M↑,m↓)

〈σ, object { inherit object {M S } as x s M↓ S↓ }〉 〈σ(` 7→ 〈∅,M ′ Mf 〉),
object {M ′

↑ [s][(` as self)/x]M↓ [self.m/m]e [s][(` as self)/x]S↓ }〉

m unique

Auxiliary Definitions

join(∅) = ∅

join(method m(x) { e } M) =


m /∈ names(M, ∅) method m(x) { e } join(M)

e ≡ abstract join(M)

method m(y) { abstract } ∈M join(M method m(x) { e })

otherwise method m { abstract } join(override(M, m))

Figure 11 Multiple uniform identity modification.

accessed through that name within the object. An object contains at most one method with
any given name, and there are no part-objects.

Multiple inherit statements can appear in an object, treated symmetrically. If the same
name is inherited from multiple parents, all but one must be excluded, or a local overriding
method declared, if a concrete implementation of that method is to appear in the object.
All inheritance expressions are evaluated and the final method set of the object assembled
before any initialisation code executes. Initialisation occurs from top to bottom (depth-first
search) within each branch of the inheritance hierarchy. Methods are decoupled from their
names because aliases may provide multiple equivalent names all reaching the method, while
exclusion means that local definitions may not be implemented in the final object.

If amelia wished to simultaneously be a graphic and a gunslinger, then two inherit clauses
can be included under the transformation model. If the gunslinger class also contained a draw
method for drawing her gun, amelia would be required to choose a single implementation by
excluding one of the two. The excluded method can still be accessed if it is aliased:

def amelia = object {
inherit gunslinger
inherit graphic alias draw as render exclude draw
def image = images.amelia
var name := "Amelia"

}

Even if the gunslinger class also has a name method, amelia has successfully combined the two
by overriding both. Note that method resolution is consistent throughout the entire object:
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Extended Syntax

I ::= inherit e alias m as m exclude m (Inherit clause)

(E-Inherit/Transform)
` fresh m = names(M,S) M ′ = [self.m/m]M 〈Mf , e〉 = body(S)

Ma = aliases(ma as m′
a,M ′ Mf ) Me = excludes(me,Ma) M↑ = join(Me )

m↓ = names(M↓, S↓) M ′
↑ = override(M↑,m↓)

〈σ, object { inherit object {M S } alias ma as m′
a exclude me s M↓ S↓ }〉 

〈σ , object {M ′
↑ [s]M↓ [self.m/m]e [s]S↓ }〉

m unique

Auxiliary Definitions

aliases(∅,M) = M aliases(m as m′ m as m′,M) = aliases(m as m′, alias(M,m as m′))

excludes(∅,M) = M excludes(m m,M) = excludes(m, exclude(M,m))

alias(∅,m as m′) = ∅

alias(method m(x) { e } M,m as m′) = method m(x) { e } method m′(x) { e } alias(M,m as m′)

alias(M M,m as m′) = M alias(M,m as m′)

exclude(∅,m) = ∅

exclude(method m(x) { e } M,m) = method m { abstract } exclude(M,m)

exclude(M M,m) = M exclude(M,m)

Figure 12 Method transformation modification, with context rule omitted.

the local request to draw in the graphic initialisation will unholster instead of rendering.
The implementation of method transformation multiple uniform inheritance is given in

Figure 12 as a modification of the previous uniform multiple inheritance extension. Inherit
clauses no longer have super-names, using the method aliasing and excluding syntax instead.
The obvious modifications to the context rule to account for method transformations instead
of super-names are omitted.

Rule E-Inherit/Transform pre-processes the methods of each inherited object before
passing them to join, with the aliases and excludes auxiliary functions. Both of these
functions proceeds as expected: fold the transformations over the methods, applying the
alias or exclude rules in order. Because these rules are ordered, it is possible to create an
alias of an existing alias that occurs earlier in the list, and it is possible to exclude aliases.
Exclusion is always processed after aliases, so a directly excluded method cannot be aliased.

Uniform method transformation permits both down-calls and registration. It provides
stability through time, but not through local analysis of visible declarations. It imposes
the same freshness requirements as the other models, and supports multiple inheritance.
Applying method transformation to the simpler object inheritance models continues to
maintain their own particular properties, as they were never stable to begin with.

6.3 Positional

The previous multiple inheritance models treated the inherit clauses as symmetric, such that
no definition in any one was preferred in the case of conflicts, requiring resolution either by
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overriding or method transformations. Moreover, they did not permit any initialisation until
all of the direct inheritance was completed. This can be a problem if, for instance, fields
need to be initialised for down-calls in super-initialisation code, as with amelia’s image field.
Positional inheritance addresses these concerns, at the cost of visibly mutating the object
during construction, similarly to what can be achieved with mutable object structure.

Under positional inheritance, multiple inherit clauses can appear in an object, amongst
the typical statements. These inheritances are processed imperatively where they appear, in
order, using the same semantics as the selected base model of inheritance. As under multiple
uniform, each inherit statement can have a name associated. Positional could also be used
for single inheritance, allowing some initialisation before the super-constructor is called, but
the visible mutation is still present, and the distinct ordering of the inherit clauses in an
object body implies a natural method conflict resolution.

In the most general version, an inherit clause can appear anywhere in the object body,
and have other code before, after, and in between, with the semantics of the inheritance
taking effect at the point of appearance and later parents having precedence over earlier.
This allows some interesting programmer choices with some of the base models. Altering the
order of parents affects which versions of same-named methods are accessed, and interleaving
other code in between exposes both at different times. The availability and safety of upcalls
and down-calls are affected by the placement of the inheritance, field initialisation, and other
code. A more restrained approach could limit inheritance to appearing all at the top (or at
the bottom) of the object body.

Positional delegation with named supers is essentially the behaviour of Self [10], where
multiple parent pointers may exist in a single object; Self does not allow initialisation code to
execute in the context of the object under construction or have any priority between parents,
but does allow parent pointers to be mutable. The nature of concatenation fundamentally
supports positional multiple inheritance, simply copying in the contents of the inherited
object in place of the inherit statement, and the limitation in the base model was purely
syntactic. Named supers (or a next-method functionality) are also necessary to access
overridden methods. Multiple forwarding is quite straightforward, and strictly named supers
are not required: because forwarding only accesses the public interface, an ordinary reference
to each parent suffices. One of the primary use-cases of positional inheritance — initialising
fields before invoking a super-constructor — is irrelevant without uniform identity, as the
super-constructor cannot make a down-call into the inheriting object anyway.

Merged identity does not lend itself to the positional extension because it relies on taking
over the identity of the parent object, which with multiple parents would result in repeated
identity changes, some of which may even lose methods. A different extension could merge
multiple identities together, or resolve the resulting issues in some other way, but we do not
address this combination here and simply exclude it from consideration as confusing at best.

Positional inheritance is the only one of our multiple-inheritance models that permits
inheriting from something obtained from a parent. A parent could define a number of
specialised “inner classes”, with the intention that its child would in turn inherit from one of
those specialisations as well. It is not obvious to us that such an ability is useful, but nor is
it obvious that it is not. We note this unique ability, but do not pursue it further. The most
interesting version of positional inheritance is based on uniform identity, so we will focus
on that extension for the remainder of this section. Each inherit is processed in order of
appearance, using the same structure-then-initialisation process as under uniform identity.
Again, a single identity exists for all initialisation, and again down-calls are valid throughout.
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Extended Syntax

e ::= · · · | super inherit e as x s | i inherit e as x s (Expression)

S ::= · · · | inherit e as x (Statement)

o ::= object { s M S } (Object expression)

s ::= · · · | (` as `)/x | i/super (Substitution)

r ::= · · · | (` as `) (Receiver)

i ::= 〈`,M, s〉 (Inherit context)

(E-Object/Positional)
` fresh m = names(M,S) 〈Mf , e〉 = body(S)

〈σ, object { s M S }〉 
〈σ(` 7→ 〈∅, [s][self.m/m]M Mf 〉), [s][〈`,M Mf , s〉/super][`/self][self.m/m]e; `〉

m unique

(E-Inherit/Positional)
` fresh m = names(M,S) M↑ = [s↑][self.m/m]M

〈Mf , e↑〉 = body(S) `↓ = first(last(i)) i′ = add-subst((` as `↓)/x, i)

〈σ, i inherit object { s↑ M S } as x s; e〉 〈update(σ(` 7→ 〈∅,M↑ Mf 〉),M↑ Mf , i′) ,
[s↑][〈`,M Mf , s↑〉 i′/super][`↓/self][self.m/m]e↑; [s][self.m/m][i′/super][(` as `↓)/x]e 〉

m unique

Extended Auxiliary Definitions

body(inherit e as x S) = 〈M, super inherit e as x e〉 where 〈M, e〉 = body(S)

add-subst(s, 〈`,M, s〉 i) = 〈`,M, s s〉 i

update(σ,M↑,∅) = σ

update(σ,M↑, 〈`,M, s〉 i) = update(σ(` 7→ 〈F ,M ′
↑ M

′ M ′
↓〉),M ′

↑ M
′, i)

where m = names(M,∅)andm↑ = names(M↑,∅)andM ′
↑ = override(M↑,m)and 〈F ,M↓〉 = σ(`)

and m↓ = names(M↓,∅) and M ′ = [s][self.m↑/m↑][self.m↓/m↓]M and M ′
↓ = override(M↓,mm↑)

Figure 13 Positional uniform identity modification, with context rule omitted.

Positional inheritance reintroduces mutation during construction to uniform identity,
because each inherit adds new methods to the object. When multiple methods are inherited
by the same name, the last-inherited method wins out. An unusual aspect is that while
down-calls are always available, during construction ‘side-calls’ to co-parents of a common
child can be made only to parents whose inherit preceded this one. An object can even define
a fresh constructor directly inside of itself, and then inherit from it.

Each line of initialisation occurs after preceding inheritance statements and before
subsequent inheritance statements. If inherit precedes a field initialisation or other expression,
upcalls to that parent are available from that expression; if inherit follows a field initialisation,
down-calls from that parent accessing that field are safe.

The implementation of positional uniform identity inheritance is provided in Figure 13
as an extension to the core Graceless language; the rule for fresh inheritance is omitted
again. The primary difficulty with implementing positional inheritance is that the meaning
of local definitions can change imperatively: a local request might refer to some definition
in the surrounding scope, but after processing an inherit clause during the initialisation
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phase that request might now refer to an inherited definition instead. This presents a
particular difficulty for substitution, which irreversibly binds an unqualified name to a
particular definition. Substitutions are now delayed by all object expressions, as the inherit
clauses are now nested in the object statements. Rule E-Object/Positional replaces the
Rule E-Object, handling the new statement form with the updated body translation and
applying the delayed substitution.

In order to implement the dynamic scoping, we introduce an inherit context i, which
records the reference ` of the object that an inherit clause appeared inside, the source of the
methods M that appeared directly in that object, and the delayed substitutions s that were
on that object. Any processed inherit clause has an ordered stack of these contexts on it,
from the actual object the inherit clause appeared in, down to the bottom-most inheriting
object. The super prefix is used as a placeholder on newly created inherit expressions, so
that Rule E-Object/Positional can substitute it out for the initial inherit context.

By retaining the source of the methods and the substitution scope they appeared in, the
methods can be re-substituted in any new scope that appears. The update auxiliary function
applies this for any newly inherited methods M↑ to every object in the current stack of
contexts. Rule E-Inherit/Positional handles any inherit expression, constructing a new
part-object `, and using update to include the new methods in the original object and every
intervening part-object, after applying overrides from the existing methods. The value of self
is bound in the inherited object body by the last object reference in the inherit context, as
that is the location of the original object. The inherited body is processed in the same way
as in Rule E-Object/Positional. One of the key distinctions here is that the value of self
to substitute in the inherited body already exists, whereas under single uniform identity the
body is concatenated into an object expression and self is substituted once that is evaluated.

Note that inherit expressions still delay substitutions, preventing them from applying to
expressions later in any sequence. After each inherit expression is evaluated, the substitutions
are then applied to the following expressions, after being shadowed by inherited definitions
and the super-name defined by the as clause. Positional uniform inheritance preserves the
other traits of uniform identity from Section 5.2, with the exception of stability: during
construction, an object’s apparent structure and behaviour can change. Applied to the
simpler object inheritance models, it preserves each of their unique properties.

7 Discussion

Table 1 compares the models according to the criteria established in Section 2. Each model
provides a different mix of the criteria, which may be appropriate for different circumstances
or languages. The uniform identity design provides the closest match to Java semantics
(given at the bottom of the table) while the other multiple-inheritance models following trade
off one or more of these properties. No model provides every property; indeed, stability,
downcalls, and inheriting from existing objects are fundamentally in conflict. As well, the
complexity of each design and its implementation roughly increases down the table, which is
a further trade-off for language designers to consider.

While delegation, forwarding, and concatenation can fundamentally support inheriting
from arbitrary objects, the other models lean towards supporting planned reuse rather than
ad-hoc reuse — that is, inheriting from objects that have been designed to be inherited
from, rather than from any arbitrary object. Both planned and unplanned reuse have solid
software-engineering motivations; indeed, language features exist both specifically to prevent
inheritance (final or sealed classes) and to enable ad-hoc reuse (structural types).
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Table 1 Comparison of models of object-first inheritance. * indicates answer holds during
construction, but is reversed after. Overload indicates multiple definitions of the same method name
in an object, accessible through super-references. Parent indicates ability to inherit from something
obtained through another parent. All other columns relate to criteria from Section 2.

Reg. Down. Dist. Stable Exist. Mult. Overl. Par.
Forwarding no no yes yes yes no yes no
Delegation no no* yes no yes no yes no
Concatenation no no* no no yes no yes no
Merged yes no* no no* fresh no yes no
Uniform yes yes no yes fresh no yes no
Mult. Uniform yes yes no yes fresh yes yes no
Transform U. yes yes no no fresh yes no no
Positional U. yes yes no no fresh yes yes yes

Java yes yes no yes class no yes no

We do not wish to present one or another choice as better, but to draw attention to a
potentially-unintended side effect of various points in the solution space. Nonetheless, it
is possible for any of the fresh-object–based systems to support delegation or forwarding
semantics simply by exposing a method, accepting any object as an argument, that returns
a fresh object whose methods provide the behaviour in question. Concatenation semantics
can similarly be supported by inheriting from a standard clone.

Diamond inheritance (repeatedly inheriting from the same class or trait two or more
times) has long been recognised as a problem in object-oriented language design. Eiffel and
C++ both offer the same essential solution to the problem: arranging that some classes
can be replicated each time they are inherited, while other classes will be inherited only
once. Malayeri and Aldrich [36] present a good discussion of the problems diamonds cause
for inheritance, and then argue that diamond inheritance can be prevented in languages,
partly by supporting a requires clause inspired by Scala which indicates that a trait depends
upon the eventual final self object providing a set of methods, but not actually implementing
those methods itself. The two multiple-inheritance systems we describe are open to this
sort of collaboration, but do not require it. Because they are object-based, rather than
class-based, some issues of diamond inheritance do not arise, as each instance of a parent is
(unavoidably) separately obtained and constructed. In an object-based system, coalescing
similar ancestors is a dubious activity, as side effects may occur on the path to construction
and be semantically meaningful, which cannot happen in a static, declarative class system.

In our formal model we have made a conscious effort to handle as many errors as possible
in the operational semantics (i.e., at run time) rather than by defining erroneous programs as
ill-formed (i.e., at compile time). There are several reasons for this, but most important is that
we see further layers on top—such as type systems or checks for diamond inheritance—as
an important, but separable part of the design process. Omitting such definitions highlights
the inheritance designs, and enables the core language of the model to be smaller and more
general. In fact, a language could provide the ability to impose additional families of static
restrictions at the surface level [23].

Similarly, we take a pragmatic approach to object initialisation: access to uninitialised
variables raises a runtime error. This choice has helped simplify our inheritance designs, as
we have not needed to contort the models to ensure that e.g. all variables are definitively
initialised. Just as a range of static type systems can be layered over the language’s semantics,
so we expect that a safe initialisation scheme, such as Delayed Types [16], Masked Types [42],
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Hard Hats [20, 54], Freedom Before Commitment [47], or the Billion Dollar Fix [43] should
be able to to be layered on top of the initialisation semantics in the model. Highlighting
where such runtime errors are liable to occur in the different designs helps language designers
to choose where to trade off for or against additional safety.

8 Related Work

Class-based object-oriented languages begin with SIMULA [2], and much of the conceptual
framework of object-orientation descends from the Scandinavian school founded by Dahl
and Nygaard, viewing programming as simulation, and consequently programs as models
of phenomena in the real world [35]. Taivalsaari argues the class-based understanding of
programming is also ‘classical’ in the sense of descending from the classical philosophy of
Plato and Aristotle [49].

Simula’s model of objects as instances of classes was greatly expanded on by Smalltalk [4]:
unlike SIMULA, Smalltalk classes are also instances of other (meta-) classes themselves,
importing the power (and also the complexity) of Lisp-style computational reflection into
object-oriented languages [45]. Lisp then returned the favour with a series of object-oriented
extensions culminating in the CLOS Meta-Object Protocol [29]. We also owe the notion of
‘static’ (per class) declarations, distinct from per-instance declarations, to Smalltalk.

The complexity of Smalltalk’s meta-model clearly inspired Lieberman to propose languages
based purely on objects, with delegation as the sharing mechanism [32], which then led
to a general interest in ‘prototype-based’ programming languages, i.e. languages, following
Self [51] that create new instances by copying existing instances, rather than by an apostrophe
to a class. Emerald [3] also lacked classes, but objects were created by literal expressions.

The fates of Emerald and Self are instructive. By 1991 Emerald had a “syntactic construct
called a class that provides the functionality normally expected of classes” [24]. At the same
time, Self’s programming style was based on separate objects corresponding to instance
prototypes (defining all the instance variables in one object) and method suits (called “traits”)
with each conceptual class giving rise to both a trait, and a prototype delegating to that trait;
traits were also linked by delegation corresponding to the conceptual class inheritance [50].
By 1995, Self objects were effectively given a single “copy down parent” attribute, and
slots from that object would be copied into the object whenever it was edited. This is how
e.g. if an extra ‘z’ slot was added into the graphic object, it would also be added into the
gRectangle object. Eventually, a “Subclass me” button was added to the IDE, which copied
both instance object and trait objects, recreating the class-like structure with delegation and
copy-down parent links configured correctly.

Dony et al. modelled a range of different designs for class-, object-, and prototype- based
languages, although by writing a software product line of definitional interpreters in Smalltalk,
rather than modelling language features formally [13, 12]. Taivalsaari et al. [40] surveyed
other contemporaneous research along these lines.

Relatively early on, Eiffel incorporated a sophisticated class-based multiple inheritance
with deep renaming (rather than shallow aliasing) and exclusion (‘undefine’) and repeated
inheritance [38]. Eiffel’s design has many advantages, notably that an object implementing
several different types can have multiple implementations of methods with the same name,
depending on the type in which those definitions originate. Eiffel’s development environment
can generate the ‘flat form’ of the class: unfortunately because of Eiffel’s type-aware semantics,
the flattened form cannot represent all the possible behaviours of the class. Over the years,
other languages incorporated many of the features of Eiffel’s design, notably C++.
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The other main stream of work is based on mixins, rather than classes [7]. Unlike CLOS
or Eiffel multiple superclasses, mixins are applied one at a time, in a linear order specified by
the programmer. Bracha’s Jigsaw formalised mixin composition in a class-based style, along
with a rich trait algebra including merge, restrict, select, project, overriding, and rename
operators [8, 5]. Flatt et al. [18, 19] develop a semantics for classes and class-like mixins
(without composition operators) in a core language, and have incorporated mixins and traits
into Scheme (now Racket) based on classes and macros. Lagorio et al. [30] modeled Jigsaw
in a class-based formalism based on Featherweight Java [26], and then Corradi et al. [11]
extended the formalism to handle family polymorphism [15]. More recently, class mixins
have been incorporated into Newspeak (alongside family polymorphism) [9] and Dart [6].

Traits were revived for multiple inheritance in Smalltalk [14]: in this design, a class can
inherit from one single superclass, and then incorporate multiple traits based with a trait
algebra comprising sum, aliasing, exclusion operators. A key property of Smalltalk traits is
that their conceptual model was based on flattening, rather than dynamic dispatch, although
both semantics have been proven equivalent [39]. Scala [41] and Java 8 [22] incorporate
traits, although relying on ‘super’ calls rather than aliasing or renaming.

A discussion of object-based inheritance systems would be incomplete without referring to
OCaml [31], which is not dissimilar to the language of our base model. Both languages have
object constructors, classes as sugar for methods returning fresh objects, symmetric multiple
inheritance, and are structurally typed. We work on the theory of traditional object-style
polymorphism rather than OCaml’s row polymorphism.

More significantly, even if OCaml classes are described as syntactic sugar, objects (or
other classes) can only inherit from classes, whereas in all of our models objects can inherit
from (at least) any manifestly fresh objects whether or not defined by classes. OCaml also
has a more complex, but in some ways less powerful, initialisation model than what we
specify here. In OCaml, field initialisers are evaluated in the enclosing lexical scope, and
initialisation code must be sequestered into initialisation blocks which are run late — neither
of which reflect a straightforward reading of program’s source code — while in our models
initialisation is always in a straight line, within the context of the object being constructed.

9 Conclusion

Object-based inheritance is unexpectedly complicated, especially when commonplace desires
for functionality available in classical models are involved, and programmers have resorted
to increasingly complex workarounds in existing object-based languages. In this paper we
showed that object inheritance without classes is both viable and desirable, avoiding the
conceptual complexity of an additional kind of entity in an object-oriented language without
losing functionality through careful feature selection, and set out a range of options with
their various trade-offs made explicit.

We presented and discussed seven models of object inheritance, including the well-known
approaches of delegation, forwarding, and concatenation. We presented a novel extended
operational semantics for a base language incorporating advanced but standard features
affected by inheritance, and formalised the models as extensions to that single base language,
formally demonstrating the subtle behavioural differences of each model. In particular,
we addressed the complex questions of downcalls, object registration, stability, inheriting
preëxisting objects, action at a distance, and multiple inheritance, and their interactions,
illustrating that object-based inheritance has the full range of possibilities of classical
inheritance, and showed that many of these models can be used as effectively as purely
declarative classes, but particular combinations — especially class initialisation semantics
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combined with inheritance from preëxisting objects — require a specific set of features usually
reserved for very dynamic and reflective languages.
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Abstract
Selecting items from a collection is one of the most common tasks users perform with graphical
user interfaces. Practically every application supports this task with a selection feature different
from that of any other application. Defects are common, especially in manipulating selections of
non-adjacent elements, and flexible selection features are often missing when they would clearly
be useful. As a consequence, user effort is wasted. The loss of productivity is experienced in small
doses, but all computer users are impacted. The undesirable state of support for multi-element
selection prevails because the same selection features are redesigned and reimplemented repeat-
edly. This article seeks to establish common abstractions for multi-selection. It gives generic
but precise meanings to selection operations and makes multi-selection reusable; a JavaScript
implementation is described. Application vendors benefit because of reduced development effort.
Users benefit because correct and consistent multi-selection becomes available in more contexts.
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1 Introduction

Many, perhaps most, interactive software applications present their users one or more
collections of elements in the form of lists, trees, grids, or otherwise arranged views, of which
a user can select one or more elements. Examples include selecting files and folders in a
file explorer; mail folders or mail messages in a mail client; music tracks in a media player;
thumbnail images in a photograph organizer; “to do” list items, hours, days, weeks, or months
in a calendar application; pages organized into “tabs” in a web browser; and electronic books
or videos on a digital library or store. These tasks are typical daily activities for many
computer users—we select elements from collections dozens of times per day.

Regardless of which set of modern applications a user chooses for mail, music, photos,
calendar, web browsing, books, and videos, the features for selecting elements are likely to
differ across applications—even within a single application the selection features for different
collections, such as the list of mail folders and list of mail messages, are likely to be different.
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The differences could presumably stem from optimizing the feature for the best possible
user experience in different kinds of selection contexts, but this is not the case. The selection
features of modern, widely used applications are different in quite arbitrary ways and the
results they produce can be unexpected; Section 2 presents examples. A more plausible
reason for the variability is that the software industry has not managed to establish precise
standard semantics for selecting multiple elements from collections and, consequently, to
produce easily reused implementations of selection features. Each development team therefore
designs and implements selection features anew. This repeated design and development effort
is a strain on development resources, and a cause for what we have today:

At a cursory level, most applications offer similar multi-element selection capabilities
(multi-selection for short). The detailed semantics, however, are “artifacts of the imple-
mentation”; instead of being designed for the best user experience, they are what falls
out of particular implementation choices.
User interfaces have many contexts where multi-selection would be useful but it is not
provided because of the considerable development effort that would be required to do so.
To a user there is no good reason why multi-selection cannot be used with browser tabs,
applications in the OS X dock, or icons in the “flyout folders” that open from the dock.
Even when multi-selection is provided, the feature is incomplete. We draw attention to
one particular deficiency. Selections are constructed and modified with key-commands
and mouse-clicks that are issued almost reflexively. They can grow to become complex
objects, but remain brittle. For example, constructing a selection of thumbnail photos in a
photo organizer can take minutes—yet at all times the selection is just one mis-click away
from vanishing. Almost no applications provide any kind of undo facility for selections.

Many users may consider a less than ideal selection feature a small problem since the
inconvenience experienced at any one selection task is usually minor. Due to the omnipresence
of selection tasks in all computer use, however, the aggregate effect is not small. Lack of
familiar and predictable multi-selection semantics can cause confusion and steer users towards
more repetitive and perhaps more frustrating ways to perform tasks, such as repeating “single-
element selection followed by a command” interactions multiple times. Frustrating experiences
with computer use impact individuals, organizations, and societies negatively [10].

To better the user experience of future software applications, we put forth a proposal
for a set of common multi-selection features. We present the justification for the proposed
features but do not compare them to other possible feature sets in user studies.

The primary contribution of the paper is not the proposed selection features, which build
significantly on well-known guidelines [2, 12], but rather the abstractions that capture the
essence of multi-selection features and enable their precise and concise specification, and their
generic implementation. We describe a JavaScript library that provides a rich multi-selection
feature with support for keyboard and mouse operations, undo/redo commands, and selecting
elements based on a predicate. The implementation is not tied to a specific framework or
widget. With little per-instance development effort, developers can reuse the feature in
different contexts and provide users the same consistent selection semantics everywhere. The
paper thus shows how to make a ubiquitous user interface behavior reusable; it replaces a user
interface implementation guideline with a precise specification and a reusable implementation.

2 Multi-selection today

This section discusses the selection features of a sample of popular applications. Our intent
is not to criticize particular applications, vendors, or developers, but rather to point out the
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variation in these features and that even applications with large user bases, after numerous
releases, exhibit problems in their selection features.

For a detailed understanding of how multi-selection works in an application, one must
resort to reverse engineering through experimenting with the feature. The descriptions in help
systems or user guides, if they exist, tend to be cursory. For example, Apple’s documentation
for OS X El Capitan [4], primarily describing Finder, states the following:

To move, copy, and make changes to items, you usually have to select them first.
Select an item: Click the icon for any document, folder, app, or disk.
Select multiple items: Hold down the Command key, then click the items.
Select multiple items that are listed together: Click the first item, then press the Shift
key and click the last item. All items in between are included in the selection.
You can also click near the first item, hold down the trackpad or mouse button, then
drag over all of the items.
Select all items in a window: Click a window to make it active, then press Command-A.
When you selected multiple items and want to deselect one of them, Command-click the
item.

This description is vague and incomplete. Aspects not described include selecting multiple
disjoint regions with command-click shift-click pairs, drags started with a command-click
(they toggle), keyboard selection, the nuances of anchor (explained below) placement, and
that shift-click can sometimes deselect. Further, the help document applies only to views that
are sequentially ordered; in other views the commands have significantly different meanings.

The above description is of course not intended to be a detailed documentation of Finder’s
multi-selection features. Such documentation in user guides would be of little benefit—few
users today turn to documentation to learn how to use an application, let alone a seemingly
trivial feature such as selection. Indeed, users should not need to consult a manual to use
multi-selection. Multi-selection gestures and their meaning should be part of a common “user
interface language” that we as users know and expect applications to understand.

Pieces that can serve as beginnings of such a language exist. In most applications, a
mouse click with no modifier keys means selecting an individual element, a command-click
(on a Mac, control-click on a PC) toggling an element, and a shift-click selecting elements
(from somewhere) “up to” an element. Dragging a mouse to indicate a rectangular area
usually means selecting the elements that fall on that rectangle. There are also established
key bindings for selecting elements using the keyboard. The precise meanings of these actions,
however, are not established, as evidenced by the below review of sample applications.

2.1 OS X Finder multi-selection
Finder supports different kinds of views. A sequential view shows each file as a single line. A
two-dimensional view shows files as icons, placed at arbitrary locations. Selection operations
are different for different views. We first discuss selection in sequential views. We refer to
the objects being selected as elements, whether they are files, lines, or icons.

At every click or command-click, Finder establishes an anchor at the clicked element. A
subsequent shift-click selects the range of elements from the anchor to the clicked element, the
active end of the range. The terminology comes from the Macintosh guidelines [2]. We refer
to the set of elements indicated by the anchor and the active end as the active (selection)
domain. Further shift-clicks change the active end, and thus also the active domain; a
shift-click farther away from the anchor adds elements to the active domain, closer to the
anchor removes elements from it, and on the opposite side of the anchor both removes (from
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Figure 1 Selection outcomes in Finder. The triangles mark the elements the user clicks: s is a
shift-click and c a command-click. Each column shows the selection state after the click. The darker
elements are selected. The series of operations in the diagram (b) is symmetric with that of the
diagram (a). The symmetry axis is the element File 2. The selection results are not symmetric.
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Figure 2 Selection outcomes in Finder. The series (a) shows that when a shift-click occurs on
an already selected element, deselections outside the active domain can take place. The series (b)
shows that the effect of shift-clicking is not idempotent.

the anchor to the previous active end) and adds (from the anchor to the new active end).
Finder does not remember the prior selection state of the elements in the active domain;
when a shift-click shrinks the active domain, the elements that were dropped from the domain
will unconditionally become deselected, rather than restored to their prior state.

To foresee the effect of a shift-click, the user needs to be aware of the anchor’s location.
The anchor is not, however, visible to the user, and the rules for where it resides are complex.
For example, if a command-click deselects a previously selected element, the anchor is placed
on the first selected element downward from that element; or if no such element exists, on the
first selected element upward; or if no such element exists, on the first element of the view.

The anchor placement rules lead to surprises, as the two series of operations in Figure 1
demonstrate. It seems reasonable to expect that a command-click followed by a shift-click has
no effect outside the range between the locations of these two clicks. Yet in the first series,
an element outside of this range toggles from selected to not selected. The second series is by
itself not surprising but considered together with the first one it is—two symmetric selection
operations lead to asymmetric results.

Another surprising part of the selection rules is the effect of shift-clicking an element that
is currently selected: if a shift-click occurs on an element that belongs to a contiguous range
of selected elements, all elements in that range are deselected prior to selecting the elements
in the new active domain. Figure 2 shows two cases of such overly eager deselection.

It is possible to understand Finder’s rules, as our reverse engineering effort demonstrates.
We doubt that many will go through a similar exercise. After all, Finder is only one of many
contexts of multi-selection and knowing its peculiar set of rules helps little elsewhere.1

1 Finder’s multi-selection behavior appears in a few contexts outside of Finder, such as in the File selection
dialog shared by many applications and in Apple Mail’s (version 6.5) folder and message lists—though
not in the list of messages within a thread. Incidentally, the selection features of Apple’s iCloud Mail
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2.2 Microsoft’s File Explorer multi-selection

Microsoft’s File Explorer’s multi-selection feature is similar, yet subtly different from that
of Finder. Click behaves as in Finder: an anchor is established on the clicked element, the
element is selected, and all other selections are cleared. Control-click roughly corresponds
to command-click on Finder: it toggles the current element and establishes a new anchor.
The anchor is always placed on the clicked element, be it selected or not. This is different
from Finder, where the anchor is never placed on an unselected element. In addition to
setting the anchor, control-click establishes a mode of selecting: if the control-click occurred
on a selected element, the mode is to deselect, otherwise to select elements. The mode
affects subsequent control-shift-clicks (Windows’ selection documentation does not mention
control-shift-click [11]), each of which establishes a new active end and either selects or
deselects according to the mode. Shift-click sets the active end, selects the elements in the
active domain, and clears all other selections.

File Explorer’s model is relatively consistent, but different from most anything else;
differences manifest even within File Explorer itself. For instance, changing to a hierarchical
view of files disables multi-selection altogether.

2.3 Gmail multi-selection

Gmail’s web interface supports multi-selection in the list of mail messages and single-selection
in all other collections: mail folders, contacts, and category tabs. Each element on the
message list has a checkbox for receiving the mouse clicks that control selection.

Click and command-click are interchangeable: they toggle the element that was clicked
and set the anchor to that element. Shift-click sets the active end and either (1) selects the
elements from the anchor to the active end, if the active end is on an element that was not
selected, or (2) deselects those elements, if the active end is on an element that was selected.
Shift-click then places a new anchor, at the active end.

The behavior that results from this rule set differs in at least two significant ways from
that of Finder and File Explorer. First, click does not discard the current selection. For
that effect, one needs to resort to the keyboard shortcut *n, or a click on or above the first
selected element followed by a shift-click on the last selected element. Second, whether
shift-click selects or deselects elements depends not on the anchor but on the active end;
in File Explorer’s control-shift-click the anchor’s selection status determines the mode of
selecting. As a result, in Gmail a shift-click always either grows or shrinks the current
selection, not both. The notion of an active domain modified by shift-clicking does not apply.

Gmail’s selection rules are relatively simple, but their effect may still surprise. If the
current selection is a contiguous region, a user may get the impression that shift-click always
grows or shrinks the selection either at the top or bottom of a selected region. If, however, a
shift-click that shrinks the region at one end is followed by a shift-click beyond the other end,
the region grows at both ends. Figure 3 illustrates such a sequence that arises, for example,
in the following scenario: a user (1) clicks to select some message m, (2) shift-clicks to select
a few more messages above m, (3) realizes that too many were selected and backs down one
or more messages by shift-clicking some message k, still above m, and finally (4) shift-clicks
in an attempt to extend the selection with messages below m. That k becomes selected is
peculiar, and might go unnoticed as k could reside outside the current viewport.

app, which is made to look quite similar to the desktop mail client, are significantly different.
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Figure 3 A series of mouse events and their effect in Gmail’s multi-selection semantics. That the
last shift-click extends the selected region at both ends may surprise.

Gmail exposes the anchor location, which makes it possible to predict the effect of a
shift-click in all cases. Gmail also maintains a cursor indicating the current message for
keyboard navigation and commands. Clicks move that cursor too, but we have not been able
to understand the exact rules guiding those movements.

Gmail’s selection behavior is a departure from the conventions in OS X and Windows.
The differences manifest concretely when a Gmail user selects files to attach to a message
and is subjected to the OS’s multi-selection semantics.

2.4 Multi-selection with keyboard
Intuitive keyboard commands for selection are important. The preferred and effective methods
to perform selections vary from one user to another. Karat et al. compared touch, mouse,
and keyboard in selecting one (menu) element at a time, and concluded that none of the
devices was the most effective for or most preferred by all users [8].

File Explorer’s keyboard bindings map rather consistently to mouse clicks so that it is
possible to use the mouse and the keyboard interchangeably. Space corresponds to a click
and arrow keys to a cursor movement followed by a click. The effect of modifiers is the
same as for mouse clicks, except that control combined with an arrow is just movement.
That control suppresses the automatic click action is useful, so that moving around without
altering the current selection is possible. Such capability is missing from, e.g., the MS Word
text editor, even though it supports selecting multiple disjoint regions with a mouse.

Finder’s keyboard bindings are less complete than File Explorer’s. Arrow keys correspond
to moving to the neighboring element followed by a click, or shift-click if the shift key is held
down. Command-click has no counterpart; keyboard commands thus seem to be insufficiently
expressive for selecting disjoint regions.

Gmail’s selection key commands are off by default and limited when on: arrow keys move
the cursor that indicates the current element, x toggles, *a selects all, and *n deselects all.

2.5 Rubber band selection
A mouse drag can be used to select a range: the anchor is established at the mousedown and
the active end at the mouseup event’s position. While a drag is ongoing, the current mouse
position is interpreted as the active end. Often user interfaces show the changing minimum
bounding rectangle of the points of the anchor and active end during the drag. File Explorer
and Finder support this kind of rubber band selection, whereas Gmail does not.

In File Explorer, rubber band selection without modifier keys clears the current selection
and selects all elements in the specified region; the shift modifier suppresses the clearing of
the current selection. Control and shift-control toggle the elements inside the rubber band.

Finder’s rubber band selection without modifiers is as in File Explorer, but both the shift
and command modifiers toggle elements. No command unconditionally adds elements to
or removes them from the current selection. In both OSs, the meaning of modifier keys is
different in rubber band selection than in selection through clicking or using the keyboard.
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It is curious that in both OSs rubber band selection supports toggling, but not deselecting.
Deselecting has obvious uses, such as selecting a range save a few elements, but use cases
for a single mouse drag to flip some elements from unselected to selected and others to the
opposite direction are hard to come by. Perhaps toggling is implemented to approximate
deselection: when the anchor and active end are wholly within an already selected region,
toggling and deselecting produce equal results.

Another curious aspect is that the active domain is treated differently when rubber band
selecting than when selecting with mouse clicks. In the former case, when the active domain
shrinks, elements revealed from under the active domain are unconditionally deselected. In
the latter case, however, their selection status prior to their inclusion to the active domain is
remembered and restored. Section 4.8 describes the drawbacks of the former behavior.

2.6 Touch applications
In recent years, the popularity of touch devices has risen dramatically. Apple’s iOS, Google’s
Android and Microsoft’s Windows 8 are all operating environments designed from the outset
for multi-touch displays. Given the long history these companies have with user interfaces,
one would have expected the basic concepts, such as selection, to have been refined and
carried forward. Instead we find even more disparity and limitations in touch based selection.

In iOS, in Springboard (the application launcher) long-pressing on an icon enters selection
mode. Only one application can be moved or deleted at a time. In the Mail application,
tapping an Edit button (top right of screen) moves into selection mode, where tapping selects
messages. After selecting, one chooses an operation to perform on the selection (Trash, Move,
Mark All Read, ...). The Photos application works similarly, except that the Edit button is
named Select. In the Messages application, again an Edit button (now top left of the screen)
enters selection mode. A message is selected by tapping on an indicator to its left. Only one
conversation at a time can be selected; the only operation available is Delete.

In Windows 8.1, long-pressing on a title or swiping up from the bottom of the screen
and tapping “Customize” on the far right enters selection mode, where multiple tiles can
be tapped. In Windows 8.0, selecting a tile was done by swiping down (perpendicular to
the horizontal scroll direction). Apparently this approach was abandoned, likely because it
was not very discoverable. In the Mail application when one taps on an item, a checkbox
appears to its left. Tapping on the check box toggles it on and enters a selection mode where
checkboxes appear next to all messages; tapping anywhere on a message toggles its checkbox.
Swiping up from the bottom of the screen and tapping "Select" on the left also enters selection
mode. In the Photos application a swipe down on a photo toggles its selection state.

In Android 4.4 on the Launcher screen one can only operate on icons individually with a
long-press. In the GMail application, one can select multiple email messages by long-pressing
on each one individually. In Google Photos one enters selection mode by long-pressing a
photo. A drag will then select multiple photos, tap will toggle one photo.

Except for the Google Photos application, none of the above selection models allow
quickly selecting a large range of elements. Where multiple selection is supported, each
element must be selected one at a time.

3 Selection concepts

The above review of multi-selection features in a handful of well-known applications confirms
that the semantics of multi-selection are not well established, and that users are faced with a
wide variety of behaviors, some surprising. This section describes such semantics, making no
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assumptions about what kinds of elements are being selected, how they are organized and
visually presented to the user, and what kind of a selection tool or device the user is using.

The multi-selection task is to select a subset of the elements of a collection presented to
the user. For an abstract view of the task, it is not essential what these elements are. It
is thus convenient to think of them as an indexed family x : I →M , where M is the set of
elements, and I a suitable index set. With this setup, we can talk about the ith element
of a collection, where i ∈ I, and mean the element xi. A set of selected elements in I can
be represented as a mapping s : I → {T,F}, where s(i) = T means that xi is selected and
s(i) = F that it is not. We call s a selection mapping. Below, we use 2 for the set {T,F}.

3.1 Primitive selection operations
A user constructs a selection mapping with a sequence of selection commands, such as a
rubber band selection, followed by a shift-click, press of shift-right arrow, and a command-
click. Each user command modifies the current selection mapping, and can thus be modeled
as a function of type (I → 2)→ (I → 2). We call functions of this type selection operations.
We define primitive selection operations, from which all selection operations can be built:

I Definition 1. Let x : I → M a collection, J ⊆ I, and f : 2 → 2 a mapping. J and f

(uniquely) determine a primitive selection operation

opfJ : (I → 2)→ (I → 2), s 7→ λi.

{
f(s(i)), i ∈ J
s(i), i /∈ J

In other words, the primitive selection operation opfJ produces a new selection mapping that
applies f to the selection state of every element in J , and has no impact on elements not in
J . We call J the selection domain and f the selection function of opfJ .

Selection operations compose. Starting from the “no elements selected” selection mapping
e : I → 2, i 7→ F, the selection that results after applying a series of primitive selection
operations opf1

J1
, opf2

J2
, . . . , opfn

Jn
is (opfn

Jn
◦ opfn−1

Jn−1
◦ . . . ◦ opf1

J1
)(e).

Any change to the selection state of elements can be expressed as a composition of
primitive selection operations. The task of implementing a multi-selection feature can thus
be viewed as the task of providing the user convenient means to specify primitive selection
operations. Since they are uniquely determined by the selection function f and domain J ,
it is these two components that must be derived from user interactions. We first review
common ways in which user actions give rise to particular selection functions.

There are four functions of type (2→ 2), and thus four selection functions: λx.x, λx.T,
λx.F, and λx.¬x. Primitive selection operations of the form opλx.xJ are identity functions.
Operations of the form opλx.TJ select all elements in the selection domain, and arise as a
result of many actions, including clicking an element, shift-clicking, or rubber band selection.
Operations of the form opλx. FJ deselect all elements in the selection domain. They can model,
e.g., File Explorer’s or Gmail’s “deselect a region” operation. Operations of the form opλx.¬xJ

toggle the selection status of the elements in J . Finder’s command-click on some element i
could be modeled as opλx.¬x{i} . Toggling is often limited to singleton sets, but as discussed in
Section 2.5, Finder’s and File Explorer’s rubber band selection can toggle many elements.

3.2 Deriving selection domains from user events
Selection domains are determined based on points a user indicates with a pointing device,
keyboard, or by tapping. Often only two points, the anchor and active end, are of interest but
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Figure 4 Illustration of concepts encountered in determining the selection domain. The solid
circles indicates where the user has placed the anchor (with a click) and the hollow circles the active
end (with a shift-click or a rubber band selection). Dots indicate other points on the selection path,
detected during a mouse drag. In these examples only anchor and active end are used.

in general arbitrarily many points may be used. For example, in “lasso” selection, discussed
briefly in Section 4.9, the user-indicated points are the vertices of a polygon and the selection
domain consists of the elements that intersect with that polygon.

We call the sequence of points that determine a selection domain the selection path,
and define the anchor as the first and the active end the last element of this path. In a
one-element selection path, the anchor and active end coincide.

How the selection path maps to a set of elements depends on the application. Figure 4
shows three examples. In Figure 4a, the anchor and active end indicate the endpoints of a
range of elements; in 4b, the opposite corners of a rectangle with which the selected elements
intersect; and in 4c, a range in a row-wise ordering. The last behavior appears, e.g., in text
editors, photo organizers, and File Explorer’s two-dimensional views.

The anchor and active end, and in general the points on the selection path, are not
necessarily mouse coordinates but rather points in some space V that we call the selection
space. This space can be any coordinate system to which the visual locations of the elements
and the user-indicated points can be translated to. For example, in Figure 4a, V is a totally
ordered set of element indices, and a mouse coordinate maps to the index of the element that
contains it; in 4b, V is the window’s coordinate system; and in 4c, the points in V could be
tuples that store both a mouse coordinate and the element index, as some points lie outside
of any element. We name the function that performs the conversion from mouse coordinates
to selection space coordinates m2v; it is provided by the application programmer.

We can now capture all the variation in how different applications allow the user to
indicate elements into one function sdom : V ∗ → P(I) that computes a selection domain
from the selection path. Similarly to m2v, sdom is provided by the application programmer.
We use the term selection geometry for the set of functions that define the application or
context-specific aspects of multi-selection.

In Figure 4a, sdom computes the range of indices between the anchor and active end;
in 4b, sdom maps a rectangle to the indices of other rectangles it intersects with; and in 4c,
sdom finds two elements, one closest (by some suitable definition) to the anchor and the
other to the active end, and returns the range of indices between those elements.

Viewing collections of elements as indexed families lets us “abstract away” the elements.
The sdom function in turn abstracts away the indices: since the selection domain J is
determined by some sequence of points P in the selection space, the primitive selection
operations opfJ can be defined in terms of P , as opfsdom(P ). A sequence 〈f1, P1〉, . . . , 〈fn, Pn〉 of
selection function–selection path pairs thus determines the composition of primitive selection
operations opfn

sdom(Pn) ◦ . . . ◦ opf1
sdom(P1) that can compute a new selection mapping.
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clickp : 〈s, op,_,_〉 7→ 〈s, opλx.Tsdom(·|p) ◦ opλx. F{i∈I|op(s)(i)=T} ◦op, ·|p, ae(·|p)〉

c-clickp : 〈s, op,_,_〉 7→ 〈s, opλx.¬onsel(p,op(s))
sdom(·|p) ◦ opλx.x∅ ◦op, ·|p, ae(·|p)〉

s-clickp : 〈s, opf_ ◦op, P,_〉 7→ 〈s, opfsdom(P |p) ◦op, P |p, ae(P |p)〉

s-clickp : 〈s, op,_,_〉 7→ 〈s, opλx.Tsdom(·|p) ◦ opλx.x∅ ◦op, ·|p, ae(·|p)〉

(a) The three basic selection commands.

undo : 〈s, on ◦ on−1 ◦ op,_, p〉 7→ 〈s, op,⊥, p〉
undo : t 7→ t

bake : 〈s, op ◦ o4 ◦ o3 ◦ o2 ◦ o1, R, p〉 7→ 〈store(s, o2 ◦ o1), op ◦ o4 ◦ o3, R, p〉
bake : t 7→ t

(b) Undo and bake operations.

space′ : 〈s, op, P, p〉 7→ clickp(〈s, op, P, p〉) arrow′dir : 〈s, op, P, p〉 7→ 〈s, op, P, stepdir(p)〉
s-space′ : 〈s, op, P, p〉 7→ s-clickp(〈s, op, P, p〉) s-arrow′dir = s-space′ ◦ arrow′dir

c-space′ : 〈s, op, P, p〉 7→ c-clickp(〈s, op, P, p〉) c-arrow′dir = arrow′dir ◦ c-space′

(c) Keyboard selection operations.

Figure 5 The basic commands of the selection language.

4 Selection language

We give precise meanings to multi-selection features by defining the components that con-
stitute the state of a selection and the functions that define the valid transformations on
that state. These definitions are a language for implementing multi-selection features. The
language is parametrized by a selection geometry, a handful of functions that the programmer
defines. As a heads up, in addition to the already introduced sdom and m2v, the other
functions of the selection geometry are step, default, and |, and a function to filter elements
of the index set I based on a predicate.

Figure 5 defines the basic commands of the selection language. Each command is a
function that maps the current selection state to a new state. The function definitions rely
on pattern matching to express concisely the complete effect that a command has on the
selection state. If more than one pattern matches, the first matching definition applies.

The selection state is a tuple of the form 〈s, op, P, p〉, where s : I → 2 is the base selection
mapping; op the composition of primitive selection operations that have not yet been applied
and stored to s; P the selection path; and p the keyboard cursor, explained in Section 4.4.

The third element of the tuple has two uses. In lieu of a selection path, it can contain a
selection predicate. The metavariable P always signifies a path and the metavariable Q a
selection predicate; selection predicates are explained in Section 4.5. The third element can
also have an undefined value ⊥. Neither metavariable P nor Q matches ⊥. The metavariable
R matches any of these three kinds of values.

The selection mapping that reflects the currently selected elements is obtained from
op and s as op(s): the selected elements are {i ∈ I | op(s)(i) = T}. We consider the
empty composition, denoted as op = ·, to be the identity function, so that ·(s) = s. The
metavariable o ranges over primitive selection operations and op over compositions of zero
or more primitive selection operations. While function composition has its regular meaning,
we also assume that the composition structure is accessible, so that pattern matching can
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extract individual primitive selection operations. For example, the pattern o1 ◦ o2 matches
compositions that have exactly two primitive selection operations, binding o1 to the first
and o2 to the second. The metavariable op can appear on either end of a pattern: op ◦ o
and o ◦ op both match compositions that have one or more primitive selection operations.
Finally, the metavariable _ binds to anything and signifies an unused value.

A selection path is a sequence of points in V . The symbol · denotes the empty sequence.
The operator | is one of the context-dependent functions whose meaning can vary, but to
simplify, we assume for now that it extends a sequence with a new point. For example,
if P = p1, . . . , pn, then P |p is the sequence p1, . . . , pn, p. The function ae(P ) returns the
active end, the last element of a sequence, or the special undefined value ⊥ if P is the
empty sequence. We thus overload ⊥ to signify either an undefined point or an undefined
path/selection predicate. We assume that we can query whether a value is undefined by
matching against the pattern ⊥.

All functions of the selection language maintain the invariant that the composition of
primitive selection operations has an even number of elements. This is a technicality that
makes the definition of the language more concise at the expense of sometimes adding extra
empty operations to the composition. A possible valid initial empty selection state that
satisfies the invariant is 〈e, ·,⊥,⊥〉, where e is the empty selection mapping.

4.1 Meaning of mouse clicks
Figure 5a shows our definitions for the three basic operations for constructing selections:
click, shift-click, and command-click. The point parameter p to each operation is written as
a subscript, as in clickp, to keep it notationally separate from the selection state parameter.
The click functions do not modify the base selection mapping s; the current selection mapping
op(s) changes because the composition op is modified.

The clickp function adds two primitive selection operations to op. The first operation
clears the current selection; its selection domain is the currently selected elements and not
I, which might be difficult to express, even unbounded in some selection geometries. The
second operation selects the element(s) indicated by p, if any. The previous selection path
is discarded and p becomes the only element of the new selection path, and thus both the
anchor and active end. It also becomes the keyboard cursor. If elements can overlap in V ,
the definition of sdom may need to handle this one-element selection path specially. The
established behavior is that a click selects at most one element. Hence, sdom(·|p) should
either return the singleton set whose element is the index of the “topmost” element that p
could indicate, or the empty set if p indicates no elements.

The c-clickp function is similar to click in that it clears the selection path and sets a new
anchor. If p indicates an element, command-click should toggle that element. Instead of
using the toggling selection function λx.¬x, c-clickp uses either λx.F or λx.T, depending
on whether p is on a selected or unselected element. This is to establish the mode of
selecting, i.e., whether subsequent shift-clicks should select or deselect. The helper function
onsel(p, s) = if sdom(·|p) = {i} then s(i) else F determines whether p is on a selected element.
One primitive selection operation would suffice to capture the effect of a command-click, but
to maintain the invariant of an even number of primitive selection operations, command-click
first adds the identity operation opλx.x∅ to the composition.

Shift-click is defined by two cases. The first matches if both the op composition is not
empty and the selection path is defined. The second matches all tuple values; it is thus
selected if op is empty or if the tuple’s third component is not a path (if it is ⊥ or a selection
predicate). In the first case, the point p is added to the selection path as the new active
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end. A new selection domain is computed from this path to replace the selection domain
of the outermost primitive selection operation in the composition. Shift-click thus cancels
the current active domain and establishes a new one. There may be no selection path to
extend or no outermost primitive selection operation, so in the second case a new path is
established and a new pair of primitive selection operations added. The effect is the same as
that of a command-click, except that the mode of selecting is always set to select.

All three click functions extend the path with p, then use ae to access the path’s active
end and make it the new keyboard cursor. This may seem like a roundabout way of setting
the cursor to p, and indeed it usually is. However, since the | operator is a parameter to
the selection language, it might be defined to sometimes not make p the active end. For
example, in some selection contexts it is useful to ignore certain points, such as coordinates
outside of any selectable elements. This is easily modeled by defining | to keep the path
unchanged when called with such a point. To enable this customization point, all selection
path manipulation is performed with the | operation. The reason for setting the cursor
using ae is now plain: when a point is ignored, we get the desired effect that click and
command-click set the keyboard cursor to ⊥ and shift-click keeps it unchanged.

The | function can actually be defined to modify the selection path in arbitrary ways. For
example, when only the anchor and active end are of interest, | can limit the length of the
selection path to two elements, throwing away the intermediate points. As another example,
one of our example applications defines a selection geometry where | may remove points from
the end of the selection path to get the effect of erasing points of a lasso selector.

We consider the above three operations to be a sufficient set for convenient manipulation
of the selection mapping with a pointing device. Compared to File Explorer and Finder, an
operation for toggling many elements simultaneously is missing. It would not be problematic
to specify or implement but, as discussed in Section 2.5, its use cases are not obvious.

4.2 Meaning of rubber band selection

In existing practice, rubber band selection and selecting via mouse clicks often have different
semantics. For example, Finder’s rubber band selection always toggles, instead of selecting
or deselecting. We equate mouse drag to shift-click, following old apparently forgotten
advice [2, 12]. More precisely, the meaning of “drag mouse to point p” is exactly that of
s-clickp; every mousemove event until a mouseup should be interpreted as a shift-click. The
result of this equivalence is the interchangeability of the two selection mechanisms.

To appreciate the benefits, consider a rubber band selection that selects a region that
extends beyond the current window’s visible area. Many user interfaces scroll the window
when the mouse is dragged past the window’s edge. It is easy to “overshoot”, then be
forced to scramble back by dragging the mouse to the opposite edge of the window, possibly
overshooting again, and at all times being careful not to release the mouse button. When
shift-click has the same meaning as mouse drag, one can let go of the mouse at any point,
scroll by whatever method is convenient (scrollbar, page down key, two-finger scroll, etc.),
and use shift-click to finish the selection or pick up the rubber band and continue the drag.
MS Word supports this behavior in text selection and Excel in selecting spreadsheet cells.

4.3 Undo, redo, and baking

In the presented framework, undoing selection commands means simply removing outermost
primitive selection operations from the composition. Figure 5b shows the undo function.
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Every undoable selection command adds two operations to the composition, so undo removes
two operations at a time.

The undo function sets the selection path to the undefined value ⊥. This is because
undoing exposes a new primitive selection operation whose selection domain was not computed
from the current selection path (or predicate), and thus keeping the current path would make
a subsequent shift-click command very unpredictable. An undefined path forces shift-click to
add a new pair of primitive selection operations, avoiding the surprising behavior. Note that
undo preserves the keyboard cursor; there are no surprises in doing so. The second case of
undo is an identity function; it is applied if there are no operations to undo.

To support redo, the operations removed from the composition by undo can be stored to
a stack of redoable selection operations, to be composed back when requested. We do not
show the definitions. Our reference implementation, described in Section 5, implements redo.

There are no established key bindings for undo/redo of selections, since such a feature is
seldom, if ever, provided. Adopting typical undo/redo bindings, such as command-Z/shift-
command-Z, would mean coalescing the selection undo stack and the application’s command
undo stack, making selection undo subordinate to command undo: executing a command on
the selection (such as deleting or copying the selected files) would clear the selection undo
stack. Selections would be undoable only until the most recent command. We have not
explored all the ramifications, and thus keep selection undo separate from command undo.
We bind option-Z and shift-option-Z to selection undo and redo, respectively.

Every new click or command-click operation grows the composition of primitive selection
operations. For reducing the size of the composition, without changing which elements are
selected, we introduce the bake function in Figure 5b. It extracts the two least recently
added primitive selection operations from op and “bakes” their effect permanently to the
base selection mapping s; we assume that store(op, s) is an operation that constructs this
new base selection mapping from op and s. The second case of bake is an identity function;
it is applied if fewer than two primitive selection operations would remain in op after baking.
Emptying the composition completely would bake the operation that defines the active
domain and thus change, e.g., shift-click’s behavior. To impose a limit on the size of the
composition, an implementation calls bake whenever a predefined upper limit is reached.

4.4 Meaning of keyboard selection operations
When navigating with arrow keys is meaningful, constructing selections with the keyboard
should be possible and convenient. As discussed in Section 2.4, applications’ support for
keyboard selection varies considerably. This is expected since selection features are not the
only candidates competing for the relatively small set of convenient key combinations. We
choose a particular set of key bindings and give a few arguments to justify them below,
but recognize that they are not suitable everywhere. Again, the contribution is the precise
meanings of the keyboard selection operations, not particular key bindings.

The keyboard selection functions, named to suggest our key bindings, are shown in
Figures 5c and 6. The functions do not manipulate the selection path or call sdom directly;
they are all defined in terms of the three click functions. The point argument they pass to
the click functions is the current keyboard cursor, which is a point in the selection space V .

Assuming p is the keyboard cursor, space′ has the effect of clickp, s-space′ the effect of
s-clickp, and c-space′ the effect of c-clickp. Note the “primed” function names in Figure 5c.
These functions assume that the keyboard cursor is defined. If, however, no click operations
have yet been applied, the cursor may have its initial undefined value. Figure 6 shows the
corresponding functions that accept ⊥ as the keyboard cursor; these are the functions to

ECOOP 2016



14:14 One Way to Select Many

space′ : 〈s, op, P, p〉 7→ if crss(p) 6= ⊥ then space(〈s, op, P, crss(p)〉) else 〈s, op, P, p〉
s-space′ : 〈s, op, P, p〉 7→ if crss(p) 6= ⊥ then s-space(〈s, op, P, crss(p)〉) else 〈s, op, P, p〉
c-space′ : 〈s, op, P, p〉 7→ if crss(p) 6= ⊥ then c-space(〈s, op, P, crss(p)〉) else 〈s, op, P, p〉

arrowdir : 〈s, op, P, p〉 7→ if p 6= ⊥ then arrow′dir(〈s, op, P, p〉) else〈s, op, P, crsdir(p)〉

s-arrowdir : 〈s, op, P, p〉 7→


s-arrow′dir(〈s, op, P, p〉) if p 6= ⊥
〈s, op, P,⊥〉 if crsdir(p) = ⊥
s-space′(〈s, op, P, crsdir(p)〉) otherwise

c-arrowdir : 〈s, op, P, p〉 7→


c-arrow′dir(〈s, op, P, p〉) if p 6= ⊥
〈s, op, P,⊥〉 if crsdir(p) = ⊥
c-space′(〈s, op, P, crsdir(p)〉) otherwise

crsdir : p 7→ if p = ⊥ then defaultdir else p

Figure 6 Arrow and space commands with default keyboard cursor positions.

call from client code. We discuss the primed functions first, as they explain the meaning of
keyboard commands in relation to the basic click functions without confusion.

We adopt spacebar as the keyboard equivalent of clicking, following the example of File
Explorer (which does not, however, bind the unmodified spacebar to a selection command).
Many applications bind space to other events: Finder applies the “open” command to the
selected file(s) and Gmail delegates to the default binding in browsers to scroll down the
screen. It is not critical if spacebar is too contested to be used for selection. The arrow keys
with the bindings we propose are sufficient for selecting multiple disjoint ranges of elements.

The arrow functions are parameterized by a direction, where dir ∈ {left, right, up, down},
so that one definition covers all four arrow keys. The arrow′dir functions are for arrow keys
without modifiers. They do not change the selection state of any element. They move the
keyboard cursor to the specified direction according to the step function discussed below. We
find it natural that arrow keys move the cursor freely. This is the convention in text editors
and it is analogous to the mouse moving the mouse pointer. This choice, however, does not
optimize for selecting a single element, which is arguably the most common need.

Arrows with modifiers predictably combine a keyboard cursor move with a similarly
modified selection operation: s-arrow′ function is the composition of the s-space′ and arrow′
functions, and c-arrow′ the composition of arrow′ and c-space′ functions. Importantly, with
the command modifier the selection operation is applied first and move second; with the
shift modifier move is applied first. The intuition is that with the command modifier one
indicates where a selection region starts and with shift where it ends.

4.4.1 Keyboard selection and coordinates
The arrow function uses the function step : 〈{left, right, up, down}, V 〉 → V to determine how
the cursor moves in response to arrow keys. This function depends on the coordinate system
of the selection space V and on the placement of elements in V . It is one of the functions of
the selection geometry and must be defined by the application programmer.

In a grid layout, the definitions of all directions are obvious. In a row-wise sequential
ordering (text editors, for example), left and right are trivial, up moves to a position on the
line above the current cursor position and down on the line below. Rules for which position
on a line to move to depend on the application. E.g., text editors typically choose the
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position with the smallest difference along the x-axis, except when the cursor is on the last
position of a line, in which case the last position of the new line is chosen as the new cursor
location. When elements can be positioned in arbitrary locations, the step function can be
rather complex. It may, for example, examine a sector from the cursor towards the selected
direction for candidate elements and choose one according to some criteria. In Finder, an
element’s fitness seems to increase when the angle from the requested direction and distance
from the current element decrease.

4.4.2 Keyboard cursor defaults
A selection context usually starts with no keyboard cursor set, and thus a mechanism
for defining default values for the cursor is necessary. The most natural default may vary
depending on the issued keyboard command. For example, in a vertical list of elements, arrow
down might set the cursor to the first element, arrow up to the last element, and spacebar
might not have a default at all. We rely on the selection geometry’s function defaultdir to
provide the default keyboard cursor value for each of the four arrow keys, and additionally for
the direction s, which we use to mean the spacebar. Thus here dir ∈ {left, right, up, down, s}.
If some direction d has no default, then defaultd should return ⊥.

Figure 6 defines the keyboard selection functions to be used by the client. They inspect
the cursor, and, if it is undefined, try to establish it by invoking the default function. If the
cursor remains undefined, the keyboard functions have no effect. The space functions are
simple wrappers over the corresponding primed functions in Figure 5c. The arrow functions
are a bit more complex; they only delegate to the corresponding primed function if the
keyboard cursor is defined. If the cursor is initialized with a default value, the corresponding
primed function is not invoked; it could be confusing if the cursor was first set to the default,
then immediately moved by the primed function. This is why s-arrow and c-arrow, after
establishing a cursor from a default value, forward to s-space′ and c-space′, respectively.

Supporting default cursor values adds some complexity to the keyboard functions, but the
additional definitions are mostly repetition of the same wrapping pattern. Importantly, it is
very easy for the application programmer to add default cursor positions to a multi-selection
feature: the default function is essentially a lookup table of at most five key-value pairs.

4.5 Selecting based on a predicate
Apart from selecting elements with a pointing device, a user may wish to select or deselect
elements based on their properties. For example, a user may want to select all files whose
name matches a particular string. To integrate a predicate-based selecting or deselecting into
the selection language, the selection predicate takes a similar role as the selection path, and
determines a selection domain. Selecting or deselecting is then accomplished in the usual
manner of adding primitive selection operations to the composition.

Figure 7 defines two operations, predicate-selectbQ and commit, where Q : I → 2 is a
predicate on the indices, and b ∈ 2 determines whether the operation selects or deselects.
The selection domain that Q defines is {i ∈ I|Q(i)}. The selection language does not dictate
the representation of I, so we assume that the selection geometry implements an efficient
way to iterate over I and find the elements that satisfy Q.

The predicate-select command works analogously to shift-click: if a predicate has already
been defined (the previous command was predicate-select), the topmost primitive selection
operation is replaced with one whose selection domain is computed using the new predicate
Q. The first rule matches when a predicate is defined because the metavariable Q′ only
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predicate-selectbQ : 〈s,_ ◦ op, Q′, p〉 7→ 〈s, opλx.b{i∈I|Q(i)} ◦op, p〉

predicate-selectbQ : 〈s, op,_, p〉 7→ 〈s, opλx.b{i∈I|Q(i)} ◦ opλx.x∅ ◦op, p〉

commit : 〈s, op,_, p〉 7→ 〈s, op,⊥, p〉

Figure 7 The commands for selecting with a predicate.

matches predicates, not paths or ⊥. If there is no predicate (the third tuple component is
either ⊥ or a selection path), the second rule applies and a new pair of primitive selection
operations is added.

The commit function makes the effect of a predicate-selection permanent, in the sense
that a new undoable state is created. This is accomplished by setting the current predicate
to ⊥, so that a subsequent predicate-selection command will add a new pair of primitive
selection operations before applying a predicate. Note that even though shift-clicking behaves
quite similarly to predicate-selection, only the latter needs a dedicated commit command; an
active domain resulting from shift-clicks can be made permanent with a command-click.

Using the same component of the selection state tuple for both selection paths and
predicates may seem confusing. It rather naturally guarantees, however, that shift-clicks and
predicate-selection commands do not interfere with each other. Since predicate-selection
considers anything other than a predicate the same as undefined, and shift-click anything
other than a selection path the same as undefined, both a predicate-selection command after
a shift-click and a shift-click command after predicate-selection will always add a new pair of
primitive selection operations, as they should.

4.6 Summarizing the selection language

The definitions above are the complete selection language. They define the meaning of
selection operations to be bound to the click, shift-click, and command-click mouse events,
as well as to the space, shift-space, command-space, arrow, shift-arrow, and command-arrow
keyboard events. They define the undo and redo operations and selection based on elements’
properties. The language is parametrized by the functions sdom, m2v, step, default, and |,
and a filtering function. Implementing these six functions provides a selection model with all
the features expected of a full-fledged selection feature, and probably more (e.g., undo).

Section 5 describes a concrete implementation of the selection language, but below we
first touch on a few additional aspects of it.

4.7 Touch gestures

As discussed in Section 2.6, multi-selection in touch platforms is a wild-west, with a wide
variety of gestures and meanings for those gestures. Adapting our model to touch platforms is
mostly future work, but we see no reasons not to provide the same basic selection operations
with the same semantics in both touch and non-touch platforms. Due to no good way of
modifying taps (as with shift or command), the challenge is to identify natural gestures that
can be given the meanings of click, shift-click, and command-click operations of our selection
language, and that can continue as a rubber band selection.
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4.8 Active domain
Section 2.5 pointed out two different responses to the shrinking of the active domain. The
question is what should be the selection state of the elements that were in the active domain
before the active end changed but are not in it anymore. Finder’s answer is “unselected”
if the active end was changed as the result of a shift-click, and “whatever the state was
before” if it was changed via a mouse drag. This difference seems arbitrary. Our view is
that regardless of the means of selection, the prior selection state should always be restored.
Otherwise it is easy to unintentionally destroy existing selection state by shift-clicking or
dragging the mouse “too far”. Furthermore, the use case for not remembering the prior
selection state under the active domain is contrived. It can be distilled to the user specifying
some active domain J1, then shift-clicking to change it to J2, and expecting all elements in
J2 to become selected and those in J1 \ J2 deselected—this is not an intuitive operation.

It is easy to see that our selection operations remember and restore elements’ prior
selection state. Let s be some base selection mapping, and opfJ1

◦op the current composition
of selection operations. The current selection mapping is then (opfJ1

◦op)(s) and the active
domain is J1. If the user changes the active end to J2, either by shift-click, mouse drag, shift-
arrow, shift-space, or predicate-selection, then the new selection mapping is (opfJ2

◦ op)(s);
any effect that opfJ1

had on the selection state is completely canceled.

4.9 Selections that use the entire selection path
All our examples thus far have assumed that the selection domain is determined by at most
two selection space points: the anchor and active end. Yet the functions in Figure 5 maintain
an arbitrarily long selection path, with each shift-click operation adding more points to it
We wrote the formalism, and our implementation, in this manner to be able to support
selection geometries where more than two points are needed to define the selection domain.
For example, in “lasso” selection the points of an entire mouse drag are taken as the vertices
of a polygon; items that intersect with the polygon belong to the selection domain. Since
the entire selection path is passed as input to the sdom function, supporting lasso selection
is simply a matter of defining sdom appropriately.

5 Packaging selection behavior into a library

We provide a reference implementation of the selection language as a JavaScript library
at http://hotdrink.github.io/multiselectjs. It is a faithful implementation of the
specification, though on the surface there are a few differences; we point them out below.
The library comes with a tutorial and example applications. The examples show concretely
the division of labor: the tasks required of the application programmer vs. the services that
the library provides. Further, they make it clear that the selection semantics remains the
same in all selection contexts, even if the selection geometry is different. The library allows
switching between selection geometries on-the-fly without losing the current selection state.
Figure 8 shows three snapshots from an example application packaged with our library; each
snapshot is taken when a different selection geometry object was in use.

5.1 SelectionState class
The central abstraction in the library is the SelectionState class (we emulate classes by objects
with the usual JavaScript conventions). The elements of the selection state tuple are member
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(a) (b) (c)

Figure 8 Snapshots of selecting using three different selection geometries: (a) rectangular, (b)
row-wise, and (c) “snake” (all elements that touch the selection path are included in the selection
domain). User’s mouse events were the same in each case: click at element 14, shift-click at 36,
shift-click at 38, command-click near or at 53, and mouse drag to near or at 86. The rubber band
indicator is visible because the snapshots were taken prior to releasing the mouse to end the drag.

variables of this class. Every command of the selection language is a method of SelectionState.
Unlike the functions of the selection language that each map a selection state tuple to a
new selection state tuple, SelectionState class’s methods modify the encapsulated state, as is
conventional in object-oriented libraries. The implementation includes a few optimizations:

The current selection state of an element i is op(s)(i), where op is the current composition
and s the base selection mapping. If op contains many primitive selection operations,
evaluating i’s selection state would require many function calls. For example, if the
composition object represents the value opfJ1

◦ opgJ2
◦ ophJ3

, the straightforward way to
compute (opfJ1

◦ opgJ2
◦ ophJ3

)(s)(i) is opfJ1
(opgJ2

(ophJ3
(s)))(i). If, however, f is a constant

function (λx.T or λx.F) and i ∈ J1, then it suffices to compute opfJ1
(i). As another

example, if i 6∈ J1 and i 6∈ J2, then it suffices to compute ophJ3
(i). The implementation of

the composition maintains additional information about which selection functions are
constant and which selection domains include a particular index, so that unnecessary
evaluations like the ones above are avoided.
The semantics of shift-clicking guarantees that the effect of two consecutive shift-clicks
at points p1 and p2 is the same as first extending the selection path with p1, then shift-
clicking at p2. The library takes advantage of this property when many shift-click events
happen in rapid succession, e.g., during a rubber band selection, and coalesces several
consecutive shift-click calls into one so that the selection domain is not computed after
every mouse location visited during a drag.

The size of the selection state object is proportional to the total number of elements in all
of the primitive selection operations’ domains. The number of primitive selection operations
is limited by the number of allowed undo states set by the programmer.

We chose to maintain the composition of primitive selection operations as functions, which
is faithful to the presented formalism. Another feasible alternative is to store, as sets of indices,
the “diffs” between the applications of each two consecutive primitive selection operations.
To represent selection domains and the baked selection mapping, we use JavaScript’s Map
container, where each element’s selection status is a separate entry. In some applications
(selecting pixels in images, for example), other representations, such as bitvectors or run-
length encoded sets, may lead to a smaller memory footprint and faster manipulation of
selections. The library is parameterized on the above two aspects, that is, on how the
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composition and selection domains are represented. These parameterizations are purely for
performance reasons and do not affect semantics. They are not discussed in this paper.

5.2 Selection Geometry Classes

Selection state objects are parameterized by a selection geometry object that captures
all context-specific aspects of multi-selection. A selection geometry object thus has a
corresponding method for each of the functions sdom, m2v, step, default, and |, introduced
in Section 4, as well as for selecting elements based on a predicate:

selectionDomain(path) to compute a set of indices from the selection path;
m2v(point) to translate mouse coordinates to selection space;
step(direction, point) to determine the cursor movement after an arrow key press;
defaultCursor(direction) to provide the default cursor value for each direction;
extendPath(path, point) to append point to path; and
filter(predicate) to find the set of indices that satisfy predicate.

Figure 9 shows a complete implementation of a selection geometry for the case of
rectangular elements that can be positioned arbitrarily. The selectionDomain function iterates
over all elements and returns those that intersect with the rectangle formed by the anchor
and active end. If the selection path has exactly one element, at most one element is returned.
This is so that a click or command-click only selects the topmost element when the clicked
point is on two or more overlapping elements. We assume the topmost element is the
one with the smallest index. The m2v function is the identity function, since the selection
space and mouse coordinates coincide. The extendPath function discards the selection path’s
intermediate points, since only the first and last points (the anchor and active end) are used in
computing the selection domain. The step and defaultCursor are not be needed since keyboard
commands are not supported; we include stubs for them for completeness. In practice,
geometry classes would inherit from ms.DefaultGeometry, which provides default definitions
that apply for many geometries. For RectangularGeometry it would suffice to implement just
the selectionDomain method, and filter if predicate-selection needed to be supported.

One might want to optimize selectionDomain so that it does not iterate over all elements on
every call. E.g., the selectable area could be divided into segments and the iteration limited
to the elements in segments that intersect with the selection path. Also, the library makes
the previous selection domain object available to selectionDomain, so that selection domain
computations can be incremental. We do not discuss these aspects further in this paper.

Figure 10 shows another selection geometry class. A geometry like this could be used
to implement multi-selection in a list box, Finder’s list view, list of emails on a mail
client, etc. The selection space coordinates are now indices of the elements in the elements
array. The selectionDomain function thus returns the elements within the range between
the anchor and the active end. The m2v function finds the index of the element that
contains a given mouse coordinate. Clicks outside of all elements might be possible; we
choose to return the selection space coordinate null for such mouse coordinates, and define
extendPath to ignore null coordinates. Otherwise extendPath’s implementation is the same as
in RectangularGeometry above. To implement keyboard navigation, the step method recognizes
the ms.UP and ms.DOWN directions, and decrements and increments the keyboard cursor
respectively. The defaultCursor implements cursor defaults so that up-arrow starts from the
bottom and down-arrow from the top. Filtering is as in RectangularGeometry.
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function RectangularGeometry(elements, bbox) {
this.selectionDomain = function(path) {
var J = new Map();
var r1 = makeRectangle(ms.anchor(path), ms.activeEnd(path));
for (var i=0; i<elements.length; ++i) {
var r2 = bbox(elements[i]);
if (rectangleIntersect(r1, r2)) { J.set(i, true); if (path.length == 1) return J; }

}
return J;

};
this.m2v = function(p) { return p; };
this.extendPath = function (spath, p) { if (spath.length == 2) spath[1] = p; else spath.push(p); };
this.step = function (dir, p) { return undefined; };
this.defaultCursor = function(dir) { return undefined; };
this.filter = function (pred) {
var J = new Map();
for (var i=0; l<elements.length; ++i) { if pred(i) J.set(i, true); }
return J;

};
};

Figure 9 An implementation of a selection geometry for selecting arbitrarily positioned rectangular
elements. The constructor’s elements parameter is the indexed family of elements, implemented as
an array. The bbox function is assumed to compute a bounding box given an element. The helper
functions makeRectangle and rectangleIntersect are what their names suggest. The ms namespace
prefix indicates functions and constants in our library’s API. Their names explain their purpose.

5.3 Visualizing selections
How selections are visualized is application dependent, when these visualizations take place
is controlled by the library. Concretely, SelectionState’s methods invoke a callback when the
elements’ selection states may have changed. Assuming CSS code defines suitable rendering,
the callback can simply toggle elements’ class attribute based on their selection state:
function refresh(sel) {
var s = sel.selected();
for (var i=0; i<elements.length; ++i) elements[i].className = s.get(i) ? "selected" : "unselected";

};

The parameter to the callback is the selection state object itself, whose selected method gives
the currently selected indices. A selection state object can be requested to track changes
to the elements’ selection state. The refresh function will then receive the set of changed
indices as a second argument.

5.4 Constructing a selection state object and registering event handlers
Assuming elements is an array of DOM objects, we can construct the selection geometry, then
use that and the refresh function to construct a selection state object:
var geometry = new RectangularGeometry(elements, function(e) { return e.getBoundingClientRect(); });
var selection = new SelectionState(geometry, refresh);

To put the selection object to use, what remains to do is to recognize mouse and keyboard
events and handle them by invoking selection’s methods. The same mouse operations are
often harnessed for many different tasks, which makes their event handling code complex
and difficult to reuse. For example, a mouse click may invoke a command (such as opening
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function VerticalListGeometry(elements, bbox) {
this.selectionDomain(path) {
var J = new Map(), a = ms.anchor(path), b = ms.activeEnd(path);
for (var i=Math.min(a, b); i<=Math.max(a, b); ++i) J.set(i, true);
return J;

};
this.m2v = function(p) {
for (var i=0; i<elements.length; ++i) if (pointInRectangle(p, bbox(elements[i]))) return i;
return null;

};
this.extendPath = function (spath, p) {
if (p == null) return;
if (spath.length == 2) spath[1] = p; else spath.push(p);

};
this.step = function (dir, p) {
if (dir == ms.UP) return Math.max(p − 1, 0);
if (dir == ms.DOWN) return Math.min(p + 1, elements.length−1);
return p;

};
this.defaultCursor = function (dir) {
if (dir == ms.UP) return elements.length − 1;
if (dir == ms.DOWN) return 0;

};
this.filter = function (pred) {
var J = new Map();
for (var i=0; l<elements.length; ++i) { if pred(i) J.set(i, true); }
return J;

};
};

Figure 10 An implementation of a selection geometry for vertically stacked elements (a list box,
for example). The conventions are the same as in Figure 9. Here, we rely on one additional helper
function, pointInRectangle, and use the constants UP and DOWN from our library.

a file), start a drag-and-drop operation, or indicate a selection. Distinguishing between
different commands can be a nuanced task: a mousedown event followed by a mouseup could
mean selection if the mouse did not move (too much) in between, otherwise a start of a
drag-and-drop. We thus expect that the event handling that triggers selection commands may
require some application-specific code. The SelectionState class’s onSelected(p) method that
determines whether the selection space point p is on a selected element or not helps in writing
this code. For example, the method makes it easy to distinguish between a mousedown event
on a selected element and a mousedown event elsewhere. The former is usually a possible
start of a drag-and-drop of the selected elements and the latter a start of a selection.

Once the mouse interaction has been interpreted to mean a selection command, the code
that effects the command is trivial: a call to a method in the SelectionState class. Figure 11
shows possible implementations of the event handlers for the mousedown, mousemove, and
mouseup events. For simplicity, we assume that drag-and-drop is not supported. Keyboard
event handlers are equally straightforward. They merely have to recognize the set of supported
key presses and map each of them to an appropriate method call. To give one example, the
press of a command-modified down-arrow would call selection.cmdArrow(ms.DOWN).

The handlers may also call functions to draw or clear the anchor, cursor, and rubber
band indicators as appropriate. As these aspects vary from one selection context to another,
implementing these functions are the application programmer’s responsibility—the library
merely makes readily available the necessary information, the selection path and cursor. As
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function mousedownHandler (evt) {
var p = selection.geometry().m2v(getMousePos(evt));
switch (ms.modifierKeys(evt)) {
case ms.NONE: selection.click(p); break;
case ms.SHIFT: selection.shiftClick(p); break;
case ms.CMD: selection.cmdClick(p); break;

}
drawAnchor(selection.selectionPath()); drawCursor(selection.cursor());
document.addEventListener(’mousemove’, mousemoveHandler);
document.addEventListener(’mouseup’, mouseupHandler);

}
function mousemoveHandler (evt) {
var p = selection.geometry().m2v(getMousePos(evt));
selection.shiftClick(p);
drawCursor(selection.cursor()); drawRubber(selection.selectionPath());

}
function mouseupHandler (evt) {
document.removeEventListener(’mousemove’, mousemoveHandler);
document.removeEventListener(’mouseup’, mouseupHandler);
clearRubber();

}

Figure 11 An example implementation of mouse event handlers for multi-selection: selection is the
selection state object, getMousePos extracts the mouse position from the event data, ms.modifierKeys
inspects the event data and determines whether the shift or command modifiers were held down,
and the draw∗ and clear∗ functions do what their names suggest. The current geometry is accessible
as selection.geometry(). So that the handlers are not too aggressive, only the handler for mousedown
is registered continuously, the others are activated at mousedown and deactivated at mouseup. We
omit event handling boilerplate that stops event propagation and prevents default actions.

explained in Section 5.1, the selection domain may not be updated for each mouse move and
shift-click event. By invoking the cursor/anchor/rubberband drawing functions directly in
the handler functions, these visual indicators are, however, always updated instantaneously.

5.5 Summary
The recipe to implement multi-selection in a particular context is as follows: (1) select a data
structure for the indexed family of elements; (2) implement a “refresh” function to visualize
the selection state of the elements; (3) implement a selection geometry class; (4) implement
functions to draw the anchor, cursor, and rubber band; and (5) register event handlers for
mouse and keyboard events and map them to calls to a selection object’s methods.

Many of the “implement” tasks can be expected to be “reuse” tasks: visualizing select-
ed/unselected status is perhaps nothing more than a function call to change the style or
color property of an element; some of the geometry’s functions could be reused from another
geometry and the code for drawing the anchor and cursor indicators from another selection
context; and the same event registration code can likely be used repeatedly.

In the best case scenario, implementing multi-selection for a given context means selecting
the geometry and visualization functions to use, and turning the feature on. But even if
nothing but the SelectionState class can be reused, the selection library and its abstractions
simplify the application programmer’s work in a fundamental way. Each item above is a
well-specified and confined task. Each task involves defining one or more functions that
perform a (usually straightforward and side-effect free) computation from inputs to outputs,
realize a visual effect, or dispatch events to pre-defined handler functions. Such pieces of
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code are predictable to develop and testable. There is no need to think about how selections
change, how they should be updated, undone or redone; where anchors or cursors are located,
when they should be moved, cleared, or drawn; or how or if mouse clicks, mouse dragging, and
keyboard selection should work together. The findings described in Section 2 are evidence
that these less tangible aspects are where the trouble lies in today’s selection implementations.

6 Related work

One of the early guidelines for uniform multi-selection was for the Apple Lisa’s user inter-
face [1]. The operations of shift-click and mouse drag for selecting contiguous regions were
defined, though not in much detail. The document that perhaps set the baseline for modern
multi-selection, on Macintosh at least, is Apple’s Macintosh Human Interface Guidelines [2,
Ch. 10]. The notion of an anchor, how shift-click extends the selection by setting the active
end of a range, interplay between mouse clicks, dragging, and keyboard selection operations
are explained. Command-click is just presented as a toggling operation, not as establishing a
new anchor, and nothing is said about restoring the selection state when the current selection
shrinks. Similar guidelines for Windows [12] established File Explorer’s selection behavior,
though using shift-control-click for extending the selected range without disturbing other
selections was not mentioned; that operation was bound to shift-click.

During the past three decades, instead of further progress towards a consistent and
uniform multi-selection feature, the baseline set in the 80’s has gradually deteriorated.

Today, there is no shortage of implementations of multi-selection features. Practically
every GUI framework includes widgets for lists, tables, or trees of selectable items. The
implementations, however, are intrusive and tightly coupled with a particular view or widget
class. Typically, the programmer must wrap elements as a collection of a particular type
of objects and place those objects in a particular view object, in order to get the “stock”
multi-selection behavior “for free”. Unless this is done, and in many cases it is not feasible
due to the limitations of the provided view classes, the programmer is largely on their own.

For example, Apple’s NSTableView and NSCollectionView classes provide Finder-like2 list
and icon multi-selection behavior [3], and for collections that fit to these views, their use is
convenient. Their selection behavior, however, exhibits the problems described in Section 2.
The corresponding iOS classes, UITableView and UICollectionView, are less useful, as their stock
multi-select functionality is so minimal; as discussed in Section 2.6, each selected element
requires an individual tap. But even if the multi-selection behavior provided by these classes
were perfected, the main problem remains: the selection functionality is only available to the
views implemented as instances of these specific classes. For example, Adobe Revel provides
a “slot machine” view of images, where images are arranged in rows, each row representing
an event. Each row can be of a different length and each row scrolls independently of other
rows. We do not think it is possible to model this view in any of the predefined view classes.3

The situation is essentially the same with other widely used GUI frameworks. JavaFX’s
ListView and TableView have a pre-packaged selection feature. To build your own, the library
provides the MultipleSelectionModel class [13], but it is not much more than an array of booleans
where value changes trigger observable events. There are methods to select an individual

2 The behavior is not exactly the same in icon view, since Finder itself does not use NSCollectionView.
3 More generally in Adobe’s software, which uses several GUI frameworks and Adobe’s own platform-

independent widgets, the lack of a reusable multi-selection feature has lead to many re-implementations.
Symptoms are visible: e.g., the sequence of commands in Figure 1a would lead to different selections in
Photoshop’s “Paths” and “Layers” panel, and they would be different from the one produced in Finder.
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index or a range of indices, and to clear all selections. The TableSelectionModel class adds the
ability to arrange and select indices in a grid. There is a notion of the “current index”, but
no notion of an anchor or cursor that would not be an index of an element. Further, the
current index’s update rules are questionable at times: selecting a range sets the current
index at the end of the range, inviting the programmer to implement a selection feature
that treats range selections that grow downwards or right differently from those that grow
upwards or left. There is no notion of a selection path that could support lasso-like selection
tools, no notion of an active domain, and no support for implementing an undo operation.

Qt’s [16] QListView, QTableView, and QTreeView classes provide a pre-packaged selection
feature. The QItemSelectionModel class serves the same role as JavaFX’s MultipleSelectionModel,
and has most of the same limitations. QItemSelectionModel, however, supports deselecting
regions (rectangular areas in a grid). It also separates the “current selection” from the
permanent (baked in our terminology) selection, which is useful for implementing a shift-click
feature that remembers the selection state under the active domain, as in our model.

The story with Web GUI frameworks is similar. Taking one popular example, jQuery
UI library [15] provides “Selectable” as one of its user interface interaction widgets. Its
multi-selection feature of DOM elements supports rectangular rubber band selection and
toggling with command-click. Shift has no function and keyboard selection is not supported.
Command-click on a selected element is quite surprising: the element is first deselected, but
even the smallest mouse move reselects the just deselected element, and starts a rubber band
selection. The library is of little use when the pre-packaged selection is not adequate.

To summarize, today’s GUI frameworks provide some widgets and views with multi-
selection, but they do not provide a reusable multi-selection feature. At best they provide a
set of utility classes that can be useful building blocks in implementing such a feature. They
leave arguably the most difficult tasks to the programmer: gaining a thorough understanding
of how multi-selection should work and mapping that understanding to an implementation.

That our work models multi-selection formally differentiates it further from prior works
on multi-selection. More generally, modeling user interaction and interfaces formally has not
found a particularly strong foothold in practical GUI programming. This point has been
made by many over the years [7, 17, 5], before introducing new techniques aimed at changing
the status quo. The result is a diverse set of approaches, none in the mainstream. We do not
propose a new approach for formally modeling user interfaces, but instead apply common
tools and notations from the domain of programming languages for defining the operational
semantics of an abstract “multi-selection machine”.

Developing the formal model in the manner we did certainly required effort and iterations,
but the effort is justified by the prospect of reusing the result widely and by the resulting
clear understanding of the modeled feature. We suspect that there are other programming
challenges in user interfaces that would benefit from an analogous formal inspection; some
prior work on those lines exists. Krishnamurthi et al. [9] model the user’s interaction with a
web browser communicating with a server. They recognize that defects manifest frequently
when users mix the browser’s page navigation tools with those provided by a web application.
Practical evidence shows that coordinating web interaction is clearly complex enough that
programmers do not consistently implement it correctly. Analogously to multi-selection, a
formal model clears the confusion and provides a precise specification. Concretely, their
“language transition relation” serves a similar role than our selection language.

As another example of formally modeling oft-occurring user interface components,
Zhang [17] defines models for buttons, menus, textual input fields, etc. combining modeling
interaction with finite state machines and algebraic specification. Formal models of user
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interaction are often finite state machines and use notation designed for their concise repre-
sentation (See Bowen et al. [5] for a survey of many techniques). Our selection language can
also be seen as a definition of a state machine, but the abstract machine view we chose is
more useful; the state changes are conveniently captured by changes to the selection state
tuple and enables also algebraic reasoning (e.g., for developing optimizations).

The early PIE-models [6] would offer a setup for inspecting properties such as the
reachability of all selection states, and aspects of undo, but these questions in our model are
rather straightforward.

Finally, we note that there is a wealth of CHI literature about innovative means of
selecting groups of elements with different kinds of pointing devices. A recent article by
Strothoff et al. [14] contains a summary and categorization of such works. The connection to
our work is tangential; our contribution is not in novel means of selection, but rather in how
to cost-effectively and correctly implement the widely known and established multi-selection
features. Perhaps our work could help in designing and implementing novel selection schemes.

7 Conclusion

Multi-selection is a mundane feature, yet evidently too complex to design well and implement
correctly as part of a typical application development project. Practically every implementa-
tion manifests at least minor problems, some are flawed in major ways, and all are different.
Even the most established applications do not stand up to close scrutiny.

We would like to see this change. Users should be able to rely on a full-fledged, correct,
and uniform multi-selection feature in all contexts where selecting many elements would be
useful. Consequently, this paper describes the abstractions and software architecture that
makes multi-selection reusable. With a reusable multi-selection library, practically any kind
of collection of elements can be made selectable with little programming effort, and every
context where selection is supported will provide the same rich set of selection commands.

This article is not meant to discourage innovation and experimentation in how best to
interact with collections of elements. Redesigning and reimplementing the same features
many times over with predictably unpredictable outcomes, however, is an effort misplaced.
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Abstract
Protocol and typestate analyses often report some sequences of statements ending at a program
point P that needs to be scrutinized, since P may be erroneous or imprecisely analyzed. Program
slicing focuses only on the behavior at P by computing a slice of the program affecting the values
at P . In this paper, we propose to restrict our attention to the subset of that behavior at P
affected by one or several statement sequences, called a sequential criterion (SC). By leveraging
the ordering information in a SC, e.g., the temporal order in a few valid/invalid API method
invocation sequences, we introduce a new technique, program tailoring, to compute a tailored
program that comprises the statements in all possible execution paths passing through at least
one sequence in SC in the given order. With a prototyping implementation, Tailor, we show
why tailoring is practically useful by conducting two case studies on seven large real-world Java
applications. For program debugging and understanding, Tailor can complement program
slicing by removing SC-irrelevant statements. For program analysis, Tailor can enable a pointer
analysis, which is unscalable to a program, to perform a more focused and therefore potentially
scalable analysis to its SC -relevant parts containing hard language features such as reflection.
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1 Introduction

Program slicing, supported by industry-strength tools, such as WALA [52] and CodeSurfer [18],
has found many diverse applications, such as program debugging, comprehension, analysis,
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Figure 1 Program tailoring with some of its potential applications highlighted.

past three decades, several variations on this theme of program slicing have been proposed,
including static vs. dynamic, backward vs. forward, and closure vs. executable [43,49].

In practice, API protocol analysis [7, 37] and typestate analysis [9, 16, 34] often report
some statement sequences ending at a program point P that needs to be scrutinized, since P
may be erroneous or imprecisely analyzed. Each sequence can represent a valid or invalid
API usage call sequence. Such protocol specifications or violations can also be provided
manually or mined automatically [1,3,17,36,42,60]. As such analyses are either conservative
or unsound, the temporal order specified in a sequence may or may not be feasible. However,
program slicing focuses on P by ignoring this order, which is often essential for analyzing P .

As illustrated in Figure 1, we introduce a new technique, program tailoring to reap
additional benefits missed by program slicing at a point P (e.g., file.write()) by leveraging
the temporal order specified in a new criterion, called a sequential criterion (SC) for P . A
SC P consists of one or several statement sequences ending at P , with each representing, e.g.,
a valid API call sequence like file.open()→ file.write() or an invalid API call sequence
like file.open()→ file.close()→ file.write(). In what follows, we will drop P from
SC P when the context is clear or when we are not interested in it. Given a SC P , tailoring
aims to obtain a tailored program, denoted T (SC P ), that comprises the statements in all
the possible execution paths passing through at least one statement sequence in SC P in the
given order. By construction, all data and control dependences needed for understanding
the behavior at P affected by SC P are included. Any statement that is not in T (SC P ) is
irrelevant to SC P , i.e., SCP -irrelevant. For illustration purposes, we write S(P ) to represent
the (backward) slice affecting P obtained by program slicing. Note that slicing all the points
in SC P independently still fails to capture their ordering constraint (and is unscalable, too).

Like slicing, tailoring enables software developers or client applications to inspect only the
interesting parts of a program. Unlike slicing, which focuses on understanding the program
behavior at P , tailoring restricts our attention to the subset of that behavior affected by SC P

only. Due to incompatible criteria used, tailoring can be used either as a complementary
technique to slicing or in cases where slicing is ineffective, as discussed below.

1.1 Goals and Motivations
Given a SC P , we have developed a prototyping implementation of program tailoring, denoted
Tailor, for Java programs, with the following three goals in mind:
Precision Tailor is designed to sharpen the precision of many client applications, as

highlighted in Figure 1, by exploiting the temporal order in a SC P . One significant class
of client applications includes many slicing-related techniques, such as thin slicing [47],
program chopping [22] and value slicing [26]. For a given program, T (SC P ) is shown as
the blue circle and S(P ) as the white circle. The statements in I(SC P ) = S(P )−S(P )∩
T (SC P ) are SC P -irrelevant and can thus be pruned away to facilitate program debugging
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and understanding by a human. If I(SC P ) = ∅, then Tailor is ineffective at P but no
harm is done. If I(SC P ) 6= ∅, then Tailor can make slicing more precise, by leveraging
the otherwise wasted SC P information that is widely available. In Section 6.1, we show
that Tailor can improve the precision of thin slicing [47], a state-of-the-art practical
but unsound slicing technique, for Java programs. In Section 6.2, we show that Tailor
can enable a sophisticated pointer analysis for Java, S-2Obj [24], which is unscalable
for a program, to perform a focused analysis on its SC -relevant parts containing hard
language features such as reflection, where existing slicing techniques are ineffective.

Scalability Tailor is designed to work efficiently for large object-oriented programs, for which
traditional slicing [21] is unscalable (even with industry-strength implementations [18,52]),
with the key bottleneck coming from handling of the heap [47]. Like any slicing tool,
Tailor is not always scalable. However, Tailor is designed to scale significantly better
than traditional slicing, as Tailor avoids handling of the heap by reasoning about
essentially the (un)reachability of a statement towards the statement sequences in a SC P .

Soundiness Tailor is designed to be a practical tool to facilitate programming debugging
and understanding as well as program analysis (among others) for large object-oriented
programs. In this setting, any sound static analysis would be either unscalable or imprecise
due to the presence of many hard language features, such as native code, dynamic class
loading, reflection and multi-threading [30]. Therefore, Tailor is designed to be sound
whenever a sound graph representation is available for capturing all the control flows in a
(single- or multi-threaded) program. In other words, Tailor is always sound with respect
to part of the program behavior modeled. According to [30], “a soundy analysis aims to
be as sound as possible without excessively compromising precision and/or scalability.”
Therefore, Tailor represents one such soundy analysis.

1.2 Challenges and Solutions
We examine some challenges faced in achieving our three goals and describe our solutions:

Precision/Scalability Tradeoffs How do we compute T (SC ) efficiently and precisely for
large object-oriented programs? Due to exponential blowup of program paths, both DFS
and BFS are out of question. We formulate the problem of computing T (SC ) by solving
an IFDS (Interprocedural Finite Distributive Subset) data-flow analysis problem [38],
efficiently on its interprocedural control-flow graph (ICFG) representation of the program.
To avoid unrealizable paths with mismatched calls and returns, our analysis must be
(fully) context-sensitive in order to achieve useful precision for Java programs. Otherwise,
many unrealizable paths, which go through the constructor of java.lang.Object, cannot
be filtered out, causing T (SC ) to be severely over-approximated. However, distinguishing
calling contexts fully with call strings, object-sensitivity [33], and method cloning [54] are
known to be unscalable for large programs [12,44]. We achieve (full) context sensitivity
by solving a CFL-reachability problem over a balanced-parentheses language by matching
call and return edges also in the IFDS framework as described in [38].
How do we ensure that Tailor works effectively for a SC of any given length, which is
defined to be the number of statements in its longest statement sequence? In general,
the longer a SC is, the more SC -irrelevant statements will be removed. We propose to
lengthen any given SC by leveraging the concept of object-sensitivity [33,44] developed
by the pointer analysis community for Java. As a result, some infeasible paths that would
otherwise be introduced are avoided. We will also try to avoid making SC extensions
that make our analysis run longer but contribute nothing to precision improvement.
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Soundiness How do we make Tailor as soundly as possible? We decompose the problem of
tailoring a program for a given SC into two sub-problems: (1) building an ICFG, GICFG,
for the program and (2) computing T (SC ) from GICFG. Tailor is sound if GICFG is
sound (representation of all control flows in the program). In fact, Tailor is designed
to be practically useful for analyzing the program behavior modeled by GICFG even if
GICFG is unsound. This paper solves (2) while resorting to the state-of-the-art for (1).

1.3 Contributions
We introduce program tailoring, a new technique for trimming a program based on SCs,
which are widely available from other analyses but never exploited by program slicing.
We describe how to extend a given SC for object-oriented programs in order to improve
the precision of program tailoring (by making tailored programs smaller).
We formulate the problem of computing a tailored program as one of solving a data-flow
problem efficiently in the IFDS framework. Tailor, which is implemented in Soot [51],
is released as an open-source tool at http://www.cse.unsw.edu.au/~corg/tailor.
We describe two case studies to demonstrate why Tailor is practically useful on a set
of seven large real-world Java programs, by (1) assisting program slicing with program
debugging and understanding tasks, and (2) enabling a focused pointer analysis on the
parts of a program containing hard language features such as reflection.

2 A Motivating Example

We use an example to describe how Tailor can assist slicing tools to simplify program
debugging and understanding tasks through exploiting the temporal ordering information in
a given SC that is otherwise ignored by program slicing. In Section 6.2, we provide additional
motivations on why Tailor can be useful in simplifying program analysis tasks.

Large object-oriented programs are very difficult to debug and understand, due to the
pervasive use of heap-allocated data, nested data structures, and large libraries with complex
dependences and configurations. Tracing the flow of values via multiple levels of pointer
indirection through the heap across many classes in both the application and libraries is
unworkable. A practical tool is needed to pinpoint relevant statements for the task at hand.

Our Java example is given in Figure 2. The Driver class is used to create and initialize a
Driver object according to some user input (lines 33 – 36) or by default (lines 37 – 41). Then
the corresponding initialization information stored in info is dumped to a log at line 42.

This example has a typical error found in Java programs caused by ignoring the fact
that closing a wrapper file handler will also close its internal file handler. The internal file
handler, fw is passed as an argument at line 6 and assigned to out at line 25. Later, closing
its wrapper file handler, bw, at line 9 will also close out (i.e., fw) at line 27. Then any further
access to a closed fw (e.g., at line 12) will trigger a runtime exception at line 20.

Now we use a static typestate analysis tool Clara [9] to analyze this program. Some
typestate specifications regarding file operations used will include “accessing a closed file
leads to an error state”. For our example, Clara produces an error report shown on the left,

Potential Point of Failure :
Statement: fw.write(info) at line 12

Related Program Points :
Statement: out.close() at line 27
Statement: new FileWriter(...) at line 2

marking line 12 as a “potential point of failure”, together with
a sequence of two method calls leading to line 12. We have one
SC line 12 : line 2 → line 27 → line 12. As static analyses like
Clara are either conservative or unsound, there may or may
not be an error at line 12. Now our debugging task begins.

http://www.cse.unsw.edu.au/~corg/tailor
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class Driver {
Writer fw = new FileWriter(...);
Driver (String s) {…}
Driver () {…}
void config(String[] args) {

Writer bw = new BufferedWriter(fw);
for(int i = 1; i < args.length; i++)

bw.write(args[i] + "\n");
bw.close();

}
void log(String info) {

fw.write(info); 

}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

class FileWriter {
boolean isOpen = true;
void close() { isOpen = false; }

if (!isOpen)
throw new IOException();

}
}

void write(...) { 

15
16
17
18
19
20
21
22

class BufferedWriter {
Writer out;

void close() { 

}
}

out.close();

BufferedWriter(Writer w) {out = w;}

23
24
25
26
27
28
29
30

void main(String[] args) {
Driver d; String info;
if (args[0].equals(…)) {

d = new Driver(args[0]);

} else {

}

d.config(args);
info = getConfigInfo(args);

d = new Driver();
File f = getSystemFile(...);
info = getSystemInfo(f);

d.log(info);
}

40
41
42
43

31
32
33
34
35
36
37
38
39

Figure 2 An example showing how Tailor removes SC line 12-irrelevant statements.

The error at line 12 happens only when a Driver object is created in the if branch of
main(). Therefore, a tool that instructs the developer to examine this if branch only would
enable its cause to be identified quickly. In contrast, marking some lines in its matching
else branch as also being relevant can increase human analysis effort significantly (especially
if the developer has to trace the flow of values across many nested heap structures).

Traditional Slicing. For large object-oriented programs, traditional (sound) slicing [21,53]
is unscalable or yields slices that are too large for human consumption [47]. Given a
virtual call fw.write(info) at line 12, the set of variables of interest consists of (1) the
receiver reference and the arguments of the call [52], and (2) some relevant variables selected
manually or recognized automatically [2, 13]. In our example, these variables form the set
{fw, info, fw.isOpen}. Then, a (backward) slice that affects their values comprises all the
statements except lines 7 – 8 and 19 – 20. This slice, which includes everything in main(),
contains too many statements that are not all directly relevant to the task at line 12.

Thin Slicing. Thin slicing [47] is introduced to facilitate program debugging and understand-
ing for object-oriented programs by trading soundness for scalability and (direct) relevance.
All control dependences and all base pointer data dependences are excluded. Given a point
of interest, thin slicing includes only so-called producer statements that affect directly the
values at the point. Statements that serve to explain why producer statements affect the
point are ignored. For example, given x = p.f and q.f = y, where p and q may be aliased,
q.f = y is a producer statement for x = p.f , because there may be a direct value flow from y

to x. All statements that help explain or establish why p and q are aliases are ignored.
If we adopt the same slicing criterion at line 12 as above, thin slicing will include only

seven statements at lines 2, 12, 16, 17, 36, 39 and 40. Compared with the traditional slice
obtained, this smaller slice still retains line 17, a statement for explaining an immediate cause
of the error at line 12. However, two SC line 12-irrelevant statements at lines 39 – 40 (in the
else branch of main()) are also present, which can cost human analysis effort unnecessarily.
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Figure 3 Leveraging the ordering information SC : A → B → C to trim irrelevant statements
away.

Program Tailoring. Given SC line 12 : line 2→line 27→line 12, Tailor produces a tailored
program consisting of all the statements in all execution paths passing through lines 2, 27
and 12 in that order. As line 27 is only reachable from line 9, which resides in the config
method invoked at line 35, the tailored program includes all the lines in the example except
lines 37 – 41 that appear in the else branch of main() and lines 19 – 20.

Let us revisit the two slices obtained above, the traditional slice, Ptrad and the thin
slice, Pthin. Let our tailored program be identified as Ptal. Despite |Pthin| < |Ptal| < |Ptrad|,
tailoring brings several benefits, obtained from exploiting the temporal order of invocation
sequences in SC line 12. First, Ptal is the only one that includes nothing from the else
branch of main(), revealing more clearly to a human debugger that the potential error at
line 12 is triggered by a Driver object created in the if branch of main() (“according to
some user input”) rather than in its matching else branch (“according to some default
configuration”). Such contextual information enables the developer to locate the cause for
the error at line 12 more quickly. In the case of Ptrad and Pthin, the developer may end
up wasting a lot of analysis effort on navigating through a lot of SC line 12-irrelevant code,
highlighted by getSystemInfo() and getSystemFile(), in the else branch. Second, any
statement that is not included in Ptal is SC line 12-irrelevant for understanding the SC -specific
behavior at line 12. Thus, Tailor can make, e.g., thin slicing more effective, by removing
the SC line 12-irrelevant statements Pthin−Pthin ∩Ptal, i.e., lines 39 and 40, from Pthin. Then
Pthin is down to only five statements at lines 2, 12, 16, 17 and 36. Starting from line 17
(an immediate cause for the error at line 12), the developer can trace the flow of isOpen
backwards to find the original cause. Finally, Ptal includes all data and control dependences
reaching line 12 affected by SC line 12, enabling it to be analyzed further by other analyses,
e.g., a pointer analysis, as will be discussed in Section 6. However, Ptrad and Pthin will not
be applicable since Ptrad is unobtainable scalably for large programs and Pthin is unsound.

Note that Ptal still contains lines 7 – 8 that do not affect SC line 12. Removing all such
irrelevant statements for large programs may be neither necessary (due to the first two points
made earlier) nor practical, as a sound slicing tool would be unscalable. Thus, we have
designed Tailor based on the precision/scalability tradeoffs described in Section 1.

Figure 3 recaps our insight behind tailoring. Given a SC : A→ B → C, we focus on the
behavior at C affected by a sequential execution of A, B and C. If one point in SC is reached
from only one branch (e.g., the one containing A) of a multi-way branching statement, then
the statements in the other branches are SC -irrelevant and can be trimmed away ( ). This
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SC-Based Data-Flow Analysis (SCDFA)SC (SCEXT)

Figure 4 Overview of Tailor (with all the components implemented in this paper in blue).

is particularly suitable for object-oriented languages, since a virtual call site behaves as
a multi-way branch switching to its target methods. For example, B can be regarded as
residing in a target method invoked at the marked virtual call on a receiver object created
only at the allocation site at A. Thus, the other target methods unreachable to C are
trimmed away ( ).

3 Methodology

Figure 4 gives an overview of Tailor, with all the components implemented in this paper
highlighted in blue. Given a program, we rely on the state-of-the-art (shown as “ICFG
Construction”) to build an inter-procedural control flow graph (ICFG), denoted GICFG,
to represent all the possible control flows in the program. A SC is simply a set of one
or more statement sequences ending at the same statement, with all statements identified
by their line numbers, i.e., program points only. The length of a SC is the number of
statements in its longest sequence. SCs can be deduced from the results returned by many
analysis tools such as API protocol analysis [7, 37] and typestate analysis [9, 16, 34]. For
example, a typestate analysis may report a potential error at line C, f.write(), together
with two invocation sequences of related methods, A : f.open() → B1 : f1.close() and
A : f.open()→ B2 : f2.close(), leading to line C. Therefore, we may choose to tailor the
program at C to investigate its behavior affected by SC = {A→ B1→ C,A→ B2→ C}.

Given a SC , a tailored program, T (SC ), consists of the statements on all possible execution
paths in GICFG passing through at least one statement sequence in SC . By exploiting the
temporal ordering information in SC , it is possible to scale tailoring significantly better than
slicing for large object-oriented programs and makes it a practically useful technique.

Tailor is sound as it computes T (SC ) over-approximately with respect to GICFG. In
contrast, traditional (sound) slicing [21] is unscalable when GICFG is large and thin slicing [47]
is unsound for GICFG (as it is designed for program debugging and understanding only).

Tailor computes T (SC ) in two stages, SC Extension and SC-based Data-Flow Analysis.
In the first stage (Section 3.2), we exploit “branch correlations” in object-oriented programs
to lengthen a given SC in order to avoid some infeasible paths that would otherwise be
introduced in the second stage. In the second stage (Section 3.1), we compute T (SC ) by
solving a data-flow problem in order to avoid unrealizable paths efficiently. This design
allows Tailor to achieve good precision and scale well to large object-oriented programs.

3.1 SC-Based Data-Flow Analysis
We compute T (SC ) by solving flow- and context-sensitively an IFDS (Interprocedural Finite
Distributive Subset) data-flow problem [38], efficiently on GICFG, via graph reachability.
This formulation of our SC-based data-flow analysis, denoted SCDFA, is significant for three
reasons. (1) With flow-sensitivity, SCDFA can filter out imprecisely ordered statement
sequences in a SC, as many static analyses from which SCs are deduced are flow-insensitive
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Figure 5 A simplified GICFG of the program given in Figure 2 for illustrating the bottom-up
(BU ) and top-down (TD) passes of SCDFA with SC w = {n→c→w, n′→c→w}.

in order to be scalable. Conversely, precisely ordered statement sequences in SC also enable
SCDFA to filter out irrelevant control flows in tailoring a program. This mutually beneficial
process improves the precision of both parts, therefore avoiding the unnecessary complexity
faced for solving both as one problem. (2) With context-sensitivity, we avoid introducing
unrealizable paths with mismatched calls and returns, which is critical for achieving precision
in computing T (SC ). (3) With an IFDS formulation, SCDFA can scale well to reasonably
large object-oriented programs. In particular, (full) context-sensitivity can be realized more
efficiently by solving a CFL-reachability problem over a simplified balanced-parentheses
language. As an IFDS problem, SCDFA has a time complexity of O(ED3), where E is the
number of edges in GICFG and D is the size of the set of SC-related data-flow facts used (i.e.,
the set of suffixes of sequences in SC, as will be clear below and defined in Section 4).

SCDFA starts with a bottom-up pass (BU ) and finishes with a top-down pass (TD), with
both performed (fully) context-sensitively. By using the example program from Figure 2,
we first explain the functionalities of two passes and then examine briefly how context-
sensitivity is realized efficiently in the IFDS framework. Suppose we are given a SC as
line 2 : fw = new FileWriter() → line 27 : out.close() → line 12 : fw.write(). For
convenience, we write it as SC : n→c→w. In its GICFG, the allocation site for FileWriter
at line 2 is replicated in the two constructors of Driver. We identify the one in the single-arg
constructor as line 2 (denoted by n) and the one in the non-arg constructor as line 2′ (denoted
by n′). As a result, we finally have a two-sequence SC w = {n→c→w, n′→c→w}.

BU and TD Passes. Both passes operate on GICFG, as shown in Figure 5, for our example.
As in any data-flow analysis, all control flow edges in GICFG are treated non-deterministically
executable. Let ENTRY be the entry node of GICFG and EXIT the node marking the point
of interest w at line 12 in SC w. Conceptually, if a sequence S ∈ SC w, which is ncw or n′cw,
lies on a path, then BU must see a suffix of S at every node n on the path backwards from
EXIT and TD must see the corresponding prefix of S at n forwards from ENTRY.

BU computes a global property, PANTI, for every node n in GICFG, backwards against the
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Figure 6 Context-sensitivity via CFL-reachability.

control flow, starting at EXIT. PANTIout(n) represents the set of suffixes of some sequences
in SC w that are partially anticipable at the entry of n, i.e., appear on some outgoing path of
n ending at EXIT. In our example, PANTIout(ENTRY) = {ncw, cw,w}. As ncw is partially
anticipable (but n′cw is not) at ENTRY, GICFG contains some paths passing through ncw.

TD computes a global property, PAVAIL, for every node n in GICFG, forwards along
the control flow, starting from ENTRY. PAVAILin(n) specifies the set of suffixes of some
sequences in PANTIout(ENTRY) to represent implicitly (for efficiency reasons) the fact that
their corresponding prefixes are partially available at the entry of n, i.e., appear on some
incoming paths of n starting from ENTRY. For example, PAVAILin(12) = {ncw,w}, indicating
that the prefixes ε and nc of ncw are partially available at the entry of node 12.

For this example, a node n is included in the tailored program if PAVAILin(n)∩PANTIout(n)
6= ∅, since a suffix s ∈ PAVAILin(n) ∩ PANTIout(n) is partially anticipable at the entry of n
and some sequence in SC w with s removed is partially available at the entry of n. In our
example, the tailored program consists of all the lines except lines 38 – 40.

Context Sensitivity. Figure 6 illustrates as an example how the TD pass shown in Figure 5
is performed for FileWriter() context-sensitively by solving a CFL-reachability-based
balanced-parentheses problem, efficiently in the IFDS framework. For technical details,
we refer to [38]. There are four data-flow facts, ncw, cw, w, and 0 (for the empty set).
There are two call sites to FileWriter() at lines 2 and 2′, which are identified as nodes n
and n′, respectively, with their call-to-start and exit-to-return edges labeled as (n, )n, (n′

and )n′ appropriately. ENTER and EXIT are the start and exit nodes of FileWriter(),
whose CFG is irrelevant and thus elided. In SCDFA, the call-to-return edge always serves
as a kill edge (to stop the data-flow facts from bypassing a callee). For each node n,
PAVAILin(n) is the set of facts, i.e., suffixes of ncw shown in black dots. According to Figure 5,
PAVAILin(2) = PAVAILin(2′) = {ncw}. If FileWriter() is entered from (n and exited
from )n, then PAVAILin(ENTER) = PAVAILin(EXIT) = {cw}. Hence, PAVAILin(35) = {cw}.
However, if FileWriter() is entered from (n′ and exited from )n′ , then PAVAILin(ENTER) =
PAVAILin(EXIT) = {ncw}. Hence, PAVAILin(39) = {ncw}.
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class PMD {

CMLOptions opts = new CMLOptions(args);
void main (String[] args) {

Renderer renderer = opts.createRenderer();
} }

1
2
3
4
5

9
23
24
25

13
14

… … 

renderer.end();

class CMLOptions {

if ( … ) {
Renderer createRenderer () {

return new EmacsRenderer();
} else if ( … )

return new HTMLRenderer();
} else if ( … )

return new SummaryHTMLRenderer();
} else if ( … )

}
class SummaryHTMLRenderer ... {

renderer = new HTMLRenderer(...);
void render (Writer writer, … ) {

renderer.renderBody(writer, ...);

class HTMLRenderer ... {

writer.write(...);
void renderBody (Writer writer, … ) {

} } } }

15
16
17
18
19
20
21
22 } }

class AbstractRenderer ... {

render(writer, ... );
void end () {

} }

6
7
8

10
11
12

 Ext 1

 Ext 2

 Ext 3

Figure 7 A code snippet from PMD for illustrating SCEXT in a program understanding task.

3.2 SC Extension
Tailor is designed to work effectively with any SC. While an API specification mining
tool [17] may generate SCs longer than 10, an assertion verifier may produce only single-point
SCs. In general, the longer a SC is, the more SC -irrelevant statements will be eliminated.

To improve the precision of SCDFA, we perform first a SC extension pass, denoted SCEXT,
as shown in Figure 4. Given a sequence S ∈ SC , with F being its first point, we look for a
set of n extension points E1, · · · , En, that collectively dominate F , such that any program
execution that passes through F must pass through one Ei. We do so effectively by leveraging
the concept of object-sensitivity [33,44] developed by the pointer analysis community for Java.
For F , its extension points are chosen as the object allocation sites used for representing the
object-sensitive calling contexts for the method containing F . As a result, some infeasible
paths are avoided by exploiting branch correlations in object-oriented programs (Figure 3).

To make SC extensions, we use the points-to information obtained by, e.g., the pointer
analysis performed earlier for building GICFG. Consider an ICFG fragment discussed earlier in
Figure 3. Suppose we are given SC : B → C such that B resides in a target method m for the
virtual call site shown and m is only invokable on the objects created at A, which represents
an object allocation site. Then we can prepend A to SC to obtain ESC : A → B → C.
According to SCDFA, T (SC) will include both branches of “Branch” shown in Figure 3 since
both reach SC but T (ESC ) will include only the branch containing A as the other (infeasible)
branch does not reach ESC. However, lengthening a SC increases the number of SC-related
data-flow facts used (Figure 5). So a precision/scalability tradeoff needs to be made.

We use a real program understanding task to show why SCEXT is useful for real code. PMD
is a static analyzer for analyzing Java programs and can print a range of source code flaws in
different formats such as Emacs, CSV, and HTML. In this task, we want to understand how
PMD renders its outputs in the commonly used HTML format. Figure 7 shows the simplified
code. The only knowledge we have initially is that the HTMLRenderer class is responsible
for writing to the file at line 25, but how it is done is unknown. At this stage, we have a
single-point, SC line 25: line 25, representing just the write statement at line 25.

If we apply SCDFA to SC line 25, T (SC line 25) will include all the lines in the code given.
Below we show how to extend this to ESC line 25 : line 20 → line 11 → line 25 object-
sensitively [33, 44]. If we apply SCDFA to ESC line 25, T (ESC line 25) will now be smaller,
consisting of all the lines except lines 16, 18 and 22 in method createRenderer(). In other
words, all the branches except the one enclosing line 20 in method createRenderer() are
infeasible for SC line 25, according to the points-to information provided for this program.

Let us see how SCEXT works in growing SC line 25 to become ESC line 25. Initially, SC line25
has one statement at line 25, which resides in method renderBody(). The (abstract) receiver
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object pointed to by renderer at line 12 is allocated only at the allocation site at line 11
and is considered as the calling context for line 25 in an object-sensitive pointer analysis.
There is another allocation site at line 18 for the same type, HTMLRenderer, but this is not
considered, since the abstract object created at line 18 does not flow to line 12 (according to
the points-to information available). At this stage, we have SC line 25 : line 11→ line 25.

Similarly, we now look for the allocation sites that can be used as the calling contexts for
line 11 contained in method render() at line 10, which is called from this.render() at line 8
in method end() defined in the AbstractRenderer class. Thus, the receiver objects on which
method render() (line 10) is invoked are the ones pointed to by renderer at line 5. These
objects are returned from the call to createRenderer() at line 4. Thus, renderer points
to the objects created by the allocation sites in all different branches in createRenderer().
According to the points-to information, the target method end() invoked at the virtual call
site at line 5 can only be made on an receiver object of type SummaryHTMLRenderer. Thus,
we now have an even longer SC line 25 : line 20→ line 11→ line 25.

The allocation site at line 3 is the object-sensitive context for the target method
createRenderer(), which contains line 20, invoked at line 4. No further extension is possible,
since main() has been reached. Now, we have SC line 25 : line 3→ line 20→ line 11→ line 25.

If we apply SCDFA to this four-point SC line 25, T (SC line 25) will consist of all the lines
except lines 16, 18 and 22. However, including line 3 does not help as it dominates line 20 in
GICFG. By removing it, we obtain ESC line 25 : line 20→line 11→line 25 as desired. Applying
SCDFA to ESC line 25 yields the same tailored program obtained for the three-point SC line 25.

When lengthening SCs, we aim to reduce infeasible paths by exploiting branch correlations.
However, with longer SCs, SCDFA will end up using more data-flow facts, as seen in Figure 5,
making it less efficient than before. So a precision/scalability tradeoff has to be made. Our
key observation is to keep a SC extension point found if it is inside one branch in a multi-way
branching statement or a target method invoked at a polymorphic call site (Figure 3),
provided that the point is not in a cycle. This way, the other branches (or target methods)
are infeasible (with respect to a given SC) and will not show up in the tailored program.

Let us return to the program understanding task at hand. From the tailored program
T (ESC line 25) obtained for ESC line 25, we can see clearly that the allocation site at line 20
in method createRenderer() is responsible for the rendering-related write at line 25.

4 Formalism

We first formalize SCDFA and SCEXT and then prove some properties about Tailor.

4.1 SC-based Data-Flow Analysis
We provide a context-insensitive formalization of SCDFA as context sensitivity is achieved on
top of this formalization via CFL-reachability, as shown in Figure 6. Essentially, we describe
the data-flow equations needed for solving its BU and TD passes in the IFDS framework [38].

The IFDS problem framework is precise and efficient for solving data-flow problems with
three properties. First, the set D of data-flow facts is finite. Second, the domain and range
of each flow, i.e., transfer function is the power set of D, denoted 2D, the lattice ordering
relation v on 2D is ⊆ or ⊇, and the meet operator u is ∩ or ∪. Finally, each fow function f
must be distributive over 2D: ∀S1, S2 ∈ 2D: f(S1 u S2) = f(S1) u f(S2).

Below we describe our BU and TD passes, including their finite domain D and data-flow
equations used. In both cases, the ordering relation v is ⊇ and the meet operator u is ∪.
All our transfer functions given below are easily seen to be distributive over 2D.
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Domain. A SC P is a set of statement sequences ending at the same statement P , with all
statements identified by their line numbers (or labels). The domain D for BU and TD is:

D =
⋃

S∈SCP

Suffix(S) (1)

where Suffix(S) returns the set of all suffixes of S, including ε (the empty string). Note that
ε is necessary when P appears in a control-flow cycle (i.e., a loop or recursion). In the IFDS
framework, the data-flow facts used are generated on the fly for efficiency reasons.

We make use of the car , cdr and cons functions operating on sequences in the standard
manner. If s and s′ are two sequences, then s++ s′ returns the concatenation of s and s′.

Graph Representation. The BU and TD passes operate on the GICFG representation of
a program. Without loss of generality, we assume that a node, i.e., basic block in GICFG
contains one single statement. Thus, a node and the statement represented by it are used
interchangeably. Let ENTRY be the entry node of GICFG and EXIT be the node for P in
SC P . Given a node n, succ(n) (pred(n)) is the set of its successors (predecessors) in GICFG.

BU: Bottom-Up Analysis. BU computes a global property, PANTI, for every node n in
GICFG, backwards against the control flow, starting at EXIT. PANTIout(n) represents the set
of suffixes in D that are partially anticipable at the entry of n, i.e., that appear on some
outgoing path of n ending at EXIT. Thus, we have the following initialization at EXIT:

PANTIout(EXIT) = {P} (2)

which means that our point of interest P in SC P is partially anticipable at the entry of EXIT.
The transfer equations at a node n in GICFG are given by:

PANTIin(n) =
⋃

n′∈succ(n)
PANTIout(n′) (3)

PANTIout(n) = GENBU(n) ∪ PANTIin(n) (4)

Due to the presence of PANTIin(n) in (4), whatever is anticipable at the exit of n are also
anticipable at the entry of n. No old data-flow facts (i.e., known suffixes) are killed, because
some sequences in SC P may share some common suffixes but have different prefixes. GENBU

is applied to generate all the new suffixes partially anticipable at a node:

GENBU(n) =
⋃

s ∈ PANTIin(n)

ADD-SUFFIX-SEENBU(n, s) (5)

Given a partially anticipable suffix s at the exit of a node n, cons(n, s) will also be
partially anticipable at the entry of n if cons(n, s) ∈ D. Hence, we have:

ADD-SUFFIX-SEENBU(n, s) =
{
{cons(n, s)} if cons(n, s) ∈ D

∅ otherwise (6)

The following lemma follows immediately from the data-flow equations (2) – (6).

I Lemma 1. For any node n, ε /∈ PANTIin(n) and ε /∈ PANTIout(n) always hold.

I Example 2. Figure 5 illustrates the BU pass with the data-flow results shown. We start with
PANTIout(EXIT) = PANTIout(12) = {w} and finish with PANTIout(ENTRY) = {ncw, cw,w}.
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TD: Top-Down Analysis. TD computes a global property, PAVAIL, for every node n in
GICFG, forwards along the control flow, starting from ENTRY and visiting only the nodes
reachable in BU . The basic idea is simple. A statement sequence S ∈ SC P starts at ENTRY
and flows forwards along the control flow and ends up with its first statement car(S) removed
on encountering the node representing car(S). Therefore, a node n is included in the tailored
program T (SC P ) if the remaining suffix of S that flows to the entry of a node n appears also
in PANTIout(n) or the entire sequence S has been removed upon reaching n (when P in SC P

appears in a control-flow cycle). Formally, PAVAILin(n) computes the set of suffixes s ∈ D to
represent implicitly (for efficiency reasons) the fact that their corresponding prefixes p, such
that p++ s = S for some S ∈ SC P , are partially available at the entry of n.

As all the sequences in SC P \ PANTIout(ENTRY) have been filtered out by BU , we only
need to focus on the ones partially anticipable at ENTRY. Hence, our initialization is:

PAVAILin(ENTRY) = SC P ∩ PANTIout(ENTRY) (7)

The transfer equations at a non-ENTRY node in GICFG are given by:

PAVAILin(n) =
⋃

n′∈pred(n)
PAVAILout(n′) (8)

PAVAILout(n) =
{

GENTD(n) if PANTIout(n) 6= ∅
∅ otherwise (9)

During the top-down pass, we only need to visit a node n if n is reachable during the
bottom-up pass, which happens when PANTIout(n) 6= ∅.

Unlike GENBU, GENTD may preserve/kill an old data-fact and generate some new ones:

GENTD(n) =
⋃

s ∈ PAVAILin(n)

ADD-SUFFIX-EXPECTED-TO-SEETD(n, s) (10)

As a suffix s ∈ PAVAILin(n) represents the fact that its corresponding prefix p, such that
p++ s = S for some S ∈ SC P , is partially available at the entry of n, we have:

ADD-SUFFIX-EXPECTED-TO-SEETD(n, s) =
{
{cdr(s)} if car(s) = n

{s} otherwise (11)

There are two cases. If car(s) = n, then cdr(s) is generated, indicating that p++n is partially
available at the exit of n. At the same time, s is killed (for efficiency not correctness), as s
would be redundantly propagated otherwise. If car(s) 6= n, then s is simply preserved.
I Example 3. Figure 5 illustrates the TD pass with the data-flow results shown. We start with
PAVAILin(ENTRY) = SC w ∩ PANTIout(ENTRY) = {ncw} and finish with PAVAILin(EXIT) =
PAVAILin(12) = {ncw,w}. At node 27, PAVAILout(27) = {w}, since PAVAILin(27) = {cw}.

Tailored Program. Finally, a node n is included in T (SC P ) if TAILORED(n) holds:

TAILORED(n) = PAVAILin(n) ∩ PANTIout(n) 6= ∅ ∨ ε ∈ PAVAILin(n) (12)

The first disjunct suffices if P in SC P is not in a cycle (in GICFG). If s ∈ PAVAILin(n) ∩
PANTIout(n), then a prefix p, such that p ++ s = S for some S ∈ PAVAILin(ENTRY), is
partially available at the entry of n, then n must be in T (SC P ), since it lies on a path
passing through all statements in S. If P is in a cycle, then the whole sequence S that starts
at ENTRY ends up being removed eventually, resulting in ε ∈ PAVAILin(n). Then n should
be included in T (SC P ) as well. Note that ε /∈ PANTIout(n) by Lemma 1.
I Example 4. According to the data-flow facts shown for the program given in Figure 5,
the tailored program consists of all the lines except lines 38 – 40 according to (12).
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4.2 SC Extension

We make use of the points-to information provided by a pointer analysis to extend a SC to
reduce infeasible paths that would otherwise be introduced by SCDFA. Given a statement
sequence S ∈ SC , SCEXT will lengthen it recursively by prepending the object allocation sites
representing the calling contexts for the method containing its first statement, as demonstrated
in Section 3.2. The general algorithm for lengthening a sequence S : L1→· · ·→Ln is as
follows. Suppose that L1 resides in a method m invoked at a virtual call site. Let A1, · · · , Ar

be its all r allocation sites for creating the receiver objects on which m is invoked. Then S
grows into A1→L1→· · ·→Ln, · · · , Ar→L1→· · ·→Ln, and the same process continues.

With longer SCs, SCDFA will be less efficient due to more data-flow facts introduced. We
will keep a SC extension point if it is embedded in a branch and ignore it otherwise. This way,
SCEXT can enable SCDFA to avoid infeasible paths more effectively by exploiting branch
correlations. A statement is said to be embedded in a branch if it appears intraprocedurally
(directly) or interprocedurally (indirectly) inside a multi-way branching statement or a target
method invoked at a polymorphic call site (i.e., a virtual call site with at least two target
methods). Let Stmts be the set of all statements in GICFG. We use the following function
InBranchOrVC : Stmts→ boolean to capture formally this branch-embedding relation:

InBranchOrVC(s) =


true if InIntraBranch(s)
false else if InMain(s)

InInterBranchOrVC(s) otherwise
(13)

where InIntraBranch(s) determines if s appears directly in a branch or not and InMain(s)
tells us whether s appears directly in main() or not. InInterBranchOrVC : Stmts→ boolean
checks to see whether s is embedded in a branch interprocedurally or not:

InInterBranchOrVC(s) =
∨

c∈Caller(m)

(
InBranchOrVC(c) ∨ |Callee(c)| > 1

)
where m is the method containing s

(14)

where Caller(m) returns the set of call sites at which m is invoked. For each call site c, there
are two disjuncts. One represents a recursive application of InBranchOrVC defined in (13)
to c. The other one, |Callee(c)| > 1, evaluates to true if the call site c is polymorphic.

I Example 5. For the program in Figure 7, as discussed in Section 3.2, SCEXT starts with
SC line 25: line 25, grows it to SC line 25 : line 3 → line 20 → line 11 → line 25, and finally
settles with ESC line 25 : line 20→ line 11→ line 25. Let us see why a SC extension point is
kept or ignored. Line 3 should be ignored since InBranchOrVC(line 3) = ¬InMain(line 3) =
false. Line 20 is retained since InInterBranchOrVC(line 20) = InIntraBranch(line 20) =
true. Finally, line 11 is also retained because we have InInterBranchOrVC(line 11) =
InInterBranchOrVC(line 8) = InInterBranchOrVC(line 5) = |Callee(line 5)| > 1 = true,
where the call site at line 5 is polymorphic according to the points-to information provided.

In practice, SCDFA does not usually benefit from a SC extension point if it appears
in a control-flow cycle (a loop or a recursion cycle) in GICFG. Such cycle-related points
are identified and ignored as well. To detect recursion cycles effectively, we apply Tarjan’s
algorithm [48] to find strongly connected components on the call graph of the program. To
detect (natural) loops, we resort to a textbook loop detection algorithm. The statements
reachable directly or indirected from a loop are also considered as being part of the loop.
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statement s, s1, s2, ..., sm ∈ S
execution e : s1s2...sm ∈ EG

sequence sq : s1s2...sm ∈ SC
relation EG × SC e sq

relation EG × S e→ s

execution set Esq = {e ∈ EG | e sq}
statement set Ssq = {s ∈ S | e ∈ Esq, e→ s}

Figure 8 Notations used in proofs.

4.3 Properties
We prove that Tailor is sound (Theorem 3), by showing that SCDFA and SCEXT are sound
with respect to GICFG (Theorems 1 and 2), and consequently, that every tailored program is
SC -executable, i.e., executable along all execution paths passing through a given SC.

We make use of the notations given in Figure 8 in our proofs. S is a set of statements
in GICFG. EG represents all runtime executions of the program represented by GICFG and
each execution e consists of a sequence of statements in S. We write e  sq if execution
e contains all the statements in a statement sequence sq = s1s2 · · · sm in exactly the same
order, ending at sm. We write e→ s if execution e contains statement s. Esq is the set of all
executions that pass through a given sequence sq. Finally, Ssq is the set of all statements
that appear in all possible executions e (passing through sq), where e ∈ Esq.

The following theorem states that SCDFA is sound with respect to GICFG.

I Theorem 1 (Soundness of SCDFA). Let GICFG be the ICFG of a program. Let SC be given
(as defined in Section 3). If sq ∈ SC, then s ∈ Ssq =⇒ TAILORED(s).

Proof. We show that for every execution e such that e sq, where sq ∈ SC , TAILORED(s),
which is given in (12), holds for all statements s such that e → s. Let sq = s1s2...sm.
Since e  sq, every statement si must appear at least once in e or more in the presence
of control-flow cycles. For convenience, let s0

e be a fictitious statement at the beginning
of e. Let sm+1

e be the last occurrence of sm in e, i.e., the last statement in e. Let si
e be

the first occurrence of si in e after si−1
e , where 1 6 i 6 m. We can now divide e into

m+ 1 sub-executions, e1, e2, · · · , em+1, where ei, represents the sub-sequence between si−1
e

(exclusive) and si
e (inclusive). We will still write ei → s if ei contains a statement s.

As e  sq is an execution, then e represents a realizable path, which must appear in
GICFG. In SCDFA, its BU and TD passes are distributive over 2D given in (1), performed
context-sensitively. Thus, we only need to focus on this path. Note that in our formulation
of SCDFA, a statement si and its corresponding node ni in GICFG are used interchangebly.

During the BU pass in terms of (2) – (6), we must have:

∀ 1 6 i 6 m : ∀ ni s.t. ei → ni : sisi+1 · · · sm ∈ PANTIout(ni) (15)
∀ nm+1 s.t. em+1 → nm+1 : sm ∈ PANTIout(nm+1) (16)

which implies sq ∈ PANTIout(ENTRY) (since ∀ n1 s.t. e1 → n1 : s1s2 · · · sn ∈ PANTIout(n1)).
During the TD pass, sq ∈ PAVAILin(ENTRY) by (7). By (8) – (11), we must have:

∀ 1 6 i 6 m : ∀ ni s.t. ei → ni : sisi+1 · · · sm ∈ PAVAILin(ni) (17)
∀ nm+1 s.t. em+1 → nm+1 : ε ∈ PAVAILin(nm+1) (18)

(Note that (18) is needed only if em+1 is non-empty, which happens when sm is in a
control-flow cycle.) Hence, TAILORED(s) holds for every statement s such that e→ s. J
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For a SC , we write α(GICFG,SC ) to represent the set of all executions in GICFG that pass
at least one sequence in SC, i.e., α(GICFG,SC ) =

⋃
sq∈SC Esq. Theorem 1 can also be stated

equivalently as follows: TAILORED(s) holds for every s ∈ {s | e ∈ α(GICFG,SC ), e→ s}.
The following theorem states that SCEXT is sound since only infeasible paths are ignored.

I Theorem 2 (Soundness of SCEXT). Let ESC be extended from a given SC by applying
SCEXT in GICFG, then α(GICFG, SC) = α(GICFG, ESC).

Proof. According to the algorithm of SCEXT operating in GICFG (Section 4.2), all possible
object-sensitive calling contexts for a method containing the first point F in a sequence of
SC are considered as the extension points of F . According to (13) and (14), no feasible
paths with respect to SC are excluded if an extension point of F is not selected. Thus, only
infeasible paths with respect to SC are ignored when SC is extended into ESC this way. J

I Theorem 3 (Soundness of Tailor). Tailor is sound with respect to GICFG.

Proof. Follows from Theorems 1 and 2. J

I Theorem 4 (SC-Executability). T (SC ) obtained in GICFG is SC -executable.

Proof. By Theorem 3, α(GICFG,SC ) is included in the tailored program. J

5 Implementation

We have implemented Tailor (http://www.cse.unsw.edu.au/~corg/tailor) in Soot,
a framework for analyzing and optimizing Java programs [51]. To build the ICFG for a
program, we apply Soot’s Spark pointer analysis [27]. During the ICFG construction,
Soot models the effects of native methods by using abstract Java code and creates the
corresponding control-flow edges. In addition, Soot considers both explicit and implicit
exceptions and treats the exceptional edges as normal control-flow edges. Finally, Soot
models thread creation and running as method calls by assuming that threads execute in
a sequential order. How to build ICFGs to support multi-threading soundly, precisely and
scalably for Java programs is a big challenge in its own right.

Tailor has two main components, SCEXT and SCDFA. When extending SCs, we make
use of the points-to information provided by Spark to find the required object allocation
sites object-sensitively. To perform SCDFA, we choose Heros [10] as the IFDS solver for its
BU and TD data-flow problems, because it can be easily plugged into the Soot framework.

6 Evaluation

Program tailoring is designed to be sound for a program (with respect to its ICFG, as proved
in Section 4), with useful precision and good scalability for large object-oriented programs.
This section serves to evaluate the last two goals by answering three research questions:
RQ1: Is Tailor useful to support program debugging and understanding, in practice?
RQ2: Is Tailor useful to support program analysis, in practice?
RQ3: Is Tailor scalable for large object-oriented programs, in practice?

To address RQ1 and RQ2, we conduct two real-world case studies. In one study, we
demonstrate that Tailor can assist a state-of-the-art slicing tool, a thin slicer [47] implemen-
ted in WALA [52], to simplify debugging and understanding tasks. In the other study, we
demonstrate that Tailor can enable a sophisticated pointer analysis algorithm, S-2Obj [24],

http://www.cse.unsw.edu.au/~corg/tailor
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Table 1 Program characteristics. For each program, the numbers are produced for both the
application and library code, including only reachable classes, methods and statements by Spark [27].

Application Description #Classes #Methods #ByteCodes LOC
ANTLR (2.7.2) a recognizer and parser generator 2049 13,751 261,727 90,404
Avrora (1.7.117) an assembly program simulator 3196 17,186 276,340 92,505
Eclipse (4.5) IDE 2517 16,953 305,575 106,640
Apache™ FOP (0.20.5) a formatting-objects processor 4681 28,105 492,686 171,087
JBoss AS (4.0.2) an application server 4039 25,634 448,163 154,290
PMD (4.0) a source code analyzer 4234 26,623 467,249 161,300
Apache Tomcat™ (8.0.24) a Java Servlet container 3920 25,157 432,652 150,074

provided in a state-of-the-art pointer analysis tool for Java, Doop [14], to investigate the
multi-object typestate (reflective) behavior in programs for which S-2Obj is unscalable as a
whole-program analysis. In both studies, all SCs used are deduced from the results generated
by state-of-the-art clients, Clara [9] and Solar [29], rather than injected manually.

To address RQ3, we perform a stress test on Tailor by using a large number of randomly
generated SCs. Tailor scales well to relatively large Java programs, suggesting that program
tailoring represents an attractive option as a practical tool.

Our experiments are carried out on an Xeon E5-2650 2GHz machine with 64GB RAM.
We have selected seven large and diverse real-world Java programs under a large library, JDK
1.6.0_45, described in Table 1. For each program, with its bytecode representation generated
by Soot [51], all the statistics are calculated by using Soot’s Spark pointer analysis [27].

6.1 RQ1: Program Debugging and Understanding
Wala [52] includes a traditional slicer [21] and a thin slicer [47] (denoted TSlicer), with
industry-strength implementations. Traditional slicing does not scale to large object-oriented
programs due to the key bottleneck in handling of the heap [47]. Thin slicing [47] alleviates the
bottleneck by including only producer statements that affect directly the values at a program
point. This unsound design can facilitate program debugging and understanding [25,50,59].

By focusing on producer statements, TSlicer is surprisingly effective, by producing often
small (or thin) slices quickly. In this study, we show that Tailor can make TSlicer even
more effective, as highlighted in Figure 1, by exploiting the temporal order of statements in
SCs to prune away more statements irrelevant to SCs. In addition, Tailor achieves this
improved precision by trimming a program more efficiently than TSlicer does. These results
are significant given TSlicer’s unsoundness (even for GICFG) and well-tuned implementation
in Wala, demonstrating clearly the practical benefits of our SC-oriented program tailoring.

To ensure a fair comparison between Tailor (implemented in Soot) and TSlicer
(implemented in Wala), we have configured Soot to minimize the differences in the ICFGs
constructed for a program in both frameworks. There are four main contributing factors: (1)
pointer analysis, (2) reflection analysis, (3) exception handling, and (4) native code handling.
Our bottom-line is to make sure that Tailor is never more precise than TSlicer in dealing
with (1) – (4). For (1), we select Wala’s VanillaZeroOneCFA option to perform its allocation-
site-sensitive pointer analysis, which is more precise than Soot’s Spark pointer analysis,
as Spark merges some java.lang.String allocation sites for improving performance. For
(2), we use Wala’s no_flow_to_casts option to resolve reflective calls. In Soot, we have
taken advantage of Solar [29] to perform reflection resolution in the same way. For (3) and
(4), Wala and Soot model the same native methods in JDK 1.3 and handle both explicit
and implicit exceptions with some differences. However, these differences do not affect the
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Case 1: TAILOR helps filtering out false alarms
Number of SCs:

Precision improved:

Size range 
of thin slices

Before After
0

max

min

23

5

Distributed in programs: PMD, ANTLR
43

100%

77 SCs in total
(Classified into four cases)

TAILOR is useful for Cases 1, 2 and 3 (82%) 
but not for Case 4 (18%)

Case 4: TAILOR fails to help
Number of SCs:

Precision improved:
Before After

max

min

31

6

Distributed in programs: ANTLR, FOP
14

0%

max

min

31

6

Case 3: TAILOR helps with ESC
Number of SCs:

Precision improved:
Before After

max

min

22

9

Distributed in programs: FOP, PMD
13

max
min

13
5

46%(avg), 41%(min), 50%(max)

Case 2: TAILOR helps without ESC
Number of SCs:

Before After

12

max

min

43

13

Distributed in programs: ANTLR, Avrora, FOP, PMD
7

max
min

20

Precision improved: 15%(avg), 7%(min), 56%(max)

TAILOR

TSLICER

TAILOR

TSLICER

TAILOR

TSLICER

TAILOR

TSLICER

Size range 
of thin slices

Size range 
of thin slices Size range 

of thin slices

Figure 9 A case study demonstrating how Tailor enables TSlicer to remove more SC -irrelevant
statements based on the SCs deduced from the results reported by a typestate analysis, Clara [9].

precision achievements obtained, validated by having inspected all results manually.
Both Tailor and TSlicer trim a program based on the writer/OutputStream-related

SCs deduced from the results reported by a state-of-the-art typestate analysis tool, Clara [9].
TSlicer is run context-sensitively by using the last point in each SC as its slicing criterion
with the variables of interest selected automatically. However, the results in the following
cases are excluded: (1) Clara crashes due to runtime exceptions in the case of Eclipse,
JBoss and Tomcat, (2) TSlicer is unscalable for a criterion (within 1 hour), and (3) the
size of a thin slice is less than 5 (small enough for human consumption). Finally, 77 SCs are
considered in total, involving 66 errors and 11 program points (like the one in Figure 7) for
our debugging and understanding tasks. All these SCs are provided in our artifact.

Results and Analysis Figure 9 presents the final results, with all the 77 SCs classified
into four cases. In each case, we give the number of SCs included, the names of SC-
contributing programs, the size ranges of TSlicer’s thin slices before and after the SC -
irrelevant statements detected by Tailor are removed, as well as the minimum, maximum and
average precision improvements achieved. Note that Wala’s traditional slicer is unscalable
for any SC (within 1 hour). Below we first analyze each case and then make some remarks.

Case 1. There are 43 SCs distributed in two programs, ANTLR and PMD. TSlicer has
produced thin slices ranging from 5 to 23 statements, requiring further human analysis efforts.
In contrast, Tailor has produced only zero-sized tailored programs, declaring all the 43
errors as false alarms with respect to the given SCs. Furthermore, as Clara is sound (with
respect to GICFG), all the 43 errors are false alarms for the 43 reported locations.

Let us consider a SC from PMD. Clara reports a “write after close” typestate error for a
call to writer.write() at line 33 in class net.sourceforge.pmd.renderers.TextRenderer,
together with four two-statement sequences of method calls leading to this potential error loc-
ation: line 290→ line 325, line 290→ line 337, line 292→ line 325, and line 292→ line 337.
These five calls are distributed in classes net.sourceforge.pmd.PMD and the afore-mentioned
class TextRenderer. Given this four-sequence SC ending at line 33, Tailor recognizes that
all these sequences are infeasible since line 33 is not reachable from lines 325 and 337.
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Clara reports such false errors as it is partially context-sensitive and intraprocedurally
but not interprocedurally flow-sensitive. This is a typical trade-off made by static analyses,
which must, for example, reason about complicated typestate or protocol information as well.
Otherwise, full context- and flow-sensitivity is unattainable scalably for large programs [9].
Unlike these client analyses, Tailor reasons about the (un)reachability of a statement towards
a SC, making it substantially more amenable to a fully context- and flow-sensitive analysis.
Tailor’s success in this case is potentially replicable for other analysis tools [9, 29,37].

Case 2. There are 7 SCs spread across ANTLR, Avrora, FOP and PMD. In this case, SCEXT
is not useful. These SCs share the same characteristic as SC line 12: line 2→line 27→line 12
from our motivating example in Figure 2 (Section 2). For each SC, Tailor has succeeded in
removing some SC -irrelevant statements in some branches from TSlicer’s thin slices.

Case 3. There are 13 SCs found in FOP and PMD. In this case, Tailor will be ineffective unless
SCEXT is turned on. We take a SC in FOP ending at line 101 in class CommandLineStarter
to show how Tailor can simplify debugging tasks for object-oriented programs enormously.
Given this point of interest, TSlicer returns a thin slice containing nine statements, which are
distributed in five classes, including AWTStarter, PrintStarter and CommandLineStarter
in package org.apache.fop.apps, where the first two are the subclasses of the last one.
The first statement of this SC resides in CommandLineStarter’s run() method, which is
overridden in the two subclasses. During the SC extension, the object allocation site at line
522 in the CommandLineOptions class is found to be the sole object-sensitive context for
CommandLineStarter’s run() method. Therefore, with this extension point, Tailor is able
to remove four irrelevant statements, line 94 in AWTStarter, line 91 in PrintStarter, and
lines 494 and 508 in CommandLineOptions, from TSlicer’s thin slice, saving a human a lot
of debugging effort on navigating through many irrelevant classes unnecessarily.

Case 4. There are 14 SCs found in ANTLR and FOP. Tailor fails to reduce TSlicer’s thin
slices any further. By including producer statements (and ignoring the others unsoundly),
TSlicer has happened to eliminate all the SC - irrelevant statements removed by Tailor.

Remarks. First, Tailor has succeeded in making 82% (56%) of TSlicer’s 77 thin slices
smaller (empty), as shown in Figure 9, even though TSlicer is known to return small slices
unsoundly. Second, Tailor aims to eliminate SC -irrelevant statements. As discussed in
Section 2 and elaborated in Case 3, removing several or even just one SC -irrelevant statement
can save a lot of debugging effort, particularly for large object-oriented programs. Finally,
Tailor is fast, as compared with TSlicer in Figure 10. To make the analysis times for
Tailor visible, the longest analysis times spent by TSlicer on several SCs are depicted at
the top-left corner. In Case 4, Tailor is ineffective, but no harm is done, as Tailor is fast.
Without Tailor, the practical benefits reaped from exploiting the temporal order in the
other SCs in Cases 1 – 3 will be missed.

6.2 RQ2: Program Analysis
In this second case study, we demonstrate that Tailor can be invaluable for pointer analysis
(the foundation for virtually all other analyses). In particular, we show how Tailor can
enable today’s most sophisticated pointer analysis algorithms, which are unscalable for a
program, to perform a more focused and thus potentially scalable analysis to its specific
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Figure 10 Efficiency of Tailor vs. TSlicer.

parts that contain usually hard-to-analyze language features such as reflection [30]. For
a Java program, a pointer analysis requires a reflection analysis to resolve part of its call
graph representing reflective calls, and conversely, a reflection analysis requires the points-to
information from a pointer analysis to discover the reflective targets at a reflective call site.

Reflection analysis finds many real-world applications, such as bug detection and security
analysis [5, 11,28,31], in its own right. Despite recent advances [28,29,45], a sophisticated
reflection analysis does not co-exist well with a sophisticated pointer analysis, since the latter
is unscalable for large programs [28,29,31,45]. If a scalable but imprecise points-to analysis
is used instead, the reflection analysis may introduce many false call graph edges [29, 45],
making its underlying client applications to be too imprecise to be practically useful.

We show how Tailor can alleviate this problem. We choose Doop [14], a state-of-the-
art pointer analysis framework for Java, and focus on its three pointer analyses, 1-Call,
S-2Type and S-2Obj. 1-Call is usually the most scalable but most imprecise. S-2Obj is
the most precise but the most unscalable. S-2Type enjoys both precision and scalability,
with its precision being always not better than S-2Obj [24]. For reflection analysis, we
choose Solar [29], a state-of-the-art reflection analysis built on top of Doop. Our program
analysis task is to investigate the multi-object typestate behavior at some reflective call
sites as precisely as possible, by running Solar with S-2Obj. If S-2Obj is scalable for
a program, we are done. Otherwise, we run Solar together with 1-Call, and if that is
unscalable, with S-2Type on the same program. If either is scalable, we treat Solar as a
client analysis for producing the required SCs. To investigate the behavior at a reflective call
site P , say, m.invoke(), we let its SC P be all possible sequences of API method calls ending
at P , such as Class.forName()→ c.getMethod()→ m.invoke(), found by Solar. Then
we run S-2Obj on the tailored program T (SC P ). If SC P represents all possible sequences
of method invocations for P , then T (SC P ) exhibits the same behavior at P as in the whole
program (Theorem 3). Otherwise, a SC P -specific behavior at P is analyzed.

For the seven applications listed in Table 1, S-2Obj is only unscalable for Eclipse, Tomcat
and JBoss, which will therefore be the focus of our second study. Figure 11 shows the number
of reflective targets resolved at all call sites to Class.newInstance()/Method.invoke() (the
most commonly used [28], in practice) in the application code of Eclipse, Tomcat and JBoss,
by 1-Call (the red dots) and S-2Type (the green dots from JBoss as 1-Call is unscalable).
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Figure 11 Reflection resolution for Eclipse, Tomcat and JBoss.

Table 2 A case study demonstrating how Tailor enables a sophisticated pointer analysis to
scale better by analyzing the reflective behavior at the specific parts of a program.

SC
Efficiency (Analysis Times) Precision (Reflective Targets Resolved)

Number of Targets Resolved Precision Improved
Before Tailor Tailor After Tailor Before Tailor After Tailor Over

1-Call S-2Type S-2Obj S-2Obj 1-Call S-2Type S-2Obj 1-Call S-2Type
Eclipse-1

43m45s 129m39s >10h

3m1s 37m25s 109 27 12 88.9%↑ 55.6%↑
Eclipse-2 6m20s >10h 109 28 — — —
Eclipse-3 2m29s >10h 115 33 — — —
Eclipse-4 4m7s >10h 109 28 — — —
Tomcat-1

42m0s 80m35s >10h
4m11s 61m9s 303 116 1 99.7%↑ 99.1%↑

Tomcat-2 3m49s 61m24s 278 1 0 100%↑ 100%↑
Tomcat-3 3m42s >10h 277 41 — — —
JBoss-1 >10h 171m38s >10h 10m59s 6m14s N/A 67 4 N/A 94%↑
JBoss-2 4m19s 6m12s N/A 66 1 N/A 98.5%↑

There are a total of nine reflective call sites with a high number of reflective targets resolved,
possibly imprecisely by 1-Call or S-2Type, which result in a total of nine SCs deduced
from their corresponding Solar analysis.

Table 2 shows our results. For the nine SCs given (in Column 1), Tailor enables
S-2Obj to run scalably on the tailored programs obtained for five SCs, Eclipse-1, Tomcat-1,
Tomcat-2, JBoss-1 and JBoss-2 (in 6 – 62 minutes) with significant precision improvements
in terms of the number of reflective targets reduced. Without Tailor, no existing reflection
analyses [28, 29, 31, 45] can achieve such precise results automatically for their corresponding
reflective calls. Note that traditional slicing [21] is unscalable given the last points in the nine
SCs (out of (64GB) memory after 2 hours each) while thin slicing [47] (designed for program
debugging and understanding only) is unsound and is thus non-applicable in this setting.

S-2Obj remains unscalable for four SCs, Eclipse-2, Eclipse-3, Eclipse-4 and Tomcat-3,
partly because S-2Obj is precise but slow (being basically 2-object-sensitive [24]) and partly
because reflection-rich object-oriented programs such as Eclipse and Tomcat are difficult to
analyze both precisely and scalably, despite recent advances [28,29,45]. Tailor produces
the tailored programs for the nine SCs in less than 11 minutes each (Column 5), making it
possible for the five out of nine SCs to be analyze precisely than before (Columns 7 – 11).

Let us examine the SC denoted by Tomcat-1. Under 1-Call, Solar identifies an
imprecisely resolved newInstance() call (at line 268 in class Bootstrap) with 303 targets.
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Figure 12 Scalability of SCDFA on 50 randomly generated SCs per program (with a 10-minute
budget per SC). “#Facts” represents the number of data-flow facts in PANTIout(ENTRY).

For this call, Solar reports four related Class.forName() and loadClass() calls, at lines
1232, 1265, 1299 in class WebappClassLoaderBase and line 265 in class Bootstrap, forming
a four-sequence SC (of length 2 each). When analyzing Tomcat as a whole, S-2Obj does not
terminate in 10 hours. Given Tomcat-1, Tailor produces a tailored program, T (Tomcat-1),
in about 4 minutes. Given T (Tomcat-1), S-2Obj finishes in about 61 minutes, enabling
Solar to resolve the newInstance() call (line 268) precisely to be class Catalina as its target.

We have inspected manually the five SCs scalably analyzed and found that no true
reflective targets are missed for the call sites at their last points. For Tomcat-2, Column 9
has a 0, because its last point, the newInstance() call (at line 595 in class RewriteValue),
reported by 1-Call is not reachable (from main()) and thus filtered out by S-2Obj.

6.3 RQ3: Scalability
Tailor has two main components, SCEXT and SCDFA, with the latter dominating the total
analysis time. We perform a stress test to investigate how well SCDFA scales, in practice.
For each of our seven applications listed in Table 1, we select randomly 50 statements as the
potential points of interest, then apply SCEXT to these points, and finally, run SCDFA on
the 50 extended SCs. For a total of seven applications, a total of 350 SCs are generated.

Figure 12 gives the final results. According to Figure 12a, SCDFA is scalable for 296
(85%) out of the 350 SCs generated (with a 10-minute budget per SC). Figures 12b – 12h
provide more details. For each application, we give the number of scalable SCs, and for
each scalable SC, its length (in the x-axis), its analysis time (in the left y-axis) and the
maximum number of data-flow facts (suffixes) reaching ENTRY, i.e., |PANTIout(ENTRY)| (in
the right y-axis). In the legend for each SC, there is a green dot representing its analysis
time and a red dot representing its |PANTIout(ENTRY)|. The data plotted for a fixed SC
length can be understood as follows. First, if there are n SCs with the same analysis time
(|PANTIout(ENTRY)|), then its green (red) dot is n times as large as the green (red) dot
in the legend. Second, the analysis time of a SC always increases as |PANTIout(ENTRY)|
increases (allowing one to find its associated red dot given a green dot). This is expected
as the time complexity of SCDFA is O(ED3), where D is the size of the data-flow facts
used, i.e., |PANTIout(ENTRY)|. In general, |PANTIout(ENTRY)| increases as the length of its
underlying SC increases. However, this is not absolute, as the length of a SC is defined to be
the length of its longest sequence (with the other shorter sequences ignored).



Y. Li, T. Tan, Y. Zhang and J. Xue 15:23

Finally, we explain why SCDFA is unscalable for many SCs in Tomcat and Avrora and
discuss some possible solutions. For Tomcat, SCDFA is unscalable for 10 SCs, because many
of their extension points introduced by SCEXT could have been avoided if a more precise
pointer analysis (than Soot’s Spark pointer analysis) is used.

For Avrora, SCDFA is unscalable for 39 SCs, due to a special programming pattern used
in this (simulator) application. One factory class cck.util.ClassMap is used to create all its
simulation and platform classes, e.g., SensorSimulation, residing in a total of 13 packages.
As a result, most of the SC extension points introduced by SCEXT happen to land in this
factory class. In addition, there are many object allocation sites for this class in the program,
making all of them eligible as SC extension points and consequently increasing the number of
data-flow facts used, i.e., |PANTIout(ENTRY)|. One possible improvement is to make SCEXT
pattern-aware to avoid some SC extensions that would otherwise be introduced.

6.4 Limitations
We observe that program tailoring scales better than program slicing, as the overall design
of tailoring (with its object-sensitive conceptualization of SCEXT and its IFDS formulation
of SCDFA laid out in Sections 1.1 and 1.2) is more amenable to efficient implementation with
useful precision, as validated with our prototyping system, Tailor. However, there are still
spaces for performance improvement. According to our experimental results presented in
Section 6.3, a more intelligent SCEXT is needed to deal with programs such as Avrora more
effectively. Applying a pattern-aware pre-analysis to recognize some unscalability-inducing
SC extension points may be a viable solution worth trying in future work.

Tailor is practically useful in program debugging and understanding as well as program
analysis, as demonstrated with two case studies. However, Tailor is expected to be more
effective if we can avoid introducing irrelevant statements in loops. As explained in Section 4.2,
SCEXT presently gives up a SC extension point inside a control-flow cycle but may miss
an opportunity for avoiding infeasible paths at this point, with a tradeoff made favoring
scalability over precision. One possible improvement is to leverage slicing to remove irrelevant
statements that do not produce any data dependence for the statements in a SC. How to
combine tailoring and slicing scalably is non-trivial but will be an interesting future work.

7 Related Work

In addition to the related work mentioned earlier, we review some other related research.

Program Slicing. There are dozens of slicing techniques proposed, including amorphous
slicing [19], parametric slicing [15], interface slicing [6] and specification slicing [4]. However,
none of these is close to program tailoring, as tailoring is the first to exploit a sequential
criterion and designed to scale for today’s large object-oriented programs. For past slicing
techniques and their design goals, we refer to some survey articles [8, 20,43,49]. Below we
examine the most closely related ones, by focusing on their connections with this work.

Traditional slicing [53] and thin slicing [47] have been introduced and compared in Section 2
and evaluated in Section 6. In general, most existing static slicing methods [20, 43, 49] make
use of the traditional slicing criterion (defined in [53] and used in Section 2) to express
their points of interest but may slice a program differently according to different goals. For
example, thin slicing [47] considers only producer statements that may have direct effects at
a point. Although unsound, thin slicing may exclude many distracting statements, easing
significantly program debugging and understanding (which is its goal aimed for).
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Program tailoring focuses on a totally different criterion, known as sequential criterion,
which captures the temporal order of invocation sequences of related methods naturally
inherent in a program. As explained in Section 2 and demonstrated in Section 6, such
ordering information enables tailoring to improve the effectiveness of a modern thin slicing
tool, and potentially other slicing tools, e.g., a recently proposed value slicer [26].

Path slicing [23] takes as input a program path (or trace) to a target point and tries to
eliminate the statements that are irrelevant towards the reachability of the point. Given a
SC P lying on a path with P as a target point, path slicing may remove all points in SC P

except P as long as they do not affect the reachability, i.e., feasibility of the path to P (from
main()). In contrast, program tailoring focuses on determining the reachability of statements
towards a SC so that the temporal order specified in the sequences in SC is respected.

Program chopping [22,39] considers two sets of variables, one at a source point and one at
a sink point, as its slicing criterion. It identifies the statements that transmit the effects from
the source to the sink, by applying a forward slicing at the source and a backward slicing
at the sink. Tailoring is different in three aspects. First, chopping focuses on two points
but tailoring focuses on the temporal order specified by a sequential criterion consisting of
possibly many statement sequences of arbitrary lengths (sinking at the same point). Second,
chopping, which relies on traditional slicing, does not scale to large object-oriented programs.
Finally, SCEXT is unique as it enables tailoring to work effectively, in practice. In fact, these
differences are also what distinguish tailoring from other slicing techniques [8, 20,43,49].

API Protocol Analysis. We consider typestate analysis [9, 16, 34] as a special kind of
API protocol analysis as the abstract states of an object are usually affected by API
calls. API protocol analysis [7, 37] reports related invocation sequences of API methods,
indicating a kind of semantic (or ordering) information in the program, which is ignored
by program slicing. Such API invocation sequences can be specified manually or mined
automatically [1, 3, 17,36,42,60]. SCEXT can be seen as a new method for mining protocols
in object-oriented programs automatically, but at a coarser granularity, based on the object-
sensitive calling contexts of a method. We expect Tailor to become more effective when
longer sequences (with richer semantic information) are considered as SCs.

Pointer Analysis. SCEXT exploits the concept of object-sensitivity [33] to extend SCs in
order to avoid infeasible paths that would otherwise be introduced by SCDFA. We refer
to [44] on why object-sensitivity is more effective than call-site-sensitivity in representing
calling contexts when analyzing object-oriented programs context-sensitively. Over the years,
many whole-program pointer analyses for Java have been developed [24, 27, 44, 54, 55]. In
Section 6.2, we show how Tailor enables a precise whole-program pointer analysis [24] to
scale better on a SC -relevant part of the program in order to analyze the reflection behavior
at a program point affected by SC precisely. In principle, the reflective behavior at a program
point can also be answered by raising points-to queries on-demand instead. In practice,
however, existing demand-driven pointer analyses for Java [32, 40, 41, 46, 58] either ignore
hard language features such as reflection and dynamic class loading or assume that they
have been handled by a pre-analysis (e.g., when GICFG is built). In fact, how to analyze
such hard language features is a big challenge in its own right [30], despite recent advances
on static handling of reflection and dynamic class loading [5, 28,29,31,35, 45,56,57]. In this
setting, we are not aware of any SC-aware demand-driven pointer analysis, not to mention
its scalability to large object-oriented programs flow- and context-sensitively.
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8 Conclusions and Future Work

This paper brings a new dimension to program slicing by introducing a sequential criterion.
The temporal ordering constraints that appear in a sequential criterion, which can be,
e.g., one or several sequences of API usage calls leading to a program point, are naturally
inherent in many real-world applications, but have not been exploited in program slicing
before. Accordingly, we propose program tailoring, a new technique to trim a program by
a sequential criterion soundly (with respect to a given ICFG) and scalably (for reasonably
large object-oriented programs). Regarding this new research work — program tailoring,
in theory, we have formalized it, proved its soundness (with respect to a given ICFG), and
discussed its advantages and limitations. In practice, we have produced a soon-to-be released
open-source implementation, Tailor, and demonstrated its usefulness for improving the
effectiveness of existing slicing techniques in program debugging and understanding and for
supporting program analysis with large Java programs due to its good scalability.

Program tailoring builds on a natural connection with several research fields: program
slicing, API protocol (or specification) mining, and program analysis. Therefore, a lot of
interesting future work is anticipated to investigate their interplay. One possibility is to
combine tailoring and slicing to eliminate irrelevant statements that cannot be eliminated
by either alone scalably for a given task. Another is to combine API protocol analysis with
SC extension to enable the latter to exploit richer semantic information available. Finally,
program tailoring also provides new opportunities for developing program analyses (e.g.,
pointer analysis) that are focused and partial, paying closer attention to specific parts of the
program, where some hard language features need to be analyzed precisely and scalably.
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Abstract
The undisciplined use of shared mutable state can be a source of program errors when aliases
unsafely interfere with each other. While protocol-based techniques to reason about interference
abound, they do not address two practical concerns: the decidability of protocol composition and
its integration with protocol abstraction. We show that our composition procedure is decidable
and that it ensures safe interference even when composing abstract protocols. To evaluate the
expressiveness of our protocol framework for safe shared memory interference, we show how this
same protocol framework can be used to model safe, typeful message-passing concurrency idioms.
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1 Introduction

The interactions that can occur via shared mutable state can be a source of program errors.
When different clients access the same mutable state, their actions can potentially interfere.
For instance, the programmer may wrongly assume that a cell holds a particular type, when
another part of the program has changed that cell to hold a different type. When this
happens, the program may fault due to unsafe interference caused by unexpected actions
through other aliases to that shared state. Thus, to reason about interference we must reason
about how state is aliased and how the different aliases use the shared state.

Our technique builds on the use of linear capabilities [1] to track type-changing resource
mutation within the framework of a linear type system. However, relying solely on linearity
is often too restrictive. For instance, linearity enforces exclusive ownership of mutable
state, which is incompatible with multithreading—i.e. linearity forbids sharing. To allow
sharing, we extend the concept of rely-guarantee protocols [19]. By sequencing steps of
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“rely⇒guarantee” actions, each protocol characterizes an alias’s local, isolated perspective on
interactions with a piece of shared state:

“what I assume about the state”⇒ “what I guarantee about the state”︸ ︷︷ ︸
current step

; next step

Since the interactions performed by an alias may change over time, a rely-guarantee protocol
is formed by a sequence of steps that specify each interfering action. Each step relies on
the shared state having some type and then, after some private actions, guarantees that
the shared state will now have some other type, which becomes visible to other aliases.
By constraining the actions of each alias, we can make strong assumptions about the kind
of interference that an alias may produce, in the spirit of rely-guarantee reasoning [13].
Naturally, not all protocols compose safely. While a protocol describes its own actions on
a piece of shared state, protocol composition will ensure that those actions are safe w.r.t.
the actions that can be done via other existing (and even future) protocols over that state.
Composition is safe only if the set of protocols accounts for all possible run-time action
interleavings that may occur on that shared state.

Our main contribution is a decidable protocol composition procedure that also allows
abstract protocols to be composed. We break down our contributions as follows:

We adapt the existing constructs of rely-guarantee protocols [19] to work in a system
with concurrent run-time semantics, and show that rely-guarantee protocols are useful to
reason about safe interference in the concurrent setting.
We give an axiomatic definition of protocol composition. We show that this procedure
can be implemented in a sound and complete (w.r.t. the formal definition) algorithm
that terminates on all legal inputs.1 This algorithm is implemented in a prototype.2
We show that our use of type abstraction and bounded quantification at the protocol
level enables us to model new, and more general, polymorphic forms of safe modular
shared state interactions.
We prove our system sound through progress and preservation theorems that show the
absence of unsafe interference in correctly typed programs. Our design ensures memory
safety and data-race freedom, where linear resources are shared via protocol composition
(a partial commutative monoid [16, 6]).
We evaluate the expressiveness of our system by discussing how our core shared memory
protocol framework is capable of expressing safe, typeful message-passing idioms.

Next, we briefly introduce the language that “hosts” our protocols, with the remaining
text focused on discussing new protocol-level features. Sections 2 and 3 introduce our
novel definition of protocol composition and its extensions to support abstract protocols.
Section 4 discusses technical results; followed by discussions of expressiveness, related work,
and conclusions.

1.1 Preliminaries: Language Overview
Our language supports fork/join concurrency combined with lock-based mutual exclusion,
where all threads share a common heap. We use the variant of the polymorphic λ-calculus

1 We have not proven the decidability of the entire type system, but only of the protocol composition
algorithm which is at its core. The remainder of the type system is more conventional and we did not
encounter difficulties with decidability when implementing similar rules in our prior work [19].

2 See: http://www.cs.cmu.edu/~foliveir/protocol-composition.html

http://www.cs.cmu.edu/~foliveir/protocol-composition.html
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x ∈ Variables t ∈ Tags f ∈ Fields ρ ∈ Location Constants

e ::= v (value)
| v.f (field selection)
| v v (application)
| let x = e in e end (let)
| new v (cell creation)
| delete v (cell deletion)
| !v (dereference)
| v := v (assign)
| case v of t#x→ e end (case)

| lock v (lock locations)
| unlock v (unlock locations)
| fork e (spawn thread)

v ::= ρ (address)
| x (variable)
| λx.e (function)
| {f = v} (record)
| t#v (tagged value)

Notes: Z is a potentially empty sequence of Z elements. ρ is not source-level.

Figure 1 Grammar — Values (v) and expressions (e).

shown in Figure 1. For convenience, the grammar is let-expanded so that all constructs,
except let, are defined over values. The language includes first-class functions (λ), records
({f = v}) that label a value as f, and tagged values (t#v) to mark a value with a tag.
Standard constructs are used for field selection, application, let blocks, memory allocation,
deletion, assignment, dereference, and case analysis. “lock v” atomically locks a non-empty set
of locations (ensuring both mutual exclusion and forbidding re-entrant uses) and analogously
with “unlock v”. “fork e” executes the expression in a new thread while sharing access to
the common global heap. The operational semantics are standard and, as such, are only
shown in the companion Technical Report [21]. They produce the standard evaluation of the
language’s constructs such as creating or deleting memory, spawning new threads, etc.

We type mutable references by following the design proposed in L3 [1]. Therefore, a
mutable cell is decomposed into two components: a pure reference, which can be freely
copied; and a linear [10] capability, a resource that is used to track the contents of that cell.
To link a reference to its respective capability, we use location-dependent types. For instance,
a new cell has type ∃l.( (!ref l) :: (rw l A) ). This type abstracts the fresh location, l, that
was created by the memory allocation. Furthermore, we are given a reference of type “!ref l”
to mean a pure/duplicable (!) reference to a location l, where the information about the
contents of that location is stored in the linear capability for l. The permission to access
(e.g. dereference) the contents of a cell requires both the reference and the capability to be
available. Our capabilities follow the format “rw l A”, meaning a read-write capability to
a location l that currently has contents of type A (the type of the value, given in “new v”,
that initializes the new cell). We depart from [1] by making capabilities typing artifacts that
only exist at the level of typing. Consequently, capabilities are managed implicitly by the
type system rather than manually manipulated by the programmer via language constructs.
However, we may still need to associate a capability with another type. For this reason, we
use the notion of stacking [20]. In ∃l.( (!ref l) :: (rw l A) ) we see that the capability to l
is stacked on top of “!ref l” since the capability is to the right of the “::”. This allows the
capability to be bundled together with the ref type, but no action is required to unbundle
them if they are needed separately. We refer to prior work [16, 20, 19, 1] for more details on
the use of capabilities, locations, and stacking, as well as convenient abbreviations. Here, it
suffices to assume that they are handled automatically by the type system, as our focus here
is on safely sharing the linear resources.

In the scheme above, all the variables that reference the same location also share a single
linear (i.e. “exclusively owned” or “unique”) capability that tracks the changes to that
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// assume ‘y’ in scope y : !ref l, rw l int
y := "ok!"; y : !ref l, rw l string
let x = y in x : !ref l, y : !ref l, rw l string

x := false; x : !ref l, y : !ref l, rw l boolean
delete x; x : !ref l, y : !ref l
!y // Type Error: missing capability to location ‘l’.

Figure 2 Tracking linear capabilities.

X ∈ Type Variables l ∈ Location Variables
p ::= ρ | l u ::= l | X U ::= p | A

A ::= !A (pure/persistent)
| A( A (linear function)
| [f : A] (record)
|

∑
i
ti#Ai (tagged sum)

| ∀l.A (universal location)
| ∃l.A (existential location)
| ∀X<:A.A (bounded universal type)
| ∃X<:A.A (bounded existential type)
| ref p (reference type)
| X[U ] (type variable)

| (rec X(u).A)[U ] (recursive type)
| A⊕A (alternative)
| A & A (intersection)
| rw p A (capability to p)
| none (empty resource)
| top (top)
| A :: A (stacking)
| A ∗A (separation)
| A⇒ A (rely)
| A ; A (guarantee)

Notes: we simplify X[] to X; ⊕, &, ∗, + are commutative and associative.

Figure 3 Grammar — Types (A) (Continued from Figure 1.).

location’s contents (as shown in Figure 2). However, this tracking relies on a compile-time
approximation of how variables alias, which constrains how state can be used. Since the
linear capability must be (linearly) threaded through the program, this scheme forbids
aliasing idioms that require “simultaneous” access to aliased state, such as when multiple
threads share access to a cell. To enable this form of sharing, we split a linear resource
into multiple protocols. Each protocol controls how an alias interacts with the shared state,
without depending on precise knowledge of which variables alias each other. We will continue
with a brief presentation of the base language, before diving into the details of our sharing
mechanism in Section 2.

(Note that rely and guarantee types will only be discussed in the next section, when
we present sharing). Our types (Figure 3) follow the connectives of linear logic [10]. For
this reason a function type uses ( (instead of →) to denote a linear function. The linear
restriction can be lifted when the type is preceded by a “bang”, such as in !A, which denotes
a pure/duplicable type. Records are typed as [f : A] where each field f types the value of the
record with some type A.

∑
i ti#Ai denotes a single tagged type or a sequence of tagged

types separated by + (such as “a#A + b#B + c#C”). We have separate existential and
universal quantification over locations and types, since locations and types are of different
kinds. Note that we leave ∀/∃ as typing artifacts and as such they do not have corresponding
constructs in the language. Quantification over types can provide a type bound (on the right
of <:) and where top is assumed by default when the bound is omitted.

Our recursive types (assumed to be non-bottom types) are equi-recursive, interpreted
co-inductively, and satisfy the usual folding/unfolding principle:

(rec X(u).A)[U ] = A{(rec X(u).A)/X}{U/u} (eq:Rec)

Recursive types may include a list of type/location parameters (u) that are substituted by
some type/location (U) on unfold, besides unfolding the recursive type variable (X).
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Γ | ∆0 ` e : A a ∆1 Typing rules, (t:*)

(t:Pure)
Γ | · ` v : A a ·
Γ | · ` v : !A a ·

(t:Pure-Elim)
Γ, x : A0 | ∆0 ` e : A1 a ∆1

Γ | ∆0, x : !A0 ` e : A1 a ∆1

(t:Frame)
Γ | ∆0 ` e : A a ∆1

Γ | ∆0,∆2 ` e : A a ∆1,∆2

(t:Function)
Γ | ∆, x : A0 ` e : A1 a ·

Γ | ∆ ` λx.e : A0 ( A1 a ·

(t:Application)
Γ | ∆0 ` v0 : A0 ( A1 a ∆1 Γ | ∆1 ` v1 : A0 a ∆2

Γ | ∆0 ` v0 v1 : A1 a ∆2

(t:New)
Γ | ∆0 ` v : A a ∆1

Γ | ∆0 ` new v : ∃l.((!ref l) :: (rw l A)) a ∆1

(t:Delete)
Γ | ∆0 ` v : ∃l.((!ref l) :: (rw l A)) a ∆1

Γ | ∆0 ` delete v : ∃l.A a ∆1

(t:Assign)
Γ | ∆0 ` v1 : A0 a ∆1

Γ | ∆1 ` v0 : ref p a ∆2, rw p A1

Γ | ∆0 ` v0 := v1 : A1 a ∆2, rw p A0

(t:Let)
Γ | ∆0 ` e0 : A0 a ∆1

Γ | ∆1, x : A0 ` e1 : A1 a ∆2

Γ | ∆0 ` let x = e0 in e1 end : A1 a ∆2

(t:Dereference-Linear)
Γ | ∆0 ` v : ref p a ∆1, rw p A

Γ | ∆0 ` !v : A a ∆1, rw p ![]

(t:LocOpenBind)
Γ, l : loc | ∆0, x : A1 ` e : A2 a ∆1

Γ | ∆0, x : ∃l.A1 ` e : A2 a ∆1

(t:Subsumption)
Γ ` ∆0 <: ∆1 Γ | ∆1 ` e : A0 a ∆2 Γ ` A0 <: A1 Γ ` ∆2 <: ∆3

Γ | ∆0 ` e : A1 a ∆3

Note: bounded variables of a construct and of quantifiers must be fresh in the rule’s conclusion.

Figure 4 Typing rules (selected, see [21] for complete set).

We use ⊕ to denote a union of alternative types, and & to denote a linear choice of different
types. none is the empty resource. Finally we have “A0 :: A1” for stacking resource A1 on
top of A0. Stacking is not commutative, so that it is not guaranteed that “A0 :: A1 :: A2” can
be used in place of “A0 :: A2 :: A1”. To enable resource commutation, we use the ∗ operator
such that “A0 :: (A1 ∗ A2)” and “A0 :: (A2 ∗ A1)” are interchangeable via subtyping. For
clarity, we will review these type annotations as we present examples further below. Note
that we do not syntactically distinguish resources (such as capabilities or protocols) from
value-inhabited types. However, the type system ensures that types such as none can never
be used to type a value. Indeed, even though “wrong” types can be assumed (such as in a
function’s argument) they can never actually be introduced as values.

To enable automatic threading of resources, we use a type-and-effect system with judg-
ments of the form: Γ | ∆0 ` e : A a ∆1 stating that with lexical environment Γ and linear
resources ∆0 we assign the expression e the type A, with effects resulting in the resources in
∆1. The typing environments are defined as follows:

Γ ::= · (empty)
| Γ, x : A (variable binding)
| Γ, p : loc (location assertion)
| Γ, X<:A (bound assertion)
| Γ, X : k (kind assertion)

∆ ::= · (empty)
| ∆, x : A (linear binding)
| ∆, A (linear resource)

k ::= type | type→ k | loc→ k (kinds)

Recursive type variables are given an→ kind, where the left hand side tracks the type/location
kind of a parameter of that recursive type.
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Figure 4 includes a few selected typing rules. Additional rules are shown below as they
become relevant to the discussion on sharing, with the remainder left to the T.R.. (t:Pure)
types a value as pure if the value does not use any resources. If a variable is of a pure
type, then (t:PureElim) allows the binding to be moved to the linear context with its
type explicitly “banged” with !. (t:Frame) enables framing [27] resources that are not used
by an expression, just threaded through the expression. Since a function, (t:Function),
can depend on the resources inside of ∆ (which the function captures), a functional value
must be linear. However, the function can later be rendered pure (!) through the use of
(t:Pure) if the set of resources it captures is actually empty. (t:Application) is the
standard rule. As discussed above, (t:New) and (t:Delete) manipulate types that abstract
the underlying location that was created or that is to be deleted. (t:Assign) updates
the contents of a location with the type of the newly assigned value. (t:Let) threads the
effects of e0 to the initial linear resources of e1, sequencing the evaluation of the expressions
as usual. (t:Dereference-Linear) removes the contents of a cell, leaving the residual
“unit” type behind (the semantics leave the cell unchanged but unusable through typing).
(t:LocOpenBind) enables non-syntax-directed opening of existential location packages.

The subtyping rules are deferred to the T.R., but it suffices to know the subtyping
judgment, Γ ` A0 <: A1, which states that A0 is a subtype of A1, meaning that A0 can be
used anywhere A1 is expected. An analogous judgment governs subtyping between linear
environments, Γ ` ∆0 <: ∆1. Thus, the (t:Subsumption) rule simply states that we can
type an expression while using weaker assumptions and ensuring a stronger result and effect,
as these types cannot break the conclusion’s type expectations.

2 A Protocol for Modeling Fork-Join Interactions

We begin by describing how non-abstracted protocols compose and how rely-guarantee proto-
cols work in the concurrent setting. Our language supports the fork/join model of concurrency,
in which a join is encoded via shared state interactions. There are two participants in this
interaction: the Main thread and the Forked thread. The forked thread computes some result.
When the main thread joins the forked thread it will wait until the result becomes available,
if it is not yet ready. Our primitives to interact with shared state are reading/writing and
locking/unlocking. Because of this, our protocols must explicitly model the “wait for result”
cycle of a join.3 A thread scheduler could reduce or eliminate the spinning caused by this
“busy-wait”, but this is beyond the scope of our discussion. We define the two protocols as:

F , Wait⇒ Result ; none M , ( Wait⇒Wait ; M ) ⊕ ( Result⇒ Done ; Done )

Each protocol contains a sequence of steps that control the use of locks and specify the
(type) assumptions on that locked state. Since locks hide all private actions, the protocols
will only need to model the changes that become visible upon unlocking. These changes are
bounded by a single lock-unlock block, which is mapped to a single rely⇒guarantee step in
the protocol. When we lock a cell we will assume that the state is of some type and, when we
eventually unlock that cell, we will guarantee that it changed to some other type. Multiple
steps can be sequenced using the ; operator.

The forked thread will be given the F protocol. This protocol initially assumes that
the shared state is of type Wait on locking. In order to legally unlock that cell, we must

3 Each protocol must be aware of all valid states, as an omission would leave room for unsafe interference,
such as when later re-splitting that protocol.
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first fulfill the obligation to mutate the state to Result. Once that guarantee is obeyed the
protocol continues as none. This empty resource type models termination since the forked
thread will never be able to access that shared state again. Note that since subsequent steps
may be influenced by the guarantee of the current step, a protocol step is to be interpreted
as “Wait ⇒ ( Result ; none )”.

The Main protocol includes two alternative (⊕) steps that describe different uses of the
shared state. If we find the shared cell containing the Wait type then the main thread must
leave the state with the same type, before later retrying M. Otherwise, if we find the cell
containing a Result, we know that F has already terminated and can no longer access the
shared state. In that situation, we mutate the cell to Done and unlock it so that each lock
always has a matching unlock. Afterwards, the protocol continues as Done, a type that is
just a regular linear capability. Thus, M recovered ownership of the shared state and Done
can continue to be used without locking since the cell is no longer shared. We can now give
concrete definitions for Wait, Result, and Done as types describing a single capability to
location l as follows:

Wait , rw l Wait#![] Result , rw l Result#int Done , rw l ![]

Wait is a capability to location l containing a tagged value, where Wait is the tag and “![]” (a
pure empty record) is the type of the value. Result is a capability for l containing an integer
value tagged with Result. The two tags will enable us to distinguish between the Wait and
Result alternatives by using standard case analysis. With Done the content is an empty pure
record (“unit”).

Each protocol describes an alias’s local, isolated view of the evolution of the shared
state. Thus, we can discuss the uses of each protocol independently. Because a protocol is
a linear resource, the forked thread will “consume” or “capture” F in its context, making
it unavailable to the main thread. As with any linear resource, F is tracked by the linear
typing environment (∆) and is either used by an expression or threaded through to the next
expression. However, the forked thread and main thread can share the enclosing lexical
typing environment (Γ) because it only contains pure/duplicable assumptions. A possible
use of the F protocol follows.

3 fork Γ = c : ref l, l : loc | ∆ = work : ![]( int, F
4 let r = work {} in Γ = r : int, ... | ∆ = Wait⇒ (Result ; none)
5 lock c; Γ = ... | ∆ = Wait, (Result ; none)
6 c := Result#r; Γ = ... | ∆ = Result, (Result ; none)
7 unlock c Γ = ... | ∆ = none
8 end Γ = ... | ∆ = ·

Γ contains a reference (c) to the location (l) that is being shared by the protocol, and
∆ contains a variable with the (linear) function that computes the work that the thread
will do. (In this example both protocols refer to a well-known common location, but our
technique also allows each protocol to ∃ abstract its locations.) Line 4 consumes the function
work by calling it and storing the result in variable r. At this point we want to update
the shared state to signal that the result is ready. Since we are accessing shared state in a
multi-threaded environment we first lock the shared location that is being referenced by c.
To type a lock we must map the locations listed in the lock to those contained in the rely
type of the protocol. Well-formedness conditions on the protocols ensure that, at each step,
the rely and the guarantee types refer the same set of locations so that no lock on a location
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goes without a respective unlock (later on).

Γ | · ` v : ref p a · locs(A0) = p

Γ | ∆, A0 ⇒ A1 ` lock v : ![] a ∆, A0, A1
(t:Lock-Rely)

When locking (line 5), the step of F is broken down into its two components: the rely type
(Wait) and the guarantee type (Result;none). While Wait describes the linear resources that
are now available to use, the guarantee type is an obligation to mutate the state to fulfill
the given type before unlocking. Indeed, line 7 is only valid because the shared state was
modified to match the promised guarantee type (Result).

Γ | · ` v : ref p a · locs(A0) = p

Γ | ∆, A0, (A0;A1) ` unlock v : ![] a ∆, A1
(t:Unlock-Guarantee)

(with parenthesis used for clarity). Once the guarantee is fulfilled, we can move on to the next
step of the protocol (in the case of F, none; or A1, in the case of the rule above). The none
type is the empty resource that can be automatically discarded, leaving ∆ empty (·). Thus,
the uses of protocols are mapped to the (t:Lock-Rely) and (t:Unlock-Guarantee)
rules that step a protocol. We now show the rest of the encoding:

1 let newFork = λwork. Γ = · | ∆ = work : ![]( int
2 let c = new Wait#{} in Γ = c : ref l, l : loc | ∆ = rw l Wait#![], ...
3 fork ... // lines 3 to 8 shown above. Γ = ... | ∆ = M, F, ...

To simplify the presentation, our term language is stripped of type annotations. However,
the newFork function has type !( ( ![]( int )( ( ![]( int ) ) where the argument of this
pure function is the work to be done by the thread, as was shown above. The resulting
function is the join (shown below) that, once called, waits for the forked thread’s result.
Line 2 creates the cell that will be shared by the main and forked threads. This new cell,
although typed ∃l.( (!ref l) :: (rw l Wait#![]) ), is automatically opened by the type system
via (t:LocOpenBind) to allow direct access to the ref l reference via variable c.

Line 3 shares the cell by splitting the capability to location l into the M and F protocols.
This split is done in a non-syntax-directed way through (t:Subsumption) (of Figure 4),
combined with the following rule for subtyping on ∆’s:

Γ ` ∆0 <: ∆1 Γ ` A0 V A1 || A2

Γ ` ∆0, A0 <: ∆1, A1, A2
(sd:Share)

Where the following resource split (V) is used:

Γ ` Wait V M || F (recall: Wait , rw l Wait#![])

This split results in the capability to location l being replaced by the two protocols, M and F,
in ∆. The composition check (described in the next subsection) relies on the knowledge that M
and F share the same location. Once the protocols are known to compose safely, however, we
no longer need to track this sharing—each protocol can abstract the location being accessed
under a different name, and they can be used independently. The fork expression is typed by
consuming the resources that the fork will use (such as F in the fork of line 3):

Γ | ∆ ` e : ![] a ·
Γ | ∆ ` fork e : ![] a ·

(t:Fork)

This rule is somewhat similar to (t:Function), but the result type is unit because fork does
not produce a result. Thus, a fork is executed for the effects it produces on the shared state.
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As such, to avoid leaking resources, the final residual resources of the forked expression must
be empty and the resulting value pure (note that “!A <: ![]”).

Finally, we show the join function that will “busy-wait” for the forked thread to produce
a result. Its use of both recursion and case analysis should be straightforward as they follow
standard usage. The following text will focus on the less obvious details.

9 λ_.rec R. ∆ = ( Wait⇒ (Wait; M) ) ⊕ ( Result⇒ (Done; Done) )
10 [a]∆ = Wait⇒ (Wait; M) [b]∆ = Result⇒ (Done; Done)
11 lock c; [a]∆ = Wait, (Wait; M) [b]∆ = Result, (Done; Done)
12 case !c of [a]∆ = rw l ![], (Wait; M) [b]∆ = rw l ![], (Done; Done)
13 Wait#x → // must restore linear value [a]∆ = rw l ![], (Wait; M)
14 c := Wait#x; [a]∆ = Wait, (Wait; M)
15 unlock c; [a]∆ = M
16 R // retries
17 | Result#x → [b]Γ = x : int, . . . | ∆ = rw l ![], (Done; Done)
18 unlock c; [b]Γ = x : int, . . . | ∆ = rw l ![]
19 delete c; [b]Γ = x : int, . . . | ∆ = ·
20 x
21 end
22 end

We omit Γ to center the discussion on the contents of ∆. The alternative type (⊕) lists
a union of types that may be valid at that point in the program. To use such a type, an
expression must consider each alternative individually via (t:Alternative-Left):

Γ | ∆0, A0 ` e : A2 a ∆1 Γ | ∆0, A1 ` e : A2 a ∆1

Γ | ∆0, A0 ⊕A1 ` e : A2 a ∆1
(t:Alternative-Left)

The breakdown of ⊕ (line 10) is done automatically by the type system. Thus, the body
of the recursion must be typed individually under each one of those alternatives, marked as
[a] and [b]. The type of the resource on each alternative contains a sum type that matches
different branches in the case of line 12. Note that it is safe for this sum type to only match
a subset of the branches that the case lists. The remaining branches are simply ignored when
typing the case with that sum type:

Γ | ∆0 ` v :
∑

i
ti#Ai a ∆1 Γ | ∆1, xi : Ai ` ei : A a ∆2 i ≤ j

Γ | ∆0 ` case v of tj#xj → ej end : A a ∆2
(t:Case)

This enables the same case to produce different effects, such as obeying incompatible
guarantees, based solely on the tagged contents of v. For instance, the Result branch will
recover ownership and destroy the shared cell (line 19), while the Wait branch must restore
the linear value of that cell (that was removed by the linear dereference of line 12, that left
“rw l ![]” in ∆) before retrying. Although line 19 deletes the cell, we first unlock the cell to
fulfill the “Done; Done” guarantee of the final protocol step.

A rely-guarantee protocol is a specification of each lock-unlock usage, modeled by a
protocol type. Therefore, we will continue the discussion on interference by only looking at
the protocols, while omitting the actual concrete programs that use them.

2.1 Checking Safe Protocol Composition
We now introduce our main contribution: a novel axiomatic definition of protocol composition,
which is later extended to support abstraction. Composing protocols over some shared state
requires considering all possible ways in which the use of these protocols may be interleaved.
Thus, regardless of the non-deterministic way by which aliases are interleaved at run-time, a
correct composition will ensure that all possible uses are safe.
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Intuitively, a binary protocol split will generate an infinite binary tree representing all
combinations of interleaved uses of the two new protocols. Each node of that tree has two
children based on which protocol remains stationary while the other is stepped. Since this
tree may be infinite, we must build a co-inductive proof of safe interference. We only consider
binary splits when checking composition but since a protocol can be later re-split, there is
no limit to how many protocols may share some state.

The two protocols, M and F, shown above contain a finite number of different positions.
We call a configuration the combination of the positions of each protocol and the current
type of the shared resources. Each configuration is of the form:

〈 Γ ` ResourcesV Protocol || Protocol 〉

Thus, when we split a Wait cell into protocols M4 and F5, we get the following set of
configurations that simulate the uses done via the protocols (seen as atomic public transitions
of lock-unlock uses, corresponding to the respective rely and guarantee types):

{ Ê 〈 Γ `WaitV M || F 〉 , Ë 〈 Γ ` ResultV M || none 〉 ,
Ì 〈 Γ ` DoneV Done || none 〉 , Í 〈 Γ ` noneV none || none 〉 }

Configuration Ê represents the initial split of Wait into M and F. Starting from some
configuration, we will leave one of the protocols stationary while we simulate a use of the
shared state (a step) with the remaining protocol. From Ê if we step M we will stay in the
same configuration. If instead F is stepped, we get to configuration Ë that changed the
state to Result and terminates the F protocol. By continuing to step M we have the two last
configurations: Ì where the last step of M is ready to recover ownership, and Í where the
ownership of the shared resource was recovered and all protocols have terminated (i.e. all
resources are empty, none).

Upon sharing, the ownership of the shared resources belongs to all intervening protocols;
all protocols can access the shared resources through locking. Ownership recovery means that
this ownership is given back to one single protocol and “revoked” from all remaining protocols.
In our protocols, recovery is modeled via protocol termination, such that a step transitions
to a state rather than to another protocol step. However, to be safe, we must be sure that
this permanent ownership transfer only occurs on the last protocol to terminate, ensuring
that no other protocol may accidentally assume that that shared state is still available. The
ownership recovery in Ì transfers Done from the “pool” of shared resources to the alias that
uses the last step of the M protocol. We also see by Í that this stepping consumes both the
shared resource (leaving it as none) and the final “step” of M (leaving the protocol position
also as none).

All protocol configurations shown above can take a step. (Even none can take a vacuous
step that remains in the same configuration since none cannot change the shared resources.)
Therefore, each protocol will always find an expected state in the shared cell regardless of how
protocols are interleaved—i.e. all interference is safe since no configuration is stuck. A stuck
configuration occurs when at least one of the protocols cannot take a step with the current
type of the shared resources. For instance, 〈Γ ` ResultV M || F〉 cannot take a step with F
since F does not rely on Result in any of its available steps. If such stuck configurations were
allowed to occur, then a program could fault due to unexpected values stored in shared cells

4 M , ( Wait⇒ ( Wait ; M ) ) ⊕ ( Result⇒ ( Done ; Done ) )
5 F , Wait⇒ ( Result ; none )
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P,Q ::= (rec X(u).P )[UP ] | X[UP ] | P ⊕ P | P & P | none
| S ⇒ P | S ; P | ∃l.P | ∀l.P | ∃X <: A.P | ∀X <: A.P

S ::= (rec X(u).S)[US ] | X[US ] | S ⊕ S | S & S | none | A ∗A | rw p A

R ::= P | S
Note: that the structure of allowed protocols is further restricted via protocol composition, beyond the
syntactical categories above. Namely, abstraction is only enabled by the rules of Section 3.3.

Figure 5 Grammar for checking safe protocol composition: P rotocols, States, and Resources.

or due to attempts to access cells that were destroyed using wrong assumptions of ownership
recovery.

Protocol composition ensures that a resource, R (capabilities or protocols), can be shared
(split) as two protocols, P and Q, noted: Γ ` RV P || Q. Figure 5 lists the grammatical
categories (for protocols, states and resources) that we consider when composing protocols.
As exemplified above we use a set of configurations, C, to represent the positions of each
protocol as we traverse all possible interleaved uses of the two new protocols. C is defined as:

C ::= C · C (union) | 〈 Γ ` RV P || Q 〉 (configuration)

Protocol composition, applied via (sd:Share), ensures that all configurations reachable
through stepping are themselves able to take a step, as follows:

〈 Γ ` RV P || Q 〉↑
Γ ` RV P || Q

(wf:Split)
C0 7→ C1 C1 ↑

C0 ↑
================= (wf:Configuration)

Where C ↑ signals the divergence of stepping, consistent with the co-inductive nature of
protocol composition. We use a double line, as in (wf:Configuration), to mean that a
rule is to be interpreted co-inductively. This definition accounts for protocols that never
terminate and also ensures that all protocols can take a step with a given resource.

We now discuss the basic protocol composition definition of Figure 6. (c:AllStep)
synchronously steps all existing configurations, where each configuration is stepped through
(c:Step). We use R∗ (where ∗ is either L or R) to specify the configuration reduction context
on one of the protocols of a configuration, while the remaining one remains stationary, i.e.:

RL[�] = � || Q (for the Left protocol, Q is stationary)
RR[�] = P || � (for the Right protocol, P is stationary)

The subsequent stepping rules use R to range over both RL and RR.
We use three distinct label prefixes to group the stepping rules based on whether a rule

is stepping over a protocol (c-ps:*), stepping over some state (c-ss:*), or is applicable on
both kinds of resource (c-rs:*). (c-rs:None) “spins” a configuration since a terminated
protocol cannot use the shared resources but must be stuck-free for consistency with our
definition. The following (c-rs:*Alternative) and (c-rs:*Intersection) rules “dissect”
a resource based on the alternative (⊕) or choice (&) presented. Each different alternative
state must be individually considered by a protocol, while only one alternative step of a
protocol needs to be valid. The situation is the reverse for choices: all choices of a protocol
must have a valid step, but a step of a protocol can choose which resource to consider when
stepping. State stepping, (c-ss:Step), transitions the step of the protocol and changes the
state of the shared resources to reflect the guaranteed state of the protocol. Ownership
recovery, (c-ss:Recovery), “consumes” the shared state (leaving it as none) which models
the transfer of ownership of that state back to the client context that uses the final step
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C 7→ C Composition, (c:*)

(c:Step)
〈 Γ ` RV RL[P ] 〉 7→ C0 RL[�] = � || Q
〈 Γ ` RV RR[Q] 〉 7→ C1 RR[�] = P || �

〈 Γ ` RV P || Q 〉 7→ C0 · C1

(c:AllStep)
C0 7→ C2

C1 7→ C3

C0 · C1 7→ C2 · C3

Composition — Reduction Step, (c-rs:*)
(c-rs:None)

〈 Γ ` RV R[none] 〉 7→ 〈 Γ ` RV R[none] 〉

(c-rs:StateIntersection)
〈 Γ ` R0 V R[P ] 〉 7→ C

〈 Γ ` R0&R1 V R[P ] 〉 7→ C

(c-rs:ProtocolAlternative)
〈 Γ ` RV R[P0] 〉 7→ C

〈 Γ ` RV R[P0 ⊕ P1] 〉 7→ C

(c-rs:ProtocolIntersection)
〈 Γ ` RV R[P0] 〉 7→ C0

〈 Γ ` RV R[P1] 〉 7→ C1

〈 Γ ` RV R[P0&P1] 〉 7→ C0 · C1

(c-rs:StateAlternative)
〈 Γ ` R0 V R[P ] 〉 7→ C0

〈 Γ ` R1 V R[P ] 〉 7→ C1

〈 Γ ` R0 ⊕R1 V R[P ] 〉 7→ C0 · C1

Composition — State Stepping, (c-ss:*)
(c-ss:Step)

〈 Γ ` S0 V R[S0 ⇒ S1;P ] 〉 7→ 〈 Γ ` S1 V R[P ] 〉

(c-ss:Recovery)

〈 Γ ` S V R[S] 〉 7→ 〈 Γ ` noneV R[none] 〉
Composition — Protocol Stepping, (c-ps:*)

(c-ps:Step)

〈 Γ ` S0 ⇒ S1;QV R[S0 ⇒ S1;P ] 〉 7→ 〈 Γ ` QV R[P ] 〉

Figure 6 Basic protocol composition stepping rules.

of the protocol. Protocol stepping, (c-ps:Step), requires an exact simulation of the rely
and guarantee types when stepping both the simulated protocol and the current stepping
protocol. Note that the rules above also enable the re-splitting of a protocol by extending
an ownership recovery step. In this situation, we have that the simulation of the original
protocol will seamlessly switch from the protocol stepping rules to the state stepping rules.

3 Polymorphic Protocol Composition

Up to this point, protocol composition does a strict stepping of protocols. Consequently,
stepping requires each protocol to know the exact type representation of the shared resources.
Ideally, to improve both locality and modularity, each protocol should only depend on the type
information that is relevant to the actions done through that alias. For instance, the action
done through the F protocol of page 6 does not need to know the precise type (Wait) that is
initially stored in location l. Thus, we want to be able to abstract Wait as X such that the
protocol only keeps the typing information that is relevant to that protocol’s local perspective
on the shared resources: ∃X.( rw l X ⇒ ( rw l Result#int ; none ) ). Similarly, the
wait step of the M protocol only depends on the tag of the shared cell enabling everything else to
be abstracted from its perspective: ∃X.( rw l Wait#X ⇒ ( rw l Wait#X ; M ) ) ⊕ (...).
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Since rely-guarantee protocols are first-class types, they can move outside the scope of a
“module”. Without this form of abstraction, such a move would either expose potentially
private information or limit how clients may later re-split the shared resources. While enabling
protocols to abstract part of their uses based on their perspective of the shared resources
improves modularity and increases flexibility, it also brings new challenges on defining safe
protocol composition and ensuring its termination. We will focus the discussion on two new
aliasing idioms that this kind of abstraction enables: a) existential-universal interaction, how
a universally quantified guarantee can safely interact with an existentially quantified rely;
and b) step extensions over abstractions, how abstractions enable existing protocol steps
to be re-split (i.e. nested protocol re-splitting) yet without the risk of introducing unsafe
interference on older protocols of that state. Section 4 approaches the decidability problem.
The remaining of this section starts by introducing the basic intuition of how protocol-level
abstraction works, before extending our definition of composition to account for abstraction.

3.1 Existential-Universal Interaction
Enabling existential abstraction over the contents of the shared state will naturally allow
a greater decoupling from the actions done by other aliases to that shared state. However,
since a protocol encodes sequences of steps, ensuring safety must also account for the validity
of the scope of the opaque type. For instance, consider the composition:
Γ ` rw p intV ∃X.( rw p X ⇒ rw p X ; rw p X ⇒ ... ) || ( rw p int ⇒ rw p boolean ; ... )

On the left protocol, the scope of X extends beyond a single (⇒) step. Because the right
protocol can change the underlying representation of X, this composition cannot be ruled
safe. Indeed, if X were of a pure type, the left protocol could potentially swap X’s to an X
of a different representation, in a way that would unsafely interfere with the right protocol’s
assumptions on the precise contents of the shared state. Thus, while the left protocol depends
on an opaque type, that protocol still requires that the scope/“lifetime” of X extends to the
next step although the protocol does not impose any other type restrictions on X.

We now discuss the core ideas that enable the safe composition of protocols that interact
over abstractions. First the interaction will only occur via the “lifetime” of the stored type
(as it changes on each step), and then we will use bounded quantification to enable types
that are less opaque. Consider the following protocols that are sharing a location p:

Nothing , ∃X.( rw p X ⇒ rw p X ; Nothing )
Full[Y ] , rw p Y ⇒ ∀Z.( rw p Z ; Full[Z] )

The Nothing protocol is defined using X to abstract the contents of the shared cell on a
single step, while also guaranteeing that X is restored before repeating the protocol. Thus,
Nothing cannot publicly modify the shared state, although p can undergo private changes.
Conversely, Full is able to arbitrarily modify the shared state by allowing its clients to
pick any type to apply to the ∀ of the guarantee. Full itself is parametric on the type
that is currently stored in the shared cell, Y . Each step of Full can exploit the precise
local information on how the state was modified, by remembering its own changes to cell
p. However, the “lifetime” of X in Nothing is restricted to a single step. Naturally, to be
able to check this composition in a finite number of steps, we must check the changes done
by Full abstractly. To illustrate how composition works in this case, consider the following
split where p initially holds a value of type int:

p : loc ` rw p int V Full[int] || Nothing
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Protocol composition results in the following set of configurations:

{Ê 〈 p : loc ` rw p intV Full[int] || Nothing 〉 ,
Ë 〈 p : loc, Z : type ` rw p Z V Full[Z] || Nothing 〉 }

The use of abstraction will mean that each configuration may have different assumptions
of type (and location) variables. Configuration Ê is the initial configuration given by the
split above, which includes the assumption that p is a known location. To step Nothing
from Ê, we must first find a representation type to open the existential. This type is found
by unifying the current state of the shared state (rw p int) with the rely type of Nothing
(rw p X). Thus, we see that X is abstracting int. After we open the existential, by exposing
the int type, we see that the step will preserve int resulting in Nothing yielding the same
Ê configuration. To step Ê with Full[int], we must consider that its resulting guarantee
is abstract. The new configuration, Ë, must consider a fresh type variable to represent
that new type that a client can pick. In this case, we used Z to represent that new type.
It is straightforward to see that if we were to step Nothing from Ë we would remain in
configuration Ë following similar reasoning to that done for Ê. Perhaps the surprising aspect
is that further steps with Full will also yield configurations that are equivalent to Ë.

The typing environment plays a crucial role in enabling us to close the proof of safe
composition. Although each step of Full must consider a fresh type due to the ∀, stepping
results in configurations that are equivalent up to renaming of variables and weakening of Γ.
Weakening allows us to ignore variables that no longer occur free in a configuration. This
means that further steps with Full result in configurations that are equivalent to already
seen configurations. Thus, although the set of different types that can be applied to Full’s
guarantee is infinite, the number of distinct interactions that can legally occur through that
shared state is finite if we model those interactions abstractly. Lifetime conflicts cannot occur
with this technique as even if we open an existential, we must still step the new configuration.
Consequently, the problematic composition above would be detected via stepping.

We can use bounded quantification to provide more expressive abstractions that go
beyond the fully opaque types used above (which are equivalent to a “<: top” bound), and
convert this example into one of more practical use. By using appropriate bounds, we can
give concrete roles to the Nothing and Full protocols. Consider that we want to share
access to some data structure among several different threads. However, depending on how
these threads dynamically use that data structure, it may become important to switch its
representation (such as change from a linked list to a binary tree, etc.). Furthermore, we
want one specialized thread (the Controller) to retain precise control over the data structure
and to be allowed to monitor and change its representation. Concurrently, an arbitrary
number of other threads (the Workers) also have access to the data structure but are limited
to only access its Basic operations.

W , ∃X <: B.( rw p X ⇒ rw p X ; W )
C[Y ] , rw p Y ⇒ ∀Z <: B.( rw p Z ; C[Z] )

As before W is committed to preserve the representation type of X although it now has
sufficient room to use that type as B. C is now more constrained than before since it is forced
to guarantee a type that is compatible with B. However, C retains the possibility of both
changing the representation type contained in the shared state, and also of “remembering”
the precise (representation) type that was the result of its own local action. Finally, note
that we can safely re-split W arbitrarily (i.e. W V W || W). Protocol composition yields
similar set of configurations, but with the bound assumption on Z. This form of asymmetric
interaction over shared state relates to the full− pure interaction of access permissions [3].
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A full permission allows exclusive write permission to an object, but also enables read-only
permissions (pure) to co-exists. Consequently, each pure permission must assume that
other permissions can modify the shared object up to a certain type, the state guarantee.
While their work focuses on the read-write distinction, and our work is centered on modeling
type-changing mutations (so all aliases can write), the example shows that we are able to
naturally model similar asymmetric interaction within our protocol framework.

3.2 Inner Step Extension with Specialization
Re-splitting an existing protocol while specializing its interference is possible, provided that
its effects remain consistent with those of the original protocol. Namely we can append new
steps to an otherwise ownership recovery step, or produce effects that are more precise than
those of the original protocol. The first case allows us to connect two protocols together by
that recovery step. The latter case is more interesting: when combined with abstraction it
allows specialization within an existing step (i.e. nested re-splits), enabling new forms of
shared state interactions through that abstraction.

To illustrate the expressiveness gains, we revisit the join protocol of Section 2. However,
instead of spawning a single thread to compute the work, we re-split the join protocol in
two symmetric workers that share the workload. The last of the workers to complete merges
the two results together and “signals” the waiting main thread. First, we rewrite the two
protocols to enable abstraction on the M protocol, and add a choice (&) to the F protocol
that enables F to use the state more than once until it provides a result.

F[X] , ( rw p W#X ⇒ ∀Y.( rw p W#Y ; F[Y ] ) ) & ( rw p W#X ⇒ rw p R#int ; none )
M , ∃Z.( rw p W#Z ⇒ rw p W#Z ; M ) ⊕ ( rw p R#int⇒ rw p int ; rw p int )

As before, M will Wait until there is a Result in p. At that point, M will recover ownership of
that cell. Unlike before, M no longer depends on the value tagged as W since it is abstracted
as Z. The F protocol now holds two choices (&): the old step that transitions from Wait
to Result, and a new step that changes the representation of the value tagged as W and
used during the wait phase. The F protocol of Section 2 is a specialization of this protocol
since it includes only one of the choices. In here, we specialize F into two symmetric worKer
protocols. To simplify the presentation, we assume that the worker thread will receive the
work parameters through some other mean (such as a pure value shared among threads).
Once a worker finishes its job, it will push the resulting int to the shared state. If it notices
it is the last worker to finish, it will merge the two results together and flag the state as
ready, so that Main can proceed.

K , ( rw p W#(E#[])⇒ rw p W#(R#int) ; none ) ⊕ ( rw p W#(R#int)⇒ rw p R#int ; none )

It is important to note that the new tags/values are nested inside the old W tag. This ensures
that the new usages remain hidden from M and “look” just like the previous F usage. (There
are also no lifetime conflicts since M does not preserve its type assumption on the abstraction
beyond a single step.) However, these inner tags are used by the two workers for coordination:
the W#Empty tag means that neither thread has finished, and W#Result means that one of
the threads has already finished. We can then re-split F as follows (note the required initial
type in F, E#[], for this split to be valid): Γ ` F[E#[]] V K || K. Protocol composition
follows analogous principles to above, except that we are now simulating the steps of the
original F protocol with the steps of the two new K protocols:

{ 〈 Γ ` F[E#[]] V K || K 〉 , 〈 Γ ` F[R#int] V K || none 〉 ,
〈 Γ ` F[R#int] V none || K 〉 , 〈 Γ ` none V none || none 〉 }
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(c-rs:Weakening)
〈 Γ0 ` RV R[P ] 〉 7→ C

〈 Γ0,Γ1 ` RV R[P ] 〉 7→ C

(c-ss:ForallLoc)
〈 Γ, l : loc ` S V R[S ⇒ P ] 〉 7→ C

〈 Γ ` S V R[S ⇒ ∀l.P ] 〉 7→ C

(c-ss:OpenLoc)
〈 Γ ` S V R[P{p/l}] 〉 7→ C

〈 Γ ` S V R[∃l.P ] 〉 7→ C

(c-ss:ForallType)
〈 Γ, X : type, X <: A ` S V R[S ⇒ P ] 〉 7→ C

〈 Γ ` S V R[S ⇒ ∀X <: A.P ] 〉 7→ C

(c-ss:OpenType)
Γ ` A1 <: A0 〈 Γ ` S V R[P{A1/X}] 〉 7→ C

〈 Γ ` S V R[∃X <: A0.P ] 〉 7→ C

(c-ps:ExistsType)
〈 Γ, X : type, X <: A ` P V R[Q] 〉 7→ C

〈 Γ ` ∃X <: A.P V R[∃X <: A.Q] 〉 7→ C

(c-ps:ExistsLoc)
〈 Γ, l : loc ` P V R[Q] 〉 7→ C

〈 Γ ` ∃l.P V R[∃l.Q] 〉 7→ C

(c-ps:ForallType)
〈 Γ, X : type, X <: A ` S ⇒ P V R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀X <: A.P V R[S ⇒ ∀X <: A.Q] 〉 7→ C

(c-ps:ForallLoc)
〈 Γ, l : loc ` S ⇒ P V R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀l.P V R[S ⇒ ∀l.Q] 〉 7→ C

(c-ps:LocApp)
〈 Γ ` S ⇒ P{p/l}V R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀l.P V R[S ⇒ Q] 〉 7→ C

(c-ps:TypeApp)
Γ ` A1 <: A0 〈 Γ ` S ⇒ P{A1/X}V R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀X <: A0.P V R[S ⇒ Q] 〉 7→ C

P{A/X} , “substitution, in P , of X for A”
Note: bound type/location variables of a type must be fresh in that rule’s conclusion.

Figure 7 Protocol composition abstraction extension.

Each simulation will match the rely and guarantee types of a step in F with a step in K, even
if specializing a ∀ of F to a specific type in K. As before, K can choose which step to simulate
when given a choice (&) of F steps. Similarly, at least one alternative (⊕) of K must match
a step in F. Therefore, the new K protocols work within the interference of the original F
protocol, but specialize its uses of the shared state.

3.3 Composing Abstract Protocols

The composition rules of Figure 7 complement those of Figure 6 to enable composing abstract
protocols. Weakening on a configuration (up to renaming), (c-rs:Weakening), is the crucial
mechanism that enables us to close the co-inductive proof when using quantifiers. Thus,
when we reach a configuration that is equivalent up to renaming of variables and weakening
of Γ, we can close the proof. The (c-ss:Forall*) rules do similar stepping to (c-ss:Step)
but considering an abstracted guarantee, which results in a typing environment with the
opened abstraction. (c-ss:Open*) exposes the representation type/location (if it exists)
before doing a regular step. (c-ps:Forall*) and (c-ps:Exists*) open their respective
abstraction before doing a regular simulation step. More interestingly, (c-ps:*App) enables
a simulated step to pick a particular type/location to apply before that regular simulation
stepping, enabling step specialization during simulation. In the T.R, we also consider a
straightforward extension to protocol composition that enables subtyping over stepping.
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1 let newMVar = λ _.
2 let m = new Empty#{} in
3 // splits the new cell using single MVar protocol
4 Γ ` (rw l Empty#[]) V MVar[l] || none
5 {
6 putMVar = λ val. rec R.
7 lock m;
8 case !m of
9 Empty#x → m := Full#val;

10 unlock m
11 | Full#value → m := Full#value;
12 unlock m;
13 R // retries
14 end
15 end,

16 splitMVar = λ _.
17 Γ ` MVar[l] V MVar[l] || MVar[l]
18 {},
19 takeMVar = λ _. rec R.
20 lock m;
21 case !m of
22 Empty#x → m := Empty#x;
23 unlock m;
24 R // retries
25 | Full#value → m := Empty#{};
26 unlock m;
27 value
28 end
29 end

Figure 8 MVar example.

3.4 Discussion & Brief Examples
Above, we showed how our local, isolated protocol types can model core interference concepts
over a relatively small and simple calculus. We refrained from adding support for more
precise states and refined data abstractions of others (such as [15]), and focus instead on
typestates [20, 30, 29]. However, this is not an intrinsic limitation of our model. If we
consider more precise states, we can (for instance) model monotonic counters from prior
work [25, 11] where each counter shares state symmetrically. Our local protocols model these
uses solely from the perspective of a single alias as:

MC , ∃ {j : int}︸ ︷︷ ︸
J

.( rw p j︸︷︷︸
J

⇒ ∀ {i : int | i ≥ j}︸ ︷︷ ︸
I

.( rw p i︸︷︷︸
I

; MC ) )

The protocol models a monotonically increasing counter on location p. The step relies
on location p initially containing some integer, j, and modifying the cell to store some
other value, i, that is greater or equal than j. This interaction can be reduced to the core
existential-universal protocol interaction discussed above (but, in our calculus, using less
precise types: J and I) and where the protocol can be re-split indefinitely.

While our states are less precise, we can enforce more precise uses of that shared state.
The semantics of prior work [25, 11] differ on whether the counter is forcefully used by clients,
or whether the action was simply available to be used. We can model the two cases explicitly:
∃p.( (!ref p) :: MC ( [] :: MC ), which enables clients to use the counter an arbitrary number
of times or simply thread it through, unused. While in:

∀X.∃p.( (!ref p) :: ∃J.( rw p J ⇒ ∀I.( rw p I ; X ) ) ( [] :: X )

by unfolding the protocol, the function guarantees that a single step of the protocol will be
used. Since we (intentionally) abstract subsequent steps, the function cannot use the counter
beyond that single use. Analogous reasoning can be used to enforce specific, finite, usages.

Adding support for dependent refinement types, and ensuring its decidability (even
without interference), is beyond the scope of our work as we focus on the core composition
problem. However, we believe that the underlying decidability insights made here will carry
to a system with decidable dependent refinement types; even if perhaps requiring more
fine-grained conditions to close the co-inductive proof of safe interference—that are only
relevant once more precise typing is considered.

While we use a relatively simple calculus to keep the theory focused on the core of
interference-control, we can for instance model MVars [24]. Figure 8 shows an MVar, a
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let x = new 0 in
// share ’x’ via protocols
{

lockMe = λ_.lock x,
// ...

}

Figure 9 Indirect locking.

lock @a; Γ = a : ref @a
let b = !a;
// locks location of ’b’
lock @b;

unlock @a;
let c = !b;
lock @c;

unlock @b;
...

Figure 10 Hand-over-hand locking example.

structure that contains a single shared cell which is either empty or contains a value of some
type. Notable operations include: putMVar, that waits until the cell is empty before inserting
the given value; and takeMVar which waits until the cell is full to remove the cell’s value,
leaving the cell empty. MVars can be shared by many aliases using the protocol:

MVar[m] , ∃Y.( ( (rw m Empty#Y )⇒ (rw m Empty#Y ) ; MVar[m] ) &
( (rw m Empty#Y )⇒ (rw m Full#int) ; MVar[m] ) )

⊕ ( ( (rw m Full#int)⇒ (rw m Empty#[]) ; MVar[m] ) &
∃Y.( (rw m Full#Y )⇒ (rw m Full#Y ) ; MVar[m] ) )

The T.R. [21] includes additional examples, including modeling examples of prior work
with our more local protocol types. We can also model a shared pair where each alias keeps
its own, local, precise knowledge on one of the two components of the pair stored in that
shared state. The two aliases, L and R, share a common cell but keep part of that state
private to itself. While both can do private actions over the shared cell, they are guaranteed
to not interfere with the precise assumptions of the remaining alias.

P[A][B] , rw p [A,B]
L[A] , ∃X.( P[A][X]⇒ ∀Y.( P[Y ][X] ; L[Y ] ) )
R[A] , ∃X.( P[X][A]⇒ ∀Y.( P[X][Y ] ; R[Y ] ) )

Γ ` P[X][Y ] V L[X] || R[Y ]

Thus, we can use the different perspectives of each protocol to model local knowledge that is
hidden from other aliases, within our core protocol framework.

Since our types express sharing, we can use standard techniques to abstract the com-
ponents of a protocol type after safe composition is checked. This enables an abstraction
to expose a type interface that indirectly manipulates the shared state, such as indirectly
locking/unlocking state (Figure 9). We can type the record in such a way to hide the type
in x but still expose some information on sharing that is useful for later enabling other
typestate functions [20]. For instance: ∃A.∃B.∃C.[ ..., lockMe : [] :: (A ⇒ B; C) ( [] ::
(A ∗ (B; C)), add : ( int :: A ( [] :: A ), ... ]. Clients can only call add once the type A
is available. This could model, for instance, a global lock on a collection to enable more
coarse-grained control over the interference to that collection—but without exposing the lock
to clients. Thus, when lockMe returns, the client receives a type that expresses that A is
available and that a guarantee (B; C) is expected to be fulfilled. However, this fulfillment can
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only occur indirectly via the wrapper record as clients do not have a direct way of accessing
or mutating the internals of that shared state.

While we do not guarantee dead-lock freedom, it is possible to type more fine-grained
locking schemes such as hand-over-hand locking (Figure 10). Consider the protocol of a list’s
node:

L[q] , ∃l.( (rw q !ref l) ∗ L[l] ⇒ (rw q !ref l) ; ... )

L is defined over a location q that contains the (abstracted) reference to the next element of
the sequence of locations to be locked. Locking will enable access to that ref l which can
then be locked to gain access to L[l], the next element in the sequence of locations to lock.
For brevity, we make each step simply consume L, instead of (for instance) re-splitting.

4 Composition Decidability & Other Technical Results

We now show decidability of protocol composition and discuss the remaining technical results
of our language. The decidability statement comes as a direct consequence of ensuring a
regular type structure via syntactic well-formedness constraints on recursive types. Although
applied in the context of protocol composition, we follow ideas from prior work on ensuring
decidable subtyping over bounded quantification [28, 4]. The main novelty is in extending
this kind of reasoning to account for recursive types with parameters, in order to ensure
a regular type structure over our more flexible recursive types. To achieve this, we apply
well-formedness conditions which ensure that there is only a finite number of reachable
(abstract) protocol states. We focus the discussion on decidability of protocol composition,
and point interested readers to T.R. where these conditions are properly motivated and
discussed. Crucially, these well-formedness conditions enable us to state the following:

I Lemma 1 (Finite Uses). Given a well-formed recursive type (rec X(u).A)[U ] the number
of possible uses of X in A such that Γ ` X[U ′] type is bounded.

I Lemma 2 (Finite Unfolds). Unfolding a well-formed recursive type (rec X(u).A)[U ] produces
a finite set of variants of that original recursive type that (at most) contains: permutations
of U , or a set of mixtures of U with some type/location variables representing a class of
equivalent (≡) types.

I Lemma 3 (Finite Sub-Terms). Given a well-formed type A, such that Γ ` A type, the set
of sub-terms of A is finite up to renaming of variables and weakening of Γ.

4.1 Composition Properties, Algorithm, and Decidability
Informally, correctness of protocol composition is based on the two properties: 1) a split results
in protocols that can always take a step with the current state of the shared resources, thus
are never stuck; and, 2) protocol composition is a partial commutative monoid (associative,
commutative, and with none as the identity element). Because of property 2), iterative
splittings of existing protocols remain struck-free, unable to cause unsafe interference. We
now state these properties formally but leave the proofs to the T.R.. The next two lemmas
show stuck freedom by properties that resemble progress and preservation but over protocols:

I Lemma 4. If Γ ` RV P || Q then 〈 Γ ` RV P || Q 〉 7→ C.

Meaning that if two protocols, P and Q, compose safely then their configuration can take a
step to another set of configurations, C.
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I Lemma 5. If 〈 Γ ` RV P || Q 〉 7→ 〈 Γ′ ` R′ V P ′ || Q′ 〉 · C and Γ ` RV P || Q then
Γ′ ` R′ V P ′ || Q′.

The lemma ensures that if two protocols compose safely, then any of the next configurations
that result from stepping will also be safe. Note that protocol composition does not enforce
that the shared resources are not lost. Instead our concern is on safe interference. Indeed,
resources that are never used will never be able to unsafely interfere. To avoid losing resources,
we must forbid the use of (c-rs:None) on non-terminated protocols and that both P and Q
cannot have both simultaneously terminated if there are non-none resources left. Once that
restriction is considered, our splitting induces a monoid in the sense that for any P and Q
for which Γ ` RV P || Q is defined there is a single such R (defined up to subtyping and
equivalent protocol/state interference specification). Since for any two protocols there may
not always exist an R that can be split into P and Q, this is a partial monoid.

I Lemma 6. Protocol composition obeys the following properties:

1. (identity) Γ ` RV R || none.
2. (commutativity) If Γ ` RV P0 || P1 then Γ ` RV P1 || P0.
3. (associativity) If we have Γ ` RV P0 || P and Γ ` P V P1 || P2 then exists Q such that

Γ ` RV Q || P2 and Γ ` QV P0 || P1.
(i.e. If Γ ` RV P0 || (P1 || P2) then Γ ` RV (P0 || P1) || P2 )

Protocol composition is defined as a “split”, left-to-right (V). Simply reading the rules as
right-to-left (W) to compute a “merge” is not safe. For instance, it would enable merging to
arbitrary choices with (c-rs:StateIntersection). Intuitively, merging needs to intertwine
the uses of both protocols. However, since we do not track copies (as we target sharing when
that tracking is not possible), merging cannot “collapse” a protocol into a non-protocol type.
In this case “merging” is equivalent to simply having the two non-merged protocols available
in ∆ or bundled using the ∗ type.

The composition algorithm is shown in the T.R. and is a straightforward implementation
of the axiomatic definitions shown above. The algorithm uses a set of visited configurations
to remember past configurations and ensure that once all different protocol configurations
are exhausted (up to renaming and weakening of Γ), the algorithm can terminate. We now
state our technical lemmas on the composition algorithm but leave the proofs to the T.R..

I Lemma 7. Given well-formed types and environment, we have that:

1. (soundness) if c( Γ, R, P, Q ) then Γ ` RV P || Q.
2. (completeness) if Γ ` RV P || Q then c( Γ, R, P, Q ).
3. (decidability) c( Γ, R, P, Q ) terminates.

4.2 Correctness Properties
Progress and preservation theorems are defined over valid program configurations such that:

Γ | ∆i ` ei : ![] a · i ∈ {0, ..., n} n ≥ 0
Γ | ∆0, ..., ∆n ` e0 · ... · en

(wf:Program)

Stating that a thread pool (e0 · ... · en) is well formed if each thread can be assigned
a “piece” of the linear typing environment (containing resources), and if each individual
expression has type ![] without leaving any residual resources (·). Note that the conditions
on each thread (ei) are identical to those imposed by (t:Fork). For clarity, both safety
theorems are supported by auxiliary theorems over a single expression, besides the main
theorem over the complete thread pool. We now state progress over programs:
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I Theorem 8. If Γ | ∆ ` T0 and live(T0) and if exists H0 such that Γ | ∆ ` H0 then
H0 ; T0 7→ H1 ; T1.

live(T ) means that the thread pool T contains at least one “live” thread such that the
thread is neither a value nor is waiting for a lock to be released (which includes deadlocks).
Γ | ∆ ` H ensures that the Heap is well-defined according to Γ and ∆.

We define Wait(H, e) over a thread e and heap H such that the Evaluation context is
reduced to evaluating the configuration: H ; E [lock ρ, ρ′] · T where ρ ↪→ v /∈ H

which contains at least one location (ρ) that is currently locked or was deleted and, therefore,
the thread must block waiting (potentially indefinitely) for that lock to be available before
continuing. “Early” deletion of shared resources results in a pending guarantee. Since
well-formed threads cannot leave residual resources, this situation is ruled out for correct
programs, but may occur on the theorem below. Progress over expressions is defined as:

I Theorem 9. If Γ | ∆0 ` e0 : A a ∆1 then we have that either:

e0 is a value, or;
if exists H0 and ∆ such that Γ | ∆,∆0 ` H0 then either:

(steps) H0 ; e0 7→ H1 ; e1 · T , or;
(waits) Wait(H0, e0).

Preservation ensures that a reduction step will preserve both the type and the effects of
the expression that is being reduced (so that each thread’s type, ![], and effect, ·, remains
unchanged). As above, we use a preservation theorem over programs that makes use of an
auxiliary theorem on preservation over expressions:

I Theorem 10. If we have Γ0 | ∆0 ` H0 and Γ0 | ∆0 ` T0 and H0 ; T0 7→ H1 ; T1 then,
for some ∆1 and Γ1, we have: Γ0,Γ1 | ∆1 ` H1 and Γ0,Γ1 | ∆1 ` T1.

So that a well-formed pool of threads (T0) remains well-formed after stepping one of these
threads (resulting in T1). Preservation over a single expression must still account for the
resources (∆T ) that may be consumed by a newly spawned thread (T ):

I Theorem 11. If we have H0 ; e0 7→ H1 ; e1 · T and Γ0 | ∆0,∆T ,∆2 ` H0 and
Γ0 | ∆0,∆T ` e0 : A a ∆ then, for some ∆1 and Γ1, we have: Γ0,Γ1 | ∆1,∆T ,∆2 ` H1 and
Γ0,Γ1 | ∆1 ` e1 : A a ∆ and Γ0,Γ1 | ∆T ` T .

The following “Error Freedom” corollary complements the main results to show that our
system cannot type programs that allow data races and the dereference of destroyed memory
cells, i.e. that our system ensures memory safety and race freedom.

I Corollary 12. The following program states cannot be typed:

1. (Data Race) H; E0[ρ := v] · E1[!ρ] · T H; E0[ρ := v] · E1[ρ := v′] · T
2. (Memory Fault) H; E [ρ := v] · T H; E [!ρ] · T (where ρ /∈ H)
3. (Ownership Fault) H; E [delete ρ] · T (where ρ /∈ H)

The proof is straightforward due to our use of locks to ensure mutual exclusion and the
fact that our protocols discipline the use of shared state. Thus, these errors are ruled out by
either protocol composition or by the resource tracking of the core linear system.
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receive(c) , rec R.
lock c;
case !c of

// 1. waiting states (A..Z)
A#n → ... // analogous to below

| Z#n → // restore linear content
c := Z#n;
unlock c; R // retry

// 2. desired (receive) state
| ReadyToReceive#v →

c := Idle#{}; // "received"
unlock c;
v // value received from "channel"

end
end

send(c,v) , rec R.
lock c;
case !c of

// 1. waiting states (A..Z)
A#n → ... // analogous to below

| Z#n → // restore linear content
c := Z#n;
unlock c; R // retry

// 2. desired (idle) state
| Idle#_ →

c := ReadyToReceive#v; // "sent"
unlock c;
{} // result of send is empty

end
end

Figure 11 Simple encoding of send and receive functions via a shared cell.

let c = connectSeller() in
c : buy!(prod) ; price?(p) ; details?(d)

send(c, GET_USER_PRODUCT() );
let price = receive(c) in

let details = receive(c) in
close(c)

end
end

Figure 12 Buyer code.

5 Protocol Expressiveness

We show the expressiveness of our protocols by modeling typeful message-passing concur-
rency, using a straightforward encoding of message-passing via shared memory interference
(Figure 11). The encoding itself should be unsurprising as it follows well-known ideas from
the literature, so we defer less important details to the T.R. to focus instead on the most
interesting aspect of this example: how our protocol framework is able to type such uses and
ensure their safety.

We encode a more primitive, “low-level” view of typeful message-passing concurrency via
the causality of shared memory interference. We focus on the non-distributed setting where
a channel can be precisely encoded as a low-level shared cell. Channel communication and
its changing session properties are emulated indirectly via inspection of or interference over
the contents of that shared cell. Thus, our functions to send/receive a value simply hide the
underlying Waiting states, for instance to receive:

Wait[A0..An] ⊕ ( rw c ReadyToReceive#V ⇒ rw c Idle#[] ; NextStep )

where Wait is a sequence of retry steps that leave the state unmodified, until a value of type
V is “received”. Sending uses a similar protocol but where we must wait for an Idle cell
before “sending”. The T.R. includes the complete “Buyer-Seller-Shipper” example (the
canonical and simple example used in session-based concurrency works) while in here we
only take a look at the main aspects of the Buyer’s interaction with the channel (Figure 12).

We model a channel using a capability to location c. For brevity, we omit “rw c” from
“rw c A” since all changes occur over that same location. The Buyer’s type uses standard
π-calculus [22] notations where ! sends and ? receives a value. These actions are mapped to
the rely type (receive) and the guarantee type (send).
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buy!(prod)︸ ︷︷ ︸
idle0#[]⇒ buy#prod

; price?(p)︸ ︷︷ ︸
price#p⇒ idle2#[]

; details?(d)︸ ︷︷ ︸
details#d⇒ []

Buyer starts by sending a request to buy some product, then waits for the price, and finally
receives the details of that product. Under that interaction protocol, we simply map sends
to a guarantee type of a step, and receives to a rely type of a step.

Our protocol interactions are both non-deterministic and may contain an arbitrary number
of simultaneous participants. To ensure that the desired participant (Buyer) is the only one
allowed to received (take) the price, we must mark the contents with a specific tag so that
only Buyer has permission to change that state. To handle the non-deterministic interleaving
of protocols, we must introduce explicit “wait states” that allow a participant to check if
the communication has reached the desired point to that participant or if it should continue
waiting. We abstract these steps as Wait as they simply recur on that same step:

idle0#[]⇒ buy#prod ; Wait ⊕ ( price#p⇒ idle2#[] ) ; Wait ⊕ ( details#d⇒ [] )

The richness of our shared state interactions means that we can immediately support
fairly complex session-based mechanisms (such as delegation, asynchronous communication,
“messages to self”, multiparty interactions, internal/external choices, etc.) within our small
protocol framework. However, this flexibility comes at the cost of requiring a more complex
composition mechanism. Protocol composition accounts for both non-deterministic protocol
interleaving and “multi-way” communication, features which are usually absent from strictly
choreographed session-based concurrency (favoring instead strong liveness properties over
more deterministic, linear compositions). Naturally, more complex examples are possible. In
here our focus is on showing the core insights that enable us to relate the two techniques:
1) mapping receive/send to our rely/guarantee types; 2) adding explicit waiting states to
account for non-deterministic protocol interleaving; and 3) tag the content of a cell in order
to ensure that only the right participant will be able to mutate the state at that point in the
interaction. (Recall that we do not guarantee deadlock freedom, nor termination.)

6 Related Work

This work is based on results collected in Militão’s PhD thesis [18]. Our work relates to
prior work on rely-guarantee protocols [19]. We show that these protocols are useful to
reason about concurrency and significantly improve the flexibility of protocol composition.
Namely, we allow the composition of abstract protocols (enabling more local typing), show
that our composition is decidable, and provide a novel axiomatic definition of composition
that is straightforward to implement. Since thread-based interference is rooted in alias-
related interference, the technique itself is mostly indifferent to whether sharing occurs in the
sequential or concurrent setting. Still, we address all technicalities that make concurrency
possible, such as adding support for threads and locking of locations; which then enables us
to express typeful message-passing concurrency in our protocols.

Our work is also related to recent work on more precise tracking of interference. Chal-
ice [17] uses a simplified form of rely-guarantee to reason about shared state interference by
constraining a thread’s changes to a two-state invariant, relating the previous and current
states. Monotonic [8, 25] uses of shared state (where all changes converge to more precise
states) are less dependent on aliasing information, which simplifies checking at the expense
of expressiveness. Dynamic ownership recovery mechanisms [33, 26] choose some run-time
overhead and dynamic safety guarantees to enable more flexible ownership recovery than
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purely static approaches. Rely-guarantee references [11] adapt the use of rely-guarantee
to individual reference cells with support for dependent refinement types in a sequential
language. Although the use of refinements adds expressiveness to the description of sharing,
they do not support ownership recovery, nor address decidability, and typechecking can
require manual assistance in Coq. Access permissions [33, 3, 2] control alias interference by
categorizing read-write uses into different permission kinds. Our design omits the read-write
distinction to focus exclusively on structuring alias interference using more fundamental
protocol primitives. Interestingly, although we only model write-exclusive uses, our types
can enforce effectively read-exclusive semantics by ensuring that any private change in a cell
will be reverted to its original public value. However, this simpler form of read-only cannot
capture their multiple, simultaneous readers case. Still, by modeling interference in a more
fundamental way, we gain additional expressiveness beyond their most permissive share
permission as we can model uses beyond invariant-based sharing. In [5] Crafa and Pavodani
introduce a high-level (actor-like) model for sharing (type)state via join patterns. We target
a more low-level programming paradigm (which builds typestates through type abstraction
rather than as a first-class language feature), enabling us to introduce abstraction at the level
of protocols and support protocol re-splitting in ways that are not expressible in their work.

Several recent works use partial commutative monoids [7, 16, 6] to model sharing by
leveraging the concept of fictional separation [7, 12]. Commutative monoids offer the
underlying general principle for splitting resources, enabling seemingly unrelated components
to interact via aliasing under a layer of (fictional) separation. We compare more closely to
[16] due to our common use of L3 [1] and type-based approach. In [16], Krishnaswami et
al. define a generic sharing rule based on programmer-supplied commutative monoids for
safe sharing of state in a single-threaded environment. Their work does not approach the
issue of decidability of resource splitting, and requires wrapping access to shared state in an
module abstraction that serves as an intermediary to sharing. Our work focuses on a custom
commutative monoid that enables first-class sharing without (necessarily) needing a wrapping
module abstraction. Although our protocol splitting is a specialized monoid, we showed
that this mechanism is relatively flexible, decidable, and give an algorithmic implementation.
Other technical differences between our works abound such as their use of affine refinement
types (enabling more fine-grained types), our use of multi-threaded semantics and allowing
inconsistent states (i.e. locked cells) to be moved around as first-class, etc.

Protocol-based mechanisms for safe interference are also used by other approaches, such as
in program logic-based systems (e.g. [14, 31, 32, 23, 9]). By generally targeting manual proofs
(and somewhat more involved specifications) these works generally fit into a different design
space than ours, although share some interesting similarities. While we make concessions
on expressiveness to achieve decidable protocol composition and re-splitting, these works
focus instead on the expressiveness of their concurrency specification. LRG [9] supports
lock-free structures but requires a special frame-rule to support framing over rely-guarantee
conditions. We simply integrate protocols into the language (as linear resources) meaning
that the standard frame-rule suffices. Supporting lock-free concurrency in our system would
require reinterpreting a ⇒ step as a single-cell atomic conditional operation; with the shared
resource (stored in the cell) being immediately extracted/inserted from/into the cell, rather
than just accessible after locking. CaReSL [32] and Iris [14] support “islands”/regions of
memory that are shared together and whose imprecise state must be considered on use. Our
composition rules enforce that a protocol carries all information on imprecise states, which
is then deconstructed via (t:Alternative-Left) and case analysis. Our protocols can
group shared state using the ∗ operator to define shallow “regions”, while their works allow
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for richer specifications of atomic regions of any depth. Iris [14] further supports a form
of re-splitting via a “view shifting” mechanism, to repartition (or create) shared regions.
FCSL [23] encodes protocols via auxiliary/ghost state. Although done in a compositional
way, it can require checking for safe interference (“stability”) after a split since a safe split
does not necessarily imply safe interference in all situations. Our composition mechanism
is essentially a form of checking for safe interference early, at the moment of the split, by
checking that all possible future uses are safe (like a form of “pre-computed” stability check).

Protocol composition itself can also be seen as a form of model checking (to check that
each state has a successor) that uses abstract states to ensure a finite state space, but in a
system that is more intimately integrated with the language. Our protocols are first-class
resources that can be specialized by clients, even abstracting (leaving out) later steps. Thus,
our protocols guide the programmer on how to reason locally about (safe) interference by
mapping its uses of locks to a local protocol type that models the alias perspective on the
shared state. While our work focuses on modeling the core interference phenomenon within a
small calculus, rather than precisely typing existing programs, we still showed that extensions
may be used to model at least some existing programs within our model.

7 Conclusions

We defined a flexible and decidable procedure that ensures the safe composition of interfering
abstract protocols that share access to mutable state. While employing a relatively small
protocol framework, we are able to model the core interference principles of complex shared
state interactions within our core calculus. Finally, we showed the expressiveness of our
protocol framework by discussing how it can also model typeful message-passing concurrency.

Acknowledgements. We thank the anonymous reviewers for their helpful feedback.
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Abstract
When one object makes a request of another, why do we expect that the second object’s behavior
correctly satisfies the first object’s wishes? The need to cope with such principal-agent problems
shapes programming practice as much as it shapes human organizations and economies. However,
the literature about such plan coordination issues among humans is almost disjoint from the
literature about these issues among objects. Even the terms used are unrelated.

These fields have much to learn from each other—both from their similarities and from the
causes of their differences. We propose a framework for thinking about decision alignment as a
bridge between these disciplines.
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1 Extended Abstract

Many complex systems can be described as networks of principal-agent relationships, in
which a requesting entity, the principal, sends a request to another entity, the agent, who is
expected to perform the actions the principal intends. Of course, an agent may decide to do
something else instead. Thus, these requests usually occur within a framework in which the
principal uses various techniques to try to align the decision of the agents with the interests
of the principal.

Economics, organizational theory and political science study principal-agent relationships
among humans. Language designers, programmers, and software engineers deal with principal-
agent relationships among computational objects. When both principal and agent are
humans, the hazards and techniques are examined in terms of divergent interests, asymmetric
information, contracts, and incentives[1, 4]. When both principal and agent are objects, the
hazards and techniques are examined in terms of abstraction mechanisms, object design
patterns, expressiveness, and reliability engineering. In the human case, agents are assumed
to have their own interests, and must therefore be coaxed into performing what the principal
wants. In the object case, the agent’s intentions are generally assumed benign1, so the goal
is to minimize unintentional misbehavior.

A human principal makes requests of a software agent via a user interface. In HCI, the
study of human-computer interaction, the agent is generally assumed benign and bug-free.
The focus is on request expressiveness and user confusion. The hazard is that the agent does

1 Except computer security, which does consider intentional misbehavior
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Table 1 The Elements of Decision Alignment.

Human to Human Human to Object Object to Object

Explanation Language User interface Abstraction

Rights Law, Contracts App permissions Security
Powerbox Protection patterns

“Incentives” Economics Objective functions Machine learning
Agorics

Static Inspection Accounting controls Trusted path Types, Verification
URL bar Open source eyeballs

Dynamic Monitoring Reviews, Complaints Bug reports Contracts, Testing
and Feedback Word of mouth Backprop

Trust and Trademark App stores Trusted developer
Reputation Chain of custody White and black lists Same origin

what the user asks for rather than what the user wants. HCI examines how to design an
agent’s interface to shape user behavior so that users ask for what they want.

Mixed cases are important. Humans increasingly use user-interfaces to express intent and
interact with other humans. Indeed, human-to-human intentions are increasingly expressed,
constrained, and transformed through software intermediaries, whether email, social networks,
or ride sharing.

A unified view, that looks at the different techniques used to deal with each of these three
cases, can provide important insights. We identify six broad categories of techniques principals
use to align agent decisions with the principal’s intent. A common theme throughout is that
the principal and agent know different things. By virtue of specialization, they each embody
information inaccessible to the other.

Explanation The principal must express its intent as a request that the agent can understand.
Only the principal has detailed knowledge of why they make this request. Only the
agent has detailed knowledge of how to fulfill the request. The request conveys what
the principal needs in terms of concepts they share[5, 10]. A good abstraction boundary
composes their separate knowledge to achieve a greater result[2, 8].

Rights All actions that the agent performs, whether it serves the principal’s interests or not,
must be among the actions that are possible for the agent to take. If the agent’s range of
possible actions is narrow, this limits its abilities to misbehave in ways that harm the
principal. But if too narrow, then the agent cannot do what the principal asks[9]. We
return to this issue below.

“Incentives” Some agents change their behavior in order to optimize some externally provided
metric. These can be humans responding to prices, or machine learning systems optimizing
an objective function. In both cases, the metric might be a proxy measure for a complex
composition of goals. By constructing or influencing this metric, principals shape the
behavior of such agents to serve goals that the principal cannot otherwise articulate[3].
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a) principal benefit

c) principal harm

b) agent benefit

d) agent benefit

Figure 1 Incentive landscape.

Static Inspection Some agents are internally constructed to be unable to attempt certain
behaviors. A business keeps front-office and back-office separate so that it cannot
misbehave in certain ways without a conspiracy of two2. Within a statically type-safe
language, a principal knows that an agent cannot violate its own interface type. Static
verification of complex behavioral constraints is already practical and rapidly improving[7].

Dynamic Monitoring and Feedback The techniques above apply before the agent starts to
act. Afterwards, the principal may look at what the agent is actually doing or has done.
Depending on its judgement, the principal may change how it continues to employ the
agent. The principal may send the judgement as feedback so the agent can learn or be
fixed. It may share this feedback with other potential principals.

Trust and Reputation Even with all the safeguards, it can still be risky for the principal
to rely on the agent’s good behavior. Principals attempt to reduce this risk by putting
their trust in the identity of the agent or the agent’s origin. Companies trust their own
developers. Consumers trust known brands. Feedback from past performance affects
reputation, impacting future decisions to take such risks.

While each category provides useful lessons, the real payoff comes from how they interact
and reinforce one another. For example, the co-design of an agent’s rights and incentives can
lead to better results than focusing on each individually.

Figure 1 illustrates a classic principal-agent dilemma. The space represents possible agent
behaviors. Circle (a) contains agent behaviors that would benefit the principal. Circle (b)
contains agent behaviors that the principal knows how to ask for and reward, benefiting the
agent as well. Circle (c) contains agent behaviors that would harm the principal. Circle (d)
is the region of greatest hazard, where the principal’s harm coincides with the agent’s benefit.
Often, an incentive-only approach cannot eliminate this area at reasonable cost.

Figure 2 illustrates how practicing POLA, the principle of least authority3, can improve
the situation. POLA says that, ideally, a principal should grant the agent the narrowest
rights that the agent needs to fulfill the principal’s request.

2 Barings learned this the hard way when it gave Nick Leeson both front-office and back-office privileges.
3 The principle of least authority refines the principle of least privilege[9] to clarify what kinds of rights
we need to minimize[6].

ECOOP 2016
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a) principal benefit

c) principal harm

b) agent benefit

d) agent benefit

Too much authority

perfect POLA

Practical POLA

Figure 2 Co-design of incentives and rights.

The outer “too much authority” box represents the rights given to the agent in common
practice, such as when programs and imported libraries run with the full privileges of their
user. By taking “least” literally, the POLA alternative is often misunderstood as requiring
the tiny box labeled “perfect POLA” tightly surrounding circle (b). This requirement is
correctly dismissed as too hard to achieve in practice. The perfect is the enemy of the
practical.

The box labeled “practical POLA” is large enough to achieve with reasonable effort. It
does include agent behaviors that would harm the principal. However, it excludes the region
of greatest hazard, where principal harm coincides with agent benefit. When thinking about
incentives by themselves, we miss the option to avoid this region by restricting the agent’s
rights. When thinking about computer security by itself, we miss the differences among agent
actions that cause harm to the principal. By thinking about both together, we can co-design
principal-agent arrangements in which each technique fills in for weaknesses in the other.

Other surprising opportunities are found examining combinations of the other techniques.
By reasoning across both rows and columns, we can help achieve a more cooperative world
among diverse human and software, composed together in ever denser networks of principal-
agent relationships.

Acknowledgements. We thank Terry A. Stanley and K. Eric Drexler.
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Abstract
This paper investigates language constructs for high-level and type-safe manipulation of JSON
objects in a typed functional language. A major obstacle in representing JSON in a static
type system is their heterogeneous nature: in most practical JSON APIs, a JSON array is a
heterogeneous list consisting of, for example, objects having common fields and possibly some
optional fields. This paper presents a typed calculus that reconciles static typing constraints and
heterogeneous JSON arrays based on the idea of partially dynamic records originally proposed and
sketched by Buneman and Ohori for complex database object manipulation. Partially dynamic
records are dynamically typed records, but some parts of their structures are statically known.
This feature enables us to represent JSON objects as typed data structures. The proposed
calculus smoothly extends with ML-style pattern matching and record polymorphism. These
results yield a typed functional language where the programmer can directly import JSON data
as terms having static types, and can manipulate them with the full benefits of static polymorphic
type-checking. The proposed calculus has been embodied in SML#, an extension of Standard
ML with record polymorphism and other practically useful features. This paper also reports on
the details of the implementation and demonstrates its feasibility through examples using actual
Web APIs. The SML# version 3.1.0 compiler includes JSON support presented in this paper,
and is available from Tohoku University as open-source software under a BSD-style license.
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1 Introduction

JSON (JavaScript Object Notation) is a text format for serialized structured data. Owing
to its simplicity and the human-readable nature, it has become a standard format for data
exchanged over the Internet. Web servers and cloud systems, for example, now often provide
JSON API s, which specify the details of their HTTP requests and responses as JSON formats.
Safe and high-level manipulation of JSON objects is, therefore, becoming essential for a
programming language to serve as a production language for modern Internet applications.

A common current practice is to provide a library to parse JSON strings and to represent
the resulting abstract syntax trees in some data structures of the underlying programming
language such as a recursive datatype of ML or JSONObject class with methods to access
JSON attributes with keys. Some languages also provide a mechanism to automatically
generate classes and types for given application-specific JSON structures. Examples include
JSON schema [17] and the type provider of F# [27]. While these tools free the programmer
from the tedious task of deserializing JSON data, from the perspective of a programming
language, they are not ideal. Programming with JSON abstract syntax trees is inherently
untyped. Type/class generations are meta-level and are not integrated parts of the type
system of the language. These approaches cannot take full advantage of high-level and
type-safe programming constructs available in advanced programming languages. Indeed,
the original motivation for this work came from our experience of developing an ERP system
with web interface jointly with a software company [22]. During this development, we had to
write codes that dealt with JSON abstract syntax trees. This was not only tedious but also
error prone. During this experience we became painfully aware of the need for high-level and
type-safe support for JSON objects. The goal of the present paper is to develop programming
language constructs for high-level and type-safe manipulation of JSON objects in such a way
that they are part of the language type system.

To achieve our goal, we consider a typed functional language with labeled records and
pattern matching as an ideal starting point. We note that JSON is a data structure constructed
from atomic types (i.e., integers, floating-point numbers, booleans, and strings); “objects,”
which are named unordered collections of values; and “arrays,” which are ordered sequences
of values. All of these are common data structures available in a typed functional language.
One would therefore expect that they can be directly mapped to typed data structures
constructed from labeled records (representing JSON “objects”) and lists (representing JSON
“arrays”). One would then expect that JSON objects can be directly manipulated through
field selection primitives for labeled records and a rich set of higher-order combinators for
lists. If such a mapping was indeed possible, then programming with JSON would be a
typeful and comfortable programming practice. For example, one would write a function to
retrieve, from a JSON object obtained from a weather service on the Internet, a list of cities
where the wind speed exceeds 20 mps in the following declarative and concise way:

fun highWind weatherMapData =
foldl (fn ({name, wind, ...}, cities) =>

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.18
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if #speed wind > 20.0 then name::cities else cities)
nil
weatherMapData

Furthermore, one would expect that such a higher-order function with JSON objects is
properly type-checked.

For a data structure constructed with records and lists, this is achieved with record
polymorphism [20]. The above function, for example, is given the following static type:

highWind : ∀(t1 ::{name : t2, wind : t3}, t2, t3 ::{speed : real}). t1 list→ t2 list

where ∀(t1 ::{name : t2, wind : t3}, . . .) represents kinded abstraction of type variable t1 whose
possible instances are restricted to those record types that contain at least name and wind
fields of type t2 and t3. This mechanism ensures type-safe manipulation of lists of records
containing name and wind attributes. Since JSON objects often contain a large collection
of complicated record structures, an analogous type-safe and high-level treatment is highly
desirable. This mechanism of record polymorphism is an integrated part of SML# [26]. The
SML# [26] compiler infers the following typing for the above function:

highWind : [’a#{name:’b, wind:’c},’b,’c#{speed:real}. ’a list -> ’b list]

This variant of ML provides us an ideal starting point for developing a practical polymorphic
language with typeful JSON object manipulation support.

Apparently there are a number of technical issues to be sorted out before developing
a satisfactory programming language that realizes this desired view. The major obstacles
arise from the property that JSON is inherently heterogeneous. In many practical JSON
APIs, objects are required to contain certain set of fields and may contain some optional
fields. Moreover, this property is often implicit; objects with optional fields are simply those
that contain them, and there is no explicit tag to indicate their existence or nonexistence.
Because of this property, JSON arrays are heterogeneous in most cases. This is in sharp
contrast with typed representation in ML, where an optional field is represented as option
datatype, and collection types are always homogeneous. Designing a typed language that
uniformly deals with heterogeneous JSON objects constitutes a challenge. In this paper, we
provide one solution, and implement it in SML#.

We base our development on the observation made in [6] that a polymorphic record
calculus with collection types (set types or list types) can be extended with partially dynamic
records to form a programming language for high-level and type-safe manipulations of
heterogeneous collections. A partially dynamic record type is a refinement of type dynamic
proposed in [2]. In contrast with the standard dynamic type, however, it statically reveals
some record fields. Combining this typing constraint with collection-type constructors, one
can obtain a typing mechanism for manipulating heterogeneous persistent collections in an
ML-style polymorphic language. In the proposal of [6], the idea and typing rules are sketched
out, but their formal properties and implementation methods are not investigated. The goal
of the present paper is to develop a typed calculus suitable for JSON data based on the idea
of partially dynamic records, to establish type soundness, and to implement the calculus for
practical use.

When we separate dynamic typing from partially dynamic records, then types of partially
dynamic records intuitively correspond to super types of objects in an object-oriented language.
Since a super type also represents a substructure common to all of its subtypes, in a type
system with structural subtyping, heterogeneous collections can be represented as (uniform)
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collections of a super type of all the possible element types. With a suitable mechanism
for dynamic object inspection (dynamic “down casting”) for JSON data, an object-oriented
type system with object subsumption would certainly be an alternative approach. However,
subtyping would complicate polymorphism and type inference with records, and therefore
its impact on an implementation method for ML-style functional languages remains to
be investigated. Our proposal is suitable for ML-style functional languages and is readily
implementable.

Our general motivation of developing static typing for semi-structured external data is
shared with the authors of XDuce [14] and CDuce [3]. They aim at developing a typed
language for XML processing. In [10], it has been shown that some of these features can be
integrated in OCaml. In these systems, however, XML types do not have direct relationship
to static types of existing programming languages. As a result, record-like XML structures
are not related to labeled records or any other static data structures of the underlying
programming language. In the OCaml+XDuce language [10], for example, XML types are
opaque types in the OCaml type system. By contrast, our goal is to develop a language
mechanism to manipulate external record-like data directly as labeled records in a static
type system of ML. A major technical contribution of our research is not just a development
of yet another type system for JSON, but seamless and direct integration of JSON structures
in a static polymorphic programming language with labeled records.

The specific technical contributions of the present paper include the following:
We have presented a type system of JSON data and have developed an algorithm to
convert JSON data to explicitly typed ones. In the type system, any JSON data have a
unique type. The type system contains partial record types, and the type reconstruction
algorithm computes a partial record type for a heterogeneous JSON array by computing
the partial record type that matches all the element types.
We have developed a calculus with partially dynamic records, defined its operational
semantics, and shown a type soundness theorem. By defining the runtime model of
partially dynamic records as a pair of a typed JSON object and its static view, this
calculus serves as a programming language that integrates with JSON data.
We have presented a compilation method to extend the calculus with a polymorphic
primitive to convert a static complex value to dynamic JSON objects. We have also
extended the core calculus with ML-style pattern matching for JSON data.
We have fully implemented the calculus by extending the SML# compiler. Using the
implementation, we have evaluated the implemented compiler with a number of examples
including a JSON API in a real web service, and have demonstrated its practical feasibility.

The SML# version 3.1.0 includes JSON features presented in this paper, and is available from
Tohoku University as open-source software under a BSD-style license. Using this compiler,
Tohoku University and Hitachi Solutions East Japan, Ltd. plan to develop a web application
framework to be used for development of a personal prescription notebook server for mobile
devices.

The rest of the paper is organized as follows. In Section 2, we analyze static properties of
JSON data, discuss technical issues in designing a typed functional language with JSON data,
and describe our strategy. Section 3 presents the calculus and establishes type soundness.
Section 4 describes implementation techniques and reports on our implementation. Section 5
shows some examples using our SML# compiler and demonstrates the feasibility of our
proposal. Section 6 compares our proposal with existing work. Section 7 concludes the paper
with suggestions for further investigation.
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2 Analysis of JSON and our strategy

JSON data, as defined in [5], can be analyzed through the following abstract syntax:

j ::= cb | 〈l = j, . . . , l = j〉 | [j, . . . , j]

cb is a constant of atomic type b, which represents implicitly typed JSON literals. 〈l1 =
j1, . . . , ln = jn〉 is a JSON object, where l ranges over a given set of labels (string literals). In
the actual JSON format, an object is an unordered collection of colon-separated name-value
pairs. In the presentation of the syntax of the calculus, we use record notation similar to ML
records. In 〈l1 = j1, . . . , ln = ln〉, the labels {l1, . . . , ln} are pairwise distinct. This property
represents the unordered nature of fields in a JSON object. [j1, . . . , jn] is a JSON array
consisting of a sequence of JSON values, and corresponds to a list or a vector (immutable
array) in a functional language. In this paper, we represent them as lists. Vector views are
equally possible.

There is no difficulty in parsing JSON strings and representing the resulting abstract
syntax trees as data structures in a programming language. The following is a typical
definition in ML:

datatype json =
BOOL of bool | INT of int | REAL of real | STRING of string | NULL

| OBJECT of (string * json) list
| ARRAY of json list

Some ML compilers provide a library to parse JSON strings into a datatype similar to the
above. Our goal is to map untyped runtime values (values of a universal type) as a typed
term that can be directly manipulated by a typed ML program.

In the formal development, we omit the null object (NULL term above). As we shall briefly
explain in Section 4, it can easily be introduced as a built-in constant of a built-in type.

For this data structure we have the following straightforward observation. If we restrict
the ARRAY variant to be homogeneous, then the above data structure corresponds to runtime
values of the following set of ML types:

τ ::= b | {l : τ, . . . , l : τ} | τ list

It is a routine matter to define a type reconstruction function that first checks whether a
given value of type json is typable, and if it is typable, then returns its type. We can then
regard type json as an instance of type dynamic proposed in [2]. This simple observation
yields a language having the following features:

It contains an atomic type json (corresponding to dynamic) whose runtime values are
typed JSON data.
It provides a language construct of the form _json e as τ that dynamically checks a
typed JSON value whether or not its type component coincides with τ , and if it is the
case, then converts the typed JSON value to a value of static type τ . This would raise a
runtime exception of DynamicTypeError if the type-check fails. An equivalent statement
_typecase e of τ1 => e1 | · · · | τn => en | _ => e0 can also be provided.
It provides a primitive import e to parse a JSON string denoted by e to construct an
abstract syntax tree of the JSON data and then to check whether it is typable or not. If
it is typable then it creates a typed JSON value. This expression has type json.

All the above language constructs can be effectively defined in an ML-style type system, and
this approach can straightforwardly yield an extension of ML. While this simple approach
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has some usefulness, it is not practical for serious applications with JSON. As we discussed
in Introduction, most of practical JSON data are heterogeneous and are rejected by the
type-checking process described above.

To analyze the problem, suppose a given JSON array contains objects having manda-
tory name:string, wind:{speed:real,deg:real}, main:{temp:real} fields, and optional
clouds:{all:int} and main:{pressure:int} fields, such as the following:

[
{"name":"Sendai", "main":{"temp":19.0},
"wind":{"speed":7.6, "deg":170.0}},

{"name":"Natori", "main":{"temp":13.0, "pressure":1010},
"wind":{"speed":5.6, "deg":150.0}, "clouds":{"all":92}},

...
]

This is an example of commonly encountered heterogeneous JSON arrays. A typical program
would extract the mandatory name:string, main:{temp:real}, and wind:{speed:real}
fields. Since mandatory fields conceptually represent a static constraint on a list of values,
we want a programming language for JSON objects to represent the constraint in its static
type system so that the programmer can safely use polymorphic function on records with
list combinators such as foldr and map, as suggested in Introduction,

One approach to reconcile the static constraint and heterogeneous JSON arrays is to
introduce partially dynamic records presented in [6]. A partially dynamic record type, written
as {|l1 : τ1, . . . , ln : τn|}, denotes a dynamically typed record about which it is statically
known that its actual type contains the set of fields l1 : τ1, . . . , ln : τn. A heterogeneous
JSON array can then be typed as a list of a partially dynamic record type. For example, the
above term can be given a type of the form

{|name : string, main : {|temp : real|}, wind : {|speed : real, deg : real|}|} list

indicating the fact that each element of the list is a record that contains at least name:string,
main:{temp:real}, and wind:{speed:real, deg:real} fields, and possibly contains more
fields. By integrating this typing feature into a static type system with record type, list
type, and record polymorphism, we can obtain a typed language that supports high-level
and typeful manipulation of JSON objects.

3 Definition of the calculus

This section defines the calculus, establishes its type soundness, and describes the necessary
extensions to integrate it into an ML-style language with record polymorphism.

3.1 Typed JSON Objects
We first define a type system for JSON data. We continue to use the abstract syntax of
JSON data that we defined in Section 2.

The set of JSON types is given by the following syntax.

π ::= b | {l : π, . . . , l : π} | {|l : π, . . . , l : π|} | π list | json

In addition to JSON object types of the form {l1 : π1, . . . , ln : πn} and JSON array types
of the form π list, we introduce two forms of partial types. One is a partial record type
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[[b]] = {cb | cb is a constant literal of type b}
[[{l1 : π1, . . . , ln : πn}]] = {〈l1 = j1, . . . , ln = jn〉 | j1 ∈ [[π1]], . . . , jn ∈ [[πn]]}
[[{|l1 : π1, . . . , ln : πn|}]] = {〈l1 = j1, . . . , ln = jn, . . .〉 | j1 ∈ [[π1]], . . . , jn ∈ [[πn]]}

[[π list]] = {[j1, . . . , jn] | j1 ∈ [[π]], . . . , jn ∈ [[π]]}
[[json]] = the set of all syntactically well formed json terms

Figure 1 A syntactic model of JSON types.

{|l1 : π1, . . . , ln : πn|}, which represents JSON objects that contain at least the set of fields
l1 : π1, . . . , ln : πn. The other is the type json for which no structure is known.

To model the above interpretation of these partial types in a type system, we define the
following ordering on the set of types:

π ≤ json for any π.
{l1 : π1, . . . , ln : πn, . . .} ≤ {|l1 : π′

1, . . . , ln : π′
n|} if π1 ≤ π′

1, . . . , πn ≤ π′
n.

{|l1 : π1, . . . , ln : πn, . . . |} ≤ {|l1 : π′
1, . . . , ln : π′

n|} if π1 ≤ π′
1, . . . , πn ≤ π′

n.
π list ≤ π′ list if π ≤ π′.

The reflexive transitive closure of this relation yields a partial ordering on the set of JSON
types. This ordering is the converse of the one used in [6], where the ordering is originally
introduce to model the amount of information. Here, we use the notation that is familiar
in object-oriented type systems [1] for readability. Note, however, that this ordering is not
used to define subsumption relation on terms, but to compute the common substructure of
element types in a heterogeneous JSON array. The join (least upper bound) of π1 and π2
with respect to ≤ is written π1 t π2, which denotes the largest common substructure of π1
and π2.

The typing rules for JSON data are given below:

` cb : b

` j1 : π1 · · · ` jn : πn

` 〈l1 = j1, . . . , ln = jn〉 : {l1 : π1, . . . , ln : πn}

` j1 : π1 · · · ` jn : πn π = π1 t · · · t πn

` [j1, . . . , jn] : π list

This type system has a straightforward syntactic model. Figure 1 defines the semantics
[[π]] of JSON type π. Using this, we define the semantic typing relation, denoted by |= j : π
if and only if j ∈ [[π]]. We can then show the following simple soundness property of the type
system:
I Proposition 1. If ` j : π then |= j : π.

We note that, under this (intended) model, the ordering of JSON types corresponds
to set inclusion, i.e., it is the case that if π1 ≤ π2, then [[π1]] ⊆ [[π2]]. Note also that the
subsumption rule

` j : π π ≤ π′

` j : π′

is sound with respect to the above simple semantics. If we added this rule to our JSON type
system, it would correspond to the type system of simple objects with collection types, and our
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typing judgment corresponds to minimal typing. As we have noted earlier, subsumption is not
used in our system. JSON terms are manipulated through polymorphic record operations, and
its polymorphic record typing subsumes the object-oriented subsumption rule. To understand
this, suppose we access the name field of an object of type {name:string, age:int}. Instead
of applying subsumption rule to obtain a record type {name:string}, we give the name-field
accessor a polymorphic type so that it can be applicable to any object containing a name
filed. This approach computes more accurate typing than subtyping.

Therefore we have defined the JSON type system as a relation to deduce a unique (most
specific) typing. Moreover, with the type json, any JSON term has a unique minimal type in
our semantics. Indeed, the following property is easily shown:
I Proposition 2. For any j, there is a unique π such that ` j : π. Moreover, if j ∈ [[π′]], then
π ≤ π′.
We define the typed JSON term as a pair (j : π) such that ` j : π. We write infer(j) for the
typed JSON term (j : π) of j.

3.2 The Calculus with Partially Dynamic Records
The idea underlying our calculus for the static manipulation of JSON data is to consider
typed JSON objects defined above as runtime values of partially dynamic record types
sketched out in [6]. Based on this general idea, this section develops the typed calculus.

The set of terms of the calculus is given below:

e ::= cb | x | λx.e | e e | {l = e, . . . , l = e} | e.l | e :: e | nil | j | (e as π else e)

This is a variant of the typed lambda calculus with records and lists, extended with partially
dynamic JSON objects and a dynamic type-checking construct. {l = e, . . . , l = e} is a labeled
record in Standard ML, and e.l is record field selection that selects the l field from the
record e. The operations on lists can be given as primitive functions, and we omit them. j
introduces a JSON object as a value of dynamic type. (e1 as π else e2) dynamically checks
whether the type component π′ of a typed JSON object e1 is smaller than or equal to π
(π′ ≤ π). If it is the case, then it coerces the JSON data to a value of type π; otherwise, it
evaluates e2. When π is a partial record type, then this term denotes a value of a partially
dynamic record, or equivalently a partially static JSON object.

This calculus intends to model a polymorphic programming language with JSON ma-
nipulation. An actual language requires additional standard features including recursion,
recursive datatypes, pattern matching, and exception. There is no difficulty in extending
the calculus with these features. In particular, exception is useful in manipulating dynamic
objects and we shall implicitly assume that exception mechanism is available in writing
examples.

The set of types is given below:

τ ::= b | τ → τ | {l : τ, . . . , l : τ} | {|l : τ, . . . , l : τ |} | τ list | json

Note that this set of types subsumes all the JSON types (ranged over by π). {l : τ, . . . , l : τ}
is a labeled record type, and τ list is a list type; when they appear in a typing judgment
Γ ` e : τ , they denote ML records and ML lists. They also denote JSON objects and JSON
arrays when they appear as type specifications π in a term (e as π else e).

Let Γ range over the set of type assignment, which is a finite function from variables
to types. dom(Γ) is the domain of Γ. For a typing assignment Γ, Γ{x : τ} is Γ′ such that
dom(Γ′) = dom(Γ) ∪ {x}, Γ′(x) = τ , and Γ′(y) = Γ(y) for any y ∈ dom(Γ) such that x 6= y.
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Γ ` cb : b Γ ` nil : τ list (for any τ) Γ ` j : json

Γ(x) = τ

Γ ` x : τ
Γ{x : τ} ` e : τ ′

Γ ` λx.e : τ → τ ′
Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

Γ ` e1 : τ Γ ` e2 : τ list
Γ ` e1 :: e2 : τ list

Γ ` ei : τi (1 ≤ i ≤ n)
Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ ` e : {l1 : τ1, . . . , li : τi, . . . , ln : τn} (1 ≤ i ≤ n)
Γ ` e.li : τi

Γ ` e : {|l1 : τ1, . . . , li : τi, . . . , ln : τn|} (1 ≤ i ≤ n)
Γ ` e.li : τi

Γ ` e1 : json Γ ` e2 : π
Γ ` (e1 as π else e2) : π

Γ ` e1 : {|l1 : τ1, . . . , ln : τn|} Γ ` e2 : π
Γ ` (e1 as π else e2) : π

Figure 2 Type system for the calculus with partially dynamic records.

R(cb, b) = cb

R(j, json) = infer(j)
R([j1, . . . , jn], π list) = R(j1, π) :: · · · :: R(jn, π) :: nil

R(〈l1 = j1, . . . , ln = jn〉, {l1 : π1, . . . , ln : πn}) = {l1 = R(j1, π1), . . . , ln = R(jn, πn)}
R(〈l1 = j1, . . . , li = ji, . . . , ln = jn〉, {|l1 : π1, . . . , li : πi|}) =

(infer(〈l1 = j1, . . . , li = ji, . . . , ln = jn〉), {l1 = R(j1, π1), . . . , li = R(ji, πi)})

Figure 3 Dynamic coercion of JSON data.

The type system is defined as a set of rules to derive the typing relation of the form Γ ` e : τ
indicating that expression e has type τ under type assignment Γ. The set of typing rules of
the calculus is given in Figure 2.

The observant reader may have noticed that in the pure calculus defined above, there is
no closed term having a partially dynamic record type, since (e1 as π else e2) requires else
term e2. As we shall explain later in Section 4, a typical use of as construct is of the form
(j as π else DynamicTypeError), where DynamicTypeError is a term to raise an exception
when j’s runtime type does not match with type π. This term has type π for any π.

We construct a big-step operational semantics in the style of natural semantics [18]. The
set of runtime values, ranged over by v, is given below:

v ::= cb | Cls(E, x, e) | {l = v, . . . , l = v} | v :: v | nil | (j : π) | (j : π, v) | Wrong

Cls(E, x, e) is a function closure. (j : π) is a typed JSON value defined in Subsection 3.1.
(j : π, v) is a pair of a typed JSON value and its view v. Wrong indicates runtime failure.

A typed JSON value (j : π) is a runtime model of type json. A typed JSON value with
static view (j : π, v) is a runtime model of partially dynamic JSON terms, i.e., those terms
whose types contain partial record types. These (partially) dynamic values are type-checked
at runtime by the construct (e1 as π else e2), as explained above. Figure 3 gives an algorithm
R, which takes a typed JSON value and a type and returns a value of that type.

We write (j : π) ≈ v if v is identical to (j : π) or is of the form (j : π, v′) for some v′.
Let E range over the set of value assignments, which is a finite function from variables to
values. Figure 4 shows the set of evaluation rules that derives the evaluation relation of the
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E ` cb ⇓ cb E ` nil ⇓ nil E ` j ⇓ infer(j) E ` λx.e ⇓ Cls(E, x, e)

E(x) = v

E ` x ⇓ v
E ` e1 ⇓ Cls(E′, x, e) E ` e2 ⇓ v′ E′{x : v′} ` e ⇓ v

E ` e1 e2 ⇓ v

E ` e1 ⇓ v1 E ` e2 ⇓ v2

E ` e1 :: e2 ⇓ v1 :: v2

E ` e1 ⇓ v1 · · · E ` en ⇓ vn

E ` {l1 = e1, . . . , ln = en} ⇓ {l1 = v1, . . . , ln = vn}

E ` e ⇓ {l1 = v1, . . . , li = vi, . . . , ln = vn} (1 ≤ i ≤ n)
E ` e.li ⇓ vi

E ` e ⇓ (j : π, {l1 = v1, . . . , li = vi, . . . , ln = vn}) (1 ≤ i ≤ n)
E ` e.li ⇓ vi

E ` e1 ⇓ v (j : π′) ≈ v π′ ≤ π
E ` (e1 as π else e2) ⇓ R(j, π)

E ` e1 ⇓ v (j : π′) ≈ v π′ 6≤ π E ` e2 ⇓ v′

E ` (e1 as π else e2) ⇓ v′

Figure 4 Operational semantics of the calculus.

form E ` e ⇓ v indicating that e evaluates to v under value assignment E. We note that the
entire set of rules should be taken with the following implicit rules yielding Wrong: if any of
the conditions in the premises are not satisfied or evaluation of any subterm yields Wrong,
then the entire evaluation yields Wrong.

3.3 Soundness
We first define value typing, denoted by |= v : τ , indicating that runtime value v has type τ
as the following relation:
|= cb : b
|= Cls(E, x, e) : τ1 → τ2 iff there is some Γ such that |= E : Γ and Γ ` λx.e : τ1 → τ2.
|= {l1 = v1, . . . , ln = vn} : {l1 : τ1, . . . , ln : τn} iff |= vi : τi for each 1 ≤ i ≤ n.
|= nil : τ list for any τ .
|= v1 :: v2 : τ list iff |= v1 : τ and |= v2 : τ list.
|= (j : π) : json iff ` j : π in the JSON type system.
|= (j : π, v) : {|l1 : π1, . . . , ln : πn|} iff ` j : π in the JSON type system, π ≤ {|l1 :
π1, . . . , ln : πn|}, and |= v : {l1 : π1, . . . , ln : πn}.

We write |= E : Γ if dom(E) = dom(Γ) and |= E(x) : Γ(x) for any x ∈ dom(E).
The following property is easily shown from the semantics of JSON typing:

I Lemma 1. If ` j : π and π ≤ π′, then |= R(j, π′) : π′.

We then have the following:

I Theorem 2. If Γ ` e : τ , |= E : Γ and E ` e ⇓ v, then |= v : τ .

Proof. This is proved by induction on the size of derivations of E ` e ⇓ v. Here we only
show a few cases involving JSON values.

Case e = j. We have |= infer(j) : json by the definition of infer(j).
Case e = (e1 as π else e2). From the evaluation rules, we have E ` e1 ⇓ v1. From the

typing rules, we have either Γ ` e1 : json or Γ ` e1 : {| · · · |}. By the induction hypothesis,
we have either |= v1 : json or |= v1 : {| · · · |}. From the definition of value typing, v1 is either
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(j : π′) or (j : π′, v′) for some j, π′, and v′ such that ` j : π′. In both cases, (j : π′) ≈ v1
holds. If π′ ≤ π, we have |= R(j, π) : π by Lemma 1. If π′ 6≤ π, we have Γ ` e2 : π and
E ` e2 ⇓ v′ from the typing and evaluation rules. By the induction hypothesis, we have
|= v′ : π. �

The calculus so far defined is a minimal one with a monomorphic type system. In the rest
of this section, we describe some extensions to develop a polymorphic functional language.

3.4 Extension to polymorphism
There is no difficulty in extending the monomorphic type system of the calculus defined
above to ML-style polymorphism. Because the runtime models of both dynamic type json
and partial record types {|l1 : π1, . . . , ln : πn|} are JSON data, it is natural to restrict the
target type π of (e1 as π else e2) to be a monomorphic JSON type. With this restriction,
the type system straightforwardly extends to an ML-style polymorphic type system.

Moreover, since partially dynamic JSON data are viewed as ML records, the calculus
nicely blends with record polymorphism. Indeed, we can extend a polymorphic record
calculus [20] to JSON data and partial record field selections without much difficulty. In our
implementation we shall report in Section 4, a partial record field selection is written as a
function

fn x => #foo (view x)

which has a record-polymorphic type

[’a#{foo: ’b}, ’b. ’a dyn -> ’b]

indicating the fact that it accepts any partially dynamic record that has at least a foo field.

3.5 Serializing ML values as JSON data
The calculus defined above captures how to deal with given JSON data in a statically typed
language. In our calculus, we have included JSON term j as a new syntactic category. Our
implicit assumption underlying this design is that JSON term j is an abstract syntax of the
JSON format. From a practical perspective, this corresponds to including a primitive to
parse a string representation of JSON data written by the programmer or received through
an I/O primitive. This is what we have done in our implementation.

The opposite direction is of course necessary; we also want to serialize values in the
language to generate JSON data in a type-consistent way. This problem can be stated
as a problem to define a construct toJson(e) that produces a JSON value j such that
(toJson(e) as π else ⊥) is equivalent to e. Moreover, we would like toJson() to work
polymorphically. This is a sub-problem of type-dependent value printing.

One approach is to add primitives to introduce term of dynamic type in [2] and to format
a dynamic value. However, there is a subtle technical issue concerning the introduction of
dynamic type. In practical implicitly typed polymorphic languages in the ML family, only the
compiler knows the type information; therefore, π does not exist at runtime. Recursive data
types make things more difficult since the recursive structure of a data type is not necessarily
determined from its name; for example, list is just a type name and hence does not indicate
its recursive structure consisting of cons and nil. We have partially solved this problem for
monomorphic ground types and have implemented a special construct that embeds type
representation in object codes. This enables us to reify a type of expression. Using this,
SML# implements the following primitive:
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dynamic : [’a. ’a -> dynamic]

The current limitation is that this primitive can reify the type information only when the
type of the argument to this primitive is monomorphic. Details of this technique is outside
the scope of this paper, and we will present them elsewhere.

On top of this dynamic primitive, we introduce the following two primitives:

toDynamic : [’a#json. ’a -> dynamic]
dynamicToJson : dynamic -> {json:void dyn, string:string}

toDynamic is an alias to dynamic whose argument type is constrained to JSON type π through
the kind constraint ’a#json that restricts instance of ’a to JSON types. dynamicToJson
converts dynamic value to dynamic json object and its string representation. Using them, we
can write a code

let
val x = [{name = "Joe", score = {math = 76, lang = 89}},

{name = "Bob", score = {math = 96, lang = 94}}]
in

print (#string (dynamicToJson (toDynamic x)))
end

that produces the following output in JSON format:

[
{"name":"Joe", "score":{"lang":89, "math":76}},
{"name":"Bob", "score":{"lang":94, "math":96}}

]

3.6 Pattern matching with JSON
Another useful extension is to integrate JSON manipulation constructs (e1 as π else e2)
with ML-style pattern matching. This integration relieves the programmer from writing
type annotations, and enables the programmer to use familiar programming idioms with
ML-style patterns. This extension can be provided by syntactic elaboration in a language
with ML-style pattern matching. Here we outline the elaboration.

We assume that the core calculus is extended with the ML-style case statement

case exp of pat1 => exp1 | · · · | patn => expn

with an extension that record patterns match with partially dynamic JSON objects as well
as ML records. We then introduce the following case statement for JSON data

jsonCase e of jp1 => exp1 | · · · | jpn => expn

that performs a case analysis on dynamic or partially dynamic JSON value e against the set
of JSON patterns jp1 , . . . , jpn. The set of JSON patterns is given below:

jp ::= cb (constants of type b)
| x : π (any JSON value of π)
| {l = jp, . . . , l = jp} (JSON object)
| {l = jp, . . . , l = jp, ...} (partial JSON object)
| nil : π list (empty JSON array)
| jp :: x (JSON array)
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Pat(cb) = cb

Pat(x : π) = x

Pat({l1 = jp1 , . . . , ln = jpn}) = {l1 = Pat(jp1), . . . , ln = Pat(jpn)}
Pat({l1 = jp1 , . . . , ln = jpn, . . .}) = {|l1 = Pat(jp1), . . . , ln = Pat(jpn)|}

Pat(nil : π list) = nil
Pat(jp1 :: x) = Pat(jp1 ) :: x

Ty(cb) = b

Ty(x : π) = π

Ty({l1 = jp1 , . . . , ln = jpn}) = {l1 : Ty(jp1), . . . , ln : Ty(jpn)}
Ty({l1 = jp1 , . . . , ln = jpn, . . .}) = {|l1 : Ty(jp1), . . . , ln : Ty(jpn)|}

Ty(nil : π list) = π list
Ty(jp1 :: x) = Ty(jp1) list

Figure 5 The type-part and the pattern-part of JSON pattern.

This definition is similar to that of Standard ML pattern language, except that variables and
nil must be type-annotated to ensure that the pattern corresponds to a unique JSON type.

The above jsonCase expression is translated to a combination of JSON primitives of the
core calculus and case expressions of ML. To define the translation scheme, we define the
type part Ty(jp) of jp and the pattern part Pat(jp) of jp in Figure 5. JSON case expression
of the form

jsonCase e of jp1 => e1 | · · · | jpn => en

is translated to the following nested case analysis term E1:

E1 = case (e as Ty(jp1) else E2) of Pat(jp1) => e1 | _ => E2

E2 = case (e as Ty(jp2) else E3) of Pat(jp2) => e2 | _ => E3
...

En = case (e as Ty(jpn) else DynamicTypeError)
of Pat(jpn) => en | _ => MatchError

where MatchError and DynamicTypeError are terms to raise exceptions. DynamicTypeError
indicates that dynamic type-checking fails. MatchError indicates that list or constant pattern
matching in jpi fails.

4 Implementation

We have implemented all the features presented in the previous section in the SML# compiler
version 3.1.0, which is available from: http://www.pllab.riec.tohoku.ac.jp/smlsharp/.
The JSON features are supported both in the separate compilation mode and in the interactive
session. The following is a very simple actual interactive session.
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$ smlsharp
SML# 3.1.0 · · · for x86_64-pc-linux-gnu with LLVM 3.7.1
# open JSON;
· · · output message on JSON structure being opened.

# import "{\"name\":\"SML#\", \"version\":\"3.1\"}";
val it = _ : void dyn
# _jsoncase it of {name=x:string, ...} => x;
val it = "SML#" : string

SML# interpreter prompts the user by printing “#”. open JSON makes the primitives defined
in the JSON structure, such as import, available at the top-level. The user can also write
JSON.import without opening JSON structure. Section 5 shows more examples.

Through our effort of extending the full-fledged and complex compiler with JSON support,
we have observed that we can implement the required dynamic typing systematically and
efficiently if we provide a mechanism for the compiler to access user-level library codes. Based
on this observation, we have successfully completed our implementation using user-level
SML# codes with relatively small amount of modification to the compiler.

The implementation consists of three components. The first is the library for JSON object
manipulation written as user-level codes. The second is typed elaboration that compiles
(e as π else e) using type information. The third is syntactic elaboration that transforms
jsonCase expression. The compiler performs the second and the third transformation using
the JSON support library through the mechanism to access user-level codes. The compiler
support is necessary for two reasons: (1) in both translations, the generated codes are type-
varying and therefore the translation codes are not typable, and (2) the typed elaboration
requires compile-time static type information.

We report on its details in the following three steps. First, we explain the strategy of typed
elaboration that implements the json type with its introduction and elimination. Second,
we extend the typed elaboration with the partially dynamic records. Last, we describe the
techniques we used in implementing the jsonCase translation presented in Subsection 3.6.

4.1 Implementation of json type
Implementation of the json type involves the introduction of the JSON term, denoted by j
in the calculus, and the implementation of the (e1 as π else e2) statement that eliminates
type json. We first review the semantics structure defined in the formal calculus with our
strategy to implement them, and then describe the details of our implementation.

A semantic object (j : π) of type json is a pair of a JSON term and a JSON type. The
structure of j and π are represented as ML datatypes. The introduction of a JSON term j

of type json is implemented as an ML function that parses a given JSON string to obtain a
JSON term j, infers its JSON type π such that ` j : π, and then returns the pair of the
parse result and π.

Those JSON terms are dynamically type-checked and converted to ML value through the
construct (e1 as π else e2). We provide the syntax

_json e as π

for (e1 as π else DynamicTypeError) where else term e2 is fixed to the one that raise
exception. To implement this, we need to reify π. For this purpose, a datatype representation
of JSON type π is defined in the user-level library and the compiler generates user-level
code representing π in that representation. This code generation are done by searching for
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appropriate user-level codes in the library from the given context and inserting references to
them. Then, the compiler translates _json e as π into the user-level code that extracts
the JSON-type part π′ from the result of evaluation of e, checks whether π′ ≤ π holds, and
if it succeeds then converts the JSON term of e to a runtime value of type π. The resulting
code constitutes a composition of user-level functions in the library, each of which performs
one of the above steps. The same searching mechanism as the reification is used to generate
this composition.

In actual implementation, JSON types are represented by the following definition:

datatype jsonTy =
BOOLty | INTty | REALty | STRINGty | NULLty

| ARRAYty of jsonTy
| RECORDty of (string * jsonTy) list
| PARTIALRECORDty of (string * jsonTy) list
| JSONty

To represent unordered record fields, the list of RECORDty and PARTIALRECORDty are sorted
in alphabetical order. NULLty is the type of the null value of JSON, whose treatments we
omitted in the formal development in Section 3.

We implement the json type as a type-annotated JSON term rather than the pair of a
JSON term and JSON type as mentioned above, so that the JSON type of any subterms
of JSON are computed once JSON is read. The following shows the definition of the
type-annotated JSON and type json whose name in implementation is dyn:

datatype json =
BOOL of bool | INT of int | REAL of real | STRING of string | NULL

| ARRAY of json list * jsonTy
| OBJECT of (string * json) list

datatype dyn = DYN of json

In addition to the standard JSON term representation, it is sufficient to add a type annotation
to the JSON array; the other component carries type information. The data constructor DYN
is hidden from the user; hence the dyn type can be seen as atomic types from the user.

We provide a function of the following signature for the user to read JSON data as a
value of type dyn:

val import : string -> dyn

This function parses JSON in the given string and computes the element type of every array
appearing in the given JSON.

We define the following user-level functions for the compiler to use during compilation:

val getJson : dyn -> json
val checkTy : json * jsonTy -> unit
val checkInt : json -> int
val checkString : json -> int
...

val checkArray : json -> json list

getJson e returns the internal JSON term of internal type json. checkTy(e, π) extracts
the type π′ of JSON term e and if π′ 6≤ π then it raises RuntimeTypeError exception.
checkInt, checkString, checkArray, etc., are coercion functions defined for atomic types
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int, string, etc., and for type constructors array and others. Each coercion function checks
the JSON type of a given JSON term and converts it to the corresponding ML value.

Using these user-level functions, we define the following two code generation functions in
the compiler: coerceJson(e,π) to call appropriate check function to obtain an ML value
from a JSON term e, and tyToJsonTy(π) to convert a static type π to a term of type jsonTy.
These definitions are straightforward except in the case of partially dynamic records we will
mention in the next subsection. _json e as π is compiled by the following code generation
function:

fun compileJson (e, ty) =
let

val jsonExp = App (J.getJson(), [e])
val viewExp = coerceJson (jsonExp, ty)
val viewTy = tyToJasonTy ty
val checkExp = App (J.checkTy(), [jsonExp, viewTy])

in
Seq [checkExp, Typed (viewExp, ty)]

end

In this code, App, Seq, and Typed generates application term, sequencing term, and type
annotated term, respectively. J.getJson() and J.checkTy() are references to the user-level
functions of the same name through the searching mechanism mentioned above.

4.2 Implementation of partially dynamic records
The approach presented in the previous subsection is extended to partially dynamic records.
In the calculus presented in Section 3, a partially dynamic record is regarded as a value of type
dynamic coupled with its view. To deal with partially dynamic records and dynamic values
uniformly, we extend dyn type to ’a dyn where ’a is the type of the view. We additionally
introduce a new type void indicating that no view is available; an attempt to view a term
of type void dyn will result in AttemptToReturnVOIDValue runtime exception. With these
extensions, json is represented as void dyn, and {|l1 : τ1, . . . , ln : τn|} is represented as {l1:τ1,
. . ., ln:τn} dyn. For example, to coerce a JSON object e to a list of partially dynamic
records of type {|name : string|}, the programmer can write the following:

_json e as {name: string} dyn list

then an ML list of partially dynamic records is obtained by generating the view of each
element of the list.

One concern of this approach is performance; the calculus produces a view for a partially
dynamic record every time a partially dynamic record is generated. Naive implementation
would waste time and memory by producing unused views when reading a large JSON array
consisting of a variety of JSON objects. To avoid this overhead, we delay the generation of
views until the view is really needed. The definition of dyn is eventually as follows:

datatype ’a dyn = DYN of (json -> ’a) * json

This ’a is to be instantiated to either a record type or void. The function of type json -> ’a
produces an ML record of type ’a as a view of the given JSON term. Partially dynamic
records are then converted to ML records by the following function:

val view : ’a dyn -> ’a = fn DYN (f, x) => f x
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The case of coerceJson for partially dynamic record types is given below:

fun coerceJson (jsonExp, DYNty argTy) =
let

val funExp = Fn (fn x => coerceJson (Var x, argTy))
val jsonTy = tyToJsonTy argTy

in
App (J.makeCoerce(), [jsonExp, jsonTy, funExp])

end

Fn is a compiler primitive to convert a meta-level function to the corresponding object-level
function term. makeCoerce : json -> jsonTy -> (json -> ’a) -> ’a dyn is a user-
level function that takes json term j, its type, and a coercion function, and generates a
partially dynamic term.

4.3 Implementation of pattern matching with JSON
We have implemented the following syntax that embodies jsonCase presented in Subsection 3.6:

_jsoncase e of jp1 => e1 | · · · | jpn => en

with several shorthands available in ML’s pattern language. Moreover, along with the syntax
of JSON, we allow any string literals to occur in jp as labels of record fields. An example of
string literals as record labels appears in Subsection 5.2.

The elaboration scheme presented in Subsection 3.6 cannot straightforwardly incorporate
our implementation strategy owing to the following issues: (1) the ML record pattern does
not match with partially dynamic records since partially dynamic records have their own
data constructors, (2) the construction of the view of a partially dynamic record is delayed
by a function, and (3) the code duplication in the present elaboration scheme increases the
code size exponentially. A standard solution to these issues would be to develop a match
compilation algorithm for jsonCase, similarly to ML’s pattern matching compilation.

Instead of taking the full-fledged approach of developing a match compiler, we adopt
the following light-weight strategy. We translate _jsoncase into a nested case expression
that interleaves pattern matching with view construction of partially dynamic records. Let
m be the number of (top-level) partially dynamic record patterns of the form {l1j=p1

j , . . .,
lkj =pk

j ,...} (1 ≤ j ≤ m) occurring in jpi . The result T (e, jpi => ei) of translation of match
jpi => ei is the nested case expression of the form

case e of jpi => E1 | _ => raise M

where jpi is the pattern obtained by replacing the j-th partially dynamic record pattern with
a fresh variable xj , M is the exception indicating the fact that the other cases should be
tried. The main expression E1 is generated by the following cascading equations:

E1 = case view x1 of {l11=x1
1, . . ., lk1=xk

1} =>
T (x1

1, jp1
1 => T (· · · T (xk

1 , jpk
1 => E2) · · · ) · · · )

| _ => raise M

...
Em = case view xm of {l1m=x1

m, . . ., llm=xl
m} =>

T (x1
m, jp1

m => T (· · · T (x1
m, jpl

m => ei) · · · ) · · · )
| _ => raise M
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The fallback to the next match is realized by handling the exceptionM . The entire _jsoncase
is translated into the following expression:

let
val x = e

exception M

in
T (_json x as Ty(jp1), jp1 => e1) handle M =>

...
T (_json x as Ty(jpn), jpn => en) handle M =>
raise Match

end

In addition to patterns presented in Subsection 3.6, we have implemented a pattern for
heterogeneous lists of the following form:

jp ::= · · · | jp1 :: · · · :: jpn :: x

This pattern matches with the first n elements of the given JSON array and binds x to
the rest of the array. In contrast to ML’s list pattern, the type of each element jpi of a
heterogeneous list pattern may differ. The matching with this heterogeneous list pattern is
performed by coercing the given JSON term to the term of type void dyn list, taking n
elements from the head of the list, and then matching the i-th element with jpi. To realize
this, our implementation translates the following case:

_jsoncase e1 of jp1 :: · · · :: jpn :: x => e2

into the following expression:

case (_json e1 as void dyn list) of
x1::· · · ::xn::x =>

_jsoncase x1 of jp1 =>
...

_jsoncase xn of jpn => e2

where x1, . . . , xn are fresh variables.

5 Evaluations through realistic examples

In this section, we demonstrate the feasibility and the usefulness of our approach through
realistic examples using existing Web APIs.

5.1 Heterogeneous record collections in JSON
We first go through the basic usage of our JSON extension using simple examples.

A typical usage of JSON is to represent a collection of objects. The following example
imports a JSON array of objects, coerces it to a list of records, and extracts their name fields:

val J = "[{\"name\":\"Joe\", \"age\":21, \"grade\":1.1},
{\"name\":\"Sue\", \"age\":31, \"grade\":2.0},
{\"name\":\"Bob\", \"age\":41, \"grade\":3.9}]"
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# val J = "[{\"name\":\"Joe\", \"age\":21, \"grade\":1.1},\
\ {\"name\":\"Sue\", \"age\":31, \"grade\":2.0},\
\ {\"name\":\"Bob\", \"age\":41, \"grade\":3.9}]";

val J =
"[{\"name\":\"Joe\", \"age\":21, \"grade\":1.1},

{\"name\":\"Sue\", \"age\":31, \"grade\":2.0},
{\"name\":\"Bob\", \"age\":41, \"grade\":3.9}]" : string

# fun getNames l = map #name l;
val getNames = fn : [’a#{name: ’b}, ’b. ’a list -> ’b list]
# val j = import J;
val j = _ : void dyn
# val vl = _json j as {name:string, age:int, grade:real} list;
val vl =

[
{age = 21,grade = 1.1,name = "Joe"},
{age = 31,grade = 2.0,name = "Sue"},
{age = 41,grade = 3.9,name = "Bob"}

] : {age: int, grade: real, name: string} list
# val nl = getNames vl;
val nl = ["Joe","Sue","Bob"] : string list

Figure 6 Interactive SML# session with a simple example.

fun getNames l = map #name l
val j = import J
val vl = _json j as {name:string, age:int, grade:real} list
val nl = getNames vl

Figure 6 shows the actual output of an interactive session of this program, where the JSON
structure has been already opened at the top-level. The SML# compiler type-checks this
example and generates the expected results. Some explanations of the compiler output are
in order.

For getNames, the compiler infers the polymorphic type [’a#{name:’b}, ’b. ’a list
-> ’b list].
The result j of importing the JSON string J is given the type void dyn, which is the
representation of type json in our implementation.
The result vl of coercing j to type {name:string, age:int, grade:real} list is a
list of records of that type, as expected.
For the resulting records bound to vl, the polymorphic function getName is safely applied
to yield a list of string bound to nl.

In writing a JSON string as an ML string constant, control characters such as " need to
be escaped to \". This is not a big problem, given the fact that JSON objects are usually
obtained from external servers or are generated by a program, and there are few occasions
to define a JSON object as a string constant. The above artificial example is there for
explanation purposes. In writing the JSON string examples below, we omit the out-most "
and escape characters.

As we discussed in Introduction, collections of JSON objects in typical web services are
usually heterogeneous; some fields of each object in the collection may be optional. Suppose
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a JSON API requires that a collection of JSON objects have mandatory name and age fields,
and optional grade and nickname fields. Let J ′ be the following JSON term compliant with
this format:

[
{"name":"Alice", "age":10, "nickname":"Allie"},
{"name":"Dinah", "age":3, "grade":2.0},
{"name":"Puppy", "age":7}

]

In our scheme, we can type such a heterogeneous collection with partially dynamic records
as follows:

val j’ = import J ′

val vl’ = _json j’ as {name:string, age:int} dyn list
val nl’ = getNames (map view vl’)

While the inferred type of j’ is void dyn as in the previous example, the SML# compiler
infers the following typing for vl’:

val vl’ = _ : {name:string, age:int} dyn list

This shows that a JSON object containing a heterogeneous collection is typed as a list of
partially dynamic records. We note that the record-polymorphic function getName can be
applied to the resulting partially dynamic records.

When some optional fields are significant, then we can enlarge the type of each object
separately. The following function picks up either a nickname or name for each record in the
given list depending on the existence of nickname field.

fun getFriendlyName vl =
map (fn x => _jsoncase x of {nickname=y:string, ...} => y

| _ => #name (view x))
vl

The pattern {nickname=y:string, ...} enlarges the partial record type of x to {|nickname :
string, . . . |} and binds the nickname field to y if the enlargement succeeds. This type
of enlargement does not affect the type of x. Owing to SML#’s record polymorphism,
getFriendlyName has a record-polymorphic type

[’a#{name:string}. ’a dyn list -> string]

indicating that this function can be applied to any partial record that has at least a name
field of string type.

5.2 Partial records in the real world
As we briefly mentioned above, collections of partially dynamic records frequently appear
in JSON, typically in communication among web services. Examples include the OAuth
authorization protocol [13], Twitter search API [28], and Google Maps API Web services [12].
Most other popular web services also provide JSON interfaces.

This subsection demonstrates the benefits of our proposal using a sample in the real world.
For this purpose, we choose OpenWeatherMap [23], which is simple but elaborate enough for
our purpose of realistic evaluations. OpenWeatherMap provides free access to weather data
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over the Internet. JSON is adopted by OpenWeatherMap as a format for sending weather
data to the client.

By sending a specific HTTP request to OpenWeatherMap’s web server with some pa-
rameters, the user can obtain a variety of collections of weather data as an JSON array of
JSON objects. Each of the objects consists of fields for weather parameters measured by a
weather station such as temperature, wind speed, and amount of precipitation. The concrete
form of the weather data may vary for several reasons: the precipitation amount may be
absent if it does not rain, the geographic details of cities may be omitted if the user requests
data for a particular city, and a record may contain extra system-reserved parameters that
are undocumented and would be ignored by clients. Owing to such flexibility of the data
structure, the response data is inherently heterogeneous and partial. The following JSON
data is an example of the server response consisting of current weather parameters of several
cities in Japan:

{"list":[
{"id":2111149, "name":"Sendai-shi", "sys":{· · · },
"coord":{"lon":140.87, "lat":38.27}, "weather":[{"main":"Rain",· · · }],
"main":{"temp":273.538,· · · }, "clouds":{"all":92}, "rain":{"3h":1},
"wind":{"speed":0.45,· · · }, "dt":1424968138},

{"id":1857910, "name":"Kyoto", "sys":{· · · },
"coord":{"lon":135.75, "lat":35.02}, "weather":[{"main":"Clear",· · · }],
"main":{"temp":275.887,· · · }, "clouds":{"all":8},
"wind":{"speed":5.21,· · · }, "dt":1424968420},
· · · ],· · · }

In this example, the record of Sendai-shi has a rain field but Kyoto does not, owing to
clear weather in Kyoto.

A convenient way to read this weather data in SML# is to write the partial record type
that specifies only the significant fields. User A, who is interested only in the names and
temperatures of cities, would write the following code:

_json e as {list:{name:string, main:{temp:real} dyn} dyn list} dyn

while another user B, who is interested in other parameters, would write different types of
nested partially dynamic records. In our language, the user can control the structure of
JSON data to be retrieved in a comfortable, flexible, and type-safe manner. This maximizes
the flexibility of programming with JSON objects.

Partially dynamic records and record polymorphism are useful in dealing with this kind
of heterogeneous data collection. Consider the following function that calculates the average
temperature:

fun avgTemp l =
foldl (op +) 0.0 (map (#temp o view o #main o view) l)
/ real (length l)

This function has a record-polymorphic type

[’a#{main:’b dyn}, ’b#{temp:real}. ’a dyn list -> real]

indicating that avgTemp is independent of the detail of the structure of weather data. Thus
the user A and others who are interested at least in temperature can share this function.
Another way to implement this computation is to use _jsoncase on dynamic values.
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fun avgTemp’ l =
foldl (op +) 0.0

(map (fn x => _jsoncase x of {main={temp:real,...},...} => temp) l)
/ real (length l)

This function returns the same value as avgTemp but has type [’a. ’a dyn list -> real],
which is different from that of avgTemp. This new typing indicates that avgTemp’ can be
applied to any dynamic data. While avgTemp’ is more flexible than avgTemp, avgTemp’ may
raise a runtime exception owing to dynamic coercion or match failure, whereas avgTemp never
fails at runtime. The user may choose an appropriate style of programming for dynamic
values according to his/her intention.

The flexibility provided by _jsoncase is particularly useful when we want to write codes
to access an optional field. The following example lists the names of the cities where it rains
more heavily than a given threshold.

fun rainyCities t cityListInJson =
List.mapPartial (fn x => if (_jsoncase x of

{rain={"3h"=y:int}, ...} => y > t
| _ => false)

then SOME (#name (view x))
else NONE)

cityListInJson

In this example, {"3h"=· · · } is the record pattern that matches with JSON objects consisting
of a single 3h field. Again, this function has a record-polymorphic type, which precisely
represents the behavior of the function, similar to the example of getFriendlyName in
Section 5.1.

Another typical factor that introduces heterogeneousness in practical JSON is number
literal. Along with the nature of JavaScript, an integer value (without a fraction part)
of JSON may be interpreted as a floating-point value: 5 of JSON usually means either 5
of integers or 5.0 of floating-point numbers. This is also the case for OpenWeatherMap
according to its documentation. To deal with this, one would read JSON numbers as void
dyn as follows:

val j = _json e as · · · main:{temp:void dyn} dyn· · ·

and write the following function that coerces JSON number as real:

fun getNumAsReal x =
_jsoncase x of

(n:int) => Real.fromInt n
| (r:real) => r
| _ => 0.0 / 0.0 (* not a number *)

We believe that the above examples demonstrate strongly that our JSON extension
is beneficial and useful in practical software development with JSON objects including
applications with web services.

During the evaluations, we also found a few issues worth considering for further im-
provements of JSON programming. One is the treatment of JSON numbers. We note that
getNumAsReal example above is not entirely satisfactory in the spirit of typeful programming
since the types of both j and getNumAsReal are much looser than the user’s intention. One
possible refinement to our framework is to introduce an additional ad-hoc ordering relation
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int ≤ real on JSON types. Another more accurate solution would be to introduce a new
type num with the ordering relations int ≤ num and real ≤ num. Another possible refinement
is to merge _jsoncase with ML case so that the user can interleave partially dynamic record
patterns and ML value patterns. For instance, in the example of rainyCities, if the user
could write a mixture of the pattern for partially dynamic records {rain={3h:int}, ...}
and the field selection #name at the argument position of fn, it would be a more intuitive
and convenient shorthand for ML programmers. One approach is to redesign the ML pattern
language to integrate JSON patterns and refine the ML pattern matching algorithm with
JSON cases. We believe both refinements are feasible, and we would like to investigate them
in future.

On the whole, we conclude that our proposal provides a promising basis for the seamless
integration of JSON manipulation in ML.

6 Related works

There are a number of libraries for serializing/deserializing JSON objects in statically typed
languages such as YoJson [16], Aeson [24], and Atdgen [15]. There are also meta-level tools
and frameworks to generate application-specific classes and types for processing JSON objects
such as type_conv of Camlp4 [8] and JsonProvider of F# 3.0 [27]. In these approaches,
however, JSON objects and their associated functions are not part of the type system of the
underlying programming languages. As a result, they do not achieve type-safe and seamless
programming with JSON objects.

In the general perspective of developing typing discipline for implicitly typed data formats,
our work is related to a number of works that investigate type structures of XML and RDF.
XDuce and CDuce type systems [14, 3] represent static structures of XML based on regular
expression types. Frisch et al. [11] investigates semantic subtyping as a basis for CDuce-like
type systems. These type systems are more powerful than ours, and a number of features
such recursive structures and (tag-less) unions are cleanly represented. Perhaps owing to
their flexibility, however, regular expression types are not related to static data structures in a
type system of a polymorphic programming language. As we have mentioned in Introduction,
our goal and contribution is to represent JSON structures using labeled record types in ML
so that they can be directly manipulated in ML using polymorphic record operations.

Regarding JSON objects, Colazzo et al. [7] recently presented a type inference algorithm
for large JSON data-sets using union types and subtyping. Compared with the partial record
types we have used, their approach could potentially find more accurate types for a large
collection of heterogeneous JSON objects. It is, however, not immediately obvious whether
their JSON type system can be integrated in a static type system of a programming language.

Our approach is based on partially dynamic records [6], whose central idea is to represent
a type of a heterogeneous collection as a record structure common to all components in
the collection. From this perspective, it is related to gradual typing proposed by Siek
and Taha [25]. Their approach uses subtyping and dynamic typing. This combination
can represent dynamically typed heterogeneous collections in a statically typed language.
Largely based on this observation, Bierman et al. [4] gave a formal account for the core of
TypeScript. This approach is also adopted in Flow [9]. As we commented in the Introduction,
however, subtyping would complicate polymorphism and type inference, and its impact on
the implementation method remains to be investigated. Kiselyov et al. [19] presented an
implementation technique to encode heterogeneous lists by exploiting Haskell type classes
and their extensions including multi-parameter classes and functional dependencies. Its type
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theoretical property is, however, not well investigated, and its type theoretical properties
and their relationship to ours are not clear.

7 Conclusions and further investigation

JSON is a widely accepted format for data exchange over the Internet, especially among
web services. In this paper, we have developed a typed programming language for seamless
and high-level manipulation of JSON data. The major obstacle to the seamless introduction
of JSON manipulation to a typed language is the heterogeneous nature of JSON. We have
presented a typed calculus to deal with heterogeneous JSON objects based on partially
dynamic records, and have established its type soundness. The proposed calculus has been
fully implemented as an extension to the SML# compiler. In the extended language, the
programmer can directly import a JSON object as a term of static data structure composed
of labeled records and lists with the full benefits of static polymorphic type-cheking. The
implementation also provides _jsoncase syntax for ML-style pattern matching. We have
demonstrated the feasibility and the benefits of our approach through examples that interact
with actual web services.

The important work we are now planning to conduct is to put our proposed language into
serious software development in industry, and to evaluate its benefits in software development.
From a more technical perspective, we plan to investigate programming language support for
manipulating JSON-based databases. We would like to have a declarative query language for
a large and complex JSON data, and would like to integrate it into the SML# compiler. A
possible approach toward such an integration is to extend the type system proposed in this
paper and the integration of SQL in a programming language with the record polymorphism
we reported in [21]. Another interesting future work is to extend our technique to data
formats similar to JSON, such as RDF and XML.
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Abstract
We explore a novel approach to higher-order program analysis that brings ideas of on-demand
lookup from first-order CFL-reachability program analyses to higher-order programs. The anal-
ysis needs to produce only a control-flow graph; it can derive all other information including
values of variables directly from the graph. Several challenges had to be overcome, including how
to build the control-flow graph on-the-fly and how to deal with non-local variables in functions.
The resulting analysis is flow- and context-sensitive with a provable polynomial-time bound.
The analysis is formalized and proved correct and terminating, and an initial implementation is
described.
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1 Introduction

Flow analysis for imperative first-order programs is a well-known and straightforward pro-
cess. Before the analysis starts, it is known which functions are being invoked at each call
site in the source program. This is possible because, in absence of higher-order functions,
potential control flow is determined immediately from the structure of the program. So, for
first-order programs, it is possible to directly build a fixed control flow graph (CFG) where
each edge in the CFG points to a potential next program point. The program analysis then
can monotonically accumulate information about what values program variables could take
on at each program point, propagating information along this fixed CFG.

Forward higher-order program analysis

In languages with higher-order functions, program analysis is much more challenging: it is
no longer obvious which functions may be invoked at each call site. The program’s data flow
determines which functions appear at the call site, in turn influencing the program’s control
flow. Accurate analyses of programs with higher-order functions must therefore compute
data- and control-flow information simultaneously [12, 16].

Higher-order program analyses are generally based on abstract interpretations [2]; such
analyses define a finite-state abstraction of the operational semantics transition relation to
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soundly approximate the program’s runtime behavior. The resulting analysis has the same
general structure as the operational semantics it was based on: program points, environ-
ments, stacks, stores, and addresses are replaced with abstract counterparts which have
finite cardinality, “hobbling” the full operational semantics of the language to guarantee
termination of the analysis [13]. A sound analysis will visit the (finitely many) abstract
counterparts of all reachable concrete program states, producing a finite automaton repre-
senting all potential program runs.

We use the term “forward analyses” to refer to standard higher-order program analyses,
to emphasize how they propagate data forward through the program in the same manner
as an operational semantics does. All abstract interpretation based higher-order program
analyses, including [12, 16, 22, 13, 27, 8, 15, 3], are forward analyses.

Since each node is an abstract state and there can be a great many combinations of
data for environment or store, even the finitized abstract state space can be very large. For
this reason, any practical analysis must compress the total number of states. Typically, the
program counter is preserved. One standard compression, store widening, replaces the store
in each each abstract program state with a single global store; this global store is then the
union of all the individual stores.

Store widening is effective in compressing the abstract state set but tends to give too
little precision. For example, function polymorphism which is present before store widening
may be lost as the parameters to the calls of a given function in each program state are
unioned together. Store widening also generally loses any so-called flow sensitivity, where a
given (often stateful) variable can take on different values at different points.

So, other methods are employed to recover expressiveness without a full store in each
abstract state. One method is polyvariance, such as in kCFA [22] for k > 0, where each
function parameter gets unique addresses relative to the k most recent stack frames. Another
method is call-return alignment: the analysis uses a stack internally to return only to the
call site of the particular call being analyzed [26]. Call-return alignment also gives some, but
not all, of the power of polyvariance. One alternative to store widening is abstract garbage
collection [14], which also limits the number of abstract states: the store is not widened,
but an analysis-time analogue of run-time garbage collection removes inaccessible bindings
from the store. Abstract GC preserves flow-sensitivity, but this technique is still susceptible
to an explosion in analysis states for programs with nontrivial amounts of persistent data
as each configuration of this data represents another abstract program state to consider.

A demand-driven approach to higher-order programs

In this paper, we explore a fundamentally different approach to higher-order program analy-
sis which does not proceed by finitizing an operational semantics. Rather than pushing data
forward as in an operational semantics, the analysis looks up data on demand. This lookup
walks backward along the control flow from the point at which a variable’s value is needed
to the point at which the variable was most recently defined. Actual values never need to
be pushed forward so, in some sense, lookup is lazier than a standard lazy interpreter.

CFL-reachability analyses [6] have shown how demand-driven variable lookup is possi-
ble in first-order program analyses. In comparison to forward analyses, the demand-driven
approach has potential for better performance: the aforementioned optimizations are un-
necessary as no store is propagated forward through the analysis. CFL-reachability is a
first-order analysis, where the CFG is already known and where there are no non-local
variables in functions. Demand-driven lookup is applied to higher-order languages in [18],
but in the a context of a flow-insensitive type-based analysis with other restrictions. To
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generally apply this technique to higher-order programs, we must have (1) a technique for
constructing the CFG in tandem with the data flow analysis and (2) a strategy for handling
non-local variables.

In this paper, we solve these two problems to produce a higher-order Demand-Driven
Program Analysis (DDPA). The CFG is constructed incrementally just as in a forward
higher-order program analysis. Unlike a forward analysis, we only need to construct the
CFG; there is no abstracted environment/store/etc as all of the variable lookup happens in
reverse by following CFG edges backwards. To deal with non-local variables in functions,
we develop a novel reverse lookup process that is related to how access links are used in a
compiler to look up non-local variables: we find the definition of the function itself and look
up the variable from there. For added precision, we incorporate call-return alignment from
CFL-reachability [21, 20] and pushdown higher-order flow analyses [26, 8].

Contrast with forward analyses

During the course of DDPA, each variable lookup occurs relative to a particular point in the
(partial) control flow graph where the variable is used; this makes flow-sensitivity a natural
component of DDPA. In forward higher-order analyses, such flow-sensitivity is expensive
since it prohibits common performance-enhancing techniques such as store widening. Ab-
stract garbage collection, an aforementioned alternative to store widening, prunes the stores
significantly but produces many states for persistent data. Additionally, there is no need
for explicit polyvariance in DDPA: the combination of call-return alignment and non-local
lookup achieves the full effect of polyvariance without an explicit polyvariance model a la
kCFA. DDPA appears to compare favorably to forward analyses: it has the simultaneous
benefits of store widening (we have no per-node store), abstract garbage collection (demand-
driven lookup prevents the generation of garbage), call-return alignment (the one feature
we directly adopt) and polyvariance (which is subsumed by our call-return alignment given
our novel non-local variable lookup mechanism). Forward analyses cannot combine all these
features because abstract GC is ineffective in the presence of store widening [8].

In theory, DDPA has minimal requirements on run-time data structures: the only re-
quired data structure is the CFG, which is minuscule compared to the formal treatment of
forward analysis. In practice, an efficient DDPA implementation requires significant caching
structures which are similar to fragments of an abstract store in a forward analysis. We
do not assert DDPA to be a strictly better form of program analysis, only a substantially
different one with different trade-offs and worthy of study.

In terms of technical overhead, DDPA has the advantage of naturally scaling up to a
flow-, path-, and context-sensitive analysis while preserving a relatively compact formal
specification. On the other hand, reverse lookup is a different process than the original
(forward) operational semantics and requires a major re-thinking about program flow; a
forward analysis can to some degree be “read off the operational semantics” [25, 13].

We have completed a proof-of-concept implementation of DDPA, described in Section 6,
and include it as an artifact archived with the paper. The implementation builds a push-
down automaton (PDA) and variable lookup questions can be cast as reachability questions
in the PDA. This implementation has not been optimized but it confirms that the analysis
has the expected behavior on examples.
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e ::= [c, . . .] expressions
c ::= x = b clauses
b ::= v | x | x x | x ~ p ? f : f clause bodies
x variables

E ::= [x = v, . . .] environments

v ::= r | f values
r ::= {`, . . .} records
f ::= fun x -> ( e ) functions
p ::= r patterns

Figure 1 Expression Grammar.

Paper outline

Section 2 presents an example-driven description of the main features of the analysis. Section
3 gives the full details, and Section 4 establishes its soundness relative to an operational
semantics. Section 5 defines extensions for full records, path-sensitivity, and state. Section
6 describes the implementation. Section 7 covers related work. We conclude in Section 8.

2 Overview of the Analysis

This section informally presents DDPA by example.

2.1 A Simple Language
For a given program, our objective is to establish the possible execution paths that the
program will take. We encode this information in the form of a CFG, more precisely as a
happens-before relation c << c′: program point c related to c′ means there may be control
flow from c to c′.

We use a simple functional language defined in Figure 1. To make it easier to keep
track of program points and operation sequencing, we restrict our language syntax to a
shallow A-normal form (ANF) [5]. We further restrict all variables to be unique; this ensures
that clauses c themselves denote program points. (Notation: lists are written [g1, . . . , gn],
and || denotes list concatenation. We may overload as g1 ||[g2, g3] = [g1, g2, g3] when it is
unambiguous.)

The operational semantics of this (eager) language are straightforward and are given
in Section 4.1. Note that we have a degenerate form of record with label components
only; this restriction is made to simplify the formalism and we relax this restriction in the
implementation. Case analysis is written x ~ p ? f1 : f2; we execute f1 with x as argument if
the value of x matches the pattern p, and f2 with x as argument otherwise.

2.2 The Basic Analysis
Consider the program in Figure 2. Note that f is just a fancy identity function used to help
illustrate the analysis, and that clause n0 is a “no-op”: it is present only to help clarify the
diagrams.

The analysis begins by constraining the top-level clauses to happen in order: f, x1, z1,
x2, and then z2. For technical reasons, we also add distinguished Start and End nodes.

Figure 3 shows the completed analysis; up to now we have only described the bottom
row. Focusing only on that row for now, the solid arrows ( ) represent nodes ordered by
<< in the source program, and indicate what we know about control flow at the beginning
of the analysis: only that control can move from each clause to the next. As shorthand, we
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1 f = fun x -> ( # λx.(λy.y)x
2 i = fun a -> (
3 r2 = a
4 );
5 r = i x;
6 n0 = r;
7 );
8 x1 = {y};
9 z1 = f x1; # evaluates to {y}

10 x2 = {n};
11 z2 = f x2; # evaluates to {n}

f x1 z1 x2 z2Start End

xz1↓
= x1 z1z1↑

= n0

i n0r

1

1
1

1

ar↓
=x r2 rr↑

=r2
2

2 2
2

xz2↓
= x2 z2z2↑

= n0
3

3
3

3

Figure 2 Invocation Example: ANF. Figure 3 Invocation Example: Analysis.

identify each clause by the unique variable it assigns; thus, the green node labeled x1 refers
to line 8 in Figure 2. Green nodes are immediate clauses and gray nodes are call sites.

2.2.1 Adding control flows for function calls
To elaborate the call graph, we must connect each call site to any function body invoked at
that call site. Proceeding forward on the control flow from the program start, the first call
site (gray node) is node z1. The dotted edges ( ) annotated with the number “1” represent
control passing from call site z1 to the start of the body of f (the i, r, n0 clauses), and from
the end of the function body back to z1. Note that the wires in fact run “around” the call
site in the figure, going out the predecessor of z1 and back to the successor. This reflects
how a function inlining would work. (Aside: both and edges define << relationships
between program points; the two edge sorts are used for illustration only.)

Additionally, the call adds two new intermediate nodes: x=x1 represents copying the
argument x1 at the call site into the function f’s parameter, while z1=n0 represents copying
the result of the function into the variable defined at the call site. These nodes are marked
with annotations to indicate their call site and purpose; z1↓, for instance, indicates a pa-
rameter passed in from the z1 call site. All of the information in these new nodes can in
fact be inferred from context since all values are unique given a (call site, function) pair. In
other words, the happens-before relation is isomorphic to the call graph.

Continuing with the analysis: now that the body of f has been wired in, the call site
r can execute, adding two orange wiring nodes and the corresponding “2” flows. The “3”
flows are similarly added when we elaborate z2.

2.2.2 Variable lookup as reverse walk
In the description above, we glossed over how variable lookup occurs: for each call site, we
needed to look up the particular functions to invoke and this can be nontrivial in a higher-
order language. The clause z1 invokes f, and all potential definitions of f need to be wired
to the call site. This particular case is simple since f obviously has only one value.

In general, variable lookup is contextual: lookup starts at the clause where the variable
is being used and proceeds backwards in time with respect to the control flow to find the
most recent value. This approach to lookup is related to the demand-driven optimizations
of first-order CFL-reachability analyses [6].

For a less trivial example, let us look up x from the perspective of r’s defining clause
in line 5. Walking back though the graph from r, there are two definitions of x reached:
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x=x1 and x=x2. Since x1/x2 are not concrete values, lookup proceeds by looking up those
variables, respectively. Ultimately, x has final value set {{y}, {n}}, the set of arguments the
function was invoked on.

Since variable lookup always starts at the node representing the redex where the variable
is used, we obtain a flow-sensitive analysis by default. Note that the specification of lookup
traverses all the way back to the original definition every time; for example, in looking up x
we needed to look up x=x1 and we then needed to continue back to x1’s original definition.
An efficient implementation should cache, but that is orthogonal to the specification.

2.3 Constraining lookup to reasonable call stacks
The above description of a simple lookup leaves out an important refinement in DDPA: it
is possible to rule out variable lookup search paths on which calls and returns do not align,
because such a path corresponds to no program execution. To show the incompleteness
of lookup as described thus far, consider how lookup would find values for z2 from the
perspective of the end of the program. To find z2, we proceed back on the control flow to
z2=n0 (recall how the call site itself is dead code after all calls have been wired in), at which
point the search is now for the value of n0; continuing back we reach n0=r and proceed by
looking up r from node n0, and so on until we are looking up x from node i. Here, there are
two paths, to either x=x1 or x=x2. So, we take both paths and union the result, obtaining
{{y}, {n}}. This is clearly a loss of precision: {y} cannot appear as the argument of call site
z2 at runtime. But, looking at the overall path we took above in this spurious lookup, we
walked back into the function via the z2 call site and came out of the front of the function
to the z1 call site. This is a non-sensical program execution path since the call and return
site are not aligned.

The annotations z1↓ / z1↑ on the wiring nodes indicate a call into and return from
call site z1, respectively, and are used to filter out these spurious paths. On any lookup
path the wiring annotations must pair correctly; that is, one may only visit a z1↓ node if
a corresponding z1↑ node was visited. We track these pairings using an abstract call stack
to verify they obey a reasonable call-return discipline. The idea of call-return alignment is
taken from CFL-reachability [21, 20] and higher-order pushdown analyses [26, 8].

Note that the above analysis exhibits polyvariant behavior: different invocations of the
same function are not analyzed uniformly. Polyvariance is commonly achieved by copying,
kCFA being a canonical example [16]. In DDPA, polyvariance can be achieved solely by
call-return alignment, unlike [26, 8] – stack alignment in these analyses only aligns variables
local to the function body, whereas DDPA also aligns non-locals; the subtleties of non-local
lookup are covered next.

2.4 Looking up Non-Local Variables
So far, our examples of lookup have been restricted to local variables. However, the above
lookup process does not accurately reflect how non-local variables are bound: if non-local
variables were handled in the same way, lookup would give non-locals a dynamically scoped
semantics. To see why, consider the code in Figure 4 and its graph in Figure 5. If we look
up the value of z from the end of the program, we find ourselves asking for the values of
v at the wiring of j=e. Proceeding as described above, j does not match v and we would
attempt to find a value for v at the e clause. This leads us to the clause v=b, which in turn
gives us just the value {b}. This would be unsound as it is not consistent with run-time
behavior.
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1 k = fun v -> ( # λx.λy.x
2 k0 = fun j -> ( r = v; );
3 );
4 a = {a};
5 f = k a; # λy.{a}
6 b = {b};
7 g = k b; # λy.{b}
8 e = {};
9 z = f e; # evaluates to {a}

k a f b g e z

Start End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r
jz↓

=e

zz↑
=r

Figure 4 Non-Local Variable: ANF. Figure 5 Non-Local Variable: Analysis.

To give lexical scoping semantics, the lookup function must be modified. Lexical scoping
means we want the values of non-local variables at the point which the function containing
them was itself declared, so we proceed by first locating the function definition and then
resuming our search for the value of the variable. This is similar to the access link method of
non-local lookup in a compiler implementation. In the example above, the pivotal decision
is made when finding values of v when we have searched through the whole body of the
function in lines 2-4 and arrived at the argument wiring j=e. From the annotation z↓ on
this node, we can deduce that we are leaving the current function which was called from
site z. Since we have not yet found v, it must be a non-local. So, we then delay our search
for v, examine the call site z (appearing in the wiring annotation), and look up the function
invoked at that point; here, this means to search for f starting from e. This search leads us
through f=k0 to k0, the point at which the function was originally defined, and from here
the search for v can soundly resume. Using this approach, the lookup of z from the end of
the program yields {a}.

The general case of non-local lookup chains on the above idea, since the defining function
could itself be non-locally defined. The chain is up the lexical scoping structure, so its length
is bound by program size.

2.5 Looking up Higher-Order Functions

The analysis described thus far also does not deal well with the case of multiple functions
showing up at a call site – it does not take in account which functions are actually available.
Consider the code example in Figure 6.

We would like a search for rb from the End to conclude {{b}}, the run-time result. In the
process of trying to answer that question, the analysis eventually gets to node n0, querying
for the variable hr. At that point, there are two paths by which to proceed: one to hr=a
and another to hr=b. If the analysis took both paths, the result would be {{a}, {b}}, but
{a} will never arise at runtime.

We address this case as follows. Before entering a function call (in reverse), the analysis
first runs a subordinate lookup for all functions that could show up at the call site under
consideration. The main lookup can then use this result to rule out any function definition
that could have not reached the call site in the current context. In the given example, at
the node n0, before entering node hr=a or hr=b, the analysis performs a subordinate lookup
for f from hr, under the current calling context of rb. In order to align with the rb=n0
entrance node, the only possible answer is fb, ruling out the choice of hr=a and leading to
a final answer of only {b}.
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1 h = fun f -> ( # λf. f {}
2 e = {};
3 hr = f e;
4 n0 = hr;
5 );
6 fa = fun ia -> ( a = {a}; ); # λ_. {a}
7 fb = fun ib -> ( b = {b}; ); # λ_. {b}
8 ra = h fa;
9 n1 = {};

10 rb = h fb; # evaluates to {b}

Start

h

fa fb ra n1 rb End

e hr n0

fra↓
= fa rara↑

= n0 frb↓
= fb rbrb↑

= n0

aiahr↓
= e hrhr↑

= a

bibhr↓
= e hrhr↑

= b

Figure 6 Higher-Order Functions: ANF. Figure 7 Higher-Order Functions: Analysis.

1 f = fun s -> ( # l-projecting function
2 f0 = fun a -> (
3 n0 = {};
4 r = a ~ {l}
5 ? fun a1 -> ( n2 = {};
6 ss = s s; # self-apply
7 v = a1.l; # project l
8 r1 = ss v; # recurse
9 n3 = r1; )

10 : fun a2 -> ( r2 = a2; );
11 n1 = r;
12 );
13 );
14 ff = f f; # initial self-application
15 x1 = {};
16 x2 = {l=x1};
17 x3 = {l=x2}; # the record {l={l={}}}
18 z = ff x3; # evaluates to {}

r true branch

f0 function

f ff x1 x2

x3

z

Start

End

f0sff↓
= f ffff↑

= f0 az↓
=x3

zz↑
=n1

n0

r

n1

a2r↓
=a

rr↑
=r2

r2

n2 ss v r1 n3

a1r↓
=a

rr↑
=n3sss↓

= s ssss↑
= f0 ar1↓

= v r1r1↑
= n1

Figure 8 Recursion: ANF. Figure 9 Recursion: Analysis.

2.6 Recursion and Decidability
The analysis described above naturally analyzes recursive programs: consider the program
in Figure 8 which we code in an extension including proper records. This program defines
a function f which is recursive (by self-passing) and which deeply projects any number of l
fields from a record.

The DDPA result appears in Figure 9. Lookup generally proceeds via the same process
as for the previous examples. The only complication with recursion is that some control flow
paths could be cyclic. For instance, the path n0 n2 v n0 is a cycle representing an
arbitrary number of recursive unwrappings, each of which pushes r↓ and r1↓ onto the stack.
The specification of the analysis only requires variable lookup paths to be balanced in calls
and returns, so there are arbitrarily many possible paths. It is clear in this example that the
number of times around the cycle can be bounded without changing the result; as we will
discuss later, it is not known whether lookup over an arbitrary-size call stack is computable.
We address this issue in Section 3 by defining a stack finitization kDDPA which retains the
k most recent contexts in the spirit of kCFA [22].

DDPA is flow-sensitive and context-sensitive. However, it is not path-sensitive; that is,
a variable’s values are not considered in terms of how branching decisions at conditionals
led to a particular program point. Consider for example the values of z which may appear
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ê ::= [ĉ, . . .] abstract expressions
ĉ ::= x̂ = b̂ abstract clauses
b̂ ::= v̂ | x̂ | x̂ x̂ | abs. bodies

x̂ ~ p̂ ? f̂ : f̂
x̂ ::= x abstract variables
v̂ ::= r̂ | f̂ abstract values
p̂ ::= r̂ abstract patterns
f̂ ::= fun x̂ -> ( ê ) abs. functions
r̂ ::= r abstract records

V̂ ::= {v̂, . . .} abstract value sets
â ::= ĉ | abs. annotated clauses

x̂
ĉ↓
= x̂ | x̂ ĉ↑

= x̂ | Start | End
d̂ ::= â << â abstract dependencies
D̂ ::= {d̂, . . .} abs. dependency graphs
X̂ ::= [x̂, . . .] abs. var lookup stacks

Figure 10 Analysis Grammar.

at the end of the program of Figure 8: the path x3 n0 r2 n1 End in Figure 9 is
valid, but this would imply that the value {l={l={}}} is possible for z, but it will not arise
at runtime. Path sensitivity can close this gap, and we sketch such an extension in Section
5.2. Note this example also uses “real” records and not just the label sets of our grammar
of Figure 1; we sketch an extension to full records in Section 5.1.

3 The Analysis Formally

In this section we formalize the analysis algorithm. The operational semantics is standard
and so we postpone it and the soundness proof to Section 4.

The grammar constructs needed for the analysis appear in Figure 10. The items on the
left are just the hatted versions of the corresponding program syntax. As mentioned above,
we require variables to be bound uniquely so that each program point is defined by exactly
one variable. Furthermore, we assume the expressions we analyze to be closed: a variable is
not used until after the clause in which it is bound.

Edges in a dependency graph D̂ are dependencies d̂, are written â << â′ and mean clause
â happens right before clause â′. New clause annotations ĉ↓ / ĉ↑ are used to mark the entry
and exit points for functions/cases.

I Definition 3.1. We use the following notational sugar for graph dependencies:
We write â1 << â2 << . . . << ân to mean {â1 << â2, . . . , ân−1 << ân}.
We write â′ << {â1, . . . , ân} (resp. {â1, . . . , ân} << â′) to denote {â′ << â1, . . . , â

′ << ân}
(resp. {â1 << â′, . . . , ân << â′}).
We write â <C â′ to mean â << â′ ∈ D̂ for some graph D̂ understood from context.
We define abbreviations Preds(â) = {â′ | â′ <C â} and Succs(â) = {â′ | â <C â′}.

I Definition 3.2. Initial embedding Embed([c1, . . . , cn]) is the graph D̂ given by Start <<
ĉ1 << . . . << ĉn << End, where each ĉi = ci.

This initial graph is just the linear sequence of clauses in the “main program”.

3.1 Lookup

As was described in Section 2, the analysis will look back along << edges in the graph D̂ to
search for definitions of variables it needs. We now define this lookup function.

ECOOP 2016



19:10 Higher-Order Demand-Driven Program Analysis

3.1.1 Context Stacks
The definition of lookup proceeds with respect to a current context stack Ĉ. The context
stack is used to align calls and returns to rule out cases of looking up a variable based on a
non-sensical call stack, and was described in Section 2.3.

The proof of decidability relies upon bounding the depth of the call stack. We first define
a general call stack model for DDPA, and in Section 3.3 below we instantiate the general
model with a fixed k-depth call stack version notated kDDPA; this is a simple bounding
strategy and our model can in principle work with other strategies.

I Definition 3.3. A context stack model Σ = 〈Ĉ, ε,Push,Pop, IsTop〉 obeys the following:
1. Ĉ is a set. We use Ĉ to range over elements of Ĉ and refer to such Ĉ as context stacks.
2. ε ∈ Ĉ.
3. Push(ĉ, Ĉ) and Pop(Ĉ) are total functions returning stacks.
4. IsTop(ĉ,Push(ĉ, Ĉ)), IsTop(ĉ, ε), and Pop(ε) = ε hold.
5. If IsTop(ĉ, Ĉ) then IsTop(ĉ,Pop(Push(ĉ′, Ĉ))).

The context stack represents the calls of which we are certain; thus, the empty stack
represents “no knowledge” (and not “no stack frames”). Thus, popping from the empty
stack yields the empty stack and any clause is considered to be on top of an empty stack.

3.1.2 Lookup stacks
Lookup also proceeds with respect to a non-locals lookup stack X̂ which is used to remember
non-local variable(s) we are in the process of looking up while searching for the lexically
enclosing context where they were defined. In the general case it is a stack since the function
itself could prove to be a non-local, etc. This stack can be unbounded unlike the context
stack above. Section 2.4 gave motivation and examples for non-local variable lookup.

3.1.3 Defining the lookup function
Lookup finds the value of a variable starting from a given graph node. Given a dependency
graph D̂, we write D̂(x̂, â0, X̂, Ĉ) to denote the lookup of a definition of the variable x̂ in D̂
relative to graph node â0, access stack X̂ and context stack Ĉ. We let D̂(x̂, â0), the top-level
lookup of x̂ from graph node â0, abbreviate D̂(x̂, â0, [], ε). Note that we have oriented the
definition so looking from graph node â0 means we are not looking for the value in that node
itself, but in (all) predecessors of it.

I Definition 3.4. Given dependency graph D̂, D̂(x̂, â0, X̂, Ĉ) is the function returning the
least set of values V̂ satisfying the following conditions:
1. If â1 = (x̂ = v̂), â1 <C â0, and X̂ = [], then v̂ ∈ V̂ .
2. If â1 = (x̂ = f̂), â1 <C â0 andX̂=[x̂1, . . . , x̂n]for n > 0, then D̂(x̂1, â1, [x̂2, . . . , x̂n], Ĉ) ⊆ V̂.
3. If â1 = (x̂ = x̂′) and â1 <C â0, then D̂(x̂′, â1, X̂, Ĉ) ⊆ V̂ .
4a. If â1 = (x̂ ĉ↓

= x̂′), â1 <C â0, ĉ is an application clause, and IsTop(ĉ, Ĉ), then
D̂(x̂′, â1, X̂,Pop(Ĉ)) ⊆ V̂ .

4b. If â1 = (x̂ ĉ↓
= x̂′), â1 <C â0 and ĉ is a conditional clause, then D̂(x̂′, â1, X̂, Ĉ) ⊆ V̂ .

5a. If â1 = (x̂ ĉ↑
= x̂′), â1 <C â0 and ĉ = (x̂r = x̂f x̂v), then D̂(x̂′, â1, X̂,Push(ĉ, Ĉ)) ⊆ V̂ ,

provided fun x̂′′ -> ( ê ) ∈ D̂(x̂f , ĉ, [], Ĉ) and x̂′ = RV(ê).
5b. If â1 = (x̂ ĉ↑

= x̂′), â1 <C â0 and ĉ is a conditional clause, then D̂(x̂′, â1, X̂, Ĉ) ⊆ V̂ .
6. If â1 = (x̂′′ = b), â1 <C â0, and x̂′′ 6= x̂, then D̂(x̂, â1, X̂, Ĉ) ⊆ V̂ .
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7a. If â1 = (x̂′′ ĉ↓
= x̂′), â1 <C â0, x̂′′ 6= x̂, ĉ is an application clause, and IsTop(ĉ, Ĉ), then

D̂(x̂f , â1, x̂ || X̂,Pop(Ĉ)) ⊆ V̂ .
7b. If â1 = (x̂′′ ĉ↓

= x̂′), â1<C â0, x̂′′ 6= x̂ and ĉ is a conditional clause,then D̂(x̂, â1, X̂, Ĉ) ⊆ V̂.
(where in the above RV(ê) = x̂ if ê = [ĉ, . . . , x̂ = b̂], i.e. x̂ is the return variable of ê.)

Note this is a well-formed inductive definition by inspection. Each of the clauses above
represents a different case in the reverse search for a variable; we now give clause-by-clause
intuitions. (1) We finally arrived at a definition of the variable x̂ and so it must be in
the result set. (2) The variable x̂ we are searching for has a function value, and unlike
clause (1) there is a non-empty lookup stack. This means the variable on top of the lookup
stack, x̂1, was a non-local and was pushed on to the non-local stack while searching for the
definition of the function it resides in. That function definition, x̂ = f̂ , has now been found,
and so we may continue to search for x̂1 from the current point in the graph. (3) We have
found a definition of x̂ but it is defined to be another variable x̂′. We transitively switch
to looking for x̂′. (4a) We have reached the start of the function body and the variable
x̂ we are searching for was the formal argument x̂′. So, continue by searching for x̂′ from
the call site. The IsTop clause constrains this stack frame exit to align with the frame we
had last entered (in reverse). (4b) This is the case clause version of the previous. Case
clauses can be viewed as inlined functions aligned by program context so use of Ĉ is not
necessary for alignment. (5a) We have reached a return copy which is assigning our variable
x, so to look for x we need to continue by looking for x′ inside this function. Push ĉ on
the stack since we are now entering the body (in reverse) via that call site. For a more
accurate analysis, the “provided” line additionally requires that we only “walk back” into
function(s) that could have reached this call site; so, we launch a subordinate lookup of x̂f

and constrain â1 accordingly. (6) Here the previous clause is not a match so the search
continues at any predecessor node. Note this will chain past function/match call sites which
did not return the variable x̂ we are looking for. This is sound in a pure functional language;
when we address state in Section 5.3, we will enter such a function to verify an alias to our
variable was not assigned. (7a) The precondition means we have reached the beginning of
a function body and did not find a definition for the variable x̂. In this case, we switch to
searching for the clause that defined the function body we are exiting, which is x̂f , and push
x̂ on the non-locals stack. Once the defining point of x̂f is found, x̂ will be popped from
the non-locals stack and we will resume searching for it. The IsTop clause constrains the
stack frame being exited to align with the frame we had last entered (in reverse). (7b) This
is the case clause variation of the previous; as with (4b) above, the stack is not needed for
conditional alignment – there is syntactically only one entry and exit.

3.2 Abstract Evaluation
We are now ready to present the single-step abstract evaluation relation on dependency
graphs. Like [28, 10] etc, it is a graph-based notion of evaluation, but where function bodies
are never copied – a single body is shared.

3.2.1 Active nodes
In order to preserve standard evaluation order we define the notion of an active node, Active
– only nodes with all previous nodes already executed can fire. This serves a purpose similar
to an evaluation context in operational semantics [4].
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Application
ĉ = (x̂1 = x̂2 x̂3) Active(ĉ, D̂) f̂ ∈ D̂(x̂2, ĉ) v̂ ∈ D̂(x̂3, ĉ)

D̂ −̂→1 D̂ ∪Wire(ĉ, f̂ , x̂3, x̂1)

Record Conditional True
ĉ = (x̂1 = x̂2 ~ r̂ ? f̂1 : f̂2) Active(ĉ, D̂) r̂′ ∈ D̂(x̂2, ĉ) r̂ ⊆ r̂′

D̂ −̂→1 D̂ ∪Wire(ĉ, f̂1, x̂2, x̂1)

Record Conditional False
ĉ = (x̂1 = x̂2 ~ r̂ ? f̂1 : f̂2) Active(ĉ, D̂) v̂ ∈ D̂(x̂2, ĉ) v̂ of form r̂′ only if r̂ * r̂′

D̂ −̂→1 D̂ ∪Wire(ĉ, f̂2, x̂2, x̂1)

Figure 11 Abstract Evaluation Rules.

I Definition 3.5. Active(â′, D̂) iff path Start << â1 << . . . << ân << â′ appears in D̂ such
that no âi is of one of the forms x̂ = x̂′ x̂′′ or x̂ = x̂′ ~ p̂ ? f̂ : f̂ ′. We write Active(â′) when D̂
is understood from context.

3.2.2 Wiring
Recall from Section 2 how function application required the concrete function body to be
“wired” directly in to the call site node, and how additional nodes were added to copy in
the argument and out the result. The following definition accomplishes this.

I Definition 3.6. Let Wire(ĉ′, fun x̂0 -> ( [ĉ1, . . . , ĉn] ) , x̂1, x̂2) =
Preds(ĉ′) << (x̂0

ĉ′↓
= x̂1) << ĉ1 << . . . << ĉn << (x̂2

ĉ′↑
= RV([ĉn])) << Succs(ĉ′).

ĉ′ here is the call site, and ĉ1 << . . . << ĉn is the wiring of the function body. The
Preds/Succs functions (given above in Definition 3.1) reflect how we simply wire to the
existing predecessor(s) and successor(s).

Next, we define the abstract small-step relation −̂→1 on graphs, see Figure 11.

I Definition 3.7. We define the small step relation −̂→1 to hold if a proof exists in the
system in Figure 11. We write D̂0 −̂→∗ D̂n to denote D̂0 −̂→1 D̂1 −̂→1 . . . −̂→1 D̂n.

The evaluation rules are straightforward after the above preliminaries. For application,
if ĉ is a call site that is an active redex, lookup of the function variable x̂2 returns function
body f̂ and some value v̂ can be looked up at the argument position, we may wire in f̂ ’s
body to this call site. Note that v̂ is not added to the graph, it is only observed here to
constrain evaluation order to be call-by-value. The case clause rules are similar.

3.3 Decidability
We begin with the computability of the variable lookup operation, the source of all of the
computational complexity of the analysis.

I Lemma 3.8. For any context stack model Σ with a finite Ĉ and computable Push, Pop
and IsTop operations, D̂(x̂0, â) is a computable function.
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Proof. This proof proceeds by reduction to the problem of reachability in a push-down
system (PDS) accepting by empty stack. A push-down system is a push-down automaton
(PDA) with an empty input alphabet; PDA/PDS reachability is polynomial-time [3, 1].

We define a PDS in which each state is a pair between a program point and a context
stack (of which there are finitely many); the initial state is the pair â × ε. The stack of
the PDS corresponds roughly to the lookup stack and the current variable of the lookup
operation: each variable of the source program is a member of the stack alphabet and the
initial PDS stack is then [x̂0] for computing D̂(x̂0, â). Each clause in Definition 3.4 (except
clause 5a, which is discussed below) directly corresponds to a collection of transitions in the
PDS. For instance, suppose â1 = (x̂′ = v̂′) and â1 << â0; then, by clauses 1 and 2, each node
â0 × Ĉ in the PDS transitions to â1 × Ĉ by popping x̂′ (and pushing no symbols).

Clause 5a of Definition 3.4 requires special handling due to the additional “provided”
constraint which must analyze a subordinate invocation of the lookup function. To perform
this subordinate lookup in a way that affects the PDS transitions, we include the program’s
values and the PDS’s own states in the PDS stack grammar. A subordinate lookup is started
by pushing the current state and the lookup variable onto the stack. When a value is found,
it is pushed onto the stack. Finally, every PDS state can transition to any target PDS state
by popping the target PDS state from the stack. With some encoded stack reordering, the
subordinate lookup returns us to the state in which it started with the resulting value on
the top of the stack.

Given the above, it suffices to show that the values given by D̂(x̂0, â) are exactly those
of the nodes reachable with an empty stack in the PDS. Let V̂ = D̂(x̂0, â) and let V̂ ′ be the
values in the PDS’s reachable nodes. For each v̂ ∈ V̂ , v̂ ∈ V̂ ′ follows directly by induction
on the size of the proof of v̂ ∈ V̂ , constructing a path through the PDS at each step. For
each v̂ ∈ V̂ ′, v̂ ∈ V̂ follows directly by induction on the length of any path in the PDS which
reaches the node containing v̂. J

3.3.1 Some simple context stack models
A natural family of context stacks is one where stacks are the k latest frames; to also admit
the unbounded case we let k range over Nat ∪ ω for ω the first limit ordinal. We let
[ĉ′, ĉ1, . . . , ĉn]dk denote [ĉ′, ĉ1, . . . , ĉm] for m = min(k, n).

I Definition 3.9. Fixing k, we define context stack model Σk as having stack set Ĉ be the
set of all lists of ĉ occurring in the program up to length k, and with the stack operations
as follows:

Push(ĉ′, [ĉ1, . . . , ĉn]) = [ĉ′, ĉ1, . . . , ĉn]dk
Pop([ĉ1, . . . , ĉn]) = [ĉ2, . . . , ĉn] if n > 0; Pop([]) = [].
IsTop(ĉ′, [ĉ1, . . . , ĉn]) is true if ĉ′ = ĉ1 or if n = 0; it is false otherwise.

The term “kDDPA” we use to refer to DDPA with the context stack model Σk.

I Lemma 3.10. Fixing Σ to some Σk for fixed constant k, D̂(x̂, â0) is computable in poly-
nomial time in the number of nodes in graph D̂.

Proof. Let g be the number of nodes in graph D̂. By inspection, the PDS built in the
proof of Lemma 3.8 will have a number of states which is of order the product of g and
the number of context stacks in Σk. For Σk, the number of stacks is of order O(gk). Since
PDS reachability is computable polynomially in the number of nodes in the PDS, the result
immediately follows. J
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Note that if k was not fixed and was in fact increasing with the size of the program, it would
become exponential.

I Lemma 3.11. Variable lookup is monotonic; that is, for any x̂ and â, if D̂1 ⊆ D̂2 then
D̂1(x̂, â) ⊆ D̂2(x̂, â).

Proof. Variable lookup is encodable as a PDS reachability problem (see Lemma 3.8) and
the PDS grows monotonically with the graph D̂. PDS reachability grows monotonically
with the PDS. Therefore, the set of results from variable lookup grows monotonically with
the graph D̂. J

I Lemma 3.12. The evaluation relation −̂→∗ is confluent.

Proof. By inspection of Figure 11, the single-step rules only add to graph D̂. The Active
relation is also clearly monotone: any enabled redex is never disabled. Confluence is trivial
from these two facts. J

I Lemma 3.13. The evaluation relation −̂→∗ is terminating, i.e. for any D̂0 there exists a
D̂n such that D̂0 −̂→∗ D̂n and if D̂n −̂→∗ D̂n+1, D̂n = D̂n+1. Furthermore, n is polynomial
in the size of the initial program.

Proof. By inspection of Figure 11, we have for any step D̂′ −̂→1 D̂′′ that D̂′ ⊆ D̂′′. The
only new nodes that can be added to D̂ in the course of evaluation are the entry/exit nodes
x̂′

ĉ↓
= x̂ / x̂ ĉ↑

= x̂′, and only one of each of those nodes can exist for each call site (or case
clause) / function body pair in the source program: ĉ is the call site, and x̂ / x̂′ are variables
in that call site and function body source, respectively. So, the number of nodes that can be
added is always less then two times the square of the size of the original program. A similar
argument holds for added edges. J

We let D̂ ↓ D̂′ abbreviate D̂ −̂→∗ D̂′ such that D̂′ −̂→1 D̂′. We write e ↓ D̂ to abbreviate
Embed(e) ↓ D̂; this means the analysis of e returns graph D̂. Given the pieces assembled
above, it is now easy to prove that the analysis is polynomial-time.

I Theorem 3.14. Fixing Σ to be some Σk and fixing some expression e, the analysis result
D̂, where e ↓ D̂, is computable in time polynomial in the size of e.

Proof. By Lemma 3.10, each lookup operation takes poly-time. The evaluation rules are
trivial computations besides the required lookups and, by Lemma 3.13, there are polynomi-
ally many evaluation steps before termination. Thus e ↓ D̂ is computable in poly-time. J

4 Soundness

We now establish soundness of the analysis defined in the previous section. In forward
program analyses the alignment between the operational semantics and analysis is fairly
close and so soundness is not particularly difficult, but here there is a larger gap. We
cross this river by throwing a stone in the middle: along with defining a mostly-standard
operational semantics we build a graph-based operational semantics which creates a concrete
call graph of the program run that is more directly aligned with the analysis. Soundness is
then shown by proving the standard and graph-based operational semantics equivalent and
by showing the analysis sound with respect to the graph-based operational semantics.

In this section we first present the standard operational semantics, then the graph-
based operational semantics and its equivalence to the standard one, and finally we prove
soundness.
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Lookup
x2 = v ∈ E

E ||[x1 =x2] || e −→1 E ||[x1 = v] || e

Application
x2 = f ∈ E x3 = v ∈ E f ′ = fr(x1, f)
E ||[x1 =x2 x3] || e −→1 E ||Wire(f ′, v, x1) || e

Record Conditional True
x2 = r′ ∈ E r ⊆ r′ f ′1 = fr(x1, f1)

E ||[x1 =x2 ~ r ? f1 : f2] || e −→1 E ||Wire(f ′1, r′, x1) || e

Record Conditional False
x2 = v ∈ E v of the form r′ only if r * r′ f ′2 = fr(x1, f2)

E ||[x1 =x2 ~ r ? f1 : f2] || e −→1 E ||Wire(f ′2, r′, x1) || e

Figure 12 Small-Step Evaluation.

4.1 Standard Operational Semantics
The operational semantics appears in Figure 12, as a small step relation e −→1 e′. In many
ways the operational semantics is standard, but due to our use of an A-normal form it is
neither precisely substitution-based nor environment-based. It is more substitution-based
in spirit since function bodies are inlined. Although variable lookup is via an environment,
all names in that environment are deterministically freshened and so no variable shadowing
ever arises; so, although variable lookup might appear to be dynamically scoped, the absence
of shadowing ensures static scoping. This model of evaluation is designed to integrate well
with the graph-based semantics of the next sub-section.

We must freshen variables as they are introduced to the expression to preserve the in-
variant that each variable is uniquely defined and no shadowing occurs. We give a somewhat
nonstandard definition of freshening which is deterministic, so as to make alignments easier.
We take fr(x′, x) to yield another variable x′′; we require that fr(−,−) is injective and
that its codomain does not include variables appearing in the initial program. Here, x is
the variable to be freshened and x′ is the point in the program at which it is freshened. For
informal illustration, one concrete freshening function could be fr(x′, x) = xx′ . We overload
fr(x′, v) to indicate the freshening of all variables bound in v. The rules for the small step
relation are given in Figure 12. Here, wiring is the process of inlining a function body; for
this we use the following auxiliary function.

I Definition 4.1. Let Wire(funx -> ( e ) , v, x′) = [x = v] || e ||[x′ = RV(e)].

I Definition 4.2. We define the small step relation −→1 to hold if a proof exists in the
system in Figure 12. We write e0 −→∗ en to denote e0 −→1 e1 −→1 . . . −→1 en.

I Definition 4.3. If, for some expression e not of the form E, there exists no e′ such that
e −→1 e′, then we say that e is stuck. For any e′′ such that e′′ −→∗ e, we say that e′′
becomes stuck.

4.2 Graph-Based Operational Semantics
We now define the graph-based operational semantics, and prove it to be equivalent to the
standard operational semantics just defined.
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V ::= {v, . . .} value sets

a ::= c | x c↓
= x | x c↑

= x | annotated clauses
Start | End

d ::= a << a dependencies

D ::= {d, . . .} dependency graphs
X ::= [x, . . .] lookup stacks
C ::= [c, . . .] context stacks

Figure 13 Graph-Based Evaluation Grammar.

The graph-based operational semantics is structurally very similar to the analysis. The
primary difference is function bodies here are copied to make new graph structure (as op-
posed to the analysis, in which only one copy of each function body exists in the graph).
Otherwise, the graph-based operational semantics and the analysis are nearly identical,
including the use of context stacks, lookup operations, and so on. Since many of these
definitions are so similar, we will be much more brief here; we assume that the reader has
absorbed the analysis definitions.

The graph-based operational semantics differs from the standard operational semantics
of Section 4.1 in the following dimensions:
1. the total ordering of the list becomes a partial ordering here;
2. alias clauses x =x′ are resolved lazily rather than eagerly, and
3. the graph is monotonically increasing; that is, in each place that the standard semantics

replaces a call site, the graph-based semantics builds a path around the call site.

The new grammar constructs needed for the graph-based operational semantics appear
in Figure 13.

We write Embed(e) to denote the initial embedding of an expression e into a dependency
graph D. This definition is identical to analysis Definition 3.2 with hats removed from the
metavariables. Similarly, we also will use the notational sugar of Notation 3.1 in perfect
analogy.

4.2.1 Variable value lookup
The definition of lookup proceeds with respect to the context stack C which is directly
aligned with the corresponding stack Ĉ of the analysis. This stack is not necessary in the
operational semantics (as copying of function bodies removes all of the ambiguity that was
in the analysis); we retain it for alignment. Unlike the analysis, we need not bound C; we
therefore fix the context stack model of the operational semantics to the equivalent of the
unbounded model Σω in this grammar.

Lookup finds the value of a variable starting from a given graph node; this definition is
a near-exact parallel of Definition 3.4 and the reader is referred there for intuitions. We let
D(x, a0) abbreviate D(x, a0, [], []).

I Definition 4.4. Given graph D, D(x, a0, X,C) is the function returning the least set of
values V satisfying the following conditions:
1. If a1 = (x = v), a1 <C a0, and X = [], then v ∈ V .
2. If a1 = (x = f), a1 <C a0, and X = [x1, . . . , xn] for n > 0, then D(x1, a1, [x2, . . . , xn], C) ⊆

V .
3. If a1 = (x =x′) and a1 <C a0, then D(x′, a1, X,C) ⊆ V .
4a. If a1 = (x c↓

= x′), a1 <C a0, c is an application clause, and IsTop(c, C), then
D(x′, a1, X,Pop(C)) ⊆ V .

4b. If a1 = (x c↓
= x′), a1 <C a0 and c is a conditional clause, then D(x′, a1, X,C) ⊆ V .
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Application
c = (x1 =x2 x3) Active(c,D) f ∈ D(x2, c) v ∈ D(x3, c) f ′ = fr(x1, f)

D −→1 D ∪Wire(c, f ′, x3, x1)

Record Conditional True
c = (x1 =x2 ~ r ? f1 : f2) Active(c,D) r′ ∈ D(x2, c) r ⊆ r′ f ′1 = fr(x1, f1)

D −→1 D ∪Wire(c, f ′1, x2, x1)

Record Conditional False
c = (x1 =x2 ~ r ? f1 : f2)

Active(c,D) v ∈ D(x2, c) v of form r′ only if r * r′ f ′2 = fr(x1, f2)
D −→1 D ∪Wire(c, f ′2, x2, x1)

Figure 14 Graph Evaluation Rules.

5a. If a1 = (x c↑
= x′), a1 <C a0 and c = (xr =xf xv), then D(x′, a1, X,Push(c, C)) ⊆ V ,

provided fun x′′ -> ( e ) ∈ D(xf , c, [], C) and x′ = RV(e).
5b. If a1 = (x c↑

= x′), a1 <C a0 and c is a conditional clause, then D(x′, a1, X,C) ⊆ V .
6. If a1 = (x′′ = b), a1 <C a0, and x′′ 6= x, then D(x, a1, X,C) ⊆ V .
7a. If a1 = (x′′ c↓

= x′), a1 <C a0, x′′ 6= x, c is an application clause, and IsTop(c, C), then
D(xf , a1, x ||X,Pop(C)) ⊆ V .

7b. If a1 = (x′′ c↓
= x′), a1 <C a0, x′′ 6= x and c is a conditional clause, then D(x, a1, X,C) ⊆

V .
where RV(e) = x if e = [c, . . . , x = b], i.e. x is the return variable of e.

4.2.2 The evaluation relation
The definition of an active node, Active, exactly parallels the analysis version of Definition
3.5, simply remove the hats from the metavariables. We write Active(a′) when D is un-
derstood from context. Wiring is also defined in perfect analogy with Definition 3.6 so is
omitted here. The small-step relation −→1 on graphs is defined in Figure 14. (Note we
overload symbol −→1 for the list and graph operational semantics, it is clear from context
which relation is intended.)

I Definition 4.5. We define the small step relation −→1 to hold if a proof exists in the
system in Figure 14. We write D0 −→∗ Dn to denote D0 −→1 D1 −→1 . . . −→1 Dn.

We also define a notion of “stuckness” for graphs in parallel with the standard operational
semantics.

These rules are very similar to the analysis transition rules in Section 3.2; we refer the
reader to the descriptions there. Here we comment on a few points unique to the operational
semantics not found in the analysis.

We are precise about freshening in these rules. Because the fr(x,−) function is deter-
ministically freshening based on the call site x, it will always generate the same result for the
same call site and value. This means that e.g. each use of the Application rule is idempotent
and the graph-based operational semantics is deterministic.

Observe how Figure 14 is defining a “reduction” relation which is in fact monotonically
increasing, an unusual property compared to standard operational semantics.
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4.3 Proving Equivalence of Operational Semantics

The overall proof of soundness relies upon showing that these two systems of operational
semantics are equivalent. To demonstrate this, we must show several properties of the
graph-based operational semantics which are less obvious than in the standard operational
semantics due to the structure of the graph. As stated above, the real differences between
these systems are (1) the partial ordering of clauses, (2) lazy resolution of alias clauses, and
(3) that the graph grows monotonically instead of replacing applications and conditionals.
Nonetheless, the graph representation “runs” in the same way that expressions do: there is
a unique clause which is evaluated next, it may cause the introduction of more clauses, and
complex clauses (applications and conditionals) are handled by wiring and evaluating the
appropriate function body.

We use this reasoning to establish a bisimulation ∼= between an expression and its em-
bedding and then show that this bisimulation is preserved as evaluation proceeds. The
bisimulation and corresponding preservation proof are tedious and intuitive, so we exclude
them for reasons of space. The key equivalence lemma is stated as follows.

I Lemma 4.6 (Equivalence of standard and graph-based semantics). If e ∼= D, then
1. If e −→1 e′ then D −→∗ D′ such that e′ ∼= D′.
2. If D −→1 D′ then e −→∗ e′ such that e′ ∼= D′.

This equivalence is one-to-many to accommodate the differences between the two oper-
ational semantics relations. The graph opsems lazily resolves aliases, meaning that several
steps of the standard opsems may be required to propagate a value that the graph would
find via lookup (Definition 4.4). Likewise, a single lookup step of the standard opsems may
require no changes to the graph to maintain bisimulation.

4.4 Soundness of the Analysis

We now show that the analysis simulates the graph-based operational semantics, D 4 D̂.
This proof is easy, as the operational semantics graph can be projected on to an analysis
graph by inverting the variable freshening function. We formally define this inversion as
follows:

I Definition 4.7. The origin of a variable x is x itself if x is not in the codomain of
fr(−,−). Otherwise, let fr(x′′, x′) = x (for unique x′′ and x′, as fr(−,−) is injective).
Then the origin of x is the origin of x′.

We next define the simulation between evaluation graphs and analysis graphs. The graph
operational semantics was designed explicitly to make this simulation direct.

IDefinition 4.8 (Simulation relation). Let f be the natural graph-and-clause homomorphism
from an evaluation graph D to an analysis graph D̂ which maps variables to their origins.
We say that D is simulated by D̂ (written D 4 D̂) iff f(D) = D̂.

I Lemma 4.9 (Soundness). If D 4 D̂ and D −→1 D′, then D̂ −̂→1 D̂′ with D′ 4 D̂′.

Proof. By case analysis on the rule used to prove D −→1 D′. In particular, the premises
of a corresponding rule D̂ −̂→1 D̂′ can be proven using the premises of D −→1 D′ and the
simulation. J
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5 Extensions

In this section, we outline three extensions: full records, path sensitivity, and mutable state.
Our goal here is to show there is no fundamental limitation to the model given in the
previous sections: DDPA can in principle be extended to the full feature set of a realistic
programming language. Here for simplicity of presentation we take each feature one at a
time; in a language where they are all simultaneously added there are additional feature
interaction cases that must be addressed.

5.1 Records
The “records” presented thus far have no projection operation since there are no values
to project; here we outline an extension to records with projection. Consider a lookup of
variable x̂: if x̂ is defined as x̂ = x̂′.`, then this necessitates a record projection; x̂′ itself
may also necessitate further projection, and so on. In the general case, there could be a
continuation stack of record projections to be performed. This is similar to the non-local
lookup stack of our analysis, and not coincidentally: non-locals may be encoded in terms of
records via closure conversion.

In light of this connection, we can extend lookup to support full records using a single
stack X̂ (now more appropriately thought of as a continuation stack) to handle both data
destructors as well as non-local variables. We define the grammar of lookup actions to
include variables x̂ and projections of the form .`; we use k̂ to range over these lookup
actions and extend X̂ to all lists of k̂. We then augment Definition 3.4 with the following
new clauses:

I Definition 5.1. We extend Definition 3.4 to full records by adding the following clauses.
9. If â1 = (x̂ = {`1 = x̂′, . . . }), â1 <C â0, X̂ = [.`1, k̂2, . . . , k̂n],

then D̂(x̂′, â1, [k̂2, . . . , k̂n], Ĉ) ⊆ V̂ .
10. If â1 = (x̂ = x̂′.`), â1 <C â0, and X̂ = [k̂1, . . . , k̂n], then D̂(x̂′, â1, [.`, k̂1, . . . , k̂n], Ĉ) ⊆ V̂ .

We also extend each of the clauses of Definition 3.4 to address lookup actions generally
(rather than requiring lookup stacks to consist only of variables). Clause 10 above introduces
the projection action .` when we discover that we will need to project from the variable we
find; clause 9 eliminates this projection action when the corresponding record value is found.
Note that record pattern matching would also be desirable syntax, and would be possible
by extending clause 8 of the original lookup definition; for brevity, we skip that here.

5.2 Filtering for path sensitivity
An additional level of expressiveness we desire from records is the ability to filter out paths
that cannot have been taken. Consider, for instance, the recursive example in Figure 8. This
example appears to be unsafe based on the analysis result: on line 7, we project l from the
function’s argument. The condition on line 4 makes this safe – only records with l labels
may reach line 7 – but the analysis is unaware of this and so erroneously believes that the
record {} may reach that point.

We address this incompleteness using filters: sets of patterns which the value must match
in order to be considered relevant. In the above example, for instance, looking up v from
line 7 leads us to look up a from line 4. Because our path moved backwards through the
first clause of a conditional, however, we know that we may ignore any values we discover
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which do not match the {l} pattern. This is key to enabling path sensitivity and preventing
spurious errors; with filters, DDPA correctly identifies the recursion example as safe.

We can formalize path sensitivity in DDPA by keeping track of sets of accumulated
patterns in our lookup function, and disallowing matches not respecting the patterns they
passed through. We use Π+ and Π− to range over sets of patterns which a discovered
value must or must not match, respectively. Formally, path-sensitive DDPA is possible by
modifying the lookup function as follows:

I Definition 5.2. We modify Definition 3.4 by adding to the lookup function two parameters
of the forms Π+ and Π−. Each existing clause of that definition passes these arguments
unchanged. We additionally replace clauses 1 and 4b of Definition 3.4 with:
1. If â1 = (x̂ = v̂), â1 <C â0, X̂ = [], and v̂ matches all patterns in Π+ and no patterns in

Π−, then v̂ ∈ V̂ .
4b1. If â1 = (x̂′ ĉ↓

= x̂1), â1 <C â0, ĉ = (x̂2 = x̂1 ~ p̂ ? f̂1 : f̂2), f̂1 = fun x̂′ -> ( ê ), and
x̂ ∈ {x̂1, x̂

′}, then D̂(x̂′, â1, X̂, Ĉ,Π+ ∪ {p̂},Π−) ⊆ V̂ .
4b2. If â1 = (x̂′ ĉ↓

= x̂1), â1 <C â0, ĉ = (x̂2 = x̂1 ~ p̂ ? f̂1 : f̂2), f̂2 = fun x̂′ -> ( ê ), and
x̂ ∈ {x̂1, x̂

′}, then D̂(x̂′, â1, X̂, Ĉ,Π+,Π− ∪ {p̂}) ⊆ V̂ .
4b3. If â1 = (x̂′ ĉ↓

= x̂1), â1 <C â0, ĉ = (x̂2 = x̂1 ~ p̂ ? f̂1 : f̂2), and x̂ /∈ {x̂1, x̂
′}, then

D̂(x̂′, â1, X̂, Ĉ,Π+,Π−) ⊆ V̂ .
We then redefine D̂(x̂, â) to mean D̂(x̂, â, [], [], ∅, ∅).

Revised clause 1 shows how the filters are used: any value not matching the positive
filter is filtered out, and oppositely for the negative filter. The original clause 4 was the case
where we reached the start of a function and search variable x̂ was passed as the parameter;
in that case, the clause continued by searching for the argument at the call site. The original
clause 4b was the case where we reached the start of a case clause and search variable x̂ was
passed as the parameter; in that case, the clause continued by searching for the argument
at the call site. Here, we have separated that rule into two cases. In 4b1, the function was
the first branch of a conditional, so we know that any discovered value is only relevant if it
matches the conditional’s pattern. Thus, we add the pattern to the filter set to constrain it
so. Clause 4b2 is the opposite case.

5.3 State
Lookup in the presence of state may also be performed using only a call graph. We consider
here a variation of the presentation language which includes OCaml-style references with
ref x / !x / x <- x syntax. There are several subtle issues that must be addressed. First,
a simple linear search may not always give the correct answer; a cell containing a cell could
have the inner cell mutated after the outer cell, which is out of order compared to the control
flow sequence. So, we must define a branching search for references. Second, aliases may
arise in the form of different variable names referring to the same cell. Lookup must not
overlook aliases; otherwise, the lookup will be inaccurate and incomplete. So, explicit alias
testing is needed to verify proper values are not being passed by.

Not only may DDPA be adapted to address state, but the alias analysis itself is not
difficult using the same lookup routine. The following definition revises the lookup operation
for state.

I Definition 5.3. Definition 3.4 is extended to a stateful language by adding the following
clauses.
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9. If â1 = (x̂ = ! x̂′), â1 <C â0, then letting V̂ ′ = D̂(x̂′, â1, [], Ĉ), for each ref x̂′′ ∈ V̂ ′,
D̂(x̂′′, â1, X̂, Ĉ) ⊆ V̂ .

10a. If â1 = (x̂′1 = x̂′2 <- x̂′3), â1 <C â0, and MayAlias(x̂, x̂′2, â1, Ĉ), then ref x̂′3 ∈ V̂ .
10b. If â1 = (x̂′1 = x̂′2 <- x̂′3), â1 <C â0, and MayNotAlias(x̂, x̂′2, â1, Ĉ), then D̂(x̂, â1, X̂, Ĉ) ⊆

V̂ .
In these clauses, the terms MayAlias and MayNotAlias refer to the following predicates:

MayAlias(x̂1, x̂2, â, Ĉ) holds iff V̂ ′ = D̂(x̂1, â, [], Ĉ), V̂ ′′ = D̂(x̂2, â, [], Ĉ), and ∃ref x̂′′ ∈
(V̂ ′ ∩ V̂ ′′)
MayNotAlias(x̂1, x̂2, â, Ĉ) holds iff V̂ ′ = D̂(x̂1, â, [], Ĉ), V̂ ′′ = D̂(x̂2, â, [], Ĉ), and V̂ ′ 6=
V̂ ′′ or V̂ ′ 6= {ref x̂′} or V̂ ′′ 6= {ref x̂′′}

Clause 9 handles dereferencing. It finds the ref values which may be in x̂′ at this point
in the program; it then returns to this point to find all of the values that those variables may
contain. This new task is necessary since we want the value at the point the ! happened.

Clauses 10a and 10b address cell updates. Clause 10a determines if the updated cell in x̂′2
may alias the cell we are looking up; if this is the case, the value assigned by the cell update
may be our answer. Clause 10b addresses the case in which the updated cell may be different
from the target of our lookup. This happens when the lookups of each variable yield different
results or when they result in multiple cells – even if the sets of cells are equal, the orders
in which the program modifies the cells might differ, so we take the conservative approach
and call them different. MayAlias and MayNotAlias can be simultaneously satisfiable; when
that happens, the analysis explores both clauses 10a and 10b.

Along with the above modifications, the existing clauses 5 and 6 need to be extended to
support state. As written, clause 6 allows us to skip by call sites and pattern matches whose
output do not match the variable for which we are searching. This is sound in a pure system,
but in the presence of side-effects we must explore these clauses to ensure that they did not
affect the cell we are attempting to dereference. We thus modify clause 6 by prohibiting b̂
from being a call site or pattern match. We require a new clause similar to clause 5 but for
the case in which the search variable does not match the output variable. In that case, we
proceed into the body of the function but in a “side-effect only” mode: we skip by every
clause which is not a cell assignment or does not lead to one. We leave side-effect only mode
once we leave the beginning of the function which initiated it.

6 Implementation

We have developed a proof-of-concept implementation of DDPA [17]; a copy of the imple-
mentation is archived as an artifact with this paper. This implementation analyzes the
presentation language given in Section 2 extended to the proper record semantics described
in Section 5. The implementation correctly generates all control-flow graphs and value
lookup results given in the overview.

Although the proof-of-concept implementation demonstrates the behavior of DDPA, it
is far from efficient and we are presently developing a performant implementation. Our im-
plementation follows the lookup algorithm outlined in the proof of Lemma 3.8: we construct
a push-down automaton modeling a non-deterministic backwards walk of the DDPA graph
and then analyze this PDA for states reachable with an empty stack. There is a wealth of
literature on PDA reachability algorithms [3, 1] which we can utilize to gain efficiency; in
particular, [3] includes an algorithm for eliminating spurious nodes and edges which we have
already integrated into the proof-of-concept implementation due to its simplicity.
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7 Related Work

7.1 CFL-reachability
The core idea of our analysis can be viewed as extending first-order demand-driven CFL-
reachability analyses [6] to the higher-order case: the analysis is centered around using a
CFG, calls and returns are aligned, and lookup is computed lazily. Two issues make the
higher-order analysis challenging: the CFG needs to be computed on-the-fly due to the
presence of higher-order functions, and non-local variable lookup is subtle. The aforecited
demand-driven analyses delve further into the trade-off between active propagation and
demand-driven lookup, and this is something we plan to explore in future work. There
are many other first-order program analyses with a demand-driven component; several use
Datalog-style specification formats [19] including [29, 23].

Higher-order program analyses have been built which also incorporate call-return align-
ment [26, 8], but these higher-order analyses are not demand-driven and have a different algo-
rithmic basis. We now contrast DDPA with these and other higher-order program analyses.

7.2 Higher-order program analysis
As mentioned in the Introduction, higher-order program analyses today are generally con-
structed by abstract interpretation [2], a finitization process on the operational seman-
tics. We refer to these analyses as forward analyses to contrast with the backward-looking,
demand-driven approach of DDPA.

In the most basic forward analysis, a new state is created for each new program point/s-
tore/environment, and the number of states grows too rapidly to be practical. Modifications
including store widening, abstract garbage collection, polyvariance, and call-return align-
ment are thus added as means to obtain a better trade-off of expressiveness vs size of state
space. DDPA in some sense comes from the opposite direction: the global state information
is a graph isomorphic to the CFG which is polynomial in size and will be smaller than the
state space of any forward analysis. However, variable lookup is of high complexity and we
need to “spend” more space to make it more efficient.

We will expand by considering the different dimensions of analysis expressiveness in turn.
We begin with flow-sensitivity, meaning the analysis is sensitive to the order of assignment
operations. Forward analyses are initially flow-sensitive since each abstract state has its own
store, but the standard store widening optimization unifies these stores and eliminates flow-
sensitivity. One alternative is abstract garbage collection [14, 8], which requires a per-node
store (since, if the store were global, there would be no garbage). Abstract garbage preserves
flow-sensitivity while reducing abstract states caused by local data, but state explosions still
occur with persistent data. DDPA is flow-sensitive and garbage-free by construction: it
is flow-sensitive because variables are looked up with respect to a program point, and it
is garbage-free vacuously (as no stores are ever created). In a practical implementation of
DDPA, the caching of values will bring it closer to an abstract garbage collection approach,
but abstract garbage collection is bottom-up as opposed to top-down: rather than deleting
items proved unneeded, items are added only if they may be needed in the future.

Another important dimension of expressiveness is polyvariance: whether functions can
take on different forms in different contexts of use. The classic higher-order polyvariance
model is kCFA [22], which copies contours in analogy to forall-elimination in a polymorphic
type system. But there are many routes to behavior that appears as polyvariance. With-
out store widening, flow-sensitivity alone can distinguish calling context and provide some
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polyvariance. Additionally, call-return alignment can provide different contexts for differ-
ent function calls. The example we gave in Figure 3, for instance, needs only call-return
alignment to give polyvariant behavior in DDPA.

Call-return alignment was first explored in a higher-order context in subtype constraint
theories [18]; this work also uses the demand-driven nature of CFL-reachability to optimize
lookup. However, it is flow-insensitive, uses let-polymorphism only, and does not align non-
local variables, and so is not in the same category of analysis. In the context of abstract
interpretation, the first such algorithm was CFA2 [26], which was subsequently extended
and refined in kPDCFA [8]. We compare primarily with the more recent kPDCFA here.

An important observation of [8] regarding kPDCFA was that, in the presence of abstract
garbage collection, it is not possible to have an arbitrary stack for aligning calls and returns.
That paper proposes a regular expression modeling of call stacks to make the analysis
computable. We have a similar problem: our analysis finitizes one of its two stacks to
conform to a PDA encoding. We define the family of analyses kDDPA (Definition 3.3)
where k is the maximum stack depth for call-return alignments. Our finitization here is
simpler than the regular expression approach of kPDCFA; the regular expression approach
may work in our context and is a topic for future investigation.

DDPA achieves greater polyvariance solely from call-return alignment when compared
with kPDCFA or CFA2. In kPDCFA, stack alignment can be used to provide a different
context for function parameters, but non-local variables get no such advantage since they
are not in the local stack context. In DDPA, the stack context is still applicable to non-
local variable lookup as shown in Figure 5. In fact, we conjecture that, for a program with a
maximal lexical nesting depth of c, the analysis (k+c)DDPA will be at least as expressive as
kCFA (and should be more expressive due to alignment of calls and returns). The additional
c levels are needed because, in the worst case, each extra lexical level requires the lookup
of a non-local variable and thus a position on the lookup stack. This way, DDPA achieves
with only stack alignment what forward analyses need both stack alignment and polyvariant
contours to accomplish.

The run-time complexity of kDDPA can also be framed in terms of the expressiveness
of non-local variable polyvariance. It is shown in [15] how non-locals are the (only) source
of exponential behavior in kCFA [24]; in particular, if lexical nesting were assumed to be of
some constant depth not tied to the size of the program, kCFA would not be exponential.
The complexity of kDDPA comes from the other direction: for any fixed k, the algorithm
kDDPA is polynomial; but k needs to be increased by one for each level of stack alignment
we wish to achieve in non-local lookup. For pathologically nested programs, k must be on
the order of the size of the program for kDDPA to avoid imprecision due to non-local lookup.
Because kDDPA’s complexity is exponential in k, such a non-local-precise kDDPA would
be exponentially complex in that pathological case.

Related to this are provably polynomial context-sensitive analyses which, like kDDPA,
restrict context-sensitivity in the case of high degree of lexical nesting [7, 15]. mCFA [15]
is a polyvariant analysis hierarchy for functional languages that is provably polynomial in
complexity. This is achieved by an analysis that “in spirit” is working over closure-converted
source programs: by factoring out all non-local variable references, the worst-case behavior
has also been removed. Unfortunately, this also affects the precision of the analysis: non-
locals that are distinguished in kCFA are merged inmCFA. In kDDPA, the level of non-local
precision is built into the constant k of how deep the run-time stack approximation is, so
more precision is achieved as k increases. mCFA does not have this property: non-locals
will always be monomorphised for any m.
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Our current implementation is a proof-of-concept only; we plan to investigate ideas
in [11, 8, 9] and other papers for more performant PDA reachability algorithms. Overall
the trade-offs in performance and expressiveness are subtle and implementations will be
necessary to decide how practically useful DDPA is.

8 Conclusions

In this paper, we have developed a demand-driven program analysis (DDPA) for higher-order
programs which is centered around production of a call graph. DDPA needs only the call
graph to look up variable values; the specification does not maintain any other structures.
DDPA can be viewed as the adaptation of previous CFL-reachability-based demand-driven
program analyses to higher-order programs. This adaptation required two key changes.
First, it was necessary to incrementally construct the control-flow graph as the analysis
proceeded; second, the lookup of non-local variables required special handling.

We believe DDPA shows promise primarily because it represents a significantly different
approach compared with other higher-order analyses. A high-level analogy can be made
with eager and lazy programming languages: it is a fundamental decision in language design
which approach to take and there are significant trade-offs. We believe the demand-driven
side of higher-order program analyses deserves further exploration.

We have established a polynomial-time bound on a higher-order program analysis which
is both flow- and context-sensitive. The reduced global state size holds out promise for
program verification tools: the fewer the states, the less overwhelming the workload will be
for a model checker, theorem prover, or other verification strategy.

We present preliminary results here from a simple implementation to serve as a confir-
mation of correctness, but our implementation needs tuning and would benefit from a head-
to-head comparison with some state-of-the-art analyses. Although DDPA’s value lookup is
novel, it shares the task of PDA reachability with the existing program analysis literature
and so a rich body of work is available to be utilized in implementing DDPA efficiently.

We believe the analysis should scale well to other language features, and have presented
outlines for extensions of the basic analysis to deep data structures, path-sensitivity, and
state; we leave efficient decision procedures for the latter two to future work. We also intend
to explore the development of extensions for other language features: exceptions and other
control operators, concurrency, and modularity to name a few.
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Abstract
Semantic specifications do not make a systematic connection between the names and scopes in the
static structure of a program and memory layout, and access during its execution. In this paper,
we introduce a systematic approach to the alignment of names in static semantics and memory
in dynamic semantics, building on the scope graph framework for name resolution. We develop
a uniform memory model consisting of frames that instantiate the scopes in the scope graph
of a program. This provides a language-independent correspondence between static scopes and
run-time memory layout, and between static resolution paths and run-time memory access paths.
The approach scales to a range of binding features, supports straightforward type soundness
proofs, and provides the basis for a language-independent specification of sound reachability-
based garbage collection.
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1 Introduction

Name binding and memory management are pervasive concerns in programming language
design. There is clearly a connection between the names and scopes in the static structure of
a program and patterns of memory allocation, access, and deallocation during its execution.
However, existing semantic specifications of programming languages do not treat this con-
nection systematically, and take a wide variety of approaches to handling name binding and
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memory management. For example, different type soundness proofs for Java-like languages
might model types and memory using simple states that map identifiers and references to
values [3], untyped frames that rely on traditional environments for typing [24], or ad-hoc
lookup functions (or visibility predicates) designed to resolve particular kinds of identifiers
such as classes or fields [6, 9]. Existing dynamic semantic specification frameworks (Redex [8],
Ott [21], K [20], funcons [2]) provide little guidance in formalizing the connection between
static names and dynamic memory.

In the language designer’s workbench project [27], we are pursuing high-level declarative
language specifications that are amenable to both verification and implementation using
language-independent techniques. A particular goal is to separate the specifications into
distinct aspects so far as possible, such as syntax, binding, typing, run-time behavior, etc.
In this context we have developed scope graphs [14, 25] to provide a language-independent
framework for static name binding and name resolution. The framework holds promise for
dealing with name binding in a uniform way that scales to many binding-aware tools, such
as editor services, refactoring transformations, type checkers, interpreters, and compilers.

In this paper, we address the run-time aspect of specification, and develop the relationship
between static scope graphs and the dynamic semantics of name binding and run-time memory.
Specifically, we formalize a language-independent correspondence between static scopes and
heap-allocated frames. The approach is designed to support both verification of meta-theoretic
properties and generation of realistic interpreters using fairly low-level memory operations.
Our framework is language-independent in the sense of providing a generic set of facilities for
describing and implementing binding and memory operations for a wide range of languages.
We make the following contributions:

We introduce the scopes-as-frames paradigm as a language-independent approach to
dealing with name binding for both static and dynamic programming language semantics,
by organizing frames in a run-time heap in correspondence to the organization of scopes
in a scope graph, and relating static resolution paths to run-time memory access paths.
We show how frame operations can be used in formulating big-step dynamic semantics,
which resemble realistic interpreters. (The generation of high-performance frame-based
interpreters from specifications in the DynSem operational semantics DSL [26] is work in
progress.)
We show how phrasing the consistency between frames and scopes as an invariant gives a
language-independent principle that helps structure type soundness proofs by providing
generic lemmas about preservation of the invariant under various memory operations.
We demonstrate that scopes-as-frames is independent of particular language features by
applying it to a functional language (Section 3), an imperative language with records
(Section 4), and a class-based language with subtyping (Section 4.4). The same approach
(scopes describing frames) is applied systematically to describe call frames, records, and
objects instantiating a class.
We give a high-level, language-independent specification of sound garbage collection of
frames, and verify that several standard GC strategies refine this specification.
We provide a Coq development1 containing mechanized type soundness proofs for (su-
persets of) all languages in the paper. The type soundness proofs rely on a language-
independent library formalizing scope graphs and frame heaps.

In the next section we introduce the approach by means of an example. In Section 3 we
use the approach to specify and prove type soundness for a small language with first-class

1 https://github.com/metaborg/scopes-describe-frames/

https://github.com/metaborg/scopes-describe-frames/
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this paper

Constraints
AST

Resolved
Scope Graph

extract solve

Annotated
AST

+
eval

Heap

Frame

Frame
Frame

Frame

Figure 1 Architecture of the approach: static analysis of a program abstract syntax tree via
constraints leads to a representation with explicit name and type information, which is the input for
evaluation.

functions. In Section 4 we extend the formalization to a language with records. In Section 5
we discuss the formalization of garbage collection. In Section 6 we discuss related work.
Section 7 summarizes this work and outlines ideas for future work.

2 Static Scopes Describe Dynamic Frames

Our approach builds on the theory of name resolution of Néron et al. [14, 25], which provides
the foundation for a language-independent representation of static name binding in programs
based on scope graphs. This section recalls the basics of scope graphs, and introduces a new
paradigm for name binding at run time based on scope graphs.

2.1 Architecture
We first discuss how this work ties in with previous work on scope graphs. Figure 1 shows
the overall architecture of the approach. We assume a program is represented by an abstract
syntax tree (AST) produced by a parser. First, a set of name and type constraints is extracted
from the AST. Second, a (language-independent) name and type resolution algorithm resolves
the constraints and produces an annotated abstract syntax tree and a resolved scope graph [25].
Third, an interpreter evaluates this data structure using a run-time heap consisting of frames
to represent the memory of the program.

This paper focuses on the third stage in Figure 1. Our starting point is a well-bound and
well-typed program, represented as an annotated AST (where each AST node is annotated
with scope- and type annotations) and a resolved scope graph (e.g., a scope graph produced
by name and type resolution as described in [25]). Section 3 defines these notions formally.
Before diving into the formal details, we illustrate the concepts of scope graphs and frame
heaps by example.

2.2 Scope Graphs
Scope graphs [14, 25] provide a language-independent framework for describing static name
binding and performing name resolution, which can support a wide variety of binding
constructs. We recall the basic concepts of scope graphs here, starting with a simple but
illustrative example.

Figure 2 presents a program that implements the factorial function and computes fac(2).
The figure also presents the scope graph of the program. The nodes of the scope graph repre-
sent three basic notions derived from the program abstract syntax tree: scopes, declarations,
and references:

A scope is an abstraction of a set of AST nodes that behave uniformly with respect to
name binding.
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letrec fac =
  fun (n : Int) : Int {
    if (n == 0) {
      1
    } else {
      n * fac(n - 1)
    }
  }
in
  fac(2)
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Figure 2 The left box contains an example program defining the factorial function. The boxes
surrounding code blocks represent scopes. The call-outs refer to points in the execution of the
program. The middle box shows the scope graph for this program; the graphical notation is explained
in the legend. Distinct occurrences of similarly named references are stacked for conciseness (e.g.,
scope s2 contains three distinct n references). The right box shows the evolution of the heap as the
program executes: there is one top-level frame and three call-frames for the fac function.

A declaration is an occurrence of an identifier that introduces a name.
A reference is an occurrence of an identifier referring to a declaration.

A declaration is only visible in the scope in which it is declared and in other scopes connected
to the declaration scope by a sequence of inter-scope edges. These edges represent visibility
idioms such as nesting in lexical scoping and imports in module systems. A key idea is that
scope graphs provide a means of resolving which declaration each reference in the AST refers
to, by finding a resolution path from a reference to a declaration. Thus, a reference represents
the use of a name in a scope and is resolved via a path along the edges of the scope graph.

In the example in Figure 2, n is both declared in and referenced from scope s2, which is
associated with the function body; the blue resolution paths involve only this scope. Lexical
nesting of s2 within the outer scope s1 is modeled by an edge labeled P (for lexical parent);
the reference fac in scope s2 resolves to declaration fac in scope s1 via the pink path.

If a given identifier is declared in more than one place, there may be multiple possible
resolution paths for references to that identifier. In such cases, we choose the preferred path
using a language-dependent specificity ordering and path well-formedness predicate. The
resolution calculus introduced in [14] and refined in [25] defines the semantics of resolution
and describes algorithms for finding most-specific resolution paths. In this paper, we assume
that we already have a resolved scope graph in which each reference has a unique path to a
corresponding declaration within the graph.

Records and field access. A key benefit of scope graphs is that they can describe many
different language binding constructs in a uniform way. As a small illustration of this, we
consider a language with records and named fields. Figure 3 shows an example program that
defines a record type A with a single field n. The program declares two local variables, x and
y. Each of these variables is first assigned new record instances of A; subsequently, the fields
of the records stored in the variables are initialized.
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program
  record A {
    n : Int
  }
begin
  var x : A;
  var y : A;
  x = new A;
  y = new A;
  x.n = 1;
  y.n = 2;
end
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Figure 3 An example program using records (left) with its scope graph (center) and a picture of
the evolution of the heap during execution (right).

The scope graph of the program in Figure 3 contains five scopes. The program scope
s1 contains the record type declaration A, where A has an associated scope s2, which is the
record scope containing the record field declaration. Scope s3 declares the local variables x
and y. The two scopes s4 and s5 are import scopes containing the field references x and y,
respectively. These scopes do not contain any declarations, but instead provide access to the
fields of records via I-labeled edges. (Building these edges requires resolving the types of x
and y; again, in this paper we assume that this resolution has already occurred, e.g. using
the methods of [25].) Resolution of field names uses the same paradigm as for variables. For
example, the reference to n in s4 is resolved to the declaration in s2 via the pink path.

2.3 Dynamic Frames and Heaps

We have illustrated how scope graphs provide a uniform and language-independent model
for static name binding. In this paper, we propose a uniform and language-independent
model for the layout of memory and the binding of values to names at run time. In this
model, the static scope graph provides a blueprint for the layout of memory. The model is
based on the notions of frames, slots, and heaps. Frames and heaps provide building blocks
for structuring memory that are inspired by how realistic implementations of programming
languages organize memory using, e.g., stack frames (for function calls), and heap blocks (for
structured memory objects).

The memory of a program at run time is a heap consisting of frames.
A frame is a unit of memory consisting of slots mapping names to values, and links to
other frames.
A frame is described by a scope in the sense that each slot corresponds to a scope
declaration and each link corresponds to an outgoing scope edge.
Frames may be allocated when control passes to a program point in a new lexical scope
(e.g. on function entry) or when executing an explicit memory allocation command (e.g.
new). Frames can be garbage-collected when no longer referenced.
The path for a reference in the static scope graph can be applied directly to fetch the
referenced value at run time by interpreting it relative to the “current” frame.

The connection between scopes and frames enables us to define invariants that formally
guarantee the absence of run-time errors, as Sections 3 to 5 of this paper demonstrate. In the
rest of this section we illustrate how scopes-as-frames support a wide range of name binding
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phenomena, including functions, let bindings, blocks with local variables, and records; all in
a systematic way that follows the same pattern.

Frames and heaps for lexical scoping. Returning to the factorial function example from
earlier, the rightmost illustration in Figure 2 shows the evolution of the heap as the example
program executes. In this example, all the frames contain lexically-scoped variables, and
correspond to stack frames in conventional language implementations. We examine the
execution steps of the program to illustrate how frames and heaps are used to structure
memory during run time, and how these correspond to the static scope graph.

The program frame for scope s1 is created at point (0); and the function closure is
assigned to the fac slot. This is the initial current frame.
The execution of the body of the letrec proceeds to initialize a new frame at point (1),
which has the same structure as the scope (s2) that it instantiates: it is linked to a lexical
parent frame that instantiates s1; and it has a single slot for n, the sole declaration of
scope s2, which is initialized to contain 2.
At point (2), the newly created frame becomes the current frame. Then the statically
computed resolution path for the n reference (colored blue in Figure 2) can be applied,
starting at the current frame, to fetch the value n = 2, whence a recursive call to fac is
made in the else branch of the example program. Again, fac is dereferenced using the
statically computed resolution path (highlighted in pink in Figure 2).
The recursive call at point (3) creates another frame, and results in another recursive call
and frame at point (4). At this point, n evaluates to 0, and the recursive calls return at
point (5).

At each step of execution, references are dereferenced relative to the current frame. The
run-time memory access path for each reference is the same as its static resolution path.

Records and field access. Just as scopes provide a static model for many kinds of binding,
frames support a wide range of patterns for binding at run time (not just stack-like binding).
In particular, frames can be used to model structured memory objects, such as the records in
our second example. These frames are allocated by an explicit new operator in the language.

The rightmost illustration in Figure 3 shows the evolution of the heap during program
evaluation. Step-by-step:

The program frame is created at point (0). This frame has a single slot for A, matching
the declaration in scope s1.
At point (1), the frame for the local variables x and y is created.
Points (2) and (3) populate the slots for x and y with record values which point to freshly
allocated record frames (indicated by the dotted lines at points (2) and (3) in Figure 3).
These record frames instantiate the scope (s2) associated to the declaration of record
type A.
Next, the field slots of the record frames are filled in. The slot names are declared in
record scope s2, but references to them are placed in intermediate scopes s4 and s5,
which import s2. To maintain a consistent relationship between static and run-time
paths, we create an intermediate frame corresponding to s4 at point (4). Then at point
(5) we use the static path for n to locate the relevant slot in the record frame for x and
set the value of n to 1. Points (6) and (7) proceed similarly to (4) and (5).

Once more, the static and run-time resolution paths coincide, as illustrated by the colored
paths in the scope graph and heap frame in Figure 3. Note that maintaining this corre-
spondence leads to some infelicities in the dynamic frame layout. The slot created for A in
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Figure 4 Frames instantiate scopes.

the program frame is actually unused and could have been omitted; declarations of purely
static things, like the type name A, do not need a run-time correlative. Similarly, the frames
corresponding to the declaration-free scopes s4 and s5 are empty, and having to traverse
them to reach the record frame is inefficient. We could avoid both of these problems in a real
system by using a more nuanced definition of correspondence between static and run-time
paths; in this paper, we have elected to keep the scopes-as-frames correspondence as simple
as possible.

Invariants. We have sketched how the layout of memory in frames follows the scope graph,
and how this applies uniformly to a range of binding patterns. We can phrase the systematic
correspondence between static scopes and dynamic frames as an invariant. Doing so gives a
basis for statically checking and ruling out run-time errors. In a nutshell, the scopes and
frames considered in this section all satisfy invariants that can be summarized as:

Binding invariant: (a) the slots of a frame are in one-to-one correspondence with the
declarations in the frame’s scope; (b) the links of a frame are in one-to-one correspondence
with the labeled edges of the frame’s scope, and the scope of each link target matches the
corresponding edge target. Figure 4 illustrates the resulting commuting diagram.
Typing invariant: assuming declarations and values are typed, each slot value has the
same type as its corresponding declaration.

These invariants extend to heaps by requiring that all frames in a heap satisfy the invariant.
A consequence of these invariants is that each static resolution path can be used to perform
corresponding run-time lookups, and (again assuming everything is typed) the values obtained
from such lookups will be correctly typed.

In the next sections we formalize the framework and invariants outlined above. Concretely,
we show how to define the static and dynamic semantics of a number of model languages
with typical programming language binding patterns, and demonstrate and discuss how the
scopes-as-frames invariant provides a basis for straightforward type soundness proofs and
sound garbage collection.

3 Dynamic Frames for a Simple Functional Language

In this section we formalize our approach using L1, a language with arithmetic expressions
and first-class, simply-typed functions, as a running example (Figure 8). We first present the
language-independent framework of scope graphs to represent the (resolved) name binding
and type facts of programs, and we formalize well-bound and well-typed L1 programs in
terms of scope graphs. Then we introduce a language-independent framework of frames and
heaps for modeling memory layout, and formalize the dynamic semantics of L1 in terms of it.
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Figure 5 Scope graphs.
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Figure 6 Resolution paths.

Finally, we will see how phrasing the consistency between frames and scopes as an invariant
gives a language-independent principle for proving type soundness, which we apply to prove
the type soundness of L1.

3.1 Scope Graphs

We use scope graphs [14] extended with types [25] to provide a uniform (language-independent)
treatment of name binding and type assignment in the definition of the static semantics of
programming languages. We introduced scope graphs by example, including their graphical
notation, in the previous section. Here we formalize scope graphs and resolution.

Vertices and edges. Figure 5 formally defines what we mean by a scope graph, consisting
of vertices and edges. A scope graph vertex is either a scope (s), a declaration (xD

i ), or a
reference (xR

i). We assume that each scope identifier, declaration, and reference is unique in
the graph. For a declaration xD

i there is exactly one scope s which contains the declaration,
represented as an edge s xD

i in the scope graph; similarly, for a reference xR
i there is

exactly one scope s which contains the reference, represented as an edge xR
i s.

In addition to edges relating scope identifiers to references or declarations, there are
labeled edges connecting two scopes. A labeled edge s P s′ means that s has s′ as its lexical
parent, and an edge s I s′ means that s imports s′. For language L1, we only need lexical
scoping, but in Section 4 we consider a language with records which relies on imports.

The bottom of Figure 5 defines some useful projection functions for a given scope graph:
K(s) is a map from labels l to the set of scopes to which s is connected via label l; D(s) is
the set of all declarations contained in a scope; and R(s) is the set of all references contained
in a scope.

The last kind of edge defined in Figure 5 is an associated scope edge: xD
i s connects

the declaration xD
i of a named collection of names (e.g., a module or a record) to the scope

s which declares the constituent names (e.g., the body of a module or a record). Again,
language L1 does not rely on associated scopes, but the language in Section 4 does.

Finally, in a typed scope graph, declarations are annotated with a type (xD
i : t).
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fun (xD
1 : Int) {

(fun (xD
2 : Int) {

fun (yD
3 : Int) {xR

4 + yR
5}

})(xR
6 + 3)

}

s1

s2

x1

x2

s3 y3

x4

x6

y5

P

P

Figure 7 Example program with nested functions and its scope graph.

Resolution paths. Figure 6 defines resolution paths. We use the `G turnstile for predicates
and relations that query an underlying scope graph G. A path p is interpreted relative to
an initial scope, and is given by a sequence of resolution steps. The resolution step D(xD

i )
checks that the declaration xD

i is available in the initial scope, while E(l, s) checks that
resolution continues by following the edge labeled by l from the initial scope to scope s.
The path consistency relation `G p : s s7−→ (s′, xD

i ) checks that a path p is consistent with
the underlying scope graph, i.e. that there is an actual path in the graph from scope s to
declaration xD

i in scope s′. The relation `G p : xR
i

r7−→ (s′, xD
j) checks that there is a path p

from the initial scope that contains xR
i to a scope s′ containing xD

j .
In this paper, we assume that scope graphs have been resolved, following the resolution

calculus of [14, 25], so that each reference is associated with a unique and consistent path to
a declaration. In other words, a resolved scope graph includes a mapping from each reference
xR

i to a path p which corresponds to an actual resolution, i.e. there exist s′ and xD
j such

that `G p : xR
i

r7−→ (s′, xD
j). When there are multiple possible resolution paths for a reference,

the resolution calculus uses language-specific well-formedness and specificity ordering rules
to choose which path to prefer. Since we are assuming resolution has already occurred, we
ignore the details of these rules in this paper.

An example scope graph. Figure 7 defines the scope graph for an L1 expression which nests
three functions (where we have replaced identifiers with unique references and declarations).
Here, the P edges connect the inner scope of each function to its enclosing (lexical)
scope. For example, the reference xR

6 has a trivial path in the scope graph. We write
p6 = D(xD

1) : xR
6 7−→ xD

1 for this resolution path, which says that the declaration xD
1 is

found in the same scope as the reference xR
6. Similarly, the resolution path for yR

5 is
p5 = D(yD

3) : yR
5 7−→ yD

3. In contrast, there are two possible paths from reference xR
4 to

matching declarations: p4 = E(P, s2) ·D(xD
2) and p′4 = E(P, s2) · E(P, s1) ·D(xD

2). In this
case, the shorter path p4 would be preferred over the longer path p′4 according to L1’s path
specificity ordering rules, which encode lexical scoping (shadowing). Thus, the complete
resolution mapping for this graph is {xR

6 7→ p6, y
R
5 7→ p5,x

R
4 7→ p4}.

3.2 Well-Bound and Well-Typed Terms
Scope graphs provide a language-independent data structure for representing name binding
and typing facts about the declarations and references in a program. To reason about the
relation of this model to the program that it represents, we define a well-boundness and a
well-typedness predicate on abstract syntax trees annotated with scope and type information.
Figure 9 defines annotated terms for L1, ranged over by a, where expressions are annotated
by their scope s and their type t. Identifiers have been replaced with unique references and
declarations. We define well-boundness and well-typedness as separate predicates that check

ECOOP 2016
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t ::= Int | t → t

e ::= z | x | e ⊕ e | fun(x : t){ e } | e(e)
z ∈ Z

Figure 8 Syntax of L1.

t ::= Int | t → t

e ::= z | xR
i | a ⊕ a | fun( xD

i : t){ a } | a(a)
a ::= es,t

Figure 9 Annotated syntax of L1.

Well-boundness b a
b
zs [WbInt]
`G xR

i s

b (xR
i)

s
[WbRef]

b
es

1
b
es

2
b (es

1 ⊕ es
2)s

[WbArithOp]

b
es1 `G s1

P s2
`G D(s1) = {xD

i }
b (fun (xD

i : t){ es1})s2
[WbFun]

b
es

1
b
es

2
b (es

1(es
2))s

[WbApp]

Figure 10 Well-boundness of L1 terms.

Well-typedness t a
t
zInt [WtInt]

`G p : xR
i

r7−→ (s′, xD
j) `G xD

j : t
t (xR

i)
t

[WtRef]

t
eInt1

t
eInt2

t (
eInt1 ⊕ eInt2

)Int [WtArithOp]

`G xD
i : t1

t
et2

t (fun(xD
i : t1){ e

t2 })t1→t2
[WtFun]

t
et1→t2

1
t
et1

2
t (
et1→t2

1 (et1
2 )

)t2
[WtApp]

Figure 11 Well-typedness of L1 terms.

the consistency of (the annotations of) a term with respect to its scope graph. In definitions
of these predicates, we omit the annotation that is not relevant for the property checked by
the rule; that is, we leave out the type annotation in the well-boundness rules, and the scope
annotation in the well-typedness rules. All rules are implicitly parameterized by a common
underlying scope graph G; all occurrences of `G query this G.

The well-boundness rules in Figure 10 check that a term is well-bound relative to a
resolved scope graph G. That is, the scope graph is consistent with the scoping patterns
of the term, and each reference is bound, i.e., resolves to a declaration with a path that
is consistent with the scope graph. Rules [WbArithOp, WbApp] check that the child terms
of arithmetic operator applications and function applications reside in the same scope as
the parent term. Rule [WbRef] checks that the reference xR

i is declared in the scope s of its
annotation (`G xR

i s). Rule [WbFun] checks that the scope s1 of the body of a function is
a lexical child of the scope s2 of the function expression, and that the set of declarations
of the function scope is exactly the singleton set containing the formal parameter of the
function.

The well-typedness predicate on annotated terms checks that (1) expressions are consis-
tently typed according to the rules of the language, and (2) that each reference is typed
consistently with its declaration. Figure 11 specifies well-typedness rules for L1. The
Rules [WtInt, WtArithOp, WtFun, WtApp] check that the type of an expression is consistent
with the types of its direct sub-expressions. Note the absence of environment threading in
the well-typedness rules; scope management is taken care of by the well-boundness rules.



C.B. Poulsen, P. Néron, A. Tolmach, and E. Visser 20:11

Frames and heaps
f ∈ FrameId = {f1, f2, . . .}

ks ∈ DynLinks = Label fin−→ ScopeId fin−→ FrameId
σ ∈ Slots = Decl fin−→ Val

〈s, ks, σ〉 ∈ Frame = ScopeId ×DynLinks × Slots
h ∈ Heap = FrameId fin−→ Frame

Projection functions
Sh(f) = s where h(f) = 〈s, ks, σ〉
Kh(f) = ks where h(f) = 〈s, ks, σ〉
Dh(f) = σ where h(f) = 〈s, ks, σ〉

Operations on frames initFrame(s, ks, σ)/h⇒ f ′/h′

f ′ 6∈ Dom(h)

initFrame(s, ks, σ)/h⇒ f ′/h[f ′ 7→ 〈s, ks, σ〉]
[InitFrame]

Dynamic address lookup lookup(f, h, p)⇒ Addr(f ′, xD
i )

xD
i ∈ Dom(Dh(f))

lookup(f, h,D(xD
i ))⇒ Addr(f, xD

i )
[DLookupD]

Kh(f)(l)(s) = f ′ lookup(f ′, h, p)⇒ Addr(f ′′, xD
i )

lookup(f, h,E(l, s) · p)⇒ Addr(f ′′, xD
i )

[DLookupE]

Fetching and mutating slot values get(f, h, xD
i )⇒ v set(f, h, xD

i , v)⇒ h′

Dh(f) = σ σ(xD
i ) = v

get(f, h, xD
i )⇒ v

[GetSlot]

xD
i ∈ Dom(Dh(f))

set(f, h, xD
i , v)⇒ h[f 7→ (Dh(f)[xD

i 7→ v])]
[SetSlot]

Figure 12 A language-independent formalization of frames and heaps.

Values
Val 3 v ::= NumV(z) | ClosV(xD

i , a, f)

Annotation projections
S(es,t) = s T (es,t) = t

Dynamic semantics f ` a/h⇒ v/h′

f ` z/h⇒ NumV(z)/h [EvInt]

`G p : xR
i

r7−→ (s′, xD
j) lookup(f, h, p)⇒ Addr(f ′, xD

j) get(f ′, h, xD
j)⇒ v

f ` xR
i/h⇒ v/h

[EvRef]

f ` a1/h1 ⇒ NumV(z1)/h2 f ` a2/h2 ⇒ NumV(z2)/h3

f ` a1 ⊕ a2/h1 ⇒ NumV(⊕(z1, z2))/h3
[EvArithOp]

f ` fun(xD
i : t){ a }/h⇒ ClosV(xD

i , a, f)/h [EvFun]

f ` a1/h1 ⇒ ClosV(xD
i , a
′, f ′)/h2 f ` a2/h2 ⇒ v/h3

initFrame(S(a′), {P 7→ {Sh3(f ′) 7→ f ′}}, {xD
i 7→ v})/h3 ⇒ f ′′/h4

f ′′ ` a′/h4 ⇒ v′/h5

f ` a1(a2)/h1 ⇒ v′/h5
[EvApp]

Figure 13 Dynamic semantics of L1.
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3.3 Frames and Heaps
We now develop the formalization of the language-independent system of heaps and frames
to represent memory at run-time. Figure 12 defines frames, heaps, and some operations on
them that we will use in the dynamic semantics of L1. The framework is parameterized with
a domain Val of values.

A heap h is a finite map from frame identifiers (pointers) to frames. A frame consists
of a scope identifier, a collection of dynamic links, and a collection of slots. The scope
identifier refers to the scope that the frame instantiates. The dynamic links are defined as a
two-dimensional mapping from labels and scopes to frame identifiers. These links are the
dynamic counterparts of labeled edges in the scope graph and implement the link from a
frame to the frame that represents its lexical context or an imported module. The slots of a
frame are defined as a finite map from declarations to values.

We define operations on heaps to construct new frames and retrieve slot values. Note
that all operations will refer to frames using their frame identifier (f). Accessing frames is
done via a lookup in the heap (h(f)) and using the projection functions S_(_), K_(_), or
D_(_). We will write ‘frame f ’ as shorthand for ‘the frame referred to by frame identifier
f ’. The initFrame(s, ks, σ) operation adds a new frame with scope identifier s, links ks,
and slots σ, to the heap at a fresh frame identifier. The operation is defined as a relation
initFrame(s, ks, σ)/h ⇒ f ′/h′, using the notation t/h to represent the pair of a term (or
value) t and a heap h. We use this notation throughout to explicitly represent heap threading.
(We could use a state monad to implicitly thread the heap, but we prefer to make semantic
rules explicit for this presentation.)

The lookup operation lookup(f, h, p) ⇒ Addr(f ′, xD
i ) dereferences a path p relative to

frame f , resulting in an address, consisting of a pair of a frame f ′ and a slot xD
i in that

frame. The operation get(f, h, xD
i ) ⇒ v retrieves the value v of slot xD

i from frame f ; and
set(f, h, xD

i , v)⇒ h′ sets the value of slot xD
i of frame f to v, resulting in a new heap h′.

3.4 Dynamic Semantics
Figure 13 specifies the big-step dynamic semantics for L1 using a heap to represent the
memory during execution. The value domain Val consists of numbers NumV(z) and closures
ClosV(xD

i , a, f). The judgment f ` a/h ⇒ v/h′ specifies that evaluating an annotated
expression a in the context of frame f in heap h gives a value v and heap h′. We discuss the
rules and use the example in Figure 14 as illustration:

The Rules [EvInt,EvArithOp] for arithmetic are standard and do not affect memory other
than passing the current frame to evaluation of arguments and threading the heap.
Rule [EvFun] constructs a closure which records the formal parameter, the body of the
function, and the lexical context at the point of function definition, which is exactly
represented by the current frame f . In Figure 14, the result of evaluating the function in
the body of the function at (3) leads to a closure with frame s3 as lexical context.
Rule [EvApp] defines the evaluation of a function application. The function argument a1
should evaluate to a closure. Using initFrame a new frame instantiating the scope of the
function body (S(a′)) is constructed to represent the call frame of the function call. The
frame from the closure (f ′) is used as the lexical parent of the call frame. The argument
value (v) is assigned to the slot for the formal parameter of the function (xD

i ). The body
of the function (a′) is evaluated in the context of the new frame. In Figure 14, in the
application f(1), f evaluates to a closure with a pointer to the s3 frame. The call frame
for the body then constructs a frame for s4 with the s3 frame as its parent.
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fun(f: Int -> Int): Int {
  f(1)
}(
  fun(x: Int){ 
    fun(y: Int) { 
      x + y 
    } 
  }(3)
)

2

4

3

1

5

s1

s3 x

s4 y

x

y

P

P

s2f

P

f

s1

s2

f Cls

s3

3

s4

y 1
x

x

1

2

3

4

5

P

P

P

Figure 14 Example L1 program with scope graph and heap.

Rule [EvRef] defines the evaluation of a variable xR
i . The frame f represents the lexical

context of the variable and the static scope graph path of the (reference representing the)
variable is the offset into that context. The lookup happens in multiple steps: first, we
find the path associated with xR

i in the resolved scope graph; second, we dynamically
follow the path to compute the dynamic memory address for the reference; lastly, we
get the value of the dynamic memory address. In Figure 14, the evaluation at (5) of
variable x in the s4 frame follows the path defined for x in the scope graph. (Note how
the call-time context of f is not accessible to the evaluation of the closure in frame s4.)

3.5 Intermezzo
What have we learned from this exercise so far? (1) There is a systematic correspondence
between static name binding and binding at run-time. Static scopes are collections of declara-
tions. Dynamic frames are units of memory allocation, holding values for the declarations
in a scope. Static name binding is about visibility of declarations following a path from
reference through the scope graph. Binding at run-time is about paths from evaluation
frame to storage frame. This correspondence provides a guiding principle for the definition
of the dynamic semantics. Evaluating a binding construct requires creation of a frame that
instantiates the corresponding static scope. Evaluating a reference requires looking up its
value in the heap using its static path as offset. (2) We can mostly separate the specification
of binding and typing rules. Binding rules are concerned with describing the structure of
and the access to memory. Typing rules are concerned with the types of the arguments and
results of operations. In the dynamic semantics this corresponds to factoring out (and making
systematic and uniform) the treatment of memory from other ‘domain-specific’ operations
(such as arithmetic). We have seen that typing depends on binding in order to establish the
types of references. In the next section we will see that binding depends on typing exactly
when types are used to describe memory in data type definitions.

In conclusion: defining name binding in terms of scope graphs provides a uniform
methodology (an API if you want) for the treatment of memory in static and dynamic
semantics. This scales to a range of language features: in Section 4 we show that the
approach scales to imperative features and records, and in Section 4.4 we discuss how to
deal with classes and subtyping.

What other benefits does the approach provide? The design of this uniform memory model
is just the start of a study of making language-independent those aspects of programming
language design that are usually treated as language-specific. In Section 3.6 we will see
how phrasing the consistency between frames and scopes as an invariant gives a language-
independent principle for proving type soundness, i.e. that well-bound and well-typed
programs cannot go wrong. Later, in Section 5 we discuss a high-level language-independent
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Good frame
For any definition of types t, values v, and value typing relation v :
wellBound(h, f) ,
∃s. s = Sh(f) ∧ D(s) = Dom(Dh(f)) ∧

(∀l s′. s′ ∈ K(s)(l) ⇐⇒ Sh(Kh(f)(l)(s′)) = s′)
wellTyped(h, f) ,

∀t xD
i ∈ D(Sh(f)). `G xD

i : t =⇒ ∀v. Dh(f)(xD
i ) = v =⇒ h

v v : t
goodFrame(h, f) ,

wellBound(h, f) ∧ wellTyped(h, f)

Good heap
goodHeap(h) , (f ∈ Dom(h) =⇒ goodFrame(h, f))

Value typing h
v
v : t

h
v NumV(z) : Int [VtInt]

b
fun(xD

i : t1){ a }
Sh(f) t

fun(xD
i : t1){ a }

t1→t2

h
v ClosV(xD

i , a, f) : t1 → t2
[VtClo]

Figure 15 Good frames, good heaps, and value typing.

specification of sound reachability-based garbage collection of frames, and verify that several
standard GC strategies refine this specification.

3.6 Type Soundness

We have argued that the structure of frames follows the structure of scopes. Now we make this
argument precise by defining the correspondence between frames and scopes, and discuss how
that supports a language-independent formulation and systematic proof of type soundness.

Good frames. The goodFrame property defined in Figure 15 formally captures the corre-
spondence between frames and scopes. The definition relies on two auxiliary properties:
1. wellBound: Maintains the binding invariant that frames have the same structure as their

scopes. Specifically, the slots Dh(f) of each frame f are in one-to-one correspondence
with the declarations of scope s = Sh(f), and the links Kh(f) of f are in one-to-one
correspondence with the edges {l 7→ s′} ∈ K(s), such that Kh(f)(l)(s′) = f ′ iff Sh(f ′) = s′.

2. wellTyped: Maintains the typing invariant that slots contain values of the type that their
declarations expect. Specifically, for each declaration and its corresponding slot (if it
exists) in the frame, the value in the slot is of the same type as the declaration.

These properties are language-independent, i.e. define a generic correspondence between
scopes and frames, but are parameterized by a language-specific value typing judgment
h

v
v : t (also defined in Figure 15) which asserts that the value v has type t in the heap h.

The value typing of closures (Rule [VtClo]) checks that the closure corresponds to an actual
well-typed and well-bound function relative to the scope of the lexical frame recorded in the
closure, using the rules from Figure 10 and Figure 11.
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Good heaps. The goodHeap property also defined in Figure 15 generalizes the goodFrame
property to the entire heap; that is, a heap h is good iff every frame in h satisfies the
goodFrame property.

Language-independent lemmas. The scopes-as-frames approach provides structure to type
soundness proofs by using a small suite of language-independent helper lemmas about dynamic
memory operations, such as looking up a path, initializing a new frame, etc. For example,
Lemma 1 formalizes the property that each static resolution path has a corresponding
run-time memory access path.

I Lemma 1 (Good paths). Suppose goodHeap(h) and Sh(f) = s. For any reference xR
i where

`G xR
i s, it holds for any p, s′, and xD

i that `G p : xR
i

r7−→ (s′, xD
j) implies that there exists

a frame f ′ such that lookup(f, h, p)⇒ Addr(f ′, xD
j) and Sh(f ′) = s′.

This, along with a number of other lemmas, provides structure to the type preservation
proof that we discuss next. We refer the reader to our Coq development for the full details.

Type preservation. Theorem 2 proves type preservation, i.e., that if evaluation of a well-
bound and well-typed program in a frame that is in a good heap succeeds, then the resulting
value is of the expected type, and the resulting heap is good.

I Theorem 2 (Type preservation for L1). Suppose goodHeap(h1) and Sh1(f) = s, as well as
b
es and t

et hold. Then, for any v and h2, f ` es,t/h1 ⇒ v/h2 implies goodHeap(h2) and
h2

v
v : t.

There are several ways to extend type preservation proofs to type soundness proofs.
A traditional approach [11] to proving type soundness using big-step semantics is to add
explicit “wrong” rules to a big-step semantics anywhere evaluation can get stuck. This
allows distinguishing between getting stuck and diverging, which is otherwise impossible
using the inductively defined big-step rules in Figure 13. Our accompanying technical report
summarizes the rules that need to be added to the language. The rules and full type soundness
proof can also be found in our Coq development. Adding wrong rules to a language does not
alter the structure of the cases for the preservation proof. Section 6 recalls and discusses
alternative means of proving type soundness using big-step semantics.

4 Dynamic Frames for Records

In this section we apply our approach to L2, an extension of L1 with records and imperative
features. This shows that frames-as-scopes scales to model the memory layout for records,
and that the invariants about frames and heaps given in the previous section also provide a
basis for type soundness proofs for languages with such features.

Figure 16 defines the well-formed terms of L2 with changes from L1 highlighted. A
program in L2 consists of a sequence of record type definitions d, and a program expression
e, enclosed in a begin . . . end block. A record type definition declares the type name and
the record’s field names. Records are constructed using the new construct, which takes
a reference that resolves to a record type name declaration. L2 also adds an assignment
operation (_ := _), which assigns a value to a memory address. Memory addresses (or
L-values [23]) consist of frame-declaration pairs (f, xD

i ), and are computed by left-hand side
(lhs) expressions, namely variables (xR

i) and record field access (a.xR
i). Finally, L2 has a

sequential composition operator (_; _).
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4.1 Well-Bound and Well-Typed Terms
Figure 17 specifies the well-boundness rules for the newly introduced L2 terms. The well-
boundness of L1 expressions from Figure 10 carry over to L2. Well-boundness checking in
L2 uses three new kinds of judgments: b

p ,
t
p for programs, b

d ,
t
d for declarations, and b

l ,
t
l for

lhs expressions. The well-typedness of terms in L1 also carries over to L2. Figure 18 defines
rules for checking the well-typedness of the new programs and terms in L2.

Rule [WbProg] defines the well-boundness of programs and checks that the record defini-
tions ds are well-bound, and that the expression e of a program is well-bound.
Rule [WbRD] in Figure 17 checks that the type name xD

i is declared in the surrounding
scope s, that it is associated with scope s′, which has the surrounding scope s as its
lexical parent, and that each field of the record is declared in scope s′.
Rule [WbNew] checks that the record name resolves to a record declaration. Also, the
associated record scope does not have any edges, a fact which is needed when initializing
a matching record frame.
Rules [WbAsgn] and [WtAsgn] simply check that both the lhs expression and the value
expression are well-bound and well-typed. Rules [WbLhs,WtLhs] in turn rely on a separate
judgment for checking that an lhs expression (either a field access or a variable) is
well-bound and well-typed.
Rules [WbLFAcc] and [WtLFAcc] describe the static semantics of field access. In a field
access expression such as a.xR

i , the annotated expression a computes a record, and the
reference xR

i refers to a field declared in this record. The field reference is installed in an
auxiliary scope s′ that imports the scope srec associated with the record type Rec(xD

j).

4.2 Dynamic Semantics
The dynamic semantics of most existing constructs from L1 is unchanged in L2. Figure 19
gives the dynamic semantics of the new constructs in the L2 extension and replaces the rule
for variables since variables are now lhs expressions. We describe these changes.

Rule [EvNew] says that evaluating a new expression constructs a record frame via
initDefault(s, ks). Here, s is a scope identifier and ks is the map of dynamic links for
the frame. As specified in Figure 20, initDefault instantiates all slots of the frame with default
values. The d

v judgment in Figure 20 defines default values for all types in L2. We introduce
a special default function (DFun(v)) which, when applied to anything, returns the value v.
Rule [EvAppDef] specifies the semantics for applications involving this value.

We also introduce the null value, NullV, as the default value for record types. Trying to ac-
cess a NullV value as a field results in a null-pointer exception being raised (Rule [LhsFAccNull]).
Not shown in Figure 19 are the straightforward rules for propagating such exceptions, which
can be found in the accompanying technical report [17]. We choose to let frames contain null
values by default for several reasons: firstly, null values (or a variant thereof) are required if
we want to construct self-referential records. Secondly, using default values and null values
ensures that frames are always well-typed, which makes reasoning about type soundness
easier.

The rules in Fig. 19 closely follow the static semantics for binding and typing. For
example, Rule [LhsFAcc] initializes an import frame which is used as the basis for dynamic
resolution. In order to evaluate lhs expressions, a new judgment f lhs lhs/h ⇒ u/h′ is
introduced that evaluates a lhs to an address, or throws a null-pointer exception if the lhs
expression attempts to access a field of a null value. Lhs expressions compute auxiliary values
ranged over by u, as defined in Figure 19.
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t ::= Int | t → t | Rec(xD
i )

p ::= d∗ begin e end

d ::= record xD
i { (xD

i : t)∗ }

e ::= z | lhs | a ⊕ a | fun(xD
i : t){ a } | a(a) | new xR

i | lhs := a | a; a

lhs ::= xR
i | a.xR

i

a ::= es,t

Figure 16 Annotated syntax of L2 with distinguished references and declarations.

Well-bound programs b
p p

(∀d ∈ ds. b
d d

s) b
es

b
p ds begin e

s end
[WbProg]

Well-bound declarations b
d ds

`G s xD
i `G xD

i s′

∀(xD
j : t) ∈ flds. `G s′ xD

j

b
d (record xD

i { flds })s
[WbRD]

Well-bound expressions b
es

`G xR
i s `G p : xR

i
r7−→ (s′, xD

j)
`G xD

j srec `G K(srec) = ∅
b (new xR

i)
s

[WbNew]

b lhss b
es

b (lhs := es)s
[WbAsgn]

b
es

1
b
es

2
b (es

1; e
s
2)s

[WbSeq]

b
l lhss

b lhss
[WbLhs]

Well-bound lhs expressions b
l lhss

b
es `G xR

i s′

`G s′ I srec `G D(s′) = ∅
b
l (es.xR

i)
s

[WbLFAcc]

`G xR
i s

b
l (xR

i)
s

[WbLVar]

Figure 17 Well-boundness in L2.

Well-typed programs t
p p

(∀d ∈ ds. t
d d) t

et

t
p ds begin e

t end
[WtProg]

Well-typed declarations t
d d

t

∀(xD
j : t) ∈ flds. `G xD

j : t
t
d record xD

i { flds }
[WtRD]

Well-typed expressions t
et

`G p : xR
i

r7−→ (s′, xD
j)

t (new xR
i)
Rec(xD

j)
[WtNew]

t
l lhst t

et

t (lhs := et)t
[WtAsgn]

t
et1

1
t
et2

2
t (
et1

1 ; et2
2

)t2
[WtSeq]

t
l lhst

t lhst
[WtLhs]

Well-typed lhs expressions t
l lhst

t
eRec(xD

j) `G xD
j srec

`G xR
i s′ `G s′ I srec

`G p : xR
i

r7−→ (s′′, xD
i ) `G xD

i : t
t
l

(
eRec(xD

j).xR
i

)t
[WtLFAcc]

`G p : xR
i

r7−→ (s′, xD
i ) `G xD

i : t
t
l (xR

i)t
[WtLVar]

Figure 18 Well-typedness in L2.
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Values
Val 3 v ::= . . . | RecordV(f) | NullV | ExcV(X) | DFun(v)

Exc 3 X ::= NullPointer

Auxiliary values
AuxVal 3 u ::= Addr(f, xD

i )
| ExcV(X)

Program evaluation p
p⇒ v/h′

initDefault(s, ∅)/∅ ⇒ froot/h froot ` e/h⇒ v/h′

p
ds begin es end⇒ v/h′

[EvProg]

Expression evaluation f ` a/h⇒ v/h′

f
lhs lhs/h1 ⇒ Addr(f ′, xD

i )/h2 get(f ′, h2, x
D
i )⇒ v

f ` lhs/h1 ⇒ v/h2
[EvLhs]

`G p : xR
i

r7−→ (s′, xD
j) `G xD

j s initDefault(s, ∅)/h1 ⇒ f ′/h2

f ` new xR
i/h1 ⇒ RecordV(f ′)/h2

[EvNew]

f
lhs lhs/h1 ⇒ Addr(f ′, xD

i )/h2 f ` e/h2 ⇒ v/h3 set(f ′, h3, x
D
i , v)⇒ h4

f ` lhs := e/h1 ⇒ v/h4
[EvAsgn]

f ` a1/h1 ⇒ DFun(v1)/h2 f ` a2/h2 ⇒ v2/h3

f ` a1(a2)/h1 ⇒ v1/h3
[EvAppDef]

Lhs evaluation f
lhs lhs/h⇒ u/h′

`G p : xR
i

r7−→ (s′, xD
j) lookup(f, h, p)⇒ Addr(f ′, xD

j)

f
lhs

xR
i/h⇒ Addr(f ′, xD

j)/h
[LhsVar]

f ` e/h1 ⇒ RecordV(frec)/h2 `G xR
i s

initDefault(s, {I 7→ {Sh2(frec) 7→ frec}})/h2 ⇒ f ′/h3

`G p : xR
i

r7−→ (s′, xD
j) lookup(f ′, h3, p)⇒ Addr(f ′′, xD

j)

f
lhs

e.xR
i/h1 ⇒ Addr(f ′′, xD

j)/h3
[LhsFAcc]

f ` e/h1 ⇒ NullV/h2

f
lhs

e.xR
i/h1 ⇒ ExcV(NullPointer)/h2

[LhsFAccNull]

Figure 19 Dynamic semantics of L2.

Frame operations initDefault(s, ks)/h⇒ f ′/h′

defaults(D(s))⇒ σ initFrame(s, ks, σ)/h⇒ f ′/h′

initDefault(s, ks)/h⇒ f ′/h′
[InitDefault]

Default slots defaults(ds)⇒ σ

defaults(∅)⇒ ∅ [DNil]

xD
i ∈ ds `G xD

i : t dv
v : t

defaults(ds− {xD
i })⇒ σ

defaults(ds)⇒ σ[xD
i 7→ v]

[DCons]

Default values dv
t : v

dv 0 : Int [DefaultInt]
dv
v : t2

dv DFun(v) : t1 → t2
[DefaultFun]

dv NullV : Rec(xD
i) [DefaultRec]

Figure 20 Frame operations for updating slots and initializing frames with default values.
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`G xD
i Sh(f)

h
v RecordV(f) : Rec(xD

i)
[VtRec]

h
v
v : t2

h
v DFun(v) : t1 → t2

[VtDefFun]

h
v NullV : Rec(xD

i) [VtNullRec]

h
v ExcV(NullPointer) : t [VtNullPointer]

Figure 21 Value-typing of records and null-values.

Rule [EvAsgn] uses set(f, h, xD
i , v)⇒ h′ for updating frame f in heap h by assigning v to

slot xD
i to produce a new frame h′. Setting a slot fails if the slot has not been allocated. Note

that Rule [EvAsgn] defines assignment not just for record fields but also for variables, which
makes variables bound by functions mutable. Our framework currently does not distinguish
between mutable and immutable variables, but we expect it would be straightforward to
introduce such a distinction, e.g. by classifying declarations into separate namespaces.

4.3 Type Soundness
The rules in Figure 21 summarize the value typing judgment for L2. Here, null-pointer
exceptions are viewed as well-typed values of any kind, which allows such exceptions to occur
anywhere in well-typed programs. Theorem 3 states type preservation for L2.

I Theorem 3 (Type preservation for L2). Suppose goodHeap(h1) and Sh1(f) = s, as well as
b
es and t

et hold. Then, for any v and h2, f ` es,t/h1 ⇒ v/h2 implies goodHeap(h2) and
h2

v
v : t.

As argued in connection with the proof of Theorem 2 in Section 3.6, we can extend this
proof to a proof of type soundness by adding cases for “going wrong”. The wrong cases,
which are given in the accompanying technical report [17] follow along the same lines as the
cases in the preservation proof.

4.4 From Records to Classes
Our accompanying technical report [17] describes L3, an extension of L2 which replaces
records by classes with inheritance, sub-typing, and overriding. Inheritance and sub-typing
are modeled by representing run-time objects as a hierarchy of frames, one frame for each
super-class in the hierarchy. Paths to object fields may contain edges that traverse this
hierarchy. This poses interesting challenges for looking up fields at run time.

Figure 22 provides a small but illustrative example L3 program, its scope graph, and its
object frame structure. Consider the expression: (fun (a : A) { a.x })(new B). The
path of the field access expression a.x is calculated based on a being an object of type A;
i.e., E(I, s2) ·D(x), where s2 is the scope for the class A. But applying this path to the
actual field of the value gets us to a subtype of A, namely the scope of the B object, which
only provides an x slot via its import edge! The actual path to the desired x slot is thus:
E(I, s3) ·E(I, s2) ·D(x). In order to deal with this mismatch between the statically computed
path and the actual path, we upcast the B frame (instantiating scope s3) bound to a before
attempting to access fields through it. Upcasting follows a chain of import edges until it
arrives at a frame that instantiates the statically expected type, in this case the A frame
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class A {
x : Int := 0

}
class B extends A {
y : Int := 0

}

s1

s3

P

s2

P

x

A B

y
I

s1

s2

x 0

s3

0y

P P

I

A

B

Figure 22 An example program, its scope graph, and its object frame structure.

(instantiating scope s2). The technical report [17] and Coq development provide the full
details.

5 Garbage Collection

So far, we have described how the heap grows by adding frames. Any realistic language
implementation also needs to consider how unused frames can be reclaimed. To this end, we
now give a high-level specification of sound reachability-based garbage collection of frames in
our setting, and verify that several standard GC strategies refine this specification. We leave
actual implementation of concrete collectors as future work.

We model garbage collection as removal of frames from the heap map; the removed frame
identifiers then become fresh again for subsequent frame allocations. It is safe to remove a
frame exactly when doing so would not change subsequent observable program behavior [12].
Since this is an undecidable criterion, collectors instead use an approximation based on
whether there are live pointers to the frame; if not, the frame certainly cannot be accessed
again (assuming pointers are unforgeable) and hence may be safely removed.

A frame may be referenced in one of two ways, either (i) from a root pointer in the
execution state of the program, or (ii) from another frame. We focus first on category (ii),
for which we can give a simple and largely language-independent characterization. All our
formal definitions are in Figure 23.

Frame-to-frame pointers. We write h ` f  f ′ if frame f in heap h makes a direct
reference to frame f ′, either through a link or via a slot value v. The latter case, which we
write v  f ′, depends on the definition of values in our language. A frame f ′ is reachable
from another frame f if there is a sequence of direct references from f to f ′; this is just
the reflexive transitive closure of the reference relation, so we write it h ` f ∗f ′. We write
h ` 6 f if no frame in h references f .

The key observation is that it is safe to remove any set of frames fs from a heap h provided
that no frame in fs is referenced from the resulting heap h′, written safeRemoval(h, fs, h′). In
other words, a safe removal is one that does not produce any new dangling pointers. We
then have the following easy lemma:

I Lemma 4 (Safe removal preserves heap invariants). Suppose goodHeap(h) holds. Then, for
any set of frames fs and heap h′, safeRemoval(h, fs, h′) implies goodHeap(h′).

Roots. How to track roots into the heap from the program state depends on the details of
the language and the semantic approach. For the big-step semantic style used in this paper,
most live frames are reachable from the “current” frame (f in the judgments f ` a/h⇒ v/h′).
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References from values
ClosV(xD

i , a, f) f [RefClos]
RecordV(f) f [RefRecord]

References from frames
get(f, h, xD

i )⇒ v v  f ′

h ` f  f ′
[RefSlot]

Kh(f)(l)(s) = f ′

h ` f  f ′
[RefLink]

Unreferenced frames h ` 6 f , ∀f ′ ∈ Dom(h). h ` f ′ 6 f

Removing frames from heaps
safeRemoval(h, fs, h′) , h′ = (h− fs) ∧ ∀f ∈ fs. h′ ` 6 f
removeUnreferenced(h, f, h′) , h′ = (h− {f}) ∧ h ` 6 f
removeAllUnreachable(h, rs, fs, h′) , h′ = (h− fs) ∧ fs = {f | ∀f ′ ∈ rs. h ` f ′ 6 ∗f}

where (h− fs) is the result of removing all frames in fs from h

Expression evaluation (selected rules) f, rs ` a/h⇒ v/h′

f, rs ` a1/h1 ⇒ ClosV(xD
i , a
′, f ′)/h2 f, {f ′} ∪ rs ` a2/h2 ⇒ v/h3

initFrame(S(a′), {P 7→ {Sh3(f ′) 7→ f ′}}, {xD
i 7→ v})/h3 ⇒ f ′′/h4

f ′′, {f} ∪ rs ` a′/h4 ⇒ v′/h5

f, rs ` a1(a2)/h1 ⇒ v′/h5
[EvApp]

safeRemoval(h, fs, h′) fs ∩ ({f} ∪ rs) = ∅ f, rs ` a/h′ ⇒ v/h′′

f, rs ` a/h⇒ v/h′′
[EvGC]

Figure 23 Definitions for Garbage Collection.

However, evaluation of certain big-step rules may introduce other frames, not reachable
from the current frame, that must be temporarily registered as roots. To handle these, we
add an additional root frame set component rs to the configurations described by the rules.
Figure 23 shows the revised rule for application to illustrate how the auxiliary root set is
used, here in two different ways: to save the closure frame while evaluating the argument
and to save the calling context frame while evaluating the function body.

Several other rules also augment the root set; the need for auxiliary roots is unfortunately
a bit ad-hoc and language-specific. We could limit the number of auxiliary roots by requiring
source programs to be in A-normal form or continuation-passing style, which both have the
effect of putting more rule-internal values into named variables, and hence into the current
frame.

Type-safe collection. Finally, we can add Rule [EvGC] for garbage collection shown in
Figure 23, which can be applied non-deterministically prior to any of the syntax-directed
rules. The resulting system still enjoys type soundness. The proof is straightforward once
we strengthen the inductive invariant at each big step to say that {f} ∪ rs ⊆ Dom(h). The
proof case for Rule [EvGC] relies on Lemma 4.

Refinements. To show that safeRemoval is a reasonable specification, we note that it can
be refined to specifications of two well-known GC algorithms. removeUnreferenced specifies
removal of a single unreferenced frame; it models one step in a reference counting collection.
removeAllUnreachable specifies removal of all frames unreachable from an arbitrary root set;
it models a complete tracing-based collector, such as a mark-and-sweep or copying collector.
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I Lemma 5 (Unreferenced and unreachable frames are safe to remove). It holds that:
(a) removeUnreferenced(h, f, h′) implies safeRemoval(h, {f}, h′); and
(b) removeAllUnreachable(h, rs, fs, h′) implies safeRemoval(h, fs, h′).

We have not yet developed a concrete GC implementation, but writing one should be
straightforward. The heap-traversal part of an implementation can be language-independent
except for determining references from values. Note that, for many languages, an imple-
mentation can use the scope labels on frames to detect all references efficiently, without the
need for tagging individual pointers. This follows from the goodFrame property, which states
that every frame slot corresponds to a statically known typed declaration in the scope; if
the language is sufficiently monomorphic or restricts polymorphism to boxed types, we can
consult the scope description to determine whether or not the slot contains a pointer.

6 Discussion

This paper presents a systematic correspondence between static name binding and binding
at run time. We have also proposed the correspondence as a guiding principle for dynamic
semantic specification, and a language-independent principle for proving type soundness. In
this section we discuss our approach and compare with previous work on type soundness
and, more generally, on representing and reasoning about semantics and memory layout.

Type soundness. Milner [11] summarized the essence of type soundness in his famous
catch-phrase: “well-typed programs cannot go wrong”. The common point of type soundness
proofs is that they provide this guarantee. Other than that, type soundness proofs come in
many different varieties and flavours, depending on both the underlying semantic style (such
as big-step vs. small-step) and the underlying language being specified.

Semantic specification and type soundness. Wright and Felleisen’s syntactic approach to
type soundness [28] argues in favor of using small-step reduction semantics and evaluation
contexts for type soundness proofs. This avoids some of the shortcomings of big-step
semantics, namely that big-step rules do not distinguish getting stuck and diverging. The
small-step style is also better suited for formalizing semantics with concurrency and/or
interleaving. However, this kind of specification does not correspond to how programming
language interpreters are typically implemented.

This paper uses big-step semantics (or natural semantics [7]) for type soundness. In order
to prove type soundness we have been following in the footsteps of Milner [11] and added
explicit rules for going wrong to our language. An inherent danger of this approach is that
leaving out such a wrong rule may render the type soundness theorem vacuous. We stress
that the approach of using scopes to describe frames is by no means limited to big-step
semantics: we expect it to be equally applicable to other styles of semantic specification,
including small-step SOS [16], reduction semantics [5], definitional interpreters [18], and
abstract machines. We chose big-step semantics because it corresponds to how programming
language interpreters are typically implemented. In the future, we plan to use I-MSOS [13]
and DynSem [26] to make our big-step rules even more concise. We also plan to investigate
ways of alleviating some of the drawbacks of big-step type soundness proofs proposed in the
literature, such as:

using coinductive big-step semantics to represent diverging computations and proving
big-step progress, following Leroy and Grall [10];
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checking that wrong rules are correctly defined either by using a coverage lemma as
proposed by Ernst et al. [4] or using Charguéraud’s pretty-big-step style [1] with a novel
big-step progress predicate, which subsumes explicit wrong rules in a safe way (e.g.,
failure to add sufficient rules for progress makes it impossible to prove type soundness);
using a functional definitional interpreter instrumented with a clock (or “fuel”) which
counts down with each function call [22, 15, 19].

The modularity of the small-step approach in [28] comes from the use of reduction
semantics, which supports localizing new patterns of name binding to particular constructs,
such that proofs of existing constructs do not need to change. In contrast, our approach using
scopes to describe frames scales to deal with name binding of both functional and imperative
features in a uniform manner. Thus, there is no need to use different stores or notions of
substitution or to localize these to particular constructs: name binding is uniformly handled
both in the dynamic semantics and in the proof.

A selling point of the syntactic approach is that it scales to prove the type soundness of
an ML-like language with Hindley-Milner polymorphism such that the structure of proofs
change relatively little as new features are added. Indeed, many of the challenges with
substitution in [28] stem from dealing with polymorphism and references. We believe that
describing scopes as frames will scale to deal with polymorphic type inference, and suspect it
might alleviate some of the difficulties inherent to substitution lemmas, but leave it to future
work to verify this.

Default values. A shortcoming of our approach compared with, e.g., Wright and Felleisen
[28], is our use of default values. Default values make the proofs easy, but introduce the risk
of dereferencing null values. In order to deal with function types, we proposed to generate
“default functions” too, but this approach is restricted to simple type systems, since the
problem of finding inhabitants of a given type quickly becomes undecidable. In the future,
we plan to investigate extending our type soundness principle to temporarily allow a frame
to be ill-typed, so long as it is initialized when it is accessed. Nipkow et al.’s [9] formalization
of Java’s definite assignment analysis could provide a useful guide to this end.

Modeling memory in programming language semantics. In addition to the different
semantic specification styles, there is a proliferation of ways to deal with name binding and
memory management in semantic specifications. For example, consider a type soundness
proof for Java-like languages, where formalization of name binding and memory ranges from
simple states mapping identifiers and references to values, as used by Drossopoulou and
Eisenbach [3], to untyped frames [24] relying on traditional environments for typing, to use
of ad-hoc lookup functions (or visibility predicates) uniquely defined to resolve a specific
kind of identifiers (e.g. classes or fields) as used in Featherweight Java [6] or Jinja [9].

Similarly, considering the state of affairs in semantic specification frameworks gives a
similarly muddled picture. These frameworks can be roughly categorized into two camps:
those that deal with binding via substitution (redex [8], Ott [21]), and those that provide
support for ad hoc binding via auxiliary entities (K [20], funcons [2]).

None of these pre-existing approaches hits the same sweet spot as our framework: it
corresponds to how memory is often organized in real implementations (as also remarked by
Syme [24, page 7]); it scales to deal with various models of name binding and memory in a
uniform manner; and it provides a language-independent principle for proving the absence of
binding and typing errors.
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We also remark that our compartmentalization of binding and typing as separate concerns
and separate sets of rules in theory allows us to prove the absence of binding errors and
typing errors separately. This may be useful for dynamically-typed languages, where proving
the absence of typing errors might not be a concern, but the absence of binding errors is.

7 Conclusion

This paper presented a systematic and uniform correspondence between static scopes and
dynamic frames. This correspondence provides a mostly separate specification of binding
and typing. This is a novelty compared to traditional approaches, where typing rules usually
describe both name binding and typing, occasionally relying on ad hoc predicates (such as
those found in, e.g., Featherweight Java). The scopes-as-frames paradigm supports uniform
and straightforward type soundness proofs for a number of different language features, as
demonstrated by applying it to a simple functional language (Section 3) and a language with
first-class functions and records (Section 4). Section 5 shows how the invariants also support
verifying the safety of a number of different garbage collection schemes. Section 4.4 discusses,
and our accompanying tech report [17] shows, how the approach also scales to a class-based
object-oriented language with sub-typing and run-time upcasting.

In future work, we plan to investigate how the approach scales to larger languages including
languages with type-level polymorphism; generating Coq infrastructure for mechanizing
type soundness proofs using the language-independent framework for well-boundness and
well-typedness developed for this paper; and how to derive efficiently executable prototype
interpreters based on dynamic semantic specifications in DynSem.
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Abstract
Designing, developing and maintaining concurrent applications is an error-prone and time-con-
suming task; most difficulties arise because compilers are usually unable to check whether the
inputs/outputs performed by a program at runtime will adhere to a given protocol specification.

To address this problem, we propose lightweight session programming in Scala: we leverage
the native features of the Scala type system and standard library, to introduce (1) a representation
of session types as Scala types, and (2) a library, called lchannels, with a convenient API for
session-based programming, supporting local and distributed communication. We generalise the
idea of Continuation-Passing Style Protocols (CPSPs), studying their formal relationship with
session types. We illustrate how session programming can be carried over in Scala: how to
formalise a communication protocol, and represent it using Scala classes and lchannels, letting
the compiler help spotting protocol violations. We attest the practicality of our approach with a
complex use case, and evaluate the performance of lchannels with a series of benchmarks.
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1 Introduction and motivation

Concurrent and distributed applications are notoriously difficult to design, develop and
maintain. One of the main challenges lies in ensuring that software components interact
according to some predetermined communication protocols describing all the valid message
exchanges. Such a challenge is typically tackled at runtime, e.g. via testing and message
monitoring.

Unfortunately, depending on the number of software components and the complexity of
their protocols, tests and monitoring routines can be costly to develop and to maintain, as
software and protocols evolve.

Consider the message sequence chart in Figure 1: it is based on an example of “actor
protocol” from [26] (slide 42), and schematises the authentication procedure of an application
server. A client connects to a frontend, trying to retrieve an active session by its Id; the
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Client Frontend Auth App server

GetSession(Id)
GetSession(Id)

Success(S)
Active(S)

AltAlt Session Id is valid

Failure()

GetAuthentication()

Authentication(A)
New(A)
Authenticate(Credentials)

Failure()✗
AltAlt Invalid credentials

CreateSession(User)
NewSession(S)

Success(S)✓

AltAlt Valid credentials

AltAlt Session Id does not exist, or is expired

Commandi (Ti )

Responsei (T ′
i )

. . . . . .

Loop/Alt i ∈{1, . . . , n}Loop/Alt i ∈{1, . . . , n} Client-server session

Figure 1 Server with frontend.

frontend queries the application server: if Id is valid, the client gets an Active(S) message
with a session handle S, which can be used to perform the command/response loop at the
bottom; otherwise, the client must authenticate: the frontend obtains an handle A from
an authentication server, and forwards it to the client with a New(A) message. The client
must now use A to send its credentials (through an Authenticate message); if they are not
valid, the authentication server replies Failure(); otherwise, it retrieves a session handle
S and sends Success(S) to the client, who uses S for the session loop (as above). In this
example, four components interact with intertwined protocols. Ensuring that messages are
sent with the right type and order, and that each component correctly handles all possible
responses, can be an elusive and time-consuming task. Runtime monitoring/testing can
detect the presence of communication errors, but cannot guarantee their absence; moreover,
protocols and code may change during the life cycle of an application – and monitoring/testing
procedures will need to be updated. Compile-time checks would allow to reduce this burden,
lowering software maintenance costs.

CPS protocols in Scala. The developers of the Akka framework [28] have been addressing
these challenges, in the setting of actor-based applications. Standard actors communicate in
an untyped way: they can send each other any message, anytime, and must check at runtime
whether a given protocol is respected. Akka developers are thus trying to leverage the Scala
type system to obtain static protocol definitions and compile-time guarantees on the absence
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1 case class GetSession(id: Int,
2 replyTo: ActorRef[GetSessionResult])
3
4 sealed abstract class GetSessionResult
5 case class New(authc: ActorRef[Authenticate])
6 extends GetSessionResult
7 case class Active(service: ActorRef[Command])
8 extends GetSessionResult
9

10 case class Authenticate(username: String, password: String,
11 replyTo: ActorRef[AuthenticateResult])
12
13 sealed abstract class AuthenticateResult
14 case class Success(service: ActorRef[Command])
15 extends AuthenticateResult
16 case class Failure() extends AuthenticateResult
17
18 sealed abstract class Command
19 // ... case classes for the client-server session loop ...

Figure 2 Akka Typed: protocol of client in Fig. 1.

1 def client(frontend: ActorRef[GetSession]) = {
2 val cont = spawn[GetSessionResult] {
3 case New(a) => doAuthentication(a)
4 case Active(s) => doSessionLoop(s)
5 }
6 frontend ! GetSession(42, cont)
7 }

Figure 3 Actor spawning (pseudo code).

of communication errors. Their tentative solution has two parts. The first is Akka Typed
[29]: an experimental library with actors that can only receive messages via references of
type ActorRef[A], which in turn only allow to send A-typed messages. The second is what
we dub Continuation-Passing Style Protocols (CPSPs): sets of message classes that represent
sequencing with a replyTo field, of type ActorRef[B]. By convention, replyTo tells where
the message recipient should send its B-typed answer: Fig. 2 (based on [26], slide 41) shows
the CPSPs of the client in Fig. 1.

In practice, a replyTo field can be instantiated by producing a “continuation actor” that
handles the next step of the protocol. Fig. 3 shows a client that, before sending GetSession
to the frontend (line 6), spawns a new actor accepting GetSessionResult messages. Then,
cont (line 2) has type ActorRef[GetSessionResult], and is sent as replyTo: the frontend
should send its New/Active answer there. This creates a conversation between the client and
frontend: the message sender produces a “continuation”, and the receiver should use it.

Opportunities and limitations. CPSPs have the appealing feature of being standard Scala
types, checked by its compiler, and giving rise to a form of structured interaction in Akka.
However, their incarnation seen above has some shortcomings. First and foremost, they are a
rather low-level representation, not connected with any established, high-level formalisation
of protocols and structured interaction. Hence, non-trivial protocols with branching and
recursion (e.g. the one in Fig. 1) can be hard to write and understand in CPS; even message
ownership and sequencing may be non-obvious: e.g., determining who sends Failure in
Fig. 2, and whether it comes before or after another message, can take some time. Moreover,
the CPSPs in Fig. 2 seems to imply that some continuations should be used exactly once –
but this intuition is not made explicit in the types. E.g., in Fig. 3, frontend and cont are
both ActorRefs – but the actor referred by frontend might accept multiple GetSession
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requests, whereas the one referred by cont (spawned on lines 2–5) might just wait for one
New/Active message, spawn another continuation actor, and terminate. Arguably, the type
of cont should convey whether sending more than one message is an error.

Our contribution: lightweight session programming in Scala. We address the challenges
and limitations above by proposing lightweight session programming in Scala – where
“lightweight” means that our proposal does not depend on language extensions, nor external
tools, nor specific message transport frameworks. We generalise the idea of CPSP, relating it
to a well established formalism for the static verification of concurrent programs: session
types [19, 20, 39]. We present a library, called lchannels, offering a simplified API for session
programming with CPSPs, supporting network-transparent communication. Albeit the Scala
type checker does not cater for all the static guarantees provided by session-typed languages
(mostly due to the lack of static linearity checks), we show that lchannels and CPSPs allow
to represent protocol specifications as Scala types, and write session-based programs in a
rather natural way, guaranteeing protocol safety: i.e., once a session starts, no out-of-protocol
messages can be sent, and all valid incoming messages are handled. We show that typical
protocol errors are detected at compile-time – except for linearity errors: lchannels checks
them at runtime, reminding the typical usage of Scala Promises/Futures.

This work focuses on Scala since we leverage several convenient features of the language
and its standard library: object orientation, parametric polymorphism with declaration-site
variance, first-class functions, labelled union types (case classes), Promises/Futures; yet,
our approach could be adapted (at least in part) to any language with similar features.

Outline of the paper. In §2, we summarise session types, explaining the difficulties in their
integration in a language like Scala, and how we overcome them by exploiting an encoding into
linear types for I/O. In § 3 we introduce lchannels, a library for type-safe communication
over asynchronous linear channels. In § 4 we explain, via several examples, how session
programming can be carried over in Scala, by using lchannels and representing session
types as CPSPs, according to a session-based software development approach (§ 4.2). § 5
presents optimisations and extensions of lchannels, achieving message transport abstraction
and network-transparent communication. In § 6 we show the practicality of our approach
by implementing the case study in Fig. 1, and evaluating the performance of lchannels –
particularly, its message delivery speed w.r.t. other inter-process communication methods.
In § 7 we give a formal foundation to § 4, proving crucial results about duality/subtyping
of session types represented in Scala, and overcoming technical difficulties in the transition
from a structural to nominal types (e.g., different handling of recursion). We discuss related
works in § 8, and conclude in § 9 – showing how our approach can be adapted to other
communication frameworks.

Online resources. Due to space limits, we include proofs, benchmarking details and other
materials in http://www.doc.ic.ac.uk/research/technicalreports/2015/#7. For the
latest version of lchannels, visit http://alcestes.github.io/lchannels/.

2 Programming with session types: background and challenges

We now summarise the features of languages based on binary session types (§ 2.1) and their
notions of duality and subtyping (§ 2.2). We then explain their relationship with linear I/O
types (§ 2.3), and give an overview of our strategy for representing them in Scala (§ 2.4).

http://www.doc.ic.ac.uk/research/technicalreports/2015/#7
http://alcestes.github.io/lchannels/
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2.1 Background: binary session types in a nutshell
Session types regulate the interaction of processes communicating through channels; each
channel has two endpoints, and the intuitive semantics is that all values sent on one endpoint
can be received on the other in the same order – a bidirectional FIFO model akin e.g. to
TCP/IP sockets. A session type says how a process is expected to use a channel endpoint.
Let B = {Int,Bool,Unit, . . .} be a set of basic types. A session type S has the following syntax:

S ∶∶=
˘
i∈I?li(Ti).Si ∣ ⊕i∈I !li(Ti).Si ∣ µX .S ∣ X ∣ end T ∶∶= B ∣ S (closed)

where I ≠ ∅, recursion is guarded, and all li range over pairwise distinct labels. T denotes a
payload type. The branching type (or external choice)

˘
i∈I?li(Ti).Si requires the process

to receive one input of the form li(Ti), for any i ∈ I chosen at the other endpoint; then,
the channel must be used according to the continuation type Si. The selection type (or
internal choice) ⊕i∈I !li(Ti).Si, instead, requires the program to choose and perform one
output li(Ti), for some i ∈ I, and continue using the channel according to Si. µX .S is a
recursive session type, where µ binds X, and X is a recursion variable. We say that S is
closed iff all its recursion variables are bound. end is a terminated session with no further
inputs/outputs. Note that a payload type T can be either a basic or a session type: hence,
channel endpoints allow to send/receive e.g. integers, strings, or other channel endpoints.
I Remark 2.1. We use ⊕/& as infix operators, omitting them in singleton choices. We often
omit end and Unit: ?A.(!B(Int)⊕ !C) stands for

˘
{ ?A(Unit).⊕{!B(Int).end , !C(Unit).end}}.

For example, the type Sh below describes the client endpoint of a “greeting protocol”:
Sh = µX .(!Greet(String).(?Hello(String).X & ?Bye(String).end) ⊕ !Quit.end)

The client can send either Quit and end the session, or Greet(String); in the second case, it
might receive from the server either Bye(String) (ending the session), or Hello(String): in
the second case, the session continues recursively.

Programming languages that support session types are usually based on session-π – i.e.,
a version of π-calculus [31] extended with session operators. A client respecting Sh would be
implemented as hello(c) in Fig. 4 (left): c is a Sh-typed channel endpoint, ! is a language
primitive for selecting and sending messages, and ? for branching (i.e., receiving and pattern
matching messages). The type system ensures that c is used according to Sh, guaranteeing:

S1. safety: no out-of-protocol I/O actions are allowed. E.g., c can initially be used only to
send Greet/Quit (lines 3/8), no outputs are allowed when Sh expects c to receive (line
4), no inputs when Sh expects c to send (lines 3,8), no I/O when Sh has ended (line 6);

S2. exhaustiveness: when receiving a message, all outcomes allowed by the type must be
covered. E.g., the client must handle both Hello and Bye answers (lines 4–6);

S3. output linearity: if Sh prescribes an output, it must occur exactly once. E.g., after
receiving Hello, the client must send Greet or Quit (as in the recursive call of line 5);

S4. input linearity: similarly, if Sh prescribes an input, it must occur exactly once. E.g., after
sending Greet, the client must receive the response (as in line 4).

2.2 Background: safe, deadlock-free interaction via duality/subtyping
A session-typed language ensures correct run-time interaction by statically checking that the
two endpoints of a channel are used dually. The dual of S, written S, is defined as:

˘
i∈I?li(Ti).Si = ⊕i∈I !li(Ti).Si ⊕i∈I !li(Ti).Si =

˘
i∈I?li(Ti).Si

µX .S = µX .S X = X end = end
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1 def hello(c: S_h): Unit = {
2 if (...) {
3 c ! Greet("Alice")
4 c ? {
5 case Hello(name) => hello(c)
6 case Bye(name) => ()
7 }
8 } else { c ! Quit() }
9 }

1 def lHello(c: LinOutChannel[?]): Unit = {
2 if (...) {
3 val (c2in, c2out) = createLinChannels[?]()
4 c.send( Greet("Alice", c2out) )
5 c2in.receive match {
6 case Hello(name, c3out) => lHello(c3out)
7 case Bye(name) => ()
8 }
9 } else { c.send( Quit() ) }

10 }

Figure 4 Greeting protocol client (pseudo code): session types (left) vs. linear I/O types (right).

Intuitively, the internal/external choices of S are swapped in S; hence, each client-side output
is matched by a server-side input, and vice versa. In our example, c is a client-side endpoint
that must be used according to Sh; the server-side dual channel endpoint has type:

Sh = µX .(?Greet(String).(!Hello(String).X ⊕ !Bye(String).end) & ?Quit.end)

Duality guarantees the safe and deadlock-free interaction of a client and server observing Sh
and Sh: no unexpected messages are sent/received, and the session progresses until its end.

Such a guarantee is made more flexible via session subtyping [13]. Consider the type
1 def hello2(c2: S_h2): Unit = {
2 c2 ! Quit()
3 }

Sh2 = !Quit, and its implementation on the right: since
hello2 only outputs Quit on c2, it would also behave
safely on a Sh-typed channel endpoint c. In fact, in a
session-typed language we have Sh ⩽ Sh2– i.e., an Sh-typed channel endpoint can always be
used in place of an Sh2-typed one; hence, invoking hello2(c) is allowed – and such a client
program would interact safely and without deadlocks with a server observing Sh.

2.3 From session-typed to linearly-typed programs
Unfortunately, integrating session types into a “mainstream” programming language is
not trivial: they require sophisticated type system features. Safety/exhaustiveness can be
achieved by letting c’s type evolve according to Sh after each I/O action – but most type
systems assign a fixed type to each variable; I/O linearity checks require linearity analysis;
internal/external choices, session subtyping and duality need dedicated type-level machinery.

In this paper, we show how session programming can be carried over in Scala, recovering
part of the static guarantees provided by session types. We take inspiration from the encoding
of session-π into standard π-calculus with variants and linear I/O types [8]: the key idea is
that session-π and session types can be encoded in a more basic language and type system
that do not natively support session primitives (e.g., internal/external choices and duality),
by adopting a “continuation-passing style” interaction over linear input/output channel
endpoints that are used exactly once. In particular, [8] (Theorems 1, 2) proves that a process
using variants, linear I/O types and CPS interaction can precisely mirror the typing and the
runtime communications of a session typed process.

An intuition of our approach is given in Fig. 4 (right), where lHello is the “linearly
encoded” version of hello. Its argument c is a linear output channel endpoint that carries
a single value (whose type is left unspecified, for now). On line 3, it creates a new pair of
linear channels endpoints, which can carry another single value of some (again unspecified)
type: intuitively, what is sent on c2out becomes available in c2in. On line 4, c is used to
send a Greet message – which also carries c2out. Then, the recipient of Greet and c2out is
expected to use the latter to continue the session – i.e., send either Hello or Bye. On line 5,
c2in is used to receive such an answer, and the result is matched against Hello and Bye; the
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Linear I/O types
(with variants and records)

S

?(U) or !(U)

In[A] or Out[A]

S

!(U) or ?(U)

Out[A] or In[A]

ServerClient

U

CPS protocol classes
A1,A2, . . . ,An

Session types

Scala types

Figure 5 From session types to Scala types.

latter carries no continuation channel, i.e. the session has ended (line 7); the former, instead,
carries a linear (output) channel endpoint c3out, that is used to continue the session with a
recursive call (line 6). Note that all channel endpoints received/created in lHello are either
used exactly once (c, c2in, c3out), or sent to some other process (c2out).

A crucial difference between hello and lHello is that in the latter, each variable has a
constant type. This suggests that, although the Scala type checker cannot check linearity, it
might be leveraged to obtain a form of session typing, offering safety and exhaustiveness for
programs written in “linear CPS”, like lHello. Then, as seen in § 2.2, we could also obtain
safe and deadlock-free interaction – provided that a program creates, uses or sends its linear
channel endpoints according to [8], and the other program involved in a session interacts in
a “dual” way. However, the pseudo-code of Fig. 4 (right) highlights four Problems:

P1. we need to represent and implement linear input and output channels;
P2. we need to suitably instantiate each ?-type, so to describe the same interactions of Sh;
P3. we must automate the creation, sending and use of linear channels, offering an API that

guides the CPS interactions prescribed in [8], and allows to write code similar to hello;
P4. we need to handle session subtyping and duality in the Scala type system.

2.4 From session types to session programming in Scala: an outline
In the rest of the paper, we demonstrate how to tackle Problems P1–P4, staying close to the
session/linear types theory, and yet achieving practical session programming in Scala. Our
approach is summarised in Fig. 5. On top, we have a client and a server that should interact
through a channel, whose protocol is described with dual session types S and S. On the
bottom, the same protocol is represented in Scala, as a set of CPSP classes, shared between
the client and server, and similar to those discussed in § 1: they are used as parameters for
In[A] and Out[A], which implement respectively an input/output channel endpoint carrying
a single value of type A. We extract such CPSP classes from S or S, through an encoding
represented by the arrows; such an encoding exploits an intermediate generation of linear
I/O types (middle of Fig. 5), as detailed in § 7. We address P1 in § 3, P2 in § 4, P3 in § 4.3,
and P4 in § 7.3.

3 lchannels, a (small) library for type-safe interaction

We now introduce lchannels, a Scala library providing typed linear channels. We designed
the programmer interface to be close to the formal definition of linear channels (§ 7.2) –
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1 abstract class In[+A] {
2 def future: Future[A]
3 def receive(implicit d: Duration): A = {
4 Await.result[A](future, d)
5 }
6 def ?[B](f: A => B)(implicit d: Duration): B = {
7 f(receive)
8 }
9 }

10

11 abstract class Out[-A] {
12 def promise[B <: A]: Promise[B]
13 def send(msg: A): Unit = promise.success(msg)
14 def !(msg: A) = send(msg)
15 def create[B](): (In[B], Out[B])
16 }

1 class LocalIn[+A](val future: Future[A]) extends In[A]
2

3 class LocalOut[-A](p: Promise[A]) extends Out[A] {
4 override def promise[B <: A] = {
5 p.asInstanceOf[Promise[B]] // Type-safe cast
6 }
7 override def create[B]() = LocalChannel.factory[B]()
8 }
9

10 object LocalChannel {
11 def factory[A](): (LocalIn[A], LocalOut[A]) = {
12 val promise = Promise[A]()
13 val future = promise.future
14 (new LocalIn[A](future), new LocalOut[A](promise))
15 }
16 }

Figure 6 Linear channels in Scala: abstract classes (left) and local implementation (right).

notably, by reflecting their co/contra-variance. For simplicity, we shape the API and its basic
implementation around Promises/Futures from the Scala standard library [16], since they
are familiar to Scala developers, and remarkably close to the expected usage of linear channel
endpoints (§ 2.3): (i) a Promise[A] must be completed exactly once with an A-typed value v,
and (ii) after completion, v becomes available on the corresponding Future[A]. Moreover,
Promises/Futures provide asynchronous message passing.

We present the lchannels API in § 3.1, and a simple implementation in § 3.2. We give
further details, examples and extensions after showing the representation of session types as
CPSP classes (§ 4) – which constitute the principal use case for lchannels.

3.1 The programmer interface
The cornerstones of lchannels are the abstract classes Out[-A] and In[+A], representing
channel endpoints allowing respectively to send and receive one A-typed value. Their slightly
simplified declarations are shown in Fig. 6 (left).

The class Out[-A] is contravariant w.r.t. A1. Its promise (line 12) is expected to be
eventually completed with the value to be sent; a crucial requirement is that promise must be
implemented as a constant2, to ensure that it will be completed only once. Note that due to
the contravariance of A, the type of promise cannot be simply Promise[A]: the reason is that
the latter is invariant w.r.t. A; the bounded type parameter B <∶ A allows to overcome this
limitation. send(msg) and its alias ! offer a simplified interface above promise, representing
the selection/output operator of session-π (see Theorem 3.1). Finally, Out’s abstract method
create[B]() returns a new pair of input/output channels carrying B: this method is used
to create continuation endpoints, as seen in Fig. 4 (right, line 3).

The class In[+A] is covariant w.r.t. its type parameter A3. Its future will contain the
value sent from the corresponding Out endpoint. The receive method offers a simplified
interface over future: the implicit parameter d specifies how long to wait for an incoming
message before raising a timeout error. The ? method implements the typical branching
operator of session-π: it takes a function f: A => B, and once a value v is received, it
returns f(v). The rationale behind the method signature is clarified in Theorem 3.1.

1 This matches the output subtyping rule [⩽`-Out] in Theorem 7.4.
2 Such a requirement could be enforced by defining the field as val, instead of def; the drawback is that

val does not allow type parameters, and this would result in an invariant Out with limited subtyping.
3 This matches the input subtyping rule [⩽`-In] in Theorem 7.4.
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I Example 3.1 (!, ? and selection/branching). Consider the following classes:
1 sealed abstract class AorB
2 case class A() extends AorB; case class B() extends AorB

Let c be an instance of Out[AorB]. The c.! method can be used as follows:
1 c ! A() or 1 c ! B()

Note that ! resembles the output/selection operator seen in Fig. 4 (left). Moreover, the
Scala compiler ensures that the argument of ! belongs to a subtype of AorB, – e.g., A or B4:
this corresponds, in session-π, to the type checking of an internal choice.

Let now c be an instance of In[AorB]. The c.? method can be used as shown below,
1 c ? { case A() => println("Got A")
2 case B() => println("Got B") }

where the {...} block, as per usual Scala syntax, is
a function from AorB to Unit. This reminds the

branching operator seen in Fig. 4 (left). Moreover, since AorB is a sealed abstract class,
the Scala compiler can check exhaustiveness, warning if the cases do not cover both A and
B5: this corresponds, in session-π, to the type checking of an external choice.

Using lchannels endpoints: static vs. dynamic checks. As seen in Theorem 3.1, the
Scala compiler can check that an instance of lchannels Out (resp. In) carrying a sealed
abstract class is only used under the safety and exhaustiveness guarantees of a session-
typed channel endpoint with a top-level ⊕ (resp. &)6, i.e., S1 and S2 in § 2.1. Also, an
instance of e.g. Unit provides the guarantees of an end-typed channel endpoint: it cannot
be used for I/O. Unfortunately, the Scala type checker cannot enforce input/output linearity
(S3 and S4 in § 2.1); hence, lchannels implements the following runtime linear usage rules:

L1. each Out instance should be used to perform exactly one output. Any further output will
generate a runtime exception, forbidding duplicated message transmissions;

L2. each In instance should be used at least once. Each use will retrieve the same value.

L1 and L2 reflect the typical usage of Scala’s Promises and Futures. The lack of static
linearity checks impacts deadlock-freedom guarantees: we will discuss this topic in § 6.1.3.
Note that L1 matches S3, while L2 is more relaxed than S4. The latter is not a technical
necessity, since In could be easily designed to raise an exception if used twice for input; we
adhere to the familiar behaviour of Futures for simplicity of presentation, and to readily
apply some common programming patterns, e.g. registering one or more input callbacks.

3.2 A local implementation
Fig. 6 (right) shows a simple local implementation of In[A]/Out[A], as a thin layer over a
Promise[A]/Future[A] pair (created in lines 12–14): a value written in the former becomes
available on the latter. The A-cast in line 5 (due to the invariance of Promise[A]) is safe:
the type bound on B ensures that Promise[B] can only be written with a subtype of A.

I Example 3.2 (Spawning interacting threads). Two threads that communicate through a
local (linear) channel can be created with a method similar to the following:

4 Due to Java legacy, in Scala also Null is a subtype of AorB. This will be explicit in § 7.3.
5 By design, Scala does not enforce matching on null values, albeit they might be received (see note 4).
6 This arises from the encoding of session types into linear I/O types with variants [8]: we render the
latter in Scala as sealed case classes (as detailed in § 7.3).

ECOOP 2016



21:10 Lightweight Session Programming in Scala

1 case class Q(p: Boolean, cont: Out[R])
2 case class R(p: Int)
3

4 def f(c: In[Q]) = {
5 c ? { q => q.cont ! R(42) }
6 }
7

8 def g(c: Out[Q]) = {
9 val (ri,ro) = c.create[R]()

10 c ! Q(true, ro)
11 ri ? { r =>
12 println(f"Got ${r.p}")
13 } }

Figure 7 SQR and SQR in Scala.

1 def parallel[A, B1, B2](p1: In[A] => B1, p2: Out[A] => B2): (Future[B1], Future[B2]) = {
2 val (in, out) = LocalChannel.factory[A](); ( Future { p1(in) }, Future { p2(out) } )
3 }

Here, p1 and p2 are functions taking respectively an input and output channel endpoint
carrying A, and returning resp. B1 and B2. The parallel method creates a pair of A-carrying
local channel endpoints (line 2), applies p1 and p2 on them by spawning separate threads,
and returns a pair of Futures that will be completed with their return value (line 3).

Actually, parallel is a method of the LocalChannel object in Fig. 6. Most of the
examples in the rest of the paper feature two endpoint functions with the signature of p1 and
p2, and they can be executed concurrently (and type-safely) via LocalChannel.parallel.

Our local implementation of lchannels is suitable for type-safe inter-thread communica-
tion, as suggested in Theorem 3.2. However, Promise/Future instances cannot be serialised,
and thus cannot be sent/received over a network: this makes LocalIn and LocalOut unsuit-
able for distributed applications. We address this issue later on, in § 5.

4 Session programming with lchannels and CPS protocols

We now address Problem P2 in § 2.3: given a session type S, how to instantiate the type
parameters of In[⋅]/Out[⋅], to represent the (possibly recursive) sequencing of internal/ex-
ternal choices of S. The answer lies in representing the states of S as CPS protocol classes,
as outlined in § 2.4. We give an example-driven intuition of such a representation, and the
resulting session-based software development approach (§ 4.2). The formalisation is in § 7.

4.1 Representing sequential inputs/outputs
Let us consider the session type SQR = ?Q(Bool).!R(Int), dictating that a channel endpoint
must be used first to receive Q(Bool), and then to output R(Int). In Scala, we could

1 case class Q(p: Boolean)
2 case class R(p: Int)

define the two case classes on the right (where the field p
stands for “payload”), and we can instantiate a linear input
endpoint of type In[Q], which allows to perform the first
input of SQR; but, how do we require to send a value of type R along the same interaction?

Inspired by the encoding of session types into linear types [8], we can instead define the
case classes in Fig. 7 (lines 1–2), where cont stands for “continuation” (and recalls replyTo
in § 1). Now, the value received from In[Q] also carries an Out[R] endpoint for continuing
the interaction; the value received from In[R], instead, does not have a cont field, since the
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protocol ends there. In lines 4–6, f uses c to receive a Q-typed value q (line 5); then, uses
q.cont to send a value of type R.

Now, consider the dual SQR = !Q(Bool).?R(Int): we can represent it in Scala simply by
reusing Q and R in Fig. 7, and instantiating a linear output endpoint Out[Q]. Its usage is
shown in lines 8–13. To produce a value of type Q, g must also produce a channel endpoint
Out[R]: for this reason, the two continuation endpoints ri,ro are created (line 9), respectively
with types In[R],Out[R]. On line 10, c is used to send a Q-typed value, carrying ro: the
recipient is expected to use it for continuing the interaction; on line 11, ri is used to receive
the value r (of type R) sent on ro.

4.2 A development approach for session-based applications
In our last example, Q and R are the CPSP classes of both SQR and SQR, In[Q] is the Scala
representation of SQR, while Out[Q] is the representation of SQR. We can outline a development
approach for session-based applications. For each communication channel:

D1. formalise the two endpoint session types S and S (assuming they are not trivially end);
D2. extract the CPSP classes of S (or, equivalently, of S). Roughly, it means:

a. convert each internal/external choice into a set of case classes (one per label);
b. when a choice has multiple labels, let each case class above extend a common sealed

abstract class, representing the multiple choice itself;
c. recover the sequencing in S (and S) by “connecting” each case class to its “successor”

(if any), through the cont field;
D3. let C be the class representing the outermost internal/external choice of S:

if S starts with an internal choice, its Scala endpoint type is Out[C]. Dually, since S
starts with an external choice, the Scala type at the other endpoint is In[C];
otherwise, if S starts with an external choice, its Scala endpoint type is In[C]. Dually,
since S starts with an internal choice, the Scala type at the other endpoint is Out[C].

The extraction of protocol classes must deal with some subtleties, in particular for determining
whether cont should be an In[⋅] or Out[⋅] endpoint, and for representing recursion. We will
formally address these issues in § 7.3; now, we proceed with more examples.

4.3 Interlude: automating channel creation

1 abstract class Out[-A] { ...
2 def !![B](h: Out[B] => A): In[B] = {
3 val (cin, cout) = this.create[A]()
4 this ! h(cout)
5 cin
6 }
7 def !![B](h: In[A] => B): Out[B] = {
8 val (cin, cout) = this.create[A]()
9 this ! h(cin)

10 cout
11 } }

Before proceeding, we take a quick detour to address
Problem P3 of § 2.3. In Fig. 7 (line 9), we can notice a
case of manual creation of channel endpoints, as in Fig. 4
(right, line 3). This is a key pattern for “CPS interactions”:
when sending a message that does not conclude a session,
it is necessary to create a pair of channels, send one of
them, and use the other to continue interacting7. This
“create-send-continue” pattern ensures session progress, but is an error-prone burden for the
programmer; so, we automate it by extending Out (Fig. 6, left) with the method !! above.

Take c of type Out[Q] from Fig. 7 (lines 8–13), and let h be a function from Out[R] to Q:
c !! h creates a pair of channel endpoints (cin,cout) of type In[R],Out[R] (line 3 above),

7 The pattern actually reflects how session-π processes are encoded in standard π-calculus (§ 2.3).
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applies h to cout, sends the result via c (line 4), and returns cin for continuing the session
(the other case of !! is “dual”, when h’s domain is In[R]). By letting h be an instance of Q
with a hole in place of cont, we can remove line 9 of Fig. 7, and rewrite line 10 as:
1 val ri = c !! Q(true, _:Out[R]) , where the type annotation is necessary due to the

limited type inference capabilities of Scala8. 1 case class Q(p: Boolean)
2 (val cont: Out[R]) // Curried
3 case class R(p: Int)
4

5 def g(c: Out[Q]) = {
6 val ri = c !! Q(true)_ // No type annot.
7 ri ? { r => println(f"Got ${r.p}") }
8 }

We can address this last inconvenience
by defining Q as a curried case class, and
placing the hole in the curried cont field:
the Scala compiler can now infer its type.
The resulting code is shown on the right
(with f unchanged w.r.t. Fig. 7). We will adopt this style for the rest of the paper.

4.4 Examples

We now discuss some examples of the session-based approach outlined in § 4.2. We proceed
by increasing complexity, showing how to instantiate CPSP classes to represent recursion
(Theorem 4.1), non-singleton external/internal choices (Theorem 4.2), and multiple channels
with higher-order types for session delegation (Theorem 4.3).

I Example 4.1 (FIFO). An unidirectional FIFO channel, with endpoints for sending/receiv-
ing values of type T , can be represented with the following recursive session types:

Sfifo = µX .!Datum(T ).X (sending endpoint) Sfifo = µX .?Datum(T ).X (receiving endpoint)

The corresponding CPSP classes consist in just one (parametric) declaration:
1 case class Datum[T](p: T)(val cont: In[Datum[T]])

i.e., we represent the recursion on X by (i) taking the name of the class corresponding to
the outermost internal/external choice under µX .. . . (i.e., Datum), and (ii) continuing with
such a name when X occurs (for another case of recursion, see Theorem 4.2). Note that
cont is an input endpoint, used by the recipient to receive a further value, while the sender
keeps the output endpoint to produce a value. The endpoint processes can be written as:
1 def sender(fifo: Out[Datum[Int]]): Unit = {
2 val cont = fifo !! Datum(1)_ !! Datum(2)_
3 sender(cont)
4 }

1 def receiver(fifo: In[Datum[Int]]): Unit = {
2 val v = fifo.receive
3 println(f"Got ${v.p}"); receiver(v.cont)
4 }

Here, sender performs two outputs in a row (line 2): this is allowed since each application
of !! returns a channel of type Out[Datum[T]] (cf. declaration of Datum[T] above).

I Example 4.2 (Greeting protocol). Consider the “greeting” types Sh and Sh from §2. Unlike
Theorem 4.1, we now have non-singleton internal/external choices. To extract their CPSP
classes, we apply item D2b of §4.2: add a sealed abstract class for each internal/external
choice, extending it with one case class per label. In this case, we add:

Start for the internal choice of Sh (i.e., the external choice of Sh) between Greet,Quit;
Greeting for the external choice of Sh (i.e., the internal choice of Sh) between Hello,Bye.

8 This limitation is present in Scala 2.11.8, but might be overcome in future versions.
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We obtain the CPSP
classes on the right, with
Out[Start]/In[Start] repre-
senting Sh/Sh (by D3). We can
write two endpoint processes as:

1 sealed abstract class Start
2 case class Greet(p: String)(cont: Out[Greeting]) extends Start
3 case class Quit(p: Unit) extends Start
4

5 sealed abstract class Greeting
6 case class Hello(p: String)(cont: Out[Start]) extends Greeting
7 case class Bye(p: String) extends Greeting

1 def client(c: Out[Start]): Unit = {
2 if (Random.nextBoolean()) {
3 val c2 = c !! Greet("Alice")_
4 c2 ? {
5 case m @ Hello(name) => client(m.cont)
6 case Bye(name) => ()
7 }
8 } else { c ! Quit() } }

1 def server(c: In[Start]): Unit = {
2 c ? {
3 case m @ Greet(whom) => {
4 val c2in = m.cont !! Hello(whom)_
5 server(c2in)
6 }
7 case Quit() => ()
8 } }

Note that client
is similar to the
pseudo code of
hello in Fig. 4
(left).

I Example 4.3 (Sleeping barber with session delegation). We address a classical problem in
concurrency theory [10]: a barber waits for customers in his shop, sleeping when there is
nobody to serve. When a customer enters in the shop, he goes through a waiting room with
n chairs: if all chairs are taken, he leaves; otherwise, he sits. If the barber is sleeping, he
wakes up, serves all sitting customers (one a time), and sleeps again when nobody is waiting.
We model this scenario with three components: the customer, the shop and the barber, using
session types to formalise their expected interactions, schematised below.

Customer Shop Barber

Full()✗
AltAlt No seats

Seat()✓
Available()

Ready()

Customer(Scut)

Descr(String)
Haircut()

Pay(Int)

AltAlt Seat available

In this example, we show how multiple concurrent sessions (one
per customer) can be handled by single-threaded programs (shop
and barber). We also show how to exploit session delegation by
leveraging higher-order session types (i.e., channel endpoints that
send/receive other channel endpoints). When a customer enters in
the shop, he gets a Scstm-typed channel endpoint:
Scstm = ?Full & ?Seat.?Ready.Scut Scut = !Descr(String).?Haircut.!Pay(Int)
He might receive either a Full message (when no seats are avail-
able), or a Seat: in the first case, the session ends; in the second
case, he waits for the barber to be Ready. Then, he continues with
Scut: Describes the new hairdo, waits for the Haircut, Pays and
leaves. The shop uses the other, dually-typed channel endpoint:

Scstm = !Full ⊕ !Seat.!Ready.Scut Scut = ?Descr(String).!Haircut.?Pay(Int)

and keeps track of the n seats to choose whether to send Full or Seat. When the customer
gets a Seat, the shop interacts with the barber, through a channel with endpoint types:

Sbarber = µX .!Available.?Serve(Scut).X (barber endp.) Sbarber = µX .?Available.!Serve(Scut).X (shop endp.)

i.e., the shop recursively waits for the barber to be Available; when it happens, it picks
a sitting customer (i.e., one that has received a Seat), sends a Ready message to him, and
forwards the channel endpoint (now Scut-typed) to the barber, as the payload of Serve.

Meanwhile, the barber uses its Sbarber-typed channel endpoint to notify that he is
Available, and wait for a Serve message – sleeping until he gets one; when it happens,
the barber gets a Scut-typed channel endpoint in the message payload: he is expected to
use it for interacting with the customer, i.e., listen for the hairdo Description, perform the
Haircut, and take the Payment. When the customer session terminates, the barber must
resume his recursive session with the shop: he notifies that he is Available again, etc.
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The CPSP classes extracted from
the session types above are shown
on the right. As per item D2b of
§ 4.2, we introduce WaitingRoom as
the sealed abstract class corre-
sponding to the external (resp. inter-
nal) choice between Full and Seat
in Scstm (resp. Scstm).

1 // Customer <--> shop protocol
2 sealed abstract class WaitingRoom
3 case class Full() extends WaitingRoom
4 case class Seat()(val cont: In[Ready]) extends WaitingRoom
5
6 case class Ready()(val cont: Out[Description])
7 case class Description(p: String)(val cont: Out[Cut])
8 case class Cut()(val cont: Out[Pay])
9 case class Pay(p: Int)

10
11 // Barber <--> shop protocol
12 case class Available()(val cont: Out[Serve])
13 case class Serve(p: In[Description])(val cont: Out[Available])

Implementation. The code of the shop, barber and customer is shown in Fig. 8. They are
supposed to run as concurrent threads, and thus implement the Runnable interface.

Shop is parametric in the number of seats. It collects the channel endpoints of the
waiting customers in its private seats field, which may be any FIFO-like container with
a blocking read method: we could use e.g. scala.concurrent.Channel[Out[Ready]], or
a FIFO based on Theorem 4.1. Once started, Shop creates a Sbarber-typed channel (line
19) and gives the output endpoint to a new Barber (line 20). The enter method returns
an input endpoint for interacting according to Scstm: after creating two channel endpoints
of the suitable type (line 6), enter checks how many people are trying to get a seat, and
outputs Full (line 10) or Seat (line 12) before returning the input endpoint (line 15). In the
main loop (lines 24–33), the shop waits for an Available message from the barber (line 25),
sleeps while retrieving a customer channel from seats (line 26), notifies the customer that
the barber is Ready, forwards the channel to the barber, and continues its loop.

Barber, in line 7, notifies the shop that he is Available, and uses the channel endpoint
returned by !! (whose type is In[Serve]) to wait for a Serve message. Then, he interacts
with the customer using the In[Descr]-typed endpoint received as payload (lines 8–11);
after being paid, he continues the session with the shop (line 11).

The code for Customer is simple: he invokes the enter method of the Shop given as
parameter (line 3), and uses the returned channel to interact according to Scstm. If the
waiting room is Full, he retries later (lines 5–7). To model multiple customers competing
for the seats, it is sufficient to start multiple Customers referring to the same Shop.

As anticipated, our solution for the sleeping barber problem exploits session delegation:
the customer starts interacting with the shop, but his session is eventually forwarded to the
barber, with a higher-order Serve(Scut) message. Delegation is transparent: no dedicated
code is required in Customer’s implementation. Moreover, delegation is safe: e.g., the
Scala type checker ensures that only Out[Ready]-typed channel endpoints are stored in
Shop.seats, and that the barber picks up the session only after the shops sends Ready.

5 Optimisations, transport abstraction and error handling

In this section, we demonstrate how lchannels allows to abstract from the underlying
message transport medium, and to handle communication errors. In § 3, we introduced the
abstract classes In/Out, and LocalIn/LocalOut as simple local implementations for inter-
thread communication. The In[⋅]/Out[⋅] interface can abstract other message transports,
allowing lchannels-based programs to achieve faster message delivery, or transparently
interact across a network. We discuss 3 examples: queue-, actor- and stream-based channels.

Optimised queue-based channels. The simple LocalIn/LocalOut classes in Fig. 6 (right)
perform all communications through the underlying Future/Promise. However, many
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1 class Shop(nSeats: Int) extends Runnable {
2 private val seats: Fifo[Out[Ready]] = Fifo() // Customers queue
3 private val waiting = new AtomicInteger(0) // Customers in shop
4

5 def enter(): In[WaitingRoom] = {
6 val (in, out) = LocalChannel.factory[WaitingRoom]()
7 val nPeople = waiting.getAndIncrement() // New person in shop
8 if (nPeople >= nSeats) { // More people than seats
9 waiting.getAndDecrement() // Customer must leave

10 out ! Full() // Tell customer that the witing room is full
11 } else {
12 val r = out !! Seat()_ // Tell customer that he got a seat
13 seats.write(r) // Add customer to waiting queue
14 }
15 in // Return input endpoint of customer channel
16 }
17

18 override def run(): Unit = {
19 val (bIn, bOut) = LocalChannel.factory[Available]()
20 new Barber(bOut).start() // Spawn barber with output endpoint
21 loop(bIn) // Loop on the input endpoint
22 }
23

24 private def loop(bIn: In[Available]): Unit = {
25 bIn ? { avl => // The barber is available
26 val cust = seats.read // Take 1st customer, sleep if none
27 waiting.getAndDecrement() // Customer is leaving the seat
28 val cust2 = cust !! Ready()_ // Notify that barber is ready
29 // Forward the customer to the barber
30 val bIn2 = avl.cont !! Serve(cust2)_ // bIn2: In[Available]
31 loop(bIn2) // Keep interacting with the barber
32 }
33 }
34 }

1 class Barber(c: Out[Available]) extends Runnable {
2 override def run(): Unit = {
3 loop(c)
4 }
5

6 private def loop(c: Out[Available]): Unit = {
7 (c !! Available()_) ? { srv => // Got customer
8 val d = srv.p.receive // Got haircut descr
9 val payC = d.cont !! Haircut()_ // Cut hair

10 val pay = payC.receive // Wait payment
11 // Got pay, no continuation: customer done
12 loop(srv.cont) // Continue shop interaction
13 }
14 }
15 }

1 class Customer(shop: Shop) extends Runnable {
2 override def run(): Unit = {
3 val s = shop.enter() // Type: In[WaitingRoom]
4 s ? {
5 case Full() => { // No seats
6 Thread.sleep(...) // Random wait
7 run() // Try taking a seat again
8 }
9 case m @ Seat() => { // Got a seat

10 val r = m.cont.receive // Barber ready
11 val cutC = r.cont !! Descr("Fancy cut")_
12 val cut = cutC.receive // Wait for cut
13 cut.cont ! Pay(42) // Cut done, paying
14 }
15 }
16 }
17 }

Figure 8 Sleeping barber (Theorem 4.3): shop, barber and customer implementations.

applications could mostly use the In.receive/Out.send methods, and could benefit from an
optimised implementation of In/Out that (when possible) bypasses In.future/Out.promise.
We developed this idea with the QueueIn/QueueOut classes: internally, they deliver messages
through Java LinkedTransferQueues (under the runtime linearity constraints L1/L2 of §3.1)
– and only allocate and use a Future/Promise when the .future/.promise methods are
explicitly invoked. Moreover, we optimised the QueueOut.!! method to reuse queues when
continuing a session. The resulting performance improvements are shown in § 6.2.

Network-transparent actor-based channels. We implemented proof-of-concept network-
transparent subclasses of In/Out, called ActorIn/ActorOut: they deliver messages by auto-
matically spawning Akka Typed actors [29], which in turn can communicate over a network.

Using such actor-based channels, a local process can interact with a remote one through
a local actor-based endpoint that proxies a remote endpoint. E.g., to obtain a remote
interaction between greeting server and client (Theorem 4.2) we can run the former as:

1 val (in, out) = ActorChannel.factory[Start]("start"); server(in)

Now, out.path contains the Akka Actor Path [27] of an automatically-generated actor. Such
a path can be used, even on a different JVM, to instantiate a proxy for out, as follows:

1 val c = ActorOut[Start]("akka.tcp://sys@host.com:5678/user/start"); client(c)

where ActorOut’s argument matches out.path above. Then, the client and server will
interact over a network, without changing their code.

All the examples in this paper can also run on ActorChannels, simply by replacing
the calls to LocalChannel.factory[A]() with ActorChannel.factory[A]() (e.g. in Fig. 8,
Shop, line 6). To achieve complete transport-independence, factory can be parameterised.

We choose Akka as a message transport medium due to its widespread availability, using
Akka Typed to obtain stronger static typing guarantees throughout the implementation.
The main challenges were related to making ActorIn/ActorOut instances serializable: this
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is a crucial requirement, as channel endpoints might appear (as payloads or continuations)
in messages sent/received over a network. In particular, sending an ActorOut[A] roughly
corresponds to sending an ActorRef[A] instance (which is serializable out-of-the-box) – but
sending an ActorIn[A] has no Akka equivalent, and requires some internal machinery.

Network-transparent stream-based channels. Often, programs interacting over a network
are implemented with different languages, and use bare TCP/IP sockets without a common
higher-level networking framework. Still, such programs might need to observe complicated
protocols (e.g. RFC-based ones like POP3, SMTP, etc.) that can be abstractly represented
as session types [12, 21]. To address this scenario, we extended lchannels with channel end-
points that send/receive messages through Java InputStream/OutputStreams, obtained e.g.
from a network socket. The main classes are StreamIn/StreamOut (extending resp. In/Out),
and can only be instantiated by providing a protocol-specific StreamManager which can
serialize/deserialize messages to/from a stream of bytes (tracking the session status if needed).

Message Text format
Greet("Alice") GREET Alice
Hello("Alice") HELLO Alice

Bye("Alice") BYE Alice
Quit() QUIT

For example, suppose that the “greeting protocol” from The-
orem 4.2 abstracts a textual protocol as shown on the left,
and we want our client to interact with a third-party server
using that textual format over TCP/IP sockets. We first
need to derive the StreamManager class, implementing a

HelloStreamManager that suitably serializes/deserializes the textual messages. Then, we
can let our client talk with a remote server, via TCP/IP, using the textual format:

1 val conn = new Socket("host.com", 1337) // Hostname and port where greeting server runs
2 val strm = new HelloStreamManager(conn.getInputStream, conn.getOutputStream)
3 val c = StreamOut[Start](strm) // Output channel endpoint, towards host.com:1337
4 client(c)

Note that we did not change the code of client seen in Theorem 4.2: we leverage lchannels
and protocol classes to represent and type-check the high-level protocol structure (sequencing,
choices, recursion), while separating the low-level details from the logic of the program.

Error handling. The methods of In[A] seen in Fig. 6 do not handle errors; e.g., receive
throws an exception if no message arrives within the (implicit) Duration d. However, input
errors are quite common in real-world applications: e.g., the process at the other endpoint
might not timely send a message, or may send a wrong message that a StreamManager
cannot deserialize, or a network problem may occur. As typical for Scala APIs, we extended
In[A] to capture failures as Try[A] values, via 2 additional methods: tryReceive and ??.

1 c ?? { case Success(m) => m match {
2 case A() => println("Got A")
3 case B() => println("Got B") }
4 case Failure(e) => /* Inspect e */ }

E.g., the branching on AorB in Theorem 3.1 can be
made error-resilient by using c.??, as shown on the
left: the top-level matching is now on Try[AorB].

6 Evaluation

We now assess the practicality of the approach in § 4.2 with a case study based the “client
with frontend” in Fig. 1 (§ 6.1), and a performance evaluation of lchannels (§ 6.2).

6.1 A case study: application server with frontend
This section shows how our approach can address the “server with frontend” scenario in
§ 1. We consider an application server that is a chat server allowing users to join/leave
chat rooms, and send/receive messages to/from them. We formalise the protocols of the



A. Scalas and N. Yoshida 21:17

application (§ 6.1.1), and illustrate some characteristics of the implementation (§ 6.1.2), and
discuss how development was aided by CPS protocols and lchannels (§ 6.1.3).

6.1.1 The protocols

We formalise the protocols in Fig. 1 as session types, dividing them in two groups: public
(used by clients), and internal (used for frontend/auth/chat server interaction).

Public protocols. The session type Sfront formalises the usage of the channel endpoint that
the frontend handles while interacting with a client. It is defined as follows:

Sfront = ?GetSession(Id).(!New(Sauth)⊕ !Active(Sact)) Sauth = !Authenticate(Cred).(?Success(Sact) & ?Failure)

Sact = µX .(!Quit ⊕ !GetId.?Id(Id).X ⊕ !Ping.?Pong.X ⊕ !Join(String).?ChatRoom((Sr, Srctl)).X)

The service implementing Sfront waits for a GetSession(Id) request from a client; then,
with an internal choice ⊕, it might answer by sending either New(Sauth) or Active(Sact):

New carries a Sauth-typed channel endpoint, talking with the auth server: it allows the
client to send an Authenticate(Cred) message (with Cred being the credentials), and
wait for either Success(Sact) or Failure (the Sact-typed channel is explained below);
Active carries an Sact-typed channel endpoint representing the active “session loop”
(Fig. 1). When the client receives it, Sact (which is recursive) allows to choose among:

Quit. In this case, the chat session ends;
GetId. Then, the client receives an Id(Id) answer whose payload is the current session
identifier, and continues the session recursively;
Ping(String). Then, the client receives a Pong(String), and continues recursively;
Join(String), with the payload being a chat room name. Then, the client joins a chat
room, gets a ChatRoom ((Sr, Srctl)) answer, and the session continues recursively. The
two channels endpoints in the payload allow to interact with the chat room:
∗ Sr = µY .?NewMessage((String,String)).Y & ?Quit. This recursive endpoint allows

the client to receive either a NewMessage from the chat room (with the payload
being the sender username and the message text), or Quit (ending the interaction);

∗ Srctl = µZ .!SendMessage(String).Z ⊕ !Quit. This endpoint allows the client to
send either a message on the chat room (with the payload being the text), or Quit.

The CPS protocol classes of the session types above are extracted as in the examples of § 4.4,
and are almost identical to Fig. 2. In particular, we use Command as the sealed abstract
class for the top-level choice in Sact (this detail will be mentioned again in § 6.1.2).

Internal protocols. Fig. 1 also outlines the internal communications among the frontend,
authentication and chat server: they can be formalised as session types, too – as for barber-
shop interaction in Theorem 4.3. Here, we only detail the frontend-server interaction type:

SFS = µX .!GetSession(Id).(?Success(Sact).X & ?Failure.X)

The frontend recursively queries for active sessions (passing the Identifier received from
a client), getting either Success or Failure. In the first case, the message payload is a
Sact-typed channel endpoint, that will be forwarded to the client with an Active message.
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6.1.2 The implementation
This case study uses higher-order session types to naturally model the “handles” mentioned
in § 1. A difference w.r.t. Theorem 4.3 is that the delegation appears explicitly in client’s
session types, e.g. in Active messages with a channel as payload. In CPS protocols, this
difference is almost negligible: the Active message classhas no continuation, but the client
should keep interacting via the Out endpoint in the payload – as per rule L1 in § 3.1.

The server-side implementation reuses several solutions from Theorem 4.3 – e.g., internal
FIFOs for storing and later processing requests: this happens e.g. when the single-threaded
chat server manages multiple client sessions. The main difference w.r.t. Theorem 4.3 is that
requests are queued asynchronously (via In.future) and enriched with internal data.

1 class ChatServer(...) extends Runnable {
2 ...
3 private def createSession(username: String): Out[Command]) = {
4 val id = allocUniqueSessionId()
5 val (in, out) = LocalChannel.factory[Command]()
6 in.future.onComplete { // Using scala.util.{Success, Failure}
7 case Success(cmd) => queueRequest(Success((id, cmd)))
8 case Failure(e) => queueRequest(Failure(e))
9 }

10 // Add the new session to the list of known sessions
11 sessions(id) = ... /* session info, including username */
12 out
13 } }

E.g., the chat server calls the method
on the left when the auth server asks
to create a new session for username:
it reserves a session id (line 4), cre-
ates the channel endpoints in,out
carrying a Command (line 5), keeps
in, and returns out (line 12), that
will be the payload of a NewSession

message. The client Command is received asynchronously via in.future: in lines 6–9, cmd
is paired with the session id, and queued (line 7). When the pair is later dequeued and
processed, id tells on which session cmd is acting. A similar queuing is performed as the
session progresses; e.g., when a cmd of type Ping is dequeued, the server runs:

1 val in2 = cmd.cont !! Pong(cmd.msg)_ // cmd’s type: Ping; in2’s type: In[Command]

and in2.future is used for queuing the next client command, like in.future in lines 6–9.

6.1.3 Lessons learned
As expected, CPS protocols and lchannels allow the Scala type checker to detect protocol
errors that usually arise on untyped channels, e.g., trying to send the wrong type of message,
or forgetting to consider some cases when branching with In.?. This greatly simplified the
present case study, where multiple channels with various protocols are handled concurrently.
Since we leverage the existing Scala type system, modern Scala IDEs (such as [30]) provide
channel usage errors and hints, e.g. via typing information and auto-completion suggestions.

However, as seen in § 3.1, Scala and lchannels cannot perform static linearity checks:
hence, they cannot spot two kinds of errors, illustrated below, that impact session progress.

Double usages of output endpoints. They occur when an Out[A] instance is used twice to
send A-typed values: then, by L1 in §3.1, an exception is thrown, and the extra message is
not sent. This kind of error never occurred in our experience: the CPS interaction guided
by lchannels seems to naturally shape programs where output endpoints are discarded
after used. Moreover, as for Scala Promises, double outputs causes an immediate runtime
error, that (we believe) should usually arise in proximity of the code requiring a fix.

Unused channel endpoints. Not performing an output can leave a process at the other
endpoint stuck, waiting for input – and this could escalate to other processes waiting on
other channels; this problem can also arise if a program does not input a message whose
continuation/payload is an output channel. Spotting this kind of errors can be tricky,
especially if channels are dynamically generated, sent, received, stored in collections (as
in our case study). lchannels mitigates this issue via timeouts on the receiving side
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(§ 5): they allow to see which channel is stuck in which state – and thus, which process is
not producing an output. In our case study, a few issues of this kind were easily fixed.

6.2 Benchmarks
We implemented several micro-benchmarks to evaluate how lchannels impacts communica-
tion speed w.r.t. other inter-thread communication methods: Fig. 9 shows the results. The
benchmarks are mainly inspired by [24]; “Streaming” is a parallel blend of “Ring”+“Counting
actor” : 16 threads are connected in a ring and a sequence (“stream”) of messages is sent at
once, measuring the time required for all to complete one loop.

We wrote an implementation of each benchmark using Out.send/In.receive for inter-
thread communication, instantiating them with LocalChannels, QueueChannels and Actor-
Channels (columns 1, 5, 7). As a comparison, we adapted such implementations to interact
via Promises/Futures (column 2), and also to interact “non-CPS” via scala.concurrent.
Channels, and Java ArrayBlockingQueues / LinkedTransferQueues (columns 3, 4, 6).

The overhead of lchannels w.r.t. “non-CPS” queue-based interaction has two origins:

1. runtime linearity checks, i.e. inspecting/setting a flag when a channel endpoint is used;
2. repeated creation of In/Out continuation pairs (§ 4.3): in comparison, our “non-CPS”

benchmarks create Scala channels / Java queues just once at the beginning of each session.

Hardware/JVM settings highly influence the measurements: queues or Promises/Futures
can become relatively faster/slower, or show more/less variance, depending on the benchmark.
Still, the results tend to be consistent with Fig. 9. It can be seen that LocalChannels add
a small slowdown to the underlying Promises/Futures. QueueChannels are considerably
faster, except when many short-lived sessions are rapidly created (this scenario is stressed by
“Chameneos”, against the optimisations seen in § 5); still, QueueChannels add a perceivable
overhead on the underlying LinkedTransferQueues. ActorChannels are slower, especially
with many threads and low parallelism (as in “Ring”): it is due to the (currently unoptimised)
internal machinery that makes ActorChannels network-transparent, and more suitable for
distributed settings where network latency can make the slowdown less relevant.

Notably, the usual “non-CPS” communication we implemented (and measured) over Scala
channels / Java queues requires connecting pairs of threads P1,P2 with pairs of queues (one
carrying messages from P1 to P2, the other from P2 to P1). Such queues have type Queue[A],
where A must cover all the message types that could be sent/received: for protocols with
sequencing and branching, this leads to loose static type checks, that combined with the lack
of runtime monitoring, increase the risk of protocol violations errors.

7 A formal foundation

We now explain the formal foundations of our approach (as outlined in § 4.2), by detailing
how to extract CPSP classes from session types, and studying how Scala’s type system
handles session subtyping/duality. We summarise session subtyping (§ 7.1), and we introduce
our encoding from session to linear types (§ 7.2), and then into Scala types (§ 7.3).

7.1 Session types and subtyping
We defined session types and duality in § 2; to ease the treatment, we adopt 2 restrictions.
I Remark 7.1 (Syntactic restrictions). For all S, (i) each label is unique, and also a valid
Scala class name, and (ii) each µ binds a distinct variable that actually occurs in its scope.
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Figure 9 Benchmark results (box&whisker plot): 30 runs× 10 JVM invocations, Intel Core i7-4790
(4 cores, 3.6 GHz), 16 GB RAM, Ubuntu 14.04, Oracle JDK 64-bit 8u72, Scala 2.11.7, Akka 2.4.2.

Restriction (i) allows to directly generate a Scala case class from each internal/external
choice label. Restriction (ii) is a form of Ottmann/Barendregt’s variable convention [4].

The session subtyping relation ⩽ allows to safely replace a S′-typed channel endpoint
with a S-typed one, provided that S ⩽ S′ holds. The relation is defined as follows.

I Definition 7.2 (Session subtyping [13]). The subtyping relation between session types is
coinductively defined by the following rules (where ⩽B is a subtyping between basic types):

∀i ∈ I ∶ Ti ⩽ T
′
i Si ⩽ S

′
i˘

i∈I?li(Ti).Si ⩽
˘
i∈I∪J ?li(T ′i ).S′i

[⩽-Ext]
∀i ∈ I ∶ T ′i ⩽ Ti Si ⩽ S

′
i

⊕i∈I∪J !li(Ti).Si ⩽ ⊕i∈I !li(T ′i ).S′i
[⩽-Int]

end ⩽ end [⩽-End]
S{µX .S/X} ⩽ S′

µX .S ⩽ S′
[⩽-µL]

S ⩽ S′{µX .S
′

/X}

S ⩽ µX .S
′ [⩽-µR]

T ⩽B T
′

T ⩽ T ′
[⩽-B]

Rule [⩽-Ext] says that an external choice S is smaller than another external choice S′ iff S
offers a subset of the labels, and for all common labels, the payload and continuation types
are in the relation. The rationale is that a program which correctly uses an S′-typed channel
endpoint supports all its inputs – hence, the program also supports the more restricted inputs
of an S-typed endpoint. Dually, [⩽-Int] says that an internal choice S is smaller than another
internal choice S′ iff S offers a superset of the labels, and for all common labels, the payload
and continuation types are in the relation. The rationale is that a program which correctly
uses an S′-typed channel endpoint might only perform one of the allowed outputs, that is
also allowed by the more liberal S-typed endpoint. [⩽-End] says that a terminated session has
no subtypes. [⩽-µL] and [⩽-µR] are standard. [⩽-B] extends ⩽ to basic types.

7.2 Linear I/O types (with records and variants)
In order to encode session types into Scala types, we exploit an intermediate encoding into
linear types for input and output [36]. We focus on a subset of such types, defined below.

I Definition 7.3. Let B be a set of basic types (§ 2). A linear type L is defined as:

L ∶∶= ?(U) ∣ !(U) ∣ ● U ∶∶= [li_{p ∶ Vi,c ∶ Li}]i∈I ∣ µX .U ∣ X V ∶∶= B ∣ L (closed)

where (i) recursion is guarded, and (ii) all li range over pairwise distinct labels. We also
define the carried type of L as carr(?(U)) = carr(!(U)) = U .



A. Scalas and N. Yoshida 21:21

?(U) (resp. !(U)) is the type of a linear channel endpoint that must be used to input
(resp. output) one value of type U ; ● denotes an endpoint that cannot be used for I/O. U is
a (possibly recursive) variant type where each li-labelled element is a record with 2 fields: p
(mapped to a basic value or a linear channel endpoint) and c (mapped to a linear endpoint).

I Definition 7.4 ([36]). The subtyping relation ⩽` between linear types is coinductively
defined by the following rules (where ⩽B is a subtyping between basic types):

U ⩽` U
′

?(U) ⩽` ?(U ′)
[⩽`-In]

U ′ ⩽` U

!(U) ⩽` !(U ′)
[⩽`-Out] ● ⩽` ● [⩽`-End]

V ⩽B V
′

V ⩽` V
′ [⩽`-B]

∀i ∈ I ∶ Vi ⩽` V
′
i Li ⩽` L

′
i

[li_{p ∶ Vi,c ∶ Li}]i∈I ⩽` [li_{p ∶ V ′i ,c ∶ L′i}]i∈I∪J
[⩽`-VR]

U{µX .U/X} ⩽` U
′

µX .U ⩽` U
′ [⩽`-µL]

U ⩽` U
′{µX .U

′

/X}

U ⩽` µX .U
′ [⩽`-µR]

The rules in Theorem 7.4 are standard: they include the subtyping for variants and records
(rule [⩽`-VR]) and left/right recursion ([⩽`-µL]/[⩽`-µR]). [⩽`-In] and [⩽`-Out] provide respectively
the subtyping for linear inputs (covariant w.r.t. the subtyping of carried types) and outputs
(which is instead contravariant): note that they are matched by the variances of In[⋅]/Out[⋅]
(Fig. 6, left). By [⩽`-End], ● is the only subtype of itself. [⩽`-B] extends ⩽` to basic types.

In the linear types world, the duality between two channel endpoints is very simple: it
holds when they are both ●, or they are an input and an output carrying the same type.

I Definition 7.5 ([8]). The dual of L (written L) is: ?(U) = !(U); !(U) = ?(U); ● = ●.

We now introduce our encoding of session types into linear types. Albeit inspired by
[8, 6], it features a different treatment of recursion, allowing us to bridge into Scala types.

I Definition 7.6 (Encoding of session into linear types). Let the action of a session type be:
act(

˘
i∈I?li(Ti).Si) = ? act(⊕i∈I !li(Ti).Si) = ! act(µX .S) = act(S)

Moreover, let Γ be a partial function from session type variables to linear types. The encoding
of S into a linear type w.r.t. Γ, written JSKΓ, is defined as:

J
˘
i∈I?li(Ti).SiKΓ = ?([li_{p ∶ JTiK,c ∶ JSiKΓ}]i∈I) J⊕i∈I !li(Ti).SiKΓ = !([li_{p ∶ JTiK,c ∶ JSiKΓ}]i∈I)

J
˘
i∈I?li(Ti).SiK

µ
Γ = [li_{p ∶ JTiK,c ∶ JSiKΓ}]i∈I J⊕i∈I !li(Ti).SiKµΓ = [li_{p ∶ JTiK,c ∶ JSiKΓ}]i∈I

JµX .SKΓ = act(S)(µX .JSKµΓ{act(S)(X)/X}) JendKΓ = ●

JµX .SKµΓ = µX .JSKµΓ{act(S)(X)/X} JXKΓ = Γ(X) JT KΓ = T (if T ∈ B)

The encoding of S into a linear type is JSK∅, also abbreviated JSK.

Theorem 7.6 is inductively defined on S. Intuitively, it turns end into ●, and external
(resp. internal) choices into linear input (resp. output) types. In the latter case, each choice
label becomes a label of the carried variant, its payload is encoded into the p field of the
corresponding record, and its continuation into the c field. Crucially, when encoding an
internal choice, c carries the dual of the encoding of the original continuation: this is because,
as seen in § 4.3, sending a value requires to allocate a new pair of I/O channel endpoints,
keep one of them, and send the other (i.e., the dual, by Theorem 7.5) for continuing the
session. Recursion is encoded by turning a recursive external (resp. internal) choice into a
linear input (resp. output) carrying a recursive variant: this “structural shift” is achieved
by collecting open recursion variables in Γ, and using the auxiliary encoding J⋅KµΓ. E.g., let
S = µX .?A.X: JSKΓ gives the type ?(µX .U), with U obtained by letting Γ′ = Γ{?(X)/X}, and
U = J?A.XKµΓ′ = [A_{p ∶ Unit, c ∶ JXKΓ′}] = [A_{p ∶ Unit, c ∶ ?(X)}] (see Theorem 7.11).

Our handling of recursion greatly affects our proofs, and is a main difference between
Theorem 7.6 and the encoding in [6]. Despite this, the crucial Theorem 7.2 still holds.

[Encoding preserves duality, subtyping]
q
S

y
= JSK, and S ⩽ S′ iff JSK⩽` JS′K.
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7.3 From session types to Scala types
We now present our encoding of session types into Scala types. Since Scala has a nominal
type system but session types are structural, our encoding requires a nominal environment
(Theorem 7.7), giving a distinct class name to each subterm of S.

I Definition 7.7. A nominal environment for session types N is a partial function from
(possibly open) session types to Scala class names. N is suitable for S iff (i) dom(N )

contains all subterms of S (except end), (ii) is injective w.r.t. the internal/external choices
in its domain, (iii) maps each singleton internal/external choice to its label, (iv) is du-
ally closed, i.e. ∀S′ ∈ dom(N ) ∶N(S′) = N(S′), and (v) if N(µX .S

′) is defined, then
N(µX .S

′) = N(X) = N(S′).

Our encoding of a session type S into a Scala type is given in Theorem 7.10. It relies
on an intermediate encoding of S into a linear type L, which is further encoded into Scala
classes. Such an intermediate step will allow us to exploit the fact that L is either ●, or a
linear input/output ?(U)/!(U), for some (possibly recursive) U . We will see that:

if L is an input (resp. output), it will result in a lchannels In[⋅] (resp. Out[⋅]) type;
U also appears in the dual L (by Def. 7.5), corresponding to S (by § 7.2): it will produce
both the type parameter of In/Out above, and the CPSP classes of S/S.

We first formalise the encoding from linear types to Scala types, in Theorem 7.8 below.

I Definition 7.8. A nominal environment for linear types M is a partial function from
(possibly open) variant types to Scala class names. M is suitable for L iff dom(M) contains
all subterms of L (except ●), is injective w.r.t. the variants in its domain, maps each singleton
variant to its label, and ifM(µX .U) is defined, thenM(µX .U) =M(X) =M(U). GivenM
suitable for L, we define the encoding of L into Scala types w.r.t.M, written jLoM, as:

j?(U)oM = In[M(U)] j!(U)oM = Out[M(U)] j●oM = Unit jV oM = V (if V ∈ B)

jUoM =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

case class l ( p: jV o
M

)( val cont: jLo
M

)

jU ′o
M

if U ′ = carr(V )

jU ′′o
M

if U ′′ = carr(L)
if U = [l_{p ∶ V , c ∶ L}]

jUoM =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sealed abstract class M(U)
case class li ( p: jVioM )( val cont: jLioM ) extends M(U)
jU ′o

M
if U ′ = carr(Vi)

jU ′′o
M

if U ′′ = carr(Li)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭i∈I

if U = [li_{p ∶ Vi,c ∶ Li}]i∈I

and ∣I ∣ > 1

jµX .UoM = jUoM jXoM =M(X)

The encoding in Theorem 7.8 is inductively defined on L. The first 3 cases turn a top-level
?(⋅)/!(⋅)/● into a corresponding In[⋅]/Out[⋅]/Unit type in Scala, and the 4th case keeps
basic types unaltered; note that when encoding ?(U) (resp. !(U)), the type parameter of the
resulting In[⋅] (resp. Out[⋅]) is the Scala class name thatM maps to U . The remaining cases
of Theorem 7.8 show how U originates the session protocol classes. Singleton variants are
turned into case classes, while non-singleton variants are turned into sealed abstract
classes (with a name given byM), extended by one case class per label. Note that if
the p field of a variant consists in some linear type ?(U ′)/!(U ′), the CPSP classes of U ′
are generated as well – and similarly for the c field. A recursive term µX .U is handled
by noticing that, by Theorem 7.7, M(µX .U) =M(X) =M(U): hence, X is encoded as
M(X) =M(µX .U).

The last ingredient for our encoding is a way to turn a nominal environment for a session
type (Theorem 7.7) into one for a linear type (Theorem 7.8): this is formalised below.
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I Definition 7.9. We say that S maps S′ to U ′ (in symbols, S ⊢ S′ ↦ U ′) iff, for some Γ,
the computation of JSK involves either (a) an instance of JS′KΓ returning ?(U ′) or !(U ′), or
(b) an instance of JS′KµΓ returning U ′. If N is suitable for S, the linear encoding of N (w.r.t.
S) is a nominal environment for linear types denoted with JN KS , such that:

JN KS(U) = A iff ∃S′∶ S ⊢ S′ ↦ U and N(S′) = A

Intuitively, Theorem 7.9 says that if N maps an internal/external choice S′ to some class
name A, then JN KS maps the variant obtained from the encoding of S′ to the same A.

We are now ready to define our encoding of session types into Scala types.

I Definition 7.10. Given N suitable for S, we define the encoding of S into a Scala type
as ⟪S⟫N = jJSKoJN KS

, and the protocol classes of S as: prot⟪S⟫N = jcarr(JSK)oJN KS
.

Theorem 7.10 gives us two pieces of information: ⟪S⟫N is the type In[⋅]/Out[⋅]/Unit on
which a Scala program can communicate according to S, and prot⟪S⟫N gives the definitions
of all necessary CPSP classes. Technically, S and N are first linearly encoded (via Definitions
7.6 and 7.9); then, the result is further encoded into Scala types (via Theorem 7.8).

I Example 7.11. The linear encoding of the greeting session type Sh in § 2 is:

JShK = !(Uh) where Uh = µX .

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Greet_{p ∶ String,c ∶ !([ Hello_{p ∶ String,c ∶ !(X)},

GoodNight_{p ∶ String,c ∶ ●}
])},

Quit_{p ∶ Unit,c ∶ ●}

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Let us now define N , as described in Theorem 4.2, making it suitable for Sh (as per
Theorem 7.7):

N
⎛
⎜
⎝

!Greet(String).( ?Hello(String).X
& ?Bye(String).end )

⊕ !Quit(Unit)

⎞
⎟
⎠
= Start N(Sh) = Start

N(X) = Start
N(

?Hello(String).X
& ?Bye(String).end ) = Greeting

Now, we can verify that the following mappings hold:

Sh ⊢
⎛
⎜
⎝

!Greet(String).( ?Hello(String).X
& ?Bye(String).end )

⊕ !Quit(Unit)

⎞
⎟
⎠
↦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Greet_{p ∶ String,c ∶ !([ Hello_{p ∶ String,c ∶ !(X)},

Bye_{p ∶ String,c ∶ ●}
])},

Quit_{p ∶ Unit,c ∶ ●}

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Sh ⊢ Sh ↦ Uh Sh ⊢X ↦X Sh ⊢ (
?Hello(String).X
& ?Bye(String).end ) ↦ [

Hello_{p ∶ String,c ∶ !(X)},

Bye_{p ∶ String,c ∶ ●}
]

Hence, by Theorem 7.9, JN KSh
maps the first, second and third (recursive) variant types

above to Start, and the last one to Greeting. The encoding ⟪Sh⟫N = jJShKoJN KSh

is
Out[Start], while prot⟪Sh⟫N = jcarr(JShK)oJN KSh

gives the Scala protocol classes seen in
Theorem 4.2.

We conclude with two results at the roots of our session-based development approach
(§ 4.2). Letthe dual of a Scala type be In[A] = Out[A], Out[A] = In[A], and Unit = Unit.

For all S, ⟪S⟫N = ⟪S⟫N and prot⟪S⟫N = prot⟪S⟫N .
§ 7.3 says that a session type and its dual are encoded as dual Scala types, and dual session
types have the same protocol classes: this justifies steps D1–D3 in § 4.2.

Finally, let <∶ be the Scala subtyping (the full definition is available in the on-line technical
report, see § 1). Suppose that we encode a session type S, getting B, and write a program
using A such that A <∶ B or B <∶ A: by §7.3, this is sound. For all A, S,N , A <∶ ⟪S⟫N implies
one of the following:

(a1) S = end, and: A <∶ Unit and ∀B∶A /∈ {In[B],Out[B]};
(a2) act(S) = ?, and: A <∶ Null or ∃B∶A = In[B] and ( Null ≨∶ B implies ∃S′,N ′ ∶ A = ⟪S′⟫N ′ and S′ ⩽ S );
(a3) act(S) = !, and: A <∶ Null or ∃B∶A = Out[B] and ( B ≨∶ AnyRef implies A = ⟪S⟫N ).
Moreover, for all A, S,N , ⟪S⟫N <∶ A implies one of the following:
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(b1) S = end, and: Unit <∶ A and ∀B∶A /∈ {In[B],Out[B]};
(b2) act(S) = ?, and: AnyRef <∶ A or ∃B∶A = In[B] and ( B ≨∶ AnyRef implies A = ⟪S⟫N );
(b3) act(S) = !, and: AnyRef <∶ A or ∃B∶A = Out[B] and ( Null ≨∶ B implies ∃S′,N ′ ∶ A = ⟪S′⟫N ′ and S ⩽ S′ ).

Roughly, § 7.3 says that Scala subtyping reflects session subtyping, thus preserving its
safety/exhaustiveness guarantees (S1 and S2 in § 2.1). When end is encoded, items a1/b1
say that its Scala sub/super-types cannot be In/Out, i.e. their instances do not allow I/O.
For item a2, consider Theorem 4.3: we have In[Full] <∶ In[WaitingRoom], reflecting
the fact that ?Full ⩽ Scstm (by [⩽-Ext]). For item b3, consider Theorem 4.2: we have
Out[Start] <∶ Out[Quit], reflecting the fact that Sh ⩽ !Quit (by [⩽-µL] and [⩽-Int]). § 7.3 also
says that <∶ is stricter than ⩽ – e.g., by item a3, the Scala encoding of an internal choice has
no subtypes, and by item b2, an external choice has no supertypes. However, Scala allows
for sub/super-types that do not correspond to any session type: besides the unavoidable
Null cases (items a2, a3, b3), it is possible e.g. to write a method f with a parameter of
type In[Any] (b2), or In[Nothing] (a2), or Out[Any] (a3), or Out[Nothing] (b3). This
does not compromise safety/exhaustiveness, either: In[Any] makes f accept any message,
Out[Nothing] forbids f to send, while In[Nothing]/Out[Any] are subtypes of all In/Out
types – thus making f non-applicable to any channel endpoint obtained by encoding a session
type. Notably, this holds by co/contra-variance of In[+A]/Out[-A] (Fig. 6, left).

8 Related work

Session types and their implementation. Session types were introduced by Honda et al. in
[18, 39, 19], as a typing discipline for a variant of the π-calculus (called session-π in §2). They
have been studied and developed in multiple directions during the following decades, notably
addressing multiparty interactions [20] and logical interpretations [5, 43]. The encoding of
session types in linear π-calculus types has been studied in [9, 8, 6, 7]; our work is mainly
based on [8], but our treatment of recursion is novel (see § 7.2).

Session types have been mostly implemented on dedicated programming languages with
the advanced type-level features outlined in § 2 [14, 43, 11, 40, 3]. [32, 34] aim at an
integration with Haskell, using monads to enforce linearity (at the price of a restrictive and
rather complicated API). [25] adapts [34] to Rust, exploiting its affine types, but showing
limitations to binary internal/external choices. [23, 37, 38] are based on a Java language
extension and runtime with session-type-inspired primitives for I/O and branching. [22]
integrates session types in Java via automatic generation of classes representing session-typed
channel endpoints, with run-time linearity checks. The main differences w.r.t. our work are
that [22] is closer to session-π, is based on the Scribble tool [44], supports multiparty sessions,
and generates classes which represent both a channel endpoint and its protocol; hence, in the
binary setting, each endpoint has its own hierarchy of generated classes that is different (but
“dual”) w.r.t. the other endpoint. Instead, our I/O endpoints are closer to linear types for
the π-calculus [36]: they take the protocol as a type parameter, from a set of CPSP classes
which is common between the two endpoints. Other differences are mostly due to the Java
type system, which e.g. does not support case classes (complicating exhaustiveness checks)
nor declaration-site variance (complicating the handling of I/O co/contra-variance).

The work closer to ours is [33]: it presents an encoding of session types in a ML-like
language, and an OCaml library reminiscent of lchannels. We share several ideas and
features, including the theoretical basis of [8]. The differences are at technical and API
design levels, due to different languages and goals (type inference vs. CPSP extraction);given
the wide adoption of Scala, we focus on practical validation with use cases and benchmarks.

Strong typing guarantees for concurrent applications have been a longstanding goal for
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the Scala and Akka communities. In the actor realm, Akka Typed (§ 1) is remarkably close
to [17]: both propose ActorRef[A]-typed actor references. We drew inspiration from them
and CPSPs, merging the theoretical basis of [8]. Some (non-linear) channel APIs have been
tentatively introduced in Akka, e.g. channels (Akka 1.2) and macro-based typed channels
(Akka 2.1); however, they were later deprecated, mainly due to design and maintainability
issues [26]. lchannels is based on a clear and well-established theory, adapted to the Scala
setting: thus, the implementation is fairly simple and maintainable, not requiring macros.

9 Conclusions

We showed how session programming can be carried over in Scala, by representing protocols
as types that the compiler can check. We based our approach on a lightweight integration
of session types, based on CPSP classes and the lchannels library. We showed that our
approach supports local and distributed interaction, has a formal basis (the encoding of
session types into linear I/O types), and attested its viability with use cases and benchmarks.

We plan to extend our approach to multiparty session types (MPSTs), by extracting CPSP
classes from a global type [20], rather than addressing multiple binary session separately (as
in Theorem 4.3 and § 6.1). Just as binary session typing guarantees safe and deadlock free
interaction for two parties involved in one session (§ 2.2), MPSTs extend such a guarantee to
two or more parties; the main challenge is that encoding MPSTs into Scala types might be
complex, and require a tool akin to [22].

The Scala landscape is fast-moving, and recent developments may influence the evolution
of our work. [41] introduces customisable effect for Scala: by extending the lchannels I/O
operations with an effect, we could obtain stronger linearity guarantees – e.g., ensuring that
a program does not “forget” a session (§ 6.1.3). [15] studies capabilities for borrowing object
references: they could ensure that a channel endpoint is never used if sent (§ 3.1). Similar
guarantees could be achieved by examining the program call graph [1]. Recent results on
Scala’s type system (e.g. on path-dependant and structural types [2, 35]) might improve our
encoding, removing the limitation on the uniqueness of choice labels (Remark 7.1).

We will further extend and optimise lchannels and its API: many improvements are
possible, and the transport abstraction allows to easily compare different implementations,
under different settings and uses. We also plan to extend our approach to other languages:
one candidate is C#, due to its support for first-class functions and declaration-site variance.

Towards session types for Akka Typed (and other frameworks). This work focuses on
lchannels, but our approach can be generalised to other communication frameworks. One
possible way is abstracting under the In[⋅]/Out[⋅] API, as in § 5; another way is directly
using the I/O endpoints offered by other frameworks. Consider e.g. Akka Typed: we can adapt
CPSP extraction (Theorem 7.8) to yield ActorRef[A] types instead of Out[A], obtaining
CPSP classes similar to those in Fig. 2. Remarkably, Out[A] and ActorRef[A] are both
contravariant w.r.t. A, and enjoy similar subtyping properties (§ 7.3). However:
(i) Akka Typed does not offer an input endpoint similar to In[⋅]. Hence, session types

whose CPSPs carry input endpoints (e.g., Theorem 4.1, or Srctl in § 6.1.1) must be
adapted (i.e., sequences of two outputs or two inputs must be replaced with input-output
alternations);

(ii) instances of ActorRef[A] raise no errors when used multiple times for sending messages;
(iii) to produce and send a continuation ActorRef[A], it is customary to cede the control to

another actor (possibly a new one, as in Fig. 3); lchannels, instead, encourages the
creation and use of I/O endpoints along a single thread, in a simple sequential style.
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Item 1 is a minor issue; 2 could be addressed, taking inspiration from the session/linear types
theory, by distinguishing unrestricted [42] ActorRefs (allowing 0 or more outputs of the
same type) from linear ActorRefs – with the former usable as the latter, but not vice versa.
Item 3 marks a crucial difference between reactive, actor-based concurrent programming
(where the protocol flow is decomposed into multiple input-driven handlers), and thread-based
programming. We plan to study the formal foundations for applying “session types as CPSPs”
in the reactive setting, and their feasibility w.r.t. software industry practices.

Acknowledgements. Thanks to Roland Kuhn, Julien Lange and the anonymous reviewers
for their helpful remarks on earlier versions of this paper. Thanks to Julien Lange and
Nicholas Ng for their feedback during artifact testing, and to the anonymous artifact reviewers
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Abstract
Many current program analyses require highly precise pointer information about small, tar-

geted parts of a given program. This motivates the need for demand-driven pointer analyses that
compute information only where required. Pointer analyses generally compute points-to sets of
program variables or answer boolean alias queries. However, many client analyses require richer
pointer information. For example, taint and typestate analyses often need to know the set of all
aliases of a given variable under a certain calling context. With most current pointer analyses,
clients must compute such information through repeated points-to or alias queries, increasing
complexity and computation time for them.

This paper presents Boomerang, a demand-driven, flow-, field-, and context-sensitive pointer
analysis for Java programs. Boomerang computes rich results that include both the possible
allocation sites of a given pointer (points-to information) and all pointers that can point to those
allocation sites (alias information). For increased precision and scalability, clients can query
Boomerang with respect to particular calling contexts of interest.

Our experiments show that Boomerang is more precise than existing demand-driven pointer
analyses. Additionally, using Boomerang, the taint analysis FlowDroid issues up to 29.4x
fewer pointer queries compared to using other pointer analyses that return simpler pointer inform-
ation. Furthermore, the search space of Boomerang can be significantly reduced by requesting
calling contexts from the client analysis.
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1 context1(){
2 A d = new A();
3 A e = new A();
4 String f = source();
5 foo(d,e,f);
6 }

7 context2(){
8 A x = new A();
9 A y = x;

10 String z = noSource();
11 foo(x,y,z);
12 }

13 foo(A a, A b, String s){
14 a.f = s;
15 sink(b.f);
16 }

Figure 1 An example program that illustrates the problem of finding all aliases under a specific
calling context.

1 Introduction

Static analysis nowadays is often used for vulnerability detection, finding bugs, and program
understanding tools. This setting typically requires the underlying analyses —including
pointer analyses— to compute information on-demand (i.e., only for the portions of the
program that are of specific interest to the client that is querying them). In the case of pointer
analyses, the different clients are interested in different types of pointer information [1, 28].
For example, a call graph analysis [26] approximates the runtime types of call receivers using
points-to sets that contain all possible allocation sites of an object, and their runtime types.
On the other hand, race-detection algorithms [18], typically need to know whether two given
program variables may alias (i.e., point to the same memory location). Traditionally, pointer
analyses can be categorized into either points-to analyses that compute points-to sets or alias
analyses that give a boolean answer to an alias query. As we show in this work, computing
only one kind of pointer information is ill-suited when supporting some client analyses. In
particular, taint analysis [1] and typestate analysis [3, 16] have to post-process both types of
pointer information, as they are interested in all aliases of a given variable.

Figure 1 shows an example program that illustrates this problem. In the case of a
taint analysis starting at line 4, the taint flows into method foo and reaches the field write
statement at line 14. To process this statement, the taint analysis must taint a.f and all of
its aliases, which requires finding all aliases of a. Traditional alias analyses do not return
this information directly, which is why the taint analysis has to query the alias analysis
repeatedly: it must iterate over all existing local variables and determine if they alias with a.
Additionally, a precise taint analysis should be able to restrict its pointer queries to specific
calling contexts. In the example, a false positive is reported at line 15, if the taint analysis
merges context1, where a taint is flowing but no aliases are created, and context2, where
a and b effectively alias (due to the assignment at line 9) but no taint is issued.

As shown in our experiments, repeated queries impede performance and context-insensitive
queries impede precision. Ideally, a taint analysis should be able to issue a unique pointer
query at line 14 for the variable a under a specific, client-defined calling context and directly
obtain all possible aliases of a. The result of such a query would be the alias set {a} under
context1() (or {a,b} under context2() if that query is issued instead). Due to the lack of
such sophisticated pointer analyses, some client analyses are tightly integrated with custom,
client-specific pointer analyses [1, 28]. This drastically complicates their coordination and
prevent the reuse of these custom pointer analysis.

In this paper, we present Boomerang, the first reusable on-demand pointer analysis
that, for a given variable, computes both points-to information and all alias information.
Boomerang is flow-, field-, and context-sensitive. For each query, Boomerang performs
a backward analysis to collect points-to information and then proceeds with a forward
analysis to determine all access graphs [13] that point to the discovered allocation sites. For
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the program in Figure 1, if a client queries Boomerang at line 14 for variable a under
context1(), Boomerang first searches backwards for all related allocation sites, discovering
the allocation at line 2. The forward analysis then computes that, in foo under context1(),
only variable a points to that allocation site.

To increase efficiency, Boomerang is built on top of the IFDS framework for Inter-
procedural Finite Distributive Subset problems [19]. This design choice allows Boomerang
to store and reuse the results of intra-procedural computations in the form of highly reusable,
extremely fine-grained summaries that reason about individual access graphs. Since IFDS
can only solve subset problems with distributive flow functions—and pointer analysis is
known to be a non-distributive problem—Boomerang uses IFDS only for sub-tasks that can
be expressed in a distributive way. Non-distributive fragments of the analysis are handled
through additional iterations at points of indirection, typically accesses to the heap and at
context switches.

We have evaluated the precision and recall of Boomerang using PointerBench, a novel
micro-benchmark suite created to evaluate pointer analyses by indicating aliases/non-aliases
pairs, as well as points-to sets. In comparison to the demand-driven points-to analysis by
Sridharan and Bodík (SB) [23] and the demand-driven alias analysis by Yan et al. (DA) [30],
Boomerang reports fewer false-positives with respect to alias pairs and allocation sites.
We also compare the effect of using Boomerang, SB, and DA in the client taint analysis
FlowDroid. On average, FlowDroid issues 19.9x and 29.4x more queries when using DA
and SB, respectively, compared to using Boomerang. Moreover, since SB and DA are less
precise than Boomerang, they cause FlowDroid to report more false positives.

Boomerang applies the notion of context-resolution by querying the client analysis for
calling contexts as it computes pointer information. Unlike previous approaches that visit all
contexts, Boomerang only considers contexts of interest to the client. This improves both
the precision of the client (as shown in Figure 1 with the false positive at line 15) and the
overall scalability (by propagating along less calling contexts). To evaluate the efficiency of
context-resolution, we measure the percentage of contexts filtered out by FlowDroid, a
taint analysis client, when using Boomerang. Our experiments show that FlowDroid
filters out up to 96% of the calling contexts, which represents a significant computational
saving for Boomerang.

To summarize, this paper makes the following contributions:

We present Boomerang, a demand-driven flow- and context-sensitive pointer analysis
that provides both points-to and all alias information. To our knowledge, this is the first
analysis that directly provides both types of pointer information.
We evaluate the precision and recall of Boomerang compared to the state-of-the-art
demand-driven pointer analyses on PointerBench, a micro-benchmark suite for pointer
analyses.
We compare the effect of using Boomerang to using other demand-driven pointer
analyses when integrated into a taint analysis client.

2 Background

IFDS is a framework for solving inter-procedural finite distributive subset problems [19]. If
an analysis can be expressed as such, the framework reduces it to a reachability problem
on an exploded supergraph, a directed graph representing the analyzed program. Figure 2
shows the exploded supergraph of an example Java program. Throughout this section, we
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Path Edges

Return-Flow

Normal-Flow

Call-Flow

a0 b c

A b = new A()

A a = new A()L1: 

 A c = foo(b)L3: return y

A y = x

L4:

L2: L5: 

L6: 

foo(A x)

main()

 nop

x y0

Figure 2 Creation of the exploded supergraph and summary edges in IFDS.

will use this example to explain how a whole-program points-to analysis can be computed
using IFDS. For the sake of simplicity, we omit field accesses.

Data-Flow Domain

An IFDS-based analysis defines a data-flow domain D, composed of the data-flow facts whose
validity is inferred by the analysis at each statement of the analyzed program. In the case
of pointer analyses, facts typically represent references to objects in the analyzed program,
but one can also encode richer information like typestate information [16]. In Figure 2, the
fact 0 represents the tautological fact that always holds. It is the root of the exploded super
graph. Before statement L3, facts a and b hold because they are reachable from 0—both
variables may point to objects created earlier in the program. Fact c, on the other hand,
only holds after L3 since it has not been defined before.

Flow Functions

In addition to the domain D, the analysis has to define flow functions. An IFDS flow function
is a mapping from D to 2D. It transfers a single fact to a (possibly empty) set of facts at
the successors of a given statement. The composition of the flow functions incrementally
creates the exploded supergraph. Flow functions can be of one of four types:

Normal flow functions are applied to every non-call statement. For example, the
flow function at statement L2 transfers a to a because a continues to point to the same
object. At the same statement, the flow function applied to 0 generates b, modeling a
new points-to relationship for b.
Call flow functions occur at invoke statements. They map facts from a caller’s scope
to the callee’s scope such as replacing actual arguments by formal parameters.
Return flow functions are the inverse functions of the call-flow functions, mapping the
facts back to the scope of the caller.
Call-to-return flow functions locally propagate the information that is not affected
by a call (represented by the straight dashed edges in method main in Figure 2).

At control-flow merge points, IFDS merges the result of all incoming flow functions using
the set union: a node is reachable if it is reachable along any path through the exploded
supergraph. IFDS assumes that the flow functions are distributive with respect to set union
(i.e., f(A∪B) = f(A)∪f(B)). Distributivity is a key property of the framework as it enables
effective reuse of fine-grained per-fact procedure-summaries [19].



J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden 22:5

l r

r c

Head node Tail node

l.r.c, l.r.l.r.c, ...
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c

Figure 3 Access graph and access path correlation.

Path Edges

In the exploded supergraph, an existing fact holds (i.e., is reachable) if its predecessors are.
This means that the solution to the IFDS problem is given by the facts reachable from the
root fact 0. To compute reachability, IFDS incrementally constructs path edges within the
scope of methods. A path edge has the form ⟨s, d1⟩→ ⟨t, d2⟩, where s and t are statements
and d1, d2 ∈D. All path edges are intra-procedural and start from a method’s entry point.
The existence of a path edge summarizes a node’s reachability in the exploded supergraph in
relative terms: d2 is reachable at t in every calling context in which d1 is reachable at the
method entry point s.

Figure 2 illustrates the construction of path edges in method foo (represented by red
dotted arrows). First, IFDS creates a path edge from the starting point of the method, SP:
⟨SP, x⟩→ ⟨SP, x⟩. This is then extended to ⟨SP, x⟩→ ⟨L5, y⟩ and finally to ⟨SP, x⟩→ ⟨L6, y⟩.
Unlike IFDS, path edges in Boomerang do not necessarily start from a method’s entry point.
We allow path edges to also start at allocation sites and call sites. This way, Boomerang
can encode the reachability of allocation sites into the path edges. We discuss this approach
in more detail in Section 3.4.

The path edges ending at a method’s exit point are turned into method summaries, which
avoids any re-evaluation of the same method for the same incoming facts. Contexts are thus
quantified-over symbolically: a summary edge is applicable to every context in which the
edge’s source fact holds.

Access Graphs

To support field-sensitivity (i.e., distinguishing fields not only by their name, but also by
their base object), Boomerang models data-flow facts using access graphs [13]. An access
graph is defined as follows: let L be the set of all variables of the analyzed program and F
the set of all existing fields of all classes within the program. An access graph has two main
elements: (1) the base, a local variable l ∈ L, and (2) the field graph, a directed graph of nodes
from F that represent field accesses. If the field graph is empty, the data-flow fact represents
a plain local variable. Otherwise, the field graph determines through which field accesses an
object of interest is reachable. If the field graph is not empty, two nodes (possibly the same)
are marked as the head and the tail. In addition, for each node n within the graph, there
exists a path from the head to the tail passing through n. A field graph can then be uniquely
identified by its edge set, its head, and its tail. We use [l, s,E, t] ∈ L × F × 2(F×F) × F to
denote an access graph with local variable l, head node s, tail t, and edge set of the field
graph E. We abbreviate the domain of all access graphs as APG. Throughout the rest of
the paper, we overset variables with ⋅̃ as a shorthand notation for an access graph.

An access graph corresponds to (infinitely) many access paths: all paths obtained by
traversing the field graph from the head to the tail. Figure 3 shows two access graphs and
their corresponding sets of access paths.
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We use operations on access graphs presented in earlier work [13]. These operations
capture the transformations of the access graphs mostly at field read and write statements,
where fields are consumed or added to the graph.

Remove Head: for each successor field s′ of the head s, we derive a new access graph
with s′ as the head. The appropriate edge is removed, if s is not part of a loop. This
operation assumes a non-empty field graph.

⊖[y, s,E, t] ∶=
⎧⎪⎪⎨⎪⎪⎩

{[y, s′,E, t]}, if s is in a loop,
{[y, s′,E ∖ {(s, s′)}, t] ∣ (s, s′) ∈ E}.

Remove Tail: a complementary operation that moves the tail to its predecessor while
removing the appropriate edge. We use [y, s,E, t]⊖ to represent this operation.
Prepend Head: connects the current head with a new head by adding the appropriate
edge, and returns a single access graph:

f ⊕ [y, s,E, t] ∶=[y, f,E ∪ {(f, s)}, t]

If the field graph was empty, the operation returns the access graph [y, f,∅, f].
Append Tail: appends the field to the end of the access graph.

[y, s,E, t]⊕ f ∶=[y, s,E ∪ {(t, f)}, f].

Concatenate: appends the field graph from the second operand to the first one. Both
field graphs must not be empty and the base is taken from the left operand.

[a, s1,E1, t1] ⊎ [b, s2,E2, t2] = [a, s1,E1 ∪E2, t2]

All of those operations additionally perform a cleanup to remove nodes which no longer
reside on a path between the head and tail nodes.

3 Boomerang

A Boomerang query is denoted by (s, ã) – compute pointer information for the access graph
ã at the program statement s. Boomerang performs a staged computation: a backward pass
followed by a forward pass. For both passes, Boomerang uses the IFDS framework to ensure
flow- and context-sensitivity and exploit the performance gains of using point-wise procedure
summaries. The backward pass traverses the control-flow graph (CFG) backwards to discover
the possible allocation sites that the queried access graph ã may point to. Starting at those
statements, the forward pass then collects the access graphs that, at the query statement s,
may also point to the same allocation sites (i.e., may alias with ã). In this section, we assume
a query to be context-free – propagation is only allowed within the transitively reachable
callees of the method where the query is issued. In Section 4.2, we describe how allocation
sites within callers are detected by the combination of multiple context-free queries. By that,
Boomerang only generates the part of the supergraph required to compute results and, if
available, reuses parts of the supergraph it computed from previous queries. We use b→ to
denote the backward path edges and f→ to denote the edges of the forward pass.
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A b = new A()

A a = new A()L1: 

 A c = foo(b)L3: return y

A y = x

L4:

L2: L5: 

L6: 

x y
foo(A x)

main()

 nop

b

b c

Figure 4 Constructing the exploded supergraph for the example in Figure 2.

A b = a

A a = new A()L1: 

 A c = new C()L3:

L4:

L2: 

main()

b.f = c

c

a

b

b.f a.f

+

Figure 5 Handling field writes in Boomerang.

3.1 Basic Example
Figure 4 shows, for the example in Figure 2, the parts of the exploded super graph that have
to be constructed to answer the query (L4,c). At first, Boomerang starts a backward
analysis (solid edges) that follows the definition chain of c, which results in analyzing the
method foo. When the backward analysis reaches the allocation site at L2, Boomerang
starts a forward analysis (dotted edges) that backtracks the path previously taken by the
backward analysis. Boomerang discovers b and c, and reports that those variables may
alias as they may both point to the object allocated at L2.

In Boomerang, the forward path edges are designed to hold the points-to and alias
information. In the example, the forward path edges at statement L4 are ⟨L2,b⟩ f→ ⟨L4,b⟩
and ⟨L2,b⟩ f→ ⟨L4,c⟩. Both edges share the same origin, ⟨L2,b⟩ and by construction the
data-flow facts of the targets may alias. Hence, at statement L4 the variables b and c may
alias and both are allocated at L2. To compute the alias information of c, Boomerang
does not construct the part of the exploded super graph concerning variable a, avoiding
the unnecessary effort that a whole-program analysis would make. As a side effect, this
computation creates reusable backward and forward summaries for foo.

3.2 Handling Field Accesses
The flow functions of a precise pointer analysis are non-distributive [7]. They introduce
a level of indirection that occurs, for instance, at field write statements. In Figure 5, to
precisely reason about all aliases of b.f at the write at L4, the analysis must also take into
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1: procedure Boomerang(s, ṽ)
2: P = propagate(⟨s, ṽ⟩ b→ ⟨s, ṽ⟩) ▷ backward analysis
3: do
4: p = P .pop()
5: N = handlePOI(p) ▷ triggers forward or backward analyses
6: P .addAll(N)
7: while P ≠ ∅
8: return Res(s, ṽ)
9: end procedure

Figure 6 The main algorithm of Boomerang.

account the aliases of the the base variable b. In that case, alias information can only be
retrieved indirectly. This is an example of a point of indirection, denoted by POI. We
discuss points of indirection in more detail in Section 4.1.

A sound treatment of those indirections raises the need for an outer fixed-point iteration
around the forward and backward propagations. Such a handling of the POIs allows
Boomerang to reuse summaries within the inner, distributive propagations, while at the
same time computing a solution to a problem that is non-distributive as a whole. Figure 6
presents the pseudo-code for the outer fixed-point iteration. The process bootstraps the
inner backward analysis with an initial self-loop (using the IFDS method propagate [17]).
The propagated edge triggers the backward solver to find the object allocations that may
flow into ṽ. The flow functions discover any POIs they find along the way. This yields the
initial set P . Once the backward propagation is finished, each of the newly discovered POI
is handled by handlePOI. Depending on the type of the POI, the appropriate handler is
executed. These handlers can trigger forward or backward analyses and can find new POIs
(denoted N) that are added to the set P . This is repeated until a fixed point is reached.

In Figure 5, for the query of c at L4, let us assume that the backward analysis has
already discovered the allocation site at line L3. In the forward pass, c flows to b.f at the
field write statement in L4 —a POI. In handlePOI, a sub-query to Boomerang then
requests all aliases of b at L3, which returns the set {a,b}. Finally, the original query is
continued by adding the dashed forward path edge marked with + due to the discovered
alias a.

When all POIs have been discovered and handled, the outer algorithm returns Res(s, ṽ),
the solution to the query. In the example from Figure 5, the query (L4,c) results in the
mapping ⟨L3,c⟩ ↦ {c,a.f,b.f}. Thus, a.f, b.f and c all alias with each other, as their
allocation site is statement L3. Section 3.4 describes the construction of Res(s, ṽ) in more
detail.

3.3 Flow Functions

In Boomerang, flow functions are of type S ×APG → 2APG . They take an access graph
and a statement as input, and output a set of access graphs. We represent a flow function
for the backward problem as ⟦s⟧b(α̃) where s is a statement and α is an access graph. A
flow function for the forward problem is similarly represented by ⟦s⟧f(α̃).

The analysis is conducted on a three-address-code representation in which each statement
contains at most one field dereference. We only define the flow functions for statements that
affect the access graph being propagated as shown in Table 7a. To simplify the notations, we
assume that invoke statements have at most one parameter.
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Statement Notation

Allocation site x← new
Assign statement x← y

Field read x← y.f

Field write x.f ← y‚
Invoke statement r ← c.m(p)

(a) Handled Statements.

POI Example Symbol Analysis

Allocation site a = new [Alloc] Backward
Field read a = b.f [Read] Backward
Alias on call c.m(args) [Call] Backward
Alias on return c.m(args) [Return] Forward
Field write a.f = b [Write] Forward

(b) Points of indirection.

Figure 7 The statements handled by Boomerang and the points of indirection.

The definition of the flow functions is straightforward and simply follows the assignments
of variables. Evaluating a flow function, causes new POIs to be discovered (shown next to
the flow functions definitions). The POIs are handed over to the outer fixed-point iteration
for later processing. Table 7b enumerates the types of POIs and which analysis discovers
them. Section 4 describes how the POIs are processed in the outer fixed-point iteration.

3.3.1 Backward Analysis

For simplicity, we use α̃ as the argument of the flow function and express α̃ as [v, s,E, t].
We use α̃>0 for the cases where the field graph cannot be empty, and α̃=0 when the graph
must be empty.

Normal-Flow Functions

⟦x← y⟧b(α̃) =
⎧⎪⎪⎨⎪⎪⎩

{[y, s,E, t]} if v = x
{α̃}

⟦x.f ← y⟧b(α̃) =
⎧⎪⎪⎨⎪⎪⎩

⊖[y, s,E, t] if v = x ∧ s = f
{α̃}

⟦x← new⟧b(α̃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∅ if v = x ∧ α̃=0 [Alloc]
∅ if v = x ∧ α̃>0

{α̃}

⟦x← y.f⟧b(α̃) =
⎧⎪⎪⎨⎪⎪⎩

f ⊕ [y, s,E, t] if v = x [Read]
{α̃}

At assignment statements of the form x← y where the access graph’s local variable is x, the
flow function replaces the base value of the access graph with y and keeps the whole field
graph. For a field write statement x.f ← y, if the local variable and the first field of the
access graph matches x.f , the base of the access graph is replaced by y and its first field is
removed. At a field read statement, in contrast, the field f is prepended to the field graph.
Additionally, if the flow functions discover POIs of type [Read] or [Alloc], they are added
to the outer algorithm of Boomerang for later processing.
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Call-Flow Functions

⟦r ← c.m(p)⟧b(α̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{[retVal, s,E, t]} if v = r [Call]
{[this, s,E, t]} if v = c ∧ α̃>0 [Call]
{[arg, s,E, t]} if v = p ∧ α̃>0 [Call]
∅

In a backward analysis, the call-flow functions transfer facts from the call site to all possible
return statements of the callees. In Boomerang, the backward call-flow functions map
all access graphs ã for which the field graph is not empty. The base is then either the
this variable or the argument to the callees. Java uses a call-by-value semantics, which is
why a callee cannot redefine its parameters (including this). For this reason Boomerang
propagates parameters only with non-empty field graphs. As a side effect, the backward
call-flow function further registers a [Call].

Return-Flow Functions

⟦r ← c.m(p)⟧b(α̃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{[c, s,E, t]} if v = this ∧ α̃>0

{[p, s,E, t]} if v = arg ∧ α̃>0

∅

The return-flow functions map the access graphs back to the appropriate scope at the call
sites. The access graphs representing the this value or a parameter that does not have any
field accesses are not mapped back to the caller scope. They are handled by the call-to-return
flow functions.

Call-to-Return Flow Functions

⟦r ← c.m(p)⟧b(α̃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∅ if v = r
∅ if v ∈ {c, p} ∧ α̃>0

{α̃}

Every access graph that is propagated by a call-flow function to hold within the callee is
killed in the corresponding call-to-return flow function. These access graphs naturally flow
out of the callees at the call site (via the return-flow function), if they are neither allocated
nor overwritten within callees.

3.3.2 Forward Analysis

The forward flow functions are used to find all access graphs pointing to a given allocation
site. The forward analysis is bootstrapped at an allocation site with an access graph having
the allocated variable as base and an empty field graph.
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Normal-Flow Functions

⟦x← y⟧f(α̃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{[x, s,E, t], α̃} if v = y
∅ if v = x
{α̃}

⟦x.f ← y⟧f(α̃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{α̃} ∪ f ⊕ [x, s,E, t] if v = y [Write]
∅ if v = x ∧ s = f
{α̃}

⟦x← new⟧f(α̃) =
⎧⎪⎪⎨⎪⎪⎩

∅ if v = x
{α̃}

⟦x← y.f⟧f(α̃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{α̃} ∪ ⊖[x, s,E, t] if v = y ∧ s = f
∅ if v = x
{α̃}

Whenever an assignment is encountered and its right-hand side matches the current fact,
a new access graph with the prefix of the left-hand side is derived and propagated. In the
forward flow functions, the access graph α̃ flowing into the function is maintained, as long
as the left-hand side of an assign statement does not override it. POIs of type [Write] are
detected at each field write statement.

Call-Flow Functions

⟦r ← c.m(p)⟧f(α̃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{[this, s,E, t]} if v = c
{[arg, s,E, t]} if v = p
∅

In the forward analysis, the call-flow functions map facts from call sites to the start points of
the target methods. It is important to note that the access graphs with an empty field graph
and having variable c or any parameter p as their base are also propagated into the callees.
These access graphs can generate aliases within those callees. This is different from the
backward analysis where facts that do not involve fields are not propagated into the callees.

Return-Flow Functions

⟦r ← c.m(p)⟧f(α̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{[c, s,E, t]} if v = this [Return]
{[p, s,E, t]} if v = arg [Return]
{[r, s,E, t]} if v = retVal [Return]
∅

The return-flow functions map the base of the access graph back to the appropriate
variable in the calling-context. As we will see later in Section 4, a POI of type [Return]
needs to be handled here because of possible new aliases in the new scope.
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Call-to-Return Flow Functions

⟦r ← c.m(p)⟧f(α̃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∅ if v = r
∅ if v ∈ {c, p} ∧ α̃>0

{α̃}

In the call-to-return flow function, an access graph is killed if it has a non-empty field graph
and its base is the call receiver or a parameter. Such access graphs are handled by the
call-flow functions and flows into the callees.

3.4 Path Edges
In IFDS, a path edge is a general summary between a fact at the method’s first statement and
an arbitrary node of the exploded supergraph belonging to the same method. In Boomerang,
we define path edges as IFDS path edges between any two arbitrary nodes of the same
method. The first statement restriction is loosened to be able to encode points-to information
in the path edges. For example, when the backward analysis finds an allocation site ([Alloc]
in the backward normal-flow functions), then the path edge ⟨a = new,a⟩ f→ ⟨a = new,a⟩ is
added to the forward analysis. During the forward propagation where IFDS extends the
added path edge, the origin of the path edge ⟨a = new,a⟩ is maintained for the derived path
edges in order to keep track of the new allocation site.

For each derived forward path edge ⟨s, α̃⟩ f→ ⟨t, β̃⟩, Boomerang ensures that the object
that is accessible through the access graph α̃ at statement s is also accessible through β̃

at statement t. By design in IFDS, the path edge is restricted to the same method (i.e.,
the statements s and t belong to the same method). To track inter-procedural information,
Boomerang defines three types of path edges depending on the access graph α̃ and the
statement s:

Direct (s = d← new)
The statement s is an allocation site of the access graph α̃. Therefore, α̃ = d. If the
forward solver generates such an edge, then the allocated object flows to the access graph
β̃ at statement t, where both s and t are in the same method.
Transitive (s = r ← c.m(p))
The statement s is a call site. Therefore, the access graph referred to by α̃ is allocated in
a method that is transitively reachable through this call. Upon exiting the callee, the
forward path edge propagated in the caller has the call site s as its source statement.
Boomerang can therefore distinguish between multiple objects instantiated at the same
statement, but reachable via two distinct calls in the same method.
Parameter (s ∈ startPoint)
The statement s is the first statement of the method containing t. The base variable of
the access graph α̃ represents a formal parameter of the method. This means that the
allocation site of the access graph α̃ is not found in the current method nor any of its
transitively reachable callees; the access graph has been allocated in a context that is not
yet known to the analysis. This type of edge corresponds to the path edge in IFDS used
to generate intra-procedural summaries [12].

Once the outer fixed-point algorithm of Boomerang stabilizes, the result Res(t, γ̃) of
the query (t, γ̃) is gathered from all generated forward path edges. It is a map with domain
{⟨s, α̃⟩ ∣ ∃ ⟨s, α̃⟩ f→ ⟨t, γ̃⟩} ⊆ S ×APG. To each element ⟨s, α̃⟩ of the domain, Boomerang



J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden 22:13

associates the set {β̃ ∣ ∃ ⟨s, α̃⟩ f→ ⟨t, β̃⟩} ⊆ APG. The statements of the elements of the
domain hold the allocation sites, whereas the accompanying sets contain all access graphs
accessible at statement t which point to the related allocation site. Hence, any access graph
α̃ in one of the sets may-aliases with γ̃ at statement t. We note that by α̃ ◂Res(t, γ̃).

The domain of the result can contain origins of parameter path edges. This means that
some allocation sites were undetected, as they are contained in the callers. Further queries
can be issued to find them. Therefore, the results are independent of any calling-context.
This design decision enables Boomerang to answer a query under particular client-provided
calling-context. We address this feature in Section 4.2.

4 Implementation Challenges

In this section, we discuss how Boomerang addresses the following challenges:

How are the POIs handled?
How can the analysis answer queries under specific client-provided context?

4.1 Points of Indirection
As explained in Section 3.2, POIs are resolved in the outer fixed-point iteration. Each POI
is treated independently.

4.1.1 Allocation Site [Alloc]
Upon discovering an allocation site during the backward pass, Boomerang needs to determ-
ine which access graphs might point to it. From an allocation site a← new, Boomerang
creates an access graph α̃ with base a and an empty field graph. Then, the path edge
⟨a ← new, α̃⟩ f→ ⟨a ← new, α̃⟩ is added to the work list of the forward solver. To avoid
unnecessary computations (e.g., in a branch of non-interest to the query), the forward
propagations are directed along the path(s) taken by the backward analysis which discovered
the POI. This is done, by following the backward path edges. If an additional backward
path is discovered later on, the appropriate forward part will then be computed.

4.1.2 Field Write Statements [Write]
Let ⟨r, α̃⟩ f→ ⟨t, β̃⟩ be the path edge currently processed by the forward solver when the
[Write] is discovered. The statement t is a (forward) successor statement of a field write
statement (x.f ← y) where the base of the access graph β̃ is x and its head is f . Boomerang
searches for aliases of x, the base of the overwritten field. For all aliases δ̃ ◂Res(t, x), we
construct γ̃ = δ̃ ⊎ β̃. For each γ̃, Boomerang adds the path edge ⟨r, α̃⟩ f→ ⟨t, γ̃⟩ to the IFDS
work list of the forward solver. For example, in Figure 5, the path edge ⟨L3,c⟩ f→ ⟨L4,a.f⟩
(marked with + ) is added to the forward solver because before L4, the base variable b and a
are aliases.

4.1.3 Alias on Forward Return-Flow [Return]
The [Return] indirection occurs upon a change of scope. This change occurs when a path
edge reaches a method’s exit statement and the analysis propagation is continued in its caller
or when an existing summary is applied at a call site [17]. Figure 8 illustrates the former case.
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Figure 8 Handling alias on forward return-flow [Return].

Let us assume that we are interested in the query (L6,b). The forward propagation of the
allocation site at L2 constructs the edge ⟨L2,b⟩ f→ ⟨L6,a.f.g⟩ (labeled with 1 ). This edge
in the main method is a result of the propagations in foo. At this point, Boomerang needs
to be aware of new aliases in the new scope. This requires a recursive query for all prefixes of
a.f.g. First, the query (L5,a) is issued, delivering the alias c ◂Res(L5,a) (leftmost path
edges marked with 2 ). The field f is then appended to all access graphs of the result set.
This triggers the query (L5,c.f), resulting in the path edges 3 , that eventually finds the
alias h. Finally, Boomerang appends the field g to the results and propagates the edges
⟨L2,b⟩ f→ ⟨L6,c.f.g⟩ and ⟨L2,b⟩ f→ ⟨L6,h.g⟩ forward. In Figure 8, those are the edges
labeled with + .

Formally, Boomerang iterates as follows. Let us assume the path edge ⟨u, α̃⟩ f→ ⟨t, β̃⟩,
where β̃ = [a, k,E, l], and t, one successor of the call site s, is propagated in the caller. For
each node j of the access graph β̃, the set Fj is computed:

Fj ∶=
⎧⎪⎪⎨⎪⎪⎩

{γ̃ ⊕ k ∣ γ̃ ◂Res(s, a)} if j = k,
{γ̃ ⊕ j ∣ γ̃ ◂Res(s, δ̃), δ̃ ∈ Fi, (i, j) ∈ E}.

By construction, the set Fj depends on the set Fi where i is a predecessor node of j in
the access graph. The first set to be constructed is the set Fk, as it does not depend on
any other sets. All other sets are computed successively1. For the tail node l of β̃, the set
Fl eventually represents all other aliases of β̃ that hold just before the call site. For all of
those aliases, the path edges ⟨u, α̃⟩ f→ ⟨t, δ̃⟩ with δ̃ ∈ Fl are propagated forward to connect
the indirect aliases occurring in the new scope. In the example of Figure 8, the constructed
sets are Ff = {a.f,c.f} and Fg = {a.f.g,c.f.g,h.g}.

4.1.4 Field Read Statements [Read]
Handling field read statements is the inverse of forward handling field write statements. At a
[Read] point, we can assume a path edge ⟨r, α̃⟩ b→ ⟨t, β̃⟩ where t is a (backward) successor of
a field read statement (x← y.f). The access graph β̃ then has y as its base variable, and the
field f as its head. Due to the field read, the allocations to any alias of y.f become allocation

1 The computation might lead to a fixed-point iteration over the sets Fj .
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Figure 9 Example for [Call]

sites of interest for the backward analysis. To detect these allocation sites, Boomerang
first searches aliases of y. The original access graph β̃ is then concatenated to each alias
δ̃ ◂Res(t, y) to form γ̃ = δ̃ ⊎ β̃. The newly formed access graphs γ̃ are propagated backward
by adding the path edges ⟨r, α̃⟩ b→ ⟨t, γ̃⟩ to the backward solver.

4.1.5 Alias on Backward Call-Flow [Call]
This POI is discovered in the call-flow functions of the backward analysis. Similar to
[Return], [Call] leads to a recursive query of the prefixes of the access graph entering the
method. Figure 9 shows an example where the backward analysis searches for the allocation
site of a.f.g within foo. This access graph is allocated through an alias within foo. The
local alias b of a.f has to be found first by executing the query (L2,a.f). This query results
in the red dotted path edges shown on the right. From these path edges, Boomerang
derives that it also needs to find allocations of b.g as well as a.f.g. Hence, the backward
path edge labeled with + is added to the backward solver. This edge leads to the detection
of the allocation ([Alloc]) of the alias at L2.

In general, at a [Call], an access graph α̃ = [a, k,E, l] enters a method via the call-flow
function. The last field of this access graph is then removed using the remove tail operation,
resulting in the set [a, k,E, l]⊖. For each element β̃ of that set, all aliases are computed.
The last step is to re-append the field l using the append tail operation (⊕) and continue the
backward propagation with the obtained aliases.

4.2 Client-Driven Context-Resolution
Up to this section, a query issued within method m was context free, causing it to propagate
into m and its callees, but not into its callers. This design enables the creation of a client-
driven context-resolution system where, after the context-free query is resolved, the client can
define which particular calling contexts are relevant for Boomerang to further explore. This
excludes contexts that are uninteresting to the client, helping increase precision and improve
performance. If the client always chooses all available contexts, Boomerang computes
pointer information over all contexts, like a standard pointer analysis would.

To use the client-driven context-resolution system, the client defines a calling context,
which is a statement (optionally enriched by client-specific information) and a calling-context
function, a function C → 2C, where C is the set of calling contexts. With the help of this
function, Boomerang internally constructs a context graph G, whose nodes are calling
contexts. Initially, G is composed of one node, the initial calling context, given by the
statement at which the query is issued. Boomerang then extends the graph successively.
Except for the initial calling context, the other calling contexts’ statements are call sites.

A context-free query is associated with each calling context of the context graph. Until
a fixed point is reached, Boomerang computes the given queries for the calling contexts.
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Figure 10 Client-Driven Context-Resolution.

This is done by using a worklist where each workslist item is a pair of a calling context and
a query, [C, (s, α̃)].

Processing an item computes Res(s, α̃), the given context-free query. The result is then
associated to the elements’ calling context C. A check is performed to determine if the result
set could potentially be missing allocation sites or aliases due to callers. This happens if
the result contains an access graph β̃ with a formal argument of the method as its base. If
so, Boomerang evaluates the calling context function by supplying it the current calling
context C to obtain more contexts. Each access graph β̃ is then mapped to each new calling
context D, and the element [D, (t, γ̃)] is added to the worklist. Hereby, t is the (call site)
statement of the calling context D and γ̃ is the access graph β̃ with replaced formals by
actual arguments of the call site. In addition to extending the context graph from callee to
callers, some results at the nodes must be pushed back along the caller to callee relationships
within the graph, meaning that appropriate worklist elements are added. We clarify this in
the following example. Finally, once the fixed point is reached, Boomerang extracts the
complete pointer information from the context graph, by traversing the graph from each
context-node containing an allocation site, to the original client context.

Figure 10 illustrates the context-resolution algorithm. The client analysis wishes to solve
the query (L6,x) in method bar under all calling contexts. First, the context graph only
contains the node L6 2 and the worklist is initialized with the element [L6, (L6,x)]. The
result of the context-less query (L6,x) is ⟨SPbar,c.g⟩↦ {x,c.g}, which is encoded by the
path edges ending at L6 and labeled with 1 . As the path edges are of parameter type, the
alias information holds if and only if there exists an allocation site for c.g in one of bar’s
callers. Boomerang then queries the client for the potential calling contexts of the calling
context L6, and receives the set {L4}. Therefore the calling context L4 is created and linked
to L6 in the context graph, and [L4, (L4,a.g)] is added to the worklist. For this query,
Boomerang delivers ⟨L3,b.g⟩↦ {a.g,b.g}, —the path edges marked with label 2

3.
The results computed at the calling context L4 in foo are pushed back to the callee bar,

as the context graph contains an edge from L6 to L4. This maps the access graphs a.g to
c.g and b.g to d.g. At this point, Boomerang knows that c.g, x, and d.g are allocated
at L3. However, one alias, y, is still missing. Therefore, an additional element is added to
the worklist: [L6, (L6,d.g)]. It creates the path edges labeled with 3 . Finally, the path

2 We assume no client-specific information is bound to a context.
3 The query internally creates the dotted unlabeled path edges within a sub-query to find the aliases a

and b.
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edges 1 , 2 , and 3 prove the reachability between the allocation site at L3 and the access
graph in {c.g,x,d.g,y}, which is the result of our initial query under all calling contexts.

In the example from Figure 10, a calling context is solely defined by a statement, and
based on that the results are merged. Enriching the calling contexts with additional client-
specific information enables the client to control the context-sensitivity of the results. For
example, the client can add a call-stack of length k to make the analysis k-context-sensitive.
As an alternative, the context can be modeled as a value context, holding more information
about the (client’s) data-flow value under which the method has been reached. We describe
such value contexts in our experiments.

By filtering calling contexts, the client analysis can limit Boomerang’s search space
(e.g., by analyzing only foo, in Figure 10, and not all of the other callers of bar). This leads
to significant savings in computational resources for Boomerang, as we show in RQ3 in
our experiments. The obtained results can, of course, only be considered sound with respect
to the calling contexts provided by the client.

5 Evaluation

We implemented Boomerang on top of the Soot analysis framework and extended the
existing IFDS solver Heros [4] to fit our needs (e.g., allowing path edges to start from a
custom statement). The implementation was rigorously tested with more than 100 test cases.
Boomerang is currently single-threaded, but a multi-threaded version is in the works.

5.1 Research Questions
Our empirical evaluation aims to answer the following research questions:

RQ1. How precise is Boomerang compared to other pointer analyses?
RQ2. How does the use of Boomerang affect the performance of a client analysis?
RQ3. How much influence does the client-driven context-resolution have on the search space

for Boomerang?

5.2 Demand-driven Pointer Analyses
In RQ1 and RQ2, we compare Boomerang to two flow-insensitive demand-driven pointer
analyses: the refinement-based points-to analysis by Sridharan and Bodík [23] and the alias
analysis by Yan et al. [30] (hereafter denoted SB and DA, respectively).

A query (m,v) to SB comprises a local variable v and the method m it belongs to. The
query result is a points-to set of the given variable with each allocation site being enriched
by a calling context. A query for DA consists of two local variables and the methods they
belong to: (m1, v1,m2, v2). The result is a boolean value stating whether the two variables
v1 and v2 in the given methods may alias or not. Although this interface is convenient for
some client analyses (e.g., datarace analysis), points-to sets cannot be derived from alias
information.

5.3 Results
RQ1. How precise is Boomerang compared to other pointer analyses?

Due to the difference in analysis types, returned information and query format, we compare
the precision of SB, DA, and Boomerang on the common basis of alias information. We
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use DA’s query format as this information can be derived by all three analyses. For SB, an
alias query is mapped to two points-to queries, one for each variable of the alias query. If the
intersection of the two points-to sets is non-empty, the two variables may alias. Boomerang,
with its rich results, only needs to issue one query for one of the two variables. If the second
variable is in the result set, both may alias. To evaluate the precision of Boomerang’s
points-to information, we additionally compare its results to SB’s points-to sets.

The PointerBench Micro-Benchmark. Evaluating the precision of a pointer analysis
requires a ground truth to compare against. To the best of our knowledge, there exists no
benchmarks for pointer analyses. In this paper, we introduce PointerBench4, a micro-
benchmark for pointer analyses that contains 36 specially crafted small programs that depict
common pointer analysis issues for Java (e.g., handling collections, field-sensitivity, access
paths). Each program is provided with may (and, whenever possible, must) information about
all aliases, non-aliases, and allocation sites of a particular variable. Using PointerBench,
alias, points-to, or any kind of pointer analysis can be compared against one another based
on the same ground truth.

Alias Pairs. In Table 1, we report the true positives, false positives, and false negatives
for each pair of aliasing/non-aliasing variables. Across all the programs in PointerBench,
Boomerang achieves 100% recall and 90% precision, DA achieves 95% recall and 82%
precision, and SB achieves 97% recall and 87% precision with respect to alias pairs.

The main reason for the loss of recall for DA and SB is the test case AccessPath. A
limitation of the two analyses is that they only support queries on local variables. Therefore,
it is not possible to check if two access graphs a.f.g and b.h.i alias. Additionally, DA
reports a false negative for the test case ObjectSensitivity. This test case creates an
object and passes it to an static method that returns its parameter (i.e., it is an identity
function). In the caller of that function, the argument to the call and the return value should
alias. DA incorrectly models static methods, which leads to this false negative.

In the group Collections, the test cases contain operations on HashSet and HashMap
(e.g., inserting and retrieving elements). These collections store elements in arrays, but all
three analyses are array-insensitive. Therefore, arrays are treated as a single assignment to
the heap. All three analyses encounter a precision loss here.

For the test case FlowSensitivty, DA and SB report a false positive since they are both
flow-insensitive. An additional false positive for DA is reported on the test case Null. Given
the statements a = null; b = a;, DA reports a and b as an alias pair, even though the
points-to sets of a and b are empty. We call this the null-aliasing property.

Allocation Sites. For each program in PointerBench, the last two columns of Table 1
show false negatives, false positives and true positives in terms of allocation sites reported
by Boomerang and SB. The alias analysis DA has been excluded from this part of the
evaluation as it does not produce any points-to information.

Across all test cases in PointerBench, Boomerang and SB achieve 100% and 98%
recall, respectively. Similar to the aliasing case, SB cannot handle the AccessPath case.
With respect to precision, Boomerang and SB achieve 86% and 69%, respectively. The main
reason for SB’s drop in precision are the test cases Interprocedural and FieldSensitivity
due to SB being flow-insensitive.

4 Available for download at https://github.com/secure-software-engineering/PointerBench

https://github.com/secure-software-engineering/PointerBench
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Table 1 The precision and recall of Boomerang, SB, and DA with respect to alias pairs and
allocation sites on PointerBench. ⊖= false negatives, ⊕= false positives, ✓= true positives.

Alias pairs Allocation sites

Tests Boomerang DA SB Boomerang SB

SimpleAlias ✓✓ ✓✓ ✓✓ ✓ ✓
Loops ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Interprocedural ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓ ✓✓⊕⊕⊕⊕
Parameter ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓ ✓✓

B
as
ic

Recursion ✓ ✓ ✓ ✓ ✓
ReturnValue ✓✓✓✓✓ ✓✓✓✓✓⊕ ✓✓✓✓✓ ✓✓✓ ✓✓✓⊕
Branching ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

AccessPath ✓✓ ⊖⊖ ⊖⊖ ✓ ⊖
ContextSensitivity 6×✓ 6×✓ 6×✓ 6×✓ 6×✓
FieldSensitivity ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓ ✓✓⊕⊕⊕⊕
FlowSensitivity ✓ ✓⊕ ✓⊕ ✓ ✓⊕

G
en

er
al

Ja
va

ObjectSensitivity ✓✓✓✓ ✓✓✓⊕⊕⊖ ✓✓✓✓ ✓✓ ✓✓⊕
StrongUpdate ✓✓✓⊕ ✓✓✓⊕ ✓✓✓⊕ ✓✓⊕⊕ ✓✓⊕⊕

Exception ✓✓✓ ✓✓✓⊕ ✓✓✓⊕ ✓✓ ✓✓⊕
Interface ✓✓ ✓✓ ✓✓ ✓ ✓
Null ⊕
OuterClass ✓✓⊕ ✓✓⊕ ✓✓⊕ ✓⊕ ✓⊕

C
or
ne

r
C
as
es

StaticVariables ✓✓ ✓✓ ✓✓ ✓ ✓
SuperClasses ✓✓⊕ ✓✓⊕ ✓✓⊕ ✓⊕ ✓⊕

Array ✓✓⊕ ✓✓⊕ ✓✓⊕ ✓⊕ ✓⊕
List ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓ ✓✓
Map ✓✓⊕ ✓✓⊕ ✓✓⊕ ✓⊕ ✓⊕

C
ol
le
ct
io
ns

Set ✓⊕⊕ ✓⊕⊕ ✓⊕⊕ ✓⊕ ✓⊕

Precision 0.90 0.82 0.87 0.86 0.69
Recall 1.0 0.95 0.97 1.0 0.98
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RQ2. How does the use of Boomerang affect the performance of a client analysis?

The usefulness of a support analysis is best evaluated in combination with a concrete client
analysis. We evaluate the performance of FlowDroid, a context- and flow-sensitive taint
analysis for Android [1]. We see FlowDroid as a representative of taint and other analyses of
similar precision (e.g., typestate analysis). In this experiment, we compare the performance of
FlowDroid on real-world applications from the Google Play Store when using Boomerang,
SB and DA.

Like many taint or typestate analyses, FlowDroid requires alias information at field
write statements and on return from callees to call sites. These are points of indirection
where FlowDroid might indirectly taint other data-flow facts (FlowDroid access paths).
At those statements, FlowDroid needs to obtain all aliases of the tainted access path.
FlowDroid then taints those aliases and continues the taint propagation.

DA and SB’s integration into FlowDroid need additional post-processing for the
computation of all-alias sets, as there interface does not deliver the right information. To
construct such a set A for a given FlowDroid access path a.f.g, all assign statements of
the method containing the field-write statement or the call site are considered. For an assign
statement, c = d, the analysis must check if the variable d aliases with a. In such case, the
access path c.f.g is added to A. Similarly, for a field read statement c = d.f, where the
field matches the first field of the access path, the analysis enquires whether d and a alias. If
so, the access path c.g is also added to A. A field-write statement is handled likewise, but
the appropriate field is prepended to the access path.

In contrast, when using Boomerang, FlowDroid requires only one query per field
write or call site. Boomerang directly returns an alias set, whose access graphs only need to
be translated to FlowDroid access paths. For the client-driven context-resolution system
(Section 4.2) and the integration into FlowDroid, each calling context is enriched by one
FlowDroid path edge. For the initial calling context, the edge that triggered the query is
used. The calling-context function uses the incoming map [17] of FlowDroid’s IFDS solver
to compute the calling contexts. The incoming map describes how path edges in the caller
are mapped to the path edges in the callee and guarantees the context-sensitivity for IFDS.
In Boomerang, for a calling context enriched with a path edge p, for each relationship
q → p of the incoming map, the calling-context function returns a calling context enriched
by the path edge q at the appropriate call site. Boomerang then backtracks the path(s)
FlowDroid’s data-flow fact took and computes only the alias information necessary for
the client. In the case of FlowDroid, calling contexts are value contexts since the calling
context holds additional information about the data-flow value that reached the statement.

We set a timeout of one second per query for all three integrated pointer analyses. We
also limit the overall analysis time for each application to 15 minutes. We ran FlowDroid
with the three alias strategies, and, as a baseline, with FlowDroid’s own intertwined alias
strategy [1] on 100 randomly chosen apps from the top 500 apps of the Google PlayStore.
The experiment was conducted using JDK version 1.7.0_85 on a 64 core (Intel Xeon E5-4640)
with 32GB heap space.

FlowDroid supported by Boomerang successfully analyzed 53 applications within
the overall time limit, while the support of DA, SB, and the original alias strategy of
FlowDroid could only analyze 23, 30, and 43 applications, respectively. Figure 11a shows
the analysis time of the 22 applications for which all four strategies did not time out. As
the analysis times vary a lot, the diagram uses a logarithmic y-axis. On average, using
Boomerang, FlowDroid is 2.6x faster than using DA and 3.9x faster than using SB.
When comparing to FlowDroid, the original alias strategy performs 1.6x times better than
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Figure 11 Comparison of the three alias strategies with respect to a) analysis time, b) reported
flows, and c) triggered alias queries.
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Boomerang. The reason is that FlowDroid’s alias strategy also follows the incoming
map [1].

Figure 11b shows that the choice of the alias strategy affects the number of taint flows
reported by FlowDroid. In total, FlowDroid reports 92 flows with both Boomerang
and the original FlowDroid aliasing strategy, whereas it reports 168 flows with DA and
174 flows with SB. When running the analyses on the FlowDroid test cases, we noticed
that SB and DA reported many spurious flows. The main cause for those false positives
is that both analyses are flow-insensitive and do not consider calling contexts. On average,
the use of DA and SB cause FlowDroid to report 1.8x more flows when compared to
Boomerang or the original FlowDroid aliasing strategy.

Figure 11c presents the total number of alias queries issued by FlowDroid for the 22
fully analyzed applications. The integration of FlowDroid with Boomerang issues an
average of 19.9x fewer queries when compared to DA and 29.4x fewer queries when compared
to SB. This shows that Boomerang issues significantly fewer queries, due to the richer
pointer information Boomerang provides.

In summary, (1) using DA and SB, the FlowDroid analysis is slower, (2) more alias
queries are triggered and (3) more taint flows are reported when compared to the integration
with Boomerang.

RQ3. How much influence does the client-driven context-resolution have on the
search space for Boomerang?

As described in RQ2, for the integration into FlowDroid, Boomerang uses the client-
driven context-resolution system and follows the incoming map of FlowDroid’s IFDS
solver to find appropriate calling context at which Boomerang continues. Incorporating
the context-resolution system, can be seen as a filtering of the call graph’s edges before
Boomerang continues with its computation in the callers. Hence, the filtering will reduce
the search space for Boomerang in advance. For DA’s and SB’s integrations, all calling
contexts are directly considered, even though they might be of non-interest to the client.

To evaluate the effectiveness of the filtering, we measured and report the following
parameters for the 53 applications that Boomerang could analyze within the time limit:

Context requests: the number of times Boomerang requests calling context information
from FlowDroid,
All contexts: the number of call sites in the call graph (hence, the number of calling
contexts in which the analysis could continue) and
Client contexts: the filtered number of contexts that FlowDroid returns to Boomerang.

In the worst case, FlowDroid provides all possible contexts. In each of the returned calling
context, new queries to Boomerang are triggered (see Section 4.2). Boomerang then has
to evaluate the queries for all of these calling contexts. This worst-case scenario is similar to
the behavior of DA and SB; both propagate along all possible calling contexts.

Figure 12 shows the percentage of filtered calling contexts as a function of the number of
context requests made for each application. The high ratio of filtering significantly reduces
the search space for Boomerang in advance. We also observed that FlowDroid tends to
filter out less calling contexts for applications where Boomerang requests fewer contexts.
In summary, the consideration of the calling context of interest by the client early in the
computation phase significantly reduces the search space of Boomerang.
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Figure 12 The relation between the number of context requests to the effectiveness of the pre-filter
for Boomerang.

5.4 Discussion

Boomerang is particularly designed for demand-driven clients, such as FlowDroid, seeking
high precision and requiring all-alias sets. Boomerang is well-suited for object-tracking
analyses, such as taint or typestate analyses, as it makes those clients easier to implement,
and returns results faster, and with a higher precision than existing approaches.

If client analyses require simpler points-to or alias information, they might not benefit
from using Boomerang. For example, for a race-checking client analysis, the alias analysis
DA seems to be a more reasonable choice than Boomerang because for such a client a
boolean answer to the question whether two given variables alias is usually sufficient. In
future work, we plan to test the applicability of Boomerang as a general-purpose pointer
analysis for other types of client analyses and also invite others to do so. As others have
argued before [11], the choice of the optimal pointer analysis heavily depends on the client.
But it is exactly for this reason that we advocate to evaluate future pointer analyses also
with respect to how clients would need to query them and how that impacts the performance
of those clients.

6 Related Work

Pointer analyses provide information about which pointers point-to which memory locations
in a given program. Such information is necessary for many static client analyses such as
escape analysis [20], shape analysis [8], and call graph construction [9, 26,27]. This demand
causes significant effort towards developing various pointer-analysis techniques. Ryder [21]
provides a comprehensive taxonomy of many dimensions that affect the precision and cost
of a given pointer analysis. Sridharan et al. [24] present a survey of the state-of-the-art
alias analyses for object-oriented programs. For the purpose of this work, we categorize
previous work on pointer analysis into two broad themes: whole-program pointer analyses
and demand-driven pointer analyses.

ECOOP 2016
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6.1 Whole-Program Pointer Analyses
Lhoták et al. [14] developed Spark, a flexible framework for points-to analysis of Java
programs. Spark provides a Soot [29] transformation that constructs the call graph
of the input program on-the-fly while calculating the points-to sets. Spark’s analysis is
context- and flow-insensitive. Paddle [2] is a drop-in replacement for Spark that allows for a
context-sensitive but flow-insensitive whole-program points-to analysis using binary-decision
diagrams.

Bravenboer et al. [5] present Doop, a Datalog-based points-to analysis framework for
Java programs. Doop can also construct the call graph on-the-fly while computing the points-
to sets. Doop offers various context-sensitivity configurations, such as call-site-sensitive,
object-sensitive, and heap-abstraction-sensitive. Doop can support limited, method-local
flow-sensitivity by performing the pointer analysis on static single assignment (SSA) form.
Some support for flow-sensitivity is in preparation.

De et al. [6] propose a whole-program flow- and context-sensitive analysis that uses access
paths. They use a similarly rich representation as Boomerang, allowing for strong updates.
The approach is based on the call-strings approach and was evaluated with a call-string
length of 1. This approach quickly becomes imprecise in contrast to the functional approach
we use in Boomerang.

6.2 Demand-Driven Pointer Analyses
Heintze et al. [10] introduce a demand-driven approach for pointer analysis that performs
just enough computation to determine the points-to sets for a given list of pointer variables.
However, the information obtained is context- and flow-insensitive.

Sridharan et al. [25] show that points-to information can be encoded as a context-free
language (CFL). The problem of on-demand pointer analysis can then be re-defined as
a CFL-reachability problem that can be solved on a graph representation. Labeling the
edges of the graph enables field-sensitivity. As opposed to Boomerang, this formulation is
flow-insensitive.

Based on this CFL-reachability, Shang et al. [22] present DynSum, a demand-driven
context-sensitive but flow-insensitive points-to analysis. DynSum uses method summaries to
improve performance for multiple queries within the same method. The answer to a query
to DynSum is a points-to set. As we have previously discussed, a result to Boomerang
encodes alias information, as well as points-to sets.

Yan et al. [30] propose a novel on-demand alias analysis for Java that is formulated as a
CFL-reachability problem. For methods with a high in-degree (a preset threshold) in the
call graph, summaries for the alias information are computed. Because it is an alias analysis,
no points-to sets are generated and also not all aliasing variables can be directly retrieved as
it is possible with Boomerang.

7 Conclusion

We have presented Boomerang, a demand-driven pointer analysis that provides rich pointer
information to the client, comprising all allocation sites the queried pointer can point to, as
well as access graphs representing all pointers that, at the queried statement, may point-to
that same allocation site.

The analysis uses two instantiations (backward/forward) of the IFDS framework. Its pro-
cedure summaries provide efficiency, while flow-sensitivity and unlimited context-sensitivity
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provide high precision. An additional outer fixed-point iteration within Boomerang yields
field-sensitivity and soundiness [15]. The recursive evaluation of the backward and forward-
analysis passes is carefully coordinated to construct only the minimal part of the exploded
super graph necessary to answer a given query. Boomerang further allows a client to specify
calling contexts to tailor the computational effort to specific parts of interest.

We have shown that Boomerang is more precise than the state-of-the-art demand-driven
analyses on PointerBench. We have also shown that using Boomerang, clients compute
their results issuing fewer points-to analysis queries, which significantly accelerates the overall
analysis.
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Abstract
Many programming languages, such as Clojure, Scala, and Haskell, support different concurrency
models. In practice these models are often combined, however the semantics of the combinations
are not always well-defined. In this paper, we study the combination of futures and Software
Transactional Memory. Currently, futures created within a transaction cannot access the trans-
actional state safely, violating the serializability of the transactions and leading to undesired
behavior.

We define transactional tasks: a construct that allows futures to be created in transactions.
Transactional tasks allow the parallelism in a transaction to be exploited, while providing safe
access to the state of their encapsulating transaction. We show that transactional tasks have
several useful properties: they are coordinated, they maintain serializability, and they do not
introduce non-determinism. As such, transactional tasks combine futures and Software Trans-
actional Memory, allowing the potential parallelism of a program to be fully exploited, while
preserving the properties of the separate models where possible.

1998 ACM Subject Classification D.1.3 [Concurrent Programming] Parallel Programming; D.3.2
[Language Classifications] Concurrent, distributed, and parallel languages

Keywords and phrases Concurrency, Parallelism, Futures, Threads, Fork/Join, Software Trans-
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1 Introduction

Concurrent programming has become essential to exploit modern hardware, especially
since multicore processors have become ubiquitous. At the same time, programming with
concurrency is notoriously tricky. Over the years, a plethora of concurrent programming
models have been designed with the aim of combining performance with safety guarantees.
In this paper, we study futures and Software Transactional Memory.

Futures are used to introduce parallelism in a program: the construct fork e starts the
concurrent execution of the expression e in a parallel task, and returns a future [3, 16]. A
future is a placeholder that is replaced with the value of e once its task has finished. Futures
make it easy to add parallelism to a program [16] and can be implemented efficiently [8, 7, 19].
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While futures enable parallelism, Software Transactional Memory (STM) allows access to
shared memory between parallel tasks [26]. It introduces transactions: blocks in which shared
memory locations can be read and modified safely. STM simplifies concurrent access to
shared memory, as transactions are executed atomically and are guaranteed to be serializable.

It is often desirable to combine concurrency models and this is frequently done so in
practice [27]. Languages such as Clojure, Scala, and Haskell provide support both for parallel
tasks and transactions. However, the combination of these two models is not always well
defined or supported. Using transactions to share memory between parallel tasks has a clearly
defined semantics. Conversely, parallelizing a single transaction by creating new tasks is
either not allowed (e.g. Haskell) or leads to unexpected behavior (e.g. Clojure and Scala). For
example, in Section 3 a path-finding algorithm is shown in which several search operations
are executed in parallel on a grid. In this application, each task starts a transaction that
searches for a single path. We would like to further exploit the available parallelism in
each individual search operation by starting new subtasks from within each path-finding
transaction. This is one application where we show the need for the combination of both
transaction-in-future and future-in-transaction parallelism.

In this paper, we present transactional tasks, a novel construct to introduce parallelism
within a transaction (Section 4). A transaction can create several transactional tasks, which
run concurrently and can safely access and modify their encapsulating transaction’s state.
We demonstrate several desirable properties of transactional tasks (Section 5). Firstly,
transactional tasks are coordinated: the tasks in a transaction either all succeed or all
fail. Secondly, the serializability of the transactions in the program is maintained. Thirdly,
transactional tasks do not introduce non-determinism in a transaction.

Furthermore, we have implemented transactional tasks on top of Clojure (Section 6), and
applied them to several applications from the widely used STAMP benchmark suite [21].
This confirms that they can produce a speed-up with limited developer effort (Section 7).
As a result, we believe that transactional tasks successfully combine futures and Software
Transactional Memory, allowing the potential parallelism of a program to be fully exploited,
while preserving the properties of the separate models where possible.

2 Background: Parallel Tasks, Futures, and Transactions

We start by defining parallel tasks, futures, and transactions separately. We also provide a
formalization for each model, list their properties and describe their use cases.1

The semantics described here are deliberately very similar to those offered both by
Clojure and Haskell. We aim to approximate them closely, to demonstrate how the described
problems also apply to these programming languages. A list of differences between our formal
model and the implementations of Clojure and Haskell is given in Appendix A.

1 We use the following notation for sets and sequences. ·∪ denotes disjoint union, i.e. if A = B ·∪ C then
B = A\C. We use a short-hand for unions on singletons: A∪a signifies A∪{a}. The notation S = a ·S′
deconstructs a sequence S into its first element a and the rest S′. The empty sequence is written []. We
write a for a (possibly empty) sequence of a.
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2.1 Parallel Tasks and Futures

2.1.1 Description and Properties
A parallel task or thread is a fragment of the program that can be executed in parallel with
the rest of the program. A runtime system schedules these tasks over the available processing
units. In a typical implementation, a distinction is made between the lightweight tasks
created in the program, and more heavyweight OS threads over which they are scheduled.
Managing and scheduling the threads is a responsibility of the runtime, and transparent to
the program.

A parallel task can be created using fork e.2 This begins the evaluation of the expression
e in a new task, and returns a future. A future is a placeholder variable that represents
the result of a concurrent computation [3, 16]. Initially, the future is unresolved. Once the
evaluation of e yields a value v, the future is resolved to v. The resolution of future f can
be synchronized using join f : if the future is still unresolved, this call will block until it is
resolved and then return its value.

In a functional language, fork and join are semantically transparent [13]: a program
in which fork e is replaced by e and join f is replaced by f is equivalent to the original.
As a result, futures can be added to a program to exploit the available parallelism without
changing its semantics. Programmers can wrap an expression in fork whenever they believe
the parallel execution of the expression outweighs the cost of the creation of a task.

A common use case of futures is the parallelization of homogenous operations, such as
searching and sorting [16]. For this purpose, Clojure provides a parallel map operation:
(pmap f xs) will apply f to each element of xs in parallel. Futures are also used to increase
the responsiveness of an application by executing long-running operations concurrently, e.g.
in graphical applications expensive computations or HTTP requests often return a future so
as not to block the user interface.

2.1.2 Formalization
Figure 1 defines a language with support for parallel tasks and futures. The syntax consists of
a standard calculus, supporting conditionals (if), local variables (let), and blocks (do). To
support futures, the syntax is augmented with references to futures (f), and the expressions
fork e and join e.

The program state p consists of a set of tasks. Each task contains the expression it
is currently evaluating, and the future to which its result will be written. The future f
associated with each task is unique, and hence can be considered an identifier for the task.
A program e starts with initial state {〈f, e〉}, i.e. it contains one “root” task that executes e.
We use evaluation contexts to define the evaluation order within expressions. The program
evaluation context P can choose an arbitrary task, and use the term evaluation context E to
find the active site in the term. E is an expression with a “hole �”. We note E [e] for the
expression obtained by replacing the hole � with e in E .

We define the operational semantics using transitions p→f p
′; the subscript f denotes all

reduction rules that apply to futures. The operational semantics is based on [13] and [32].
Rule congruence|f defines that the base language can be used in each task. Transitions in
the base language are written e→b e

′ and define a standard λ calculus, but are not detailed
here. The expression fork e creates a task in which e will be evaluated, and reduces to the

2 In Clojure this is (future e), in Scala Future { e }, in Haskell forkIO e.

ECOOP 2016
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Syntax
c ∈ Constant ::= true | false | 0 | 1 | . . .
x ∈ Variable
f ∈ Future
v ∈ Value ::= c | x | λx.e | f
e ∈ Expression ::= v | e e | if e e e | let x = e in e

| do e; e | fork e | join e

State
Program state p ::= T

Task t ∈ T ::= 〈f, e〉

Evaluation Contexts
P ::= T ·∪ 〈f, E〉
E ::= � | E e | v E | if E e e | join E
| let x = E in e | do v; E ; e

Reduction Rules

congruence|f
e→b e

′

T ·∪ 〈f, E [e]〉 →f T ∪ 〈f, E [e′]〉

fork|f
f ′ fresh

T ·∪ 〈f, E [fork e]〉 →f T ∪ 〈f, E [f ′]〉 ∪ 〈f ′, e〉

join|f T ·∪
〈
f, E [join f ′]

〉
·∪

〈
f ′, v

〉
→f T ∪ 〈f, E [v]〉 ∪

〈
f ′, v

〉
Figure 1 Operational semantics of a language with futures.

future f ′. After the expression e has been reduced to a value v, join f ′ will also reduce to v.
It is possible to join a task multiple times, each join reduces to the same value v. A join can
only be reduced by rule join|f if the corresponding future is resolved to a value, this detail
encodes the blocking nature of our futures.

The semantic transparency property of futures is maintained by our semantics: when a
task is created, its expression is evaluated and a placeholder f ′ is returned. When the task
is joined, the placeholder is used to look up the value of the expression. This is equivalent
to evaluating the future’s expression in place: as our base language is purely functional, an
expression always evaluates to the same value, regardless of the task it is executed in.

2.2 Software Transactional Memory

2.2.1 Description and Properties
Software Transactional Memory (STM) is a concurrency model that allows multiple threads
to access shared variables, grouping the accesses into transactions [26]. In our case, these
transactional variables are memory locations that contain a value, created using ref v. In
Haskell these are called TVars, in Clojure they are refs. A transaction atomic e encapsulates
an expression that can contain a number of primitive operations to the shared objects, such
as reads (deref r) and writes (ref-set r v).

Transactional systems guarantee serializability: transactions appear to execute serially,
i.e. the steps of one transaction never appear to be interleaved with the steps of another
[18]. The result of a transactional program, which may execute transactions concurrently,
must always be equal to the result of a serial execution of the program, i.e. one in which no
transactions execute concurrently.

Transactions are used to allow safe access to shared memory in programs with multiple
parallel tasks. These applications typically contain complex data structures of which pieces
are encapsulated in transactional variables. For example, a web browser could encapsulate
its Document Object Model in transactional variables, as its plug-ins are interested only in a
subtree of the Document Object Model, but expect a consistent view of this part. Other
examples include rich text documents, HTML pages, and CAD models [14]; networks, mazes,
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Syntax
r ∈ Reference
v ∈ Value ::= · · · | r
e ∈ Expression ::= · · · | ref e | deref e

| ref-set e e | atomic e

State
Program state p ::= 〈T, θ〉

Task t ∈ T ::= 〈f, e〉
Heap θ ∈ Reference ⇀ Value

Local store τ ∈ Reference ⇀ Value

Evaluation Contexts
P ::= 〈T ·∪ 〈f, E〉 , θ〉
E ::= · · · | ref E | deref E
| ref-set E e | ref-set r E

Reduction Rules

congruence|t
T→f T′

〈T, θ〉 →t 〈T′, θ〉

atomic|t
〈θ, {}, e〉 ⇒∗t 〈θ, τ ′, v〉

〈T ·∪ 〈f, E [atomic e]〉 , θ〉 →t

〈T ∪ 〈f, E [v]〉 , θ :: τ ′〉

Transactional Transitions

ref||t
r fresh

〈θ, τ, E [ref v]〉 ⇒t 〈θ, τ [r 7→ v], E [r]〉

ref-set||t 〈θ, τ, E [ref-set r v]〉 ⇒t 〈θ, τ [r 7→ v], E [v]〉

deref||t 〈θ, τ, E [deref r]〉 ⇒t 〈θ, τ, E [(θ :: τ)(r)]〉

atomic||t 〈θ, τ, E [atomic e]〉 ⇒t 〈θ, τ, E [e]〉

congruence||t
e→b e

′

〈θ, τ, E [e]〉 ⇒t 〈θ, τ, E [e′]〉

Figure 2 Operational semantics for language with transactions.

graphs, and lists [21]. STM is especially suited if it is not yet known at the start of the
atomic block which objects will be accessed: due to optimistic synchronization these are only
locked for the duration of the commit.

2.2.2 Formalization
In Figure 2 we extend our language with support for transactions. We extend the syntax
of Figure 1 with references to transactional variables (r), and the transactional operations.
The program state is extended with a transactional heap θ that contains the values of the
transactional variables.

Similar to the semantics for STM in Haskell [17], we make a distinction between two types
of transitions. Regular program state transitions are written with a single arrow p→t p

′ and
marked with |t. In contrast, transitions inside a transaction are written with a double arrow
〈θ, τ, e〉 ⇒t 〈θ, τ ′, e′〉 and marked with ||t. Here, θ is the transactional heap at the start of
the transaction, and remains unchanged throughout the transactional transitions as it is only
used to look up values. Conversely, τ is the local store that contains the updates made to
transactional variables during the transaction.

Transactional operations ref v creates a new r and sets its value in the local store to v.
ref-set r v updates the value of r to v. deref r will look for the value of r in θ :: τ , i.e.
first in the local store τ and then the global heap θ.3

atomic||t This rule applies to nested transactions, i.e. one atomic nested in another. A
nested transaction is reduced in the context of its outer transaction, hence a nested
atomic e reduces to e.

congruence||t For now, we only allow reduction rules of the base language (→b) to be
applied in a transactional context. There is no congruence rule for →f in a transaction,
so it cannot contain fork or join (this is introduced in the rest of this paper).

3 (θ :: τ)(r) =
{
τ(r) if r ∈ dom(τ)
θ(r) otherwise
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atomic|t The changes made to transactional variables during a transaction are gathered in
τ , and applied to the heap at once, in atomic|t. This encodes exactly the atomicity of
a transaction: its effects appear to take place in one indivisible step. This also encodes
the serializability of transactions: semantically it is as if each transaction were executed
serially.

According to the classification of Moore and Grossman [22], our transactional semantics is
high-level but small-step. It is high-level, as it relies on non-determinism in the reduction rules
(specifically in the definition of P) to find a successful execution. In contrast to an actual
implementation, in the semantics there is no notion of conflicting or aborting transactions.
Thus, we do not need to write down a commit protocol, allowing us to focus on the transitions
inside the transaction. This simplification provides a straightforward model for programmers,
and a correctness criterion against which more complex implementations can be verified. At
the same time, the semantics is small-step: a transaction takes several steps to complete
(denoted with ⇒t). This will allow us to describe parallelism in the transaction later.

In an actual implementation, multiple transactions execute in parallel. Clojure and
Haskell implement STM using optimistic synchronization instead of (pessimistic) locks: a
transaction is started, and if a conflict is detected while the transaction is running or during
its commit, the changes are rolled back and the transaction is retried. Our implementation
follows a similar approach and is described in detail in Section 6.

Transactions introduce non-determinism: a program with two tasks that each execute a
transaction has two serializations, one in which the first transaction precedes the second and
vice versa. However, this is a limited amount of non-determinism: the order in which the
individual instructions of two transactions are interleaved does not matter, the developer
only has to reason about transactions as a whole.

Lastly, by introducing transactions the fork and join constructs have lost their semantic
transparency. For instance, a program that forks two tasks that each execute a transaction
has a serialization in which the second transaction precedes the first. However, in the same
program with the fork and join constructs removed the first transaction always precedes
the second. This violates the semantic transparency property.

3 Motivation and Example

This section discusses the use of parallelism inside transactions, i.e. fork inside atomic.
Using an example, we illustrate that it is desirable for certain applications to use parallelism
in transactions. We discuss how this is realized in contemporary programming languages, and
demonstrate that they do not provide satisfying semantics, as several desirable properties
are not guaranteed.

As an example, we look at the Labyrinth application of the STAMP benchmark suite
[21]. This application implements a transactional version of Lee’s algorithm [20, 31]. Lee’s
algorithm, as it is used in chip design, places electric components on a grid and connects
them without introducing overlapping wires.

Listing 1 shows the transactional version of Lee’s algorithm implemented in Clojure,
based on [31]. Its main data structure is grid, a two-dimensional array of transactional
variables. The aim of the application is to find non-overlapping paths between given pairs
of source and destination points. For example, Figure 3a depicts four source–destination
pairs on an 6 × 6 grid, and Figure 3e shows a possible solution of connecting paths. The
transactional variable work-queue is initialized to the input list of source–destination pairs.
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Figure 3 Different steps of the Labyrinth algorithm, illustrated using 4 paths on a two-dimensional
6× 6 grid. The black squares are impenetrable ‘walls’.

Listing 1 Transactional version of Lee’s algorithm in Clojure.
1 (def grid (initialize-grid w h)) ; w× h array of cells, each cell is a ref
2 (def work-queue (ref (parse-input))) ; list of source–destination pairs
3

4 (loop [] ; 4

5 (let [work (pop work-queue)] ; atomically take element from work queue
6 (if (nil? work)
7 true ; done
8 (do
9 (atomic

10 (let [local-grid (copy grid)
11 [src dst] work ; destructure source–destination pair using pattern matching
12 reachable? (expand src dst local-grid)] ; ref-sets on local-grid
13 (if reachable?
14 (let [path (traceback local-grid dst)]
15 (add-path grid path))))) ; ref-sets on grid
16 (recur)))))

As long as the work queue is not empty, a source and destination pair in the input will be
processed in a new transaction (lines 9–15). This happens in four steps. First, a local copy
local-grid is created of the shared grid (line 10). Next, a breadth-first search expands
from the source point (line 12), recording the distance back to the source in each visited
cell of the local-grid using ref-set (Figure 3b), until the destination point is reached.
Afterwards, the traceback function finds a path from the destination back to the source,
minimizing the number of bends (line 14; Figure 3c). Finally, the shared grid is updated to
indicate these cells are now occupied (line 15; Figure 3d). After the transaction has finished,
this process is repeated until all work has been processed.4

To parallelize this algorithm, several “worker threads” execute the loop simultaneously.
Each thread repeatedly takes a source–destination pair from the work queue and attempts to
find a connecting path in a transaction. If two threads result in overlapping paths, a conflict
occurs when updating the global grid (line 15), as the two threads attempt to write to the
same transactional variable (that represents the cell where the paths collide). As a result,
one of the two transactions is rolled back and will look for an alternative path.

4 Clojure’s loop (loop [x 0] (recur 1)) defines and calls an anonymous function, in which recur
executes a recursive call. It is equivalent to Scheme’s named let: (let n ([x 0]) (n 1)).
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Table 1 Characterization of the STAMP applications, abridged from [21]. These numbers were
gathered on a simulated 16-core system. The transaction length and transactional execution time
are color-coded high  , medium G#, low #.

Application Instructions Time
/tx (mean) in tx

labyrinth 219,571  100%  
bayes 60,584  83%  
yada 9,795  100%  
vacation-high 3,223 G# 86%  
genome 1,717 G# 97%  
intruder 330 # 33% G#
kmeans-high 117 # 7% #
ssca2 50 # 17% #

Minh et al. [21] measure various metrics of the applications in the STAMP benchmark,
shown in Table 1. We compare the Labyrinth application with the other applications. Firstly
we see that this application spends 100% of its execution time in transactions. Hence, the
amount of parallelism in this program is maximally the number of transactions that are
created, which is the number of input source–destination pairs, even on a machine with more
cores. To allow more fine-grained parallelism to be exploited in this program, it is necessary
to allow parallelism inside the transactions. Secondly, we infer that the transactions in this
application take a long time to execute: an average transaction of the Labyrinth application
contains several orders of magnitude more instructions than the other applications in the
STAMP benchmark. This means conflicts will be costly: retrying a transaction incurs a large
penalty. Parallelizing the transactions will reduce this cost.

Profiling reveals that, for typical inputs, more than 90% of the execution time of the
program is spent in the expansion step, which performs a breadth-first search. Listings 2 and
4 show a simplified version of the relevant code. The expand function starts with a queue
containing the src point (listing 2, line 2). In expand-point (listing 2, line 10), the first
element of the queue is expanded, which updates the neighboring cells in local-grid for
which a cheaper path has been found, using ref-set (listing 4, line 11), and returns these
neighbors. These are then appended to the queue (listing 2, lines 8–10), and the loop is
restarted. This continues until either the queue is empty or the destination has been reached.

In Listing 3, additional parallelism is exploited by replacing the breadth-first search
algorithm by a parallel version of this algorithm. It uses layer synchronization, a technique
in which all nodes of one layer of the breadth-first search graph are expanded—in parallel—
before the next layer is started [33]. The queue now starts as a set containing only the src
point (line 2). In each iteration of the loop, expand-step will expand all elements in the
queue in parallel (lines 11–13), using Clojure’s parallel map operation pmap. The union of all
returned neighbors is then used as the queue for the next iteration of the loop (line 10). As
before, this continues until either the queue is empty or the destination has been reached.

However, this code does not work as expected in Clojure! Each iteration of pmap is
executed in a new thread, executing a call to expand-point, in which an atomic block
appears. As transactions are thread-local in Clojure, it detects no transaction is running in
the current thread, and starts a new transaction. When the atomic block ends, this inner
transaction is committed. However, the surrounding transaction may still roll back, while
the inner transaction cannot be rolled back anymore.
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Listing 2 Expansion step: sequential, breadth-first search of local grid.
1 (defn expand [src dst local-grid]
2 (loop [queue (list src)]
3 (if (empty? queue)
4 false ; no path found
5 (if (= (first queue) dst)
6 true ; destination reached
7 (recur
8 (concat
9 (rest queue)

10 (expand-point
11 (first queue)
12 local-grid)))))))

Listing 3 Parallel breadth-first search of local grid.
1 (defn expand [src dst local-grid]
2 (loop [queue (set [src])}]
3 (if (empty? queue)
4 false ; no path found
5 (if (contains? queue dst)
6 true ; destination reached
7 (recur (expand-step queue local-grid))))))
8

9 (defn expand-step [queue local-grid]
10 (reduce union (set [])
11 (pmap ; parallel map
12 (fn [p] (expand-point p local-grid))
13 queue)))

In general, Clojure allows threads to be created in a transaction, but they are not part
of that transaction’s context. When an atomic block appears in a new thread, a separate
transaction is created with its own, possibly inconsistent, snapshot of the shared memory.
This transaction will commit separately. Clojure does not consider thread creation as part of
the transaction, hence it is not undone when the encapsulating transaction is rolled back. As
such, the serializability of the transactions is broken. This is not the desired behavior of the
presented example.

The same problems occur in most library-based STM implementations, including
ScalaSTM, Deuce STM for Java, and GCC’s support for transactional memory for C
and C++.5 Haskell, on the other hand, does not allow the code above to be written. The
type system prohibits the creation of new threads in a transaction, as transactions are
encapsulated in the STM monad while forkIO can only appear in the IO monad. As such,
the serializability of transactions is guaranteed, but the parallelism is limited.

In conclusion, there are several reasons why current approaches to parallelism inside
transactions are unsatisfactory [22]:

By disallowing the creation of threads in transactions, in effect, the parallelism of a
program is limited: every time transactions are introduced to isolate some computation
from other threads, the potential performance benefits of parallelism inside this computa-

5 https://nbronson.github.io/scala-stm/, https://sites.google.com/site/deucestm/, https://
gcc.gnu.org/wiki/TransactionalMemory. GCC has support for transactional memory since version
4.7, although still labeled experimental.
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Listing 4 Expand a point. (Code simplified for clarity.)
1 (defn expand-point [current local-grid]
2 (atomic
3 (let [cheaper-neighbors
4 (filter
5 (fn [neighbor]
6 (< (cost neighbor current) ; cost of path to neighbor, through current
7 (deref neighbor))) ; cost of previous path to neighbor
8 (neighbors local-grid current))] ; neighbors of current
9 (doseq [neighbor cheaper-neighbors] ; for each cheaper neighbor:

10 (ref-set neighbor (cost neighbor current))) ; set new cost
11 cheaper-neighbors)))

tion are forfeited. This problem becomes apparent for programs containing long-running
transactions. In the Labyrinth example, the maximal amount of parallelism is equal to
the number of input source–destination pairs, even though additional parallelism could
be exploited by the breadth-first search algorithm.
In languages and libraries that do allow the creation of threads in transactions, threads
in transactions do not execute within the context of the encapsulating trans-
action. This means they do not have access to the transactional state of the encapsulating
transaction; instead a new transaction is started. The modifications of the new transaction
are committed separately, and the serializability of transactions is no longer guaranteed.
Inside a transaction, calling a library or other part of the program that contains fork
is unsafe: it is either not allowed or can lead to incorrect results. This can severely
hinder re-usability [15]. For instance, it is impossible to use a library that implements
a parallel breadth-first search for the Labyrinth application.
Last, transactions are used to ensure isolation, e.g. to prevent overlapping paths in
the example, but they also form the unit of parallelism, evidenced by the fact that
the maximal amount of parallelism is equal to the number of transactions. Moore and
Grossman [22] and Haines et al. [15] argue that isolation and parallelism are orthogonal
issues, but the notions of isolation and parallelism are conflated. Parallelizing the
search algorithm should be orthogonal to the isolation between transactions, but it is not.

The ideal solution is one where several tasks can be created in a transaction and execute
in parallel, i.e. allowing fork inside atomic (unlike Haskell’s forkIO). Furthermore, these
tasks should be able to access and modify the transactional variables, using the transactional
context of the encapsulating transaction (unlike Clojure’s or Scala’s threads in transactions).
With our approach, we want to allow coordination of different tasks by encapsulating them
in a transaction: they either all succeed and all their changes are committed, or they all roll
back. Finally, the serializability between all transactions in the program should be preserved.

4 Transactional Tasks

In this section, we define transactional tasks (Section 4.1). Transactional tasks are parallel
tasks that are spawned in a transaction. A transactional task can access and modify the state
of its encapsulating transaction, i.e. it operates within its transactional context. To allow
multiple tasks to operate on the same transactional context simultaneously, each transactional
task works on its own version of the data. This resembles traditional transactions, where
each transaction operates on its own local store, and later commits its local updates. When
a transactional task is joined by its parent, its updates are merged into its parent’s context.
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Figure 4 The timeline of the transactional tasks that are forked and joined when expanding the
labyrinth grid. At each point in time, we show the grid as it exists in that task. The cells that are
stored in the snapshot of the task are white, the modifications stored in the local store are blue.

We describe the joining semantics in Section 4.2, and discuss the properties of transactional
tasks in Section 4.3.

4.1 A Transactional Task
In this section, we define what a transactional task is: what data it contains and what
operations can be performed on it.

Each transaction starts with one root task that will evaluate the transaction’s body. In a
task, more tasks can be created using the fork e construct.

In contrast with other approaches, in our model each transactional task created by a fork
also operates with respect to a transactional context. Conceptually, each transactional task
operates on its own private copy of the transactional heap, and will access and modify that.
To this end, a transactional task contains two parts: a snapshot containing the values of the
transactional variables when the task was created, and a local store containing the values the
task has written to transactional variables. In Figure 4, a timeline of the expand operation
of the Labyrinth application is shown. At the start of the transaction, the snapshot of the
root task contains the source cell at distance 0 (in white). After step 1, the local store is
modified with the expanded cells at distance 1 (in blue).

When a task is created, its snapshot reflects the current state of the transactional variables.
Hence, it is the snapshot of its parent task modified with the current local store of the parent.
The snapshot of the root task is a copy of the transactional heap. The local store of a newly
created task is empty. In Figure 4, step 2 creates a fork, the forked task’s snapshot (in white)
consists of its parent’s snapshot combined with the parent’s local store.

While a task executes, it can look up transactional values in its snapshot, and modify
them by storing their updated values in the local store. When a task finishes its execution,
its future is resolved to its final value. In steps 3a and 3b, the root task and its child both
expand a cell and update their local stores (in blue).

When a task is joined for the first time, its local store is merged into the task performing
the join, and the value of its future is returned. Step 4 copies the modified cells of the child
task (blue cells) into the root task. Subsequent joins of the same task will not repeat this, as
their changes are already merged; they will only return the last value of its future.

At the end of the transaction, the modifications of all transactional tasks should have
been merged into the root task, and these are committed atomically. If a conflict occurs at
commit time, the whole transaction is retried. If a conflict occurs in one of the tasks while

ECOOP 2016



23:12 Transactional Tasks: Parallelism in Software Transactions

the transaction is still running, all tasks are aborted and the whole transaction is retried. In
other words, the tasks within a transaction are coordinated so that they either all succeed or
all fail: they form one atomic block.

4.2 Conflicts and Conflict Resolution Functions
On a join, conflicts are possible: it may happen that the child task has changed a transactional
variable that the parent also modified since the creation of the child. In that case, a write–
write conflict occurs. An example of such a conflict is marked on Figure 4 with an asterisk
(*). Note that in this example both values happened to be the same, but that this is not
necessarily the case in general.

For these situations, we allow a conflict resolution function to be specified per transactional
variable (similar to Concurrent Revisions [9]). To this end, the programmer provides
a resolve function when the transactional variable is created, i.e. (ref initial-value
resolve). If a conflict occurs, the new value of the variable in question is the result of
resolve(voriginal, vparent, vchild), where vparent and vchild refer to its value in the parent and
child respectively, and voriginal refers to its value when the child was created (stored in the
child’s snapshot).

In the Labyrinth example, the new value of a conflicting cell should be the minimum
of the joining tasks, i.e. resolve(o, p, c) = min(p, c), as we want to find the cheapest path.
Generally, conflict resolution functions are useful when each task performs a part of a
calculation. For example, when each task calculates a partial result of a sum, the resolve
function is resolve(o, p, c) = p + c − o, i.e. the total is the value in the parent plus the
value that was added in the child since its creation. Similarly, if several tasks generate sets
they are combined using resolve(o, p, c) = p ∪ c, or if several tasks generate lists of results
they can be combined with resolve(o, p, c) = concat(o, p− o, c− o). If no conflict resolution
function is specified, we default to picking the value in the child over the one in the parent,
i.e. resolve(o, p, c) = c. We reason that explicitly joining a task is equivalent to requesting
all its changes to be merged. On the other hand, the parent may be preferred by specifying
resolve(o, p, c) = p.

Read–write “conflicts” are not considered to be actual conflicts in our model. If the
parent reads a transactional variable while its child wrote to it, the parent still reads the ‘old’
value from its snapshot. The value will only be updated after an explicit join of the child.
This prevents non-determinism, as the moment at which changes from one task become
visible in another does not depend on how tasks are scheduled.

4.3 Properties
Transactional tasks provide several useful properties. We describe them here and discuss
them more formally in Section 5.2.

Serializability of transactions Transactional tasks should always be joined before the end
of the transaction they are created in. While a transaction can contain many tasks, each
task is fully contained in a single transaction. The changes of the tasks in a transaction
have therefore all been applied to the transaction’s local store before commit, and on
commit they are applied to the transactional heap at once. Consequently, transactions
remain atomic and serializable. The introduction of transactional tasks does not change
the developer’s existing mental model of transactions.

Coordination of transactional tasks The changes of all tasks created in a transaction are
committed at once. This means they either all succeed, or all fail. If a conflict occurs
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in one task during its execution, all other tasks in the transaction are aborted and the
transaction, as a whole, restarts. As such, transactions can be used as a mechanism to
coordinate tasks. The developer can reason about transactions as one atomic block.

Determinism in transactions Transactional tasks do not introduce non-determinism in trans-
actions. Firstly, it does not matter in which order the instructions of two tasks are
interleaved since they both work on their own copies of the data. Secondly, the join
operation is deterministic as long as the conflict resolution function is. The changes
made in one task only become visible in another after an explicit and deterministic join
statement, making the behavior in a transaction straightforward to predict. Furthermore,
the developer can easily trace back the value of a variable by looking where tasks were
joined.

Transactional tasks are nested transactions A transactional task makes a read-only snap-
shot of the transactional state upon its creation, and stores its modifications in a local
store. This mirrors closely how a regular transaction creates a read-only copy of the
transactional heap at its creation and stores its modifications in a local store. We could say
that, while it is not syntactically shown, a transactional task starts a ‘nested transaction’.
This similarity should provide a familiar semantics to developers. The differences with
nested transactions in the existing literature are discussed in Section 8.

No semantic transparency Transactional tasks are not semantically transparent: wrapping
fork around an expression in a transaction changes the semantics of the program. As
explained at the end of Section 2.2, this was already the case for non-transactional tasks
that contain a transaction: they also do not necessarily evaluate to the same result every
time.
Violating the semantic transparency is a necessary compromise to achieve our goal of
executing tasks in parallel. If a transactional task were semantically transparent, its
effects on the transactional state would need to be known at the point where it is created,
before the parent task can continue. Therefore the child task and its parent would need
to be executed sequentially. Instead, we opt to omit semantic transparency as a necessary
compromise to accomplish the parallel execution of tasks.
Nonetheless, we argue that we maintain the “easy parallelism” of futures. Firstly, the
determinism in transactions ensures that the order in which the instructions in the
transactional tasks are interleaved does not affect the result. Secondly, transactional tasks
provide a straightforward and consistent semantics of how the transactional effects of
tasks are composed. Each task can modify the transactional state, but its effects become
visible in a single step only when it is joined, and conflicts are resolved deterministically.

Non-transactional tasks maintain their semantics Tasks that are spawned outside a trans-
action are unchanged in our model: these non-transactional tasks cannot access or modify
the transactional state directly. They can still create a transaction internally to modify
the transactional state indirectly, as shown earlier in Section 2.

4.4 Summary
Using the concepts introduced in this section, the code in Listings 3 and 4 now behaves as
expected. Each newly created task is part of the encapsulating transaction’s context, and
has access to its state. Transactional tasks can observe the changes that occurred before
they were created, and they make their modifications in a private local store. When they are
joined, their changes become visible in their parent task.

Eventually, all tasks are joined into the transaction and the transaction commits. All
tasks of a transaction are coordinated, and transactions remain serializable, therefore all
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tasks in one transaction behave as a single atomic block. Transactional tasks provide a
straightforward semantics: behavior in a transaction is deterministic, and values can be
traced back by looking at the join statements. Transactional tasks also provide a familiar
semantics: they behave as nested transactions.

5 Semantics and Properties

In this section, we describe the semantics and properties of the transactional tasks model.6

5.1 Semantics
Figure 5 defines how transactional tasks are modeled. The program state and non-transactional
tasks are as defined in Section 2. On the other hand, a transactional task tx contains the
following components: a future f used to join the task and read its final result, a snapshot σ
that contains the values of the transactional variables at its start, a local store τ that stores
its changes to transactional variables, a set Fs of spawned child tasks, a set Fj of tasks joined
into this task, and finally the expression e being evaluated in this task.

Outside a transaction, rules are written 〈T, θ〉 →tf 〈T′, θ′〉, similar to Section 2.2. Inside
a transaction, rules are written Tx ⇒tf T′

x, i.e. they work on a set of transactional tasks.
A task belongs either to the set T if it is not transactional, or to one of the sets Tx if it is
transactional (there is one such set for each transaction). Outside transactions, tasks keep
their semantics as previously (rule congruence|tf , as discussed in Section 2.1).

atomic|tf When a transaction is started, one transactional task is created: the “root” task.
Its snapshot σ is the current state of transactional memory, i.e. the transactional heap θ.
Its local store τ is initially empty. By applying one or more ⇒tf rules, the transaction
will eventually be reduced to another set of transactional tasks, one of which is the root
task. Its local store has been updated to τ ′, which is merged into the transactional heap
on commit. We require that all tasks created in the root task have been joined (Fs ⊆ Fj).
This is discussed in further detail in Section 5.2.
The essence of this rule is the same as for atomic|t of Section 2.2: the changes τ ′ of
the transaction are applied at once to the heap θ, which has not changed during the
transaction. The major difference with rule atomic|t is that transactions now consist of a
set of tasks, instead of one expression and local store.

congruence||tf Rule congruence||tf specifies that the transactional transitions from Figure 2
in Section 2.2 apply in transactional tasks as well. In other words, in a transactional task
creating, reading, and writing transactional variables, nesting transactions, and using the
base language work just like before—although now they operate on the task’s local store.

fork||tf When a task is created, it creates a copy of the current state. Firstly, it creates a
copy of the current transactional heap, i.e. its snapshot σ is set to the snapshot of its
parent updated with the local modifications of its parent. In the actual implementation
this is done differently for efficiency (see Section 6). Secondly, the set of joined tasks Fj
is copied from its parent. This ensures that if any of these tasks are joined again, their
transactional state is not merged again.

join1||tf and join2||tf Two rules describe the join operation of f ′ into f : join1||tf is triggered
on the first join, join2||tf on subsequent joins.

6 An executable implementation of the operational semantics built using PLT Redex [12] is available in
the artifact, or at https://github.com/jswalens/transactional-futures-redex.

https://github.com/jswalens/transactional-futures-redex
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State
Program state p ::= 〈T, θ〉

Non-transactional task t ∈ T ::= 〈f, e〉
Transactional task tx ∈ Tx ::= 〈f, σ, τ,Fs,Fj, e〉

Snapshot, local store σ, τ ∈ Reference ⇀ Value
Spawned and joined tasks Fs,Fj ⊆ Future

Reduction Rules

congruence|tf
T→f T′

〈T, θ〉 →tf 〈T′, θ〉

atomic|tf
f ′ fresh {〈f ′, θ, {},∅,∅, e〉} ⇒∗tf {〈f ′, θ, τ ′,Fs,Fj, v〉} ∪ Tx Fs ⊆ Fj

〈T ·∪ 〈f, E [atomic e]〉 , θ〉 →tf 〈T ∪ 〈f, E [v]〉 , θ :: τ ′〉

Transactional Transitions

congruence||tf
〈σ, τ, e〉 ⇒t 〈σ, τ ′, e′〉

Tx ·∪ 〈f, σ, τ,Fs,Fj, E [e]〉 ⇒tf Tx ∪ 〈f, σ, τ ′,Fs,Fj, E [e′]〉

fork||tf
f ′ fresh

Tx ·∪ 〈f, σ, τ,Fs,Fj, E [fork e]〉 ⇒tf

Tx ∪ 〈f, σ, τ,Fs ∪ {f ′},Fj, E [f ′]〉 ∪ 〈f ′, σ :: τ,∅,∅,Fj, e〉

join1||tf

f ′ /∈ Fj
〈
f ′, σ′, τ ′,F′s,F′j, v

〉
∈ Tx F′s ⊆ F′j

Tx ·∪ 〈f, σ, τ,Fs,Fj, E [join f ′]〉 ⇒tf Tx ∪
〈
f, σ, τ :: τ ′,Fs,Fj ∪ F′j ∪ {f ′}, E [v]

〉
join2||tf

f ′ ∈ Fj
〈
f ′, σ′, τ ′,F′s,F′j, v

〉
∈ Tx

Tx ·∪ 〈f, σ, τ,Fs,Fj, E [join f ′]〉 ⇒tf Tx ∪ 〈f, σ, τ,Fs,Fj, E [v]〉

Figure 5 Operational semantics of transactional tasks.

A join can only occur once f ′ has been resolved, i.e. once the task has been reduced to
a single value v. Moreover, we require that the joined task has itself joined all of its
children (F′

s ⊆ F′
j). This rule applies recursively: each of the tasks in F′

s should also have
joined its children. Thus, this condition ensures that all effects of the task and all its
descendants have been applied to its local store τ ′.
On the first join of a task, its changes are pulled into the joining task, by merging its τ ′

into the local τ and adding its set of joined tasks F′
j to the local Fj. On subsequent joins,

by any task that has directly or indirectly joined f ′ before, the changes are not merged
again, as these effects have already been merged. In both cases join resolves the future to
its value v.
A task does not necessarily need to be joined by its parent: we do not require f ′ ∈ Fs.
Any task that is able to obtain a reference to the task’s future can join it, using the same
rules. This maintains the flexibility of traditional futures. However, a transactional task
cannot be joined outside the transaction it was created in, as it depends on the initial
state of the heap at the start of the transaction. This is enforced as the joined task should
be in Tx, and there is a separate such set for each transaction.

Conflict resolution function For simplicity, we did not describe the functionality provided
by the custom conflict resolution function of Section 4.2 in the operational semantics.
Instead, the child’s value always overwrites the parent’s value. To add this function,
the operation τ :: τ ′ in rule join1||tf should be replaced with an operation that calls the
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(atomic
(let [a (fork (let [d (fork ...)

e (fork ...)] ...))
b (fork (let [f (fork ...)] ...))
c (fork (let [g (fork ...)

h (fork ...)] ...))]
...))

root

a b c

d e f g h

Figure 6 The tasks created in a transaction form a tree. By writing the tree in post-order
notation, d-e-a-f-b-g-h-c-root, we see that task b can join tasks d, e, a, and f. It may be less obvious
that task f can also join task d: task a may return d, and f can access a.

resolve function for conflicting writes in τ and τ ′. The operations θ :: τ in atomic||tf and
σ :: τ in fork||tf do not need to be replaced: they represent non-conflicting writes.

5.2 Properties

The following properties are a result of the operational semantics:

Serializability This semantics is trivially serializable: at most one transaction is active at a
time, as it is a high-level semantics, and is committed at once in atomic|tf . The semantics
thus describes how a correct implementation of transactional tasks should behave for
the programmer, and forms a correctness criterion for more complex implementations.
An actual implementation that allows multiple transactions to execute concurrently is
discussed in Section 6.

Deadlock freedom The tasks created in a transaction form a tree, as illustrated in Figure 6,
with the root task at the root of the tree. Each task is identified by a future, which is a
reference that can be passed around and supports one operation: join. Each task can
obtain the future of 1) its child tasks, as it created those; 2) its descendants, if a child
returns the future of a descendant (e.g. the root task can access d if a returns d); 3) its
earlier siblings (e.g. b can access a); and 4) any descendants of its earlier siblings, if a
sibling returns the future of one of its descendants (e.g. f can access d if a returned d).
Tasks cannot obtain their own future. Writing the tree in post-order notation defines a
strict total order on the tasks, in which each task can access the futures of the tasks that
come before it. This is a consequence of the lexical scoping of the language. This means
that there cannot be circular dependencies between futures, and therefore deadlocks are
impossible.

Coordination: a transaction’s tasks are all committed, atomically Rule atomic|tf requires
that all tasks created by the root task have been joined before commit (Fs ⊆ Fj). Fur-
thermore, rule join1||tf specifies that each task should join its sub-tasks before it in turn
can be joined (F′

s ⊆ F′
j). As a result, all tasks created in the transaction should have been

joined, directly or indirectly, into the root task before it can commit. If this is not the
case, the program is incorrect. Consequently, the local store τ ′ of the root task contains
the changes to the transactional state of all tasks in the transaction. In rule atomic|tf ,
these changes are committed atomically.

In-transaction determinacy In a transaction, there is no non-determinism: given the initial
state of the transactional heap θ, a transaction will always reduce to the same value v
and local store τ ′, assuming that all conflict resolution functions are determinate. We say
that a transaction is determinate. This can be proven using a technique similar to [10].
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Listing 5 Overview of implementation of transactions and transactional tasks as an extension of
Clojure. Abridged versions of the interfaces of the classes Transaction and TxTask are listed.

1 public class Transaction {
2 // (dosync fn): runs fn in a transaction and returns the return value of fn.
3 static public Object runInTx(Callable fn) {
4 // If we’re already in a transaction, use that one; else create one. In the new tx, fn is called, and an attempt to
5 // commit is made. As long as committing fails, we rerun fn and retry.
6 }
7 void stop(); // Indicate that tx and its tasks should stop by setting stop flag.
8 }
9

10 // Implements Callable so that it can be created in a thread pool; implements Future so we can wait for its final value.
11 public class TxTask implements java.util.concurrent.Callable, java.util.concurrent.Future {
12 static ThreadLocal<TxTask> task; // Transactional task running in current thread (can be null)
13 Transaction tx; // Associated transaction
14
15 Vals<Ref, Object> snapshot; // In-tx values of refs on creation of this task (from all ancestors)
16 Vals<Ref, Object> values; // In-tx values of refs (set/commute)
17 Set<Ref> sets; // Set refs
18 Map<Ref, List<CFn>> commutes; // Commuted refs
19 Set<Ref> ensures; // Ensured refs
20 Set<TxTask> spawned; // Spawned tasks
21 Set<TxTask> joined; // Directly/Indirectly joined tasks
22
23 // (fork fn): spawns a task. Creates TxTask if a transaction is running, or a regular Future otherwise.
24 static public Future spawnFuture(Callable fn) { ... }
25 // Create a transactional task in tx to execute fn. Snapshot is created from parent (= current thread).
26 TxTask(Transaction tx, TxTask parent, Callable fn) { ... }
27
28 Object doGet(Ref r) { ... } // (deref r)
29 Object doSet(Ref r, Object v) { ... } // (ref-set r v)
30 Object doCommute(Ref r, IFn fn, ISeq args) { ... } // (commute r fn args)
31 void doEnsure(Ref r) { ... } // (ensure r)
32 void join(TxTask child) { ... } // (join child) (new)
33 }

6 Implementation

We implemented transactional tasks as an extension of Clojure, a Lisp dialect implemented
on top of the Java Virtual Machine.7 In this section, we briefly describe the core concepts of
Clojure’s STM and our modifications to it. Listing 5 lists the interface of the Transaction
and TxTask (transactional task) classes.

Clojure represents transactional variables as Refs. It uses Multi-Version Concurrency
Control (MVCC) [6]: each ref contains a (limited) history of previous values and the time at
which they were set. As a result, transactions can read an older version of a ref even after it
has been overwritten, preventing conflicts. Only if no recent-enough value is available in the
limited history, will the transaction abort and restart.

A transaction contains several data structures to store its modifications (together they
correspond to the local store τ of the operational semantics): sets, commutes, and ensured
for refs modified using ref-set, commute, and ensure. The latest value of each modified
ref is stored in the mapping values. In traditional Clojure these data structures are stored
in the Transaction. To support transactional tasks, we move them to the TxTask class, as
each task should have its own local store of modifications. Additionally, the sets of spawned
and joined tasks are stored in the current task as well, mirroring the operational semantics.

Clojure translates a transaction (dosync e) into Transaction.runInTx(fn), where fn
corresponds to a function executing e. The creation of a task using (fork e) is translated
to TxTask.spawnFuture(fn) and returns a new TxTask, which runs in a new thread (using
a thread pool). Upon its creation, the new task’s snapshot and values are set to a copy

7 It is available in the artifact, or at https://github.com/jswalens/transactional-futures.
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(a) Code example.

(atomic
1(ref-set gray A)
2(fork 3(ref-set blue B)

4(fork 5(ref-set green C))
6(ref-set red D)
...)

7(ref-set purple E)
...)

(b) Data after step 3.

A

B

s₂

v₂

s₁

v₁

(c) Data after step 7.

A

E B

D E

s₂

v₂

s₃

v₃

s₁

v₁

Figure 7 In the code example (a) three tasks are created. Each task contains a snapshot, which
is immutable through the task’s lifetime, and values, to which updated values for refs are written.
(b) and (c) illustrate how the data structures are stored in memory.

of the parent’s current values, as described in Section 6.1. The other data structures start
empty. When reading a ref, doGet(r) searches for it first in the task’s values, next in its
snapshot, and finally in the ref’s history. Modifying a ref calls doSet(r, v), which adds
the ref to sets and its value to values.

When a parent task joins a child, (join child) is translated to parent.join(child),
which takes several steps. Firstly, it waits until the child task has completed. Next, it checks
whether the child task has joined all of its children. Then, the value of each ref in the
sets of the child is copied from the child’s to the parent’s values, calling the resolution
function on conflicts. The child’s sets, commutes, ensures, and joined are appended to
the parent’s. Additionally, the child is added to its parent’s joined. Lastly the child’s final
value is returned. On subsequent joins of the same child, only the final value is returned.

The transaction also contains a ‘stop’ flag. If one of the tasks encounters a conflict during
its execution, it sets the transaction’s stop flag and stops. The transactional operations
(doGet, doSet, join...) contain a check point: they check the stop flag when they are called
and abort their task if it is set. Consequently, when a task encounters a conflict and sets the
stop flag, all other tasks in the same transaction will stop once they reach their next check
point, and once all tasks have stopped the transaction is restarted.

When a transaction commits, at the end of Transaction.runInTx(fn), it first checks
whether the root task has joined all of its children: if it has we know all tasks have been
joined (as explained in Section 5.2), otherwise an exception is thrown. Next, each modified
ref is locked and the changes are committed. This may abort other transactions: by setting
the stop flag of the other transaction, eventually all its tasks will stop and the conflicting
transaction restarts.

6.1 Implementation of Snapshot and Local Store
Even though our implementation is a prototype, we briefly describe how the snapshot and
values are stored, the most frequently used data structures in a transactional task. Even
though the snapshot and values of a task are copied from its parent when it is created, we
do not actually store duplicates.

Figure 7a lists a program that creates three tasks that each modify some refs. In Figure 7b
we illustrate how the data structures are stored in memory after the third statement. We
write si and vi for the snapshots and values of task i. Each data structure comprises a linked
list of hash maps. We exploit the fact that snapshots are immutable to share some of these
hash maps between the data structures.



J. Swalens, J. De Koster, and W. De Meuter 23:19

In the code example, task 1 (the root task) first sets A. A second task is forked and sets B.
Consequently, after this step, s1 is empty, v1 and s2 both contain A, and v2 consists of A and
B. Figure 7b illustrates how this is stored in memory. The snapshots are shared between the
two tasks: these are immutable structures only used for look-up. The values of both tasks,
v1 and v2, consist of a linked list that first contains a hash map that stores their private
changes and next contains the shared snapshots. When ref B is updated in the second task,
it is updated in the first hash map pointed to by v2. When a ref is read in the second task,
we iterate over the linked list pointed to by v2, up the tree, until the ref is found.

Creating a new task, as in step 4, is now a matter of modifying some pointers. When
task 3 is forked by task 2, the node that represented v2 becomes the snapshot s3 of the new
task, with two empty children to contain the new values of tasks 2 and 3. After the last step,
in Figure 7c, tasks 2 and 3 have updated their values with D and E respectively. Hence, v3
now consists of the new values of task 3, the snapshot of task 3, the snapshot of task 2, and
the snapshot of task 1.

By representing the snapshot and values data structures of a transactional task as
a linked list of hash maps, the memory overhead of duplicated entries is eliminated. In
exchange, the look-up time slightly increases as we need to iterate over the list of maps. The
time to update a value is unchanged: a write happens directly in the first hash map. Forking
is a matter of creating two new maps and adjusting an existing pointer. Joining still means
copying values and potentially resolving conflicts, as explained earlier.

Furthermore, we performed another optimization for a common use case. In many
programs it is common to create several tasks immediately after another, for example in a
parallel map as in Section 3. This leads to a sequence of empty nodes in the tree. Instead
of pointing a new child to an empty node, we directly point to the previous non-empty
node. This optimization avoids the need to traverse empty nodes on look-ups. It is a safe
optimization as non-leaf nodes in the tree are always snapshots and therefore immutable.

7 Case Studies and Experimental Results

We evaluate the applicability and performance benefits of transactional tasks using the
STAMP benchmark suite [21]. STAMP consists of the eight applications listed in Table 1. It
has been composed so as to represent a variety of use cases for transactions, from several
application domains and with varying properties. We are interested in two characteristics in
particular: (1) the transaction length, i.e. the average number of instructions per transaction
in an execution; (2) time spent in transactions, i.e. the ratio of instructions in transactions
over the total number of instructions in an execution of the program. When most of the
execution time is spent in transactions, we can assume that those transactions execute
performance-critical parts of the application. If these transactions are also long-running,
they potentially benefit from more fine-grained parallelism.

As shown in Table 1 (page 8), five out of the eight applications in the STAMP suite spend
a large proportion of time in transactions, three of which have long-running transactions:
Labyrinth, Bayes, and Yada. In the rest of this section, we study Labyrinth and Bayes.

We also examined the Yada application. While its transactions have a relatively long
execution time, they contain sequential dependencies that make it difficult to parallelize
the different steps. Hence, we were unfortunately not able to achieve a speed-up using
transactional tasks. The overhead of creating transactional tasks overshadows the benefit of
performing only a small piece of the program in parallel. We therefore will not look at this
application in further detail.
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For these case studies, we first ported the STAMP applications from C to Clojure. After-
wards, we used transactional tasks to parallelize individual transactions where applicable.8
In the performance results, the implementations with transactional tasks are compared with
the original version in Clojure.

Experiments ran on a machine with two Intel Xeon E5520 processors, each containing
four cores with a clock speed of 2.27 GHz and a last-level cache of 8 MB. HyperThreading
was enabled, leading to a total of 16 logical threads. The machine has 8 GB of memory. Our
transactional tasks are built as a fork of Clojure 1.6.0, running on the Java HotSpot 64-Bit
Server VM (build 25.66-b17) for Java 1.8.0. Each experiment ran 30 times; the graphs report
the median and the interquartile range.

7.1 Labyrinth
The Labyrinth benchmark was already introduced in Section 3. The goal of the benchmark
is to connect given pairs of points in a grid using non-overlapping paths. For each pair, a
breadth-first search is executed in a new transaction. In Section 4 we discussed how each
iteration of the breadth-first search can process its elements in parallel using transactional
tasks. Here, we optimized this solution to first distribute the elements into a configurable
number of partitions, and then process these partitions in parallel. Furthermore, we ran the
experiments on a three-dimensional grid of 64× 64× 3 with 32 input pairs.

In the original version, there is one parameter t that influences the amount of parallelism:
t worker threads will process input pairs in parallel. The maximal ideal speed-up in the
original version is therefore t: in an ideal case where no transactions fail and the overhead
is zero, we can expect a speed-up of maximally t. In the version that uses transactional
tasks, another parameter p affects the parallelism: the number of partitions created on each
iteration of the breadth-first search. Each of the t worker threads can create at most p
partitions; therefore, the maximal number of threads and thus the maximal ideal speed-up
in the version with parallel search is t× p.9

In Figure 8 we measure the speed-up of running the program with several values of t and
p. The speed-up is calculated relative to the version with sequential search and only one
worker thread (t = 1). For the version that uses sequential search, the number of worker
threads is increased (blue line). For the version with parallel search, both the number of
partitions (different lines) and the number of worker threads (different points on the same
line) are varied. The x axis denotes the maximal number of threads, i.e. t for the sequential
search and t× p for the parallel search. In an ideal case, the measured speed-up would be
equal to the maximal number of threads.

The blue line depicts the results of the original version of the Labyrinth application.
Increasing the number of threads causes only a modest speed-up, because they find overlapping
paths and consequently need to be rolled back and re-executed. This is shown in Figure 9,
which lists the average number of attempts per transaction. If there is only one thread, each
transaction executes only once, but as the number of threads increases each transaction
re-executes several times on average. For 16 threads, the average transaction executes 2.10
times, i.e. it rolls back more than once. This hampers any potential speed-up.

In the version with parallel search, as the parameter p increases the speed-up improves, for
small values of p. Each transaction now spawns p tasks, and consequently each transaction

8 The code for these applications is available in the artifact, or at https://github.com/jswalens/
ecoop-2016-benchmarks.

9 To minimize the overhead of forking tasks, we ensure that each partition contains at least 20 elements.

https://github.com/jswalens/ecoop-2016-benchmarks
https://github.com/jswalens/ecoop-2016-benchmarks
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Figure 8 Measured speed-up of the Labyrinth application for the version with sequential search
(blue line) and parallel search (other lines), as the total number of threads (t× p) increases. Each
point on the graphs is the median of 30 executions, the error bar depicts the interquartile range.

can finish its execution faster. On the tested hardware, an optimal speed-up of 2.32 is
reached for t = 2 and p = 8, when two worker threads process elements and create up to
eight partitions. For this case, the number of conflicts is low: each transaction executes 1.11
times on average (Figure 9).

Further increases in p lead to worse results: the additional parallelism does not offset
the overhead of forking and joining tasks. Joining transactional tasks is expensive for this
benchmark, as conflicts between the tasks are likely (two points expanding into a shared
neighbor), and each conflict calls a conflict resolution function (the minimum, as explained
in Section 4.2).

The parallel search with p = 1 (which does not actually search in parallel as only
one partition is created) is slower than the sequential search. This is due to the different
algorithms: the parallel algorithm creates several sets on each iteration to keep track of the
work queue, while the sequential algorithm uses one list throughout.

These results demonstrate two benefits of transactional tasks. Firstly, the execution time
of each transaction decreases by exploiting parallelism in the transaction. Secondly, the
lower execution time of a transaction also means that the cost of conflicting transactions is
decreased: each attempt takes less time. By varying the two parameters t and p, we can find
an optimum between running several transactions simultaneously but risking conflicts (t)
and speeding up the transactions internally but with more fine-grained parallelism (p).

Finally, to transform the original version with sequential search into the one with parallel
search, out of 682 lines, 30 lines (4%) were removed and 78 lines (11%) were added. This
corresponds to changing the sequential search algorithm into the parallel search algorithm,
which is more complex.

7.2 Bayes
The Bayes application implements an algorithm that learns the structure of a Bayesian
network given observed data [11, 21]. A Bayesian network consists of random variables and
their conditional dependencies. Each variable in the Bayesian network is represented as a
transactional variable that contains references to its parents and children. Initially, there
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Figure 9 Average number of attempts per transaction for different values of t (transactions
executing simultaneously) and p (partitions per transaction).

are no dependencies between the variables. A shared work queue contains the dependencies
to insert next, and is initialized to one dependency per variable. t worker threads process
the work queue in parallel: they insert the dependency into the network, and then calculate
which dependencies (if any) could be inserted next, appending the best candidate to the
work queue. The best candidate dependency is the one that maximizes a score function that
calculates the capability of the network to estimate the input data. This is encapsulated in a
transaction to prevent two dependencies from being added to the same variable simultaneously.
Dependencies are inserted until the work queue is empty. As more dependencies are discovered,
connected subgraphs of dependent variables form in the network.

Before the algorithm starts, the application generates the input data. Then, the t worker
threads process the work queue in parallel. Figure 10 indicates that a typical execution
spends 11.8% of its total time generating the input data, 88.1% learning the dependencies,
and 0.1% validating the solution. We focus on the middle part only. In that part, 93.2%
of the execution time is spent in the transaction that determines the best next dependency.
The transaction contains a loop that calculates the score for each candidate and then selects
the maximum. Each of the iterations of this loop is independent, and can therefore run in
parallel using transactional tasks.

In Figure 11, we measure the speed-up of the learning phase as the number of worker
threads (t) increases, for a network of 48 variables. The blue line is the original version: t
threads process dependencies in parallel. The red line shows the version in which the loop is
executed in parallel. Here, in each transaction, up to v transactional tasks run in parallel,
where v is the number of Bayesian variables in the network (48 in our experiment). Therefore,
the maximal ideal speed-up in the original version is t, while in the version with the parallel
loop it is t× v.

The speed-up of the original version (blue line) increases as number of threads increases,
up to a speed-up of 2.75 for 16 threads. After this point, the speed-up plateaus. By examining
the execution of the program, we find that even though a larger number of worker threads
are created, only a limited number of them actually perform any work. The others are idle
as not enough work is available after a certain point in the execution of the program.
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In the version with parallel tasks, we see that even when there is only one worker thread
processing one transaction at a time, the parallelization of its internal loop produces a
speed-up of 2.88. By increasing the number of worker threads, a maximum speed-up of 3.45
can be produced for 5 worker threads. Again, the speed-up reaches a plateau as not enough
work is available for all worker threads. However, the reached speed-up is higher than the
original version as more fine-grained parallelism is available in each unit of work.

This result demonstrates another benefit of transactional tasks. In the original version,
the amount of parallelism corresponded to the number of transactions, which is equal to
number of work items. Hence, if at a certain point there are fewer work items than cores in
the machine, not all potential parallelism is exploited. By introducing parallelism inside the
transactions, we make better use of the available hardware. Even if there is limited work
and therefore a limited number of transactions, transactional tasks allow us to make use of
more fine-grained parallelism in the transactions.

Lastly, to modify the original version into the one that uses transactional tasks, only one
line (out of 1248) had to be changed: the keyword for was replaced by parallel-for, a
macro that uses transactional tasks internally to execute its iterations in parallel.

7.3 Conclusions
Based on these experiments, we draw the following conclusions:

Out of the eight applications in the STAMP benchmark suite, which represents a variety
of use cases for transactions, five spend a large proportion of their time in transactions
and three of these have long-running transactions. We parallelized two of these three
applications using more fine-grained transactional tasks.
In the Labyrinth application, transactional tasks allow the breadth-first algorithm to be
parallelized. This leads to a speed-up, by tuning the parameters for parallelism to have
faster transactions and fewer conflicts.
The Bayes application spends most of its execution time in a loop (in a transaction) that
can be trivially parallelized. As there is only limited work available, at a certain point the
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Figure 11 Measured speed-up of the learning phase for the Bayes application, as the number of
threads increases. The blue line shows the original version. The red line shows the version with a
parallel for loop, where each of the (at most) 48 iterations is executed in parallel.

number of transactions is lower than the number of cores in the machine. Transactional
tasks allow us to introduce more fine-grained parallelism. This is a matter of changing
for into parallel-for, and increases the maximal speed-up on an eight-core machine
from 2.75 for the original version to 3.45 for the version with transactional tasks.

These results lead us to believe that transactional tasks allow developers to improve
the performance of their transactional applications with only limited effort. Moreover, as
our implementation is a relatively simple prototype in Clojure, further optimizations could
decrease the overhead and improve its performance (e.g. for the Bayes application). In future
work we would also like to explore the applicability of transactional tasks for other programs.

It should be possible to apply transactional tasks to other STM systems, such as Haskell
or ScalaSTM. In those systems, the fact that the studied applications allow parallelism in
the transaction also applies, the development effort to introduce them should be similar, but
depending on the implementation the speed-up may be different.

8 Related Work

We will briefly discuss three categories of related work: nested and parallel transactions,
concurrency models with deterministic access to shared memory, and work that allows parallel
tasks to share memory.

Nested, multithreaded, and nested parallel transactions Nested transactions [23, 5, 24,
25] are subtransactions created in a transaction. Nested transactions attempt to commit
separately from their parent. Hence, they can fail separately, thus requiring only a portion
of the work to be rolled back. This can improve the performance of large transactions.
In contrast to transactional tasks, nested transactions do not execute in parallel, as they
correspond to nested atomic blocks and not the nesting of fork in atomic.
Haines et al. [15] and Moore and Grossman [22] allow threads to be created in a transaction,
i.e. multithreaded transactions. However, there are no guarantees on the access to shared
memory by threads within a transaction: they may read and modify shared transactional
variables concurrently, thus permitting race conditions.
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Transactional Featherweight Java [28] combines nested and multithreaded transactions:
a transaction can spawn threads that contain nested transactions. When a nested
transaction commits, its changes are written to its parent. Conflicts are explicitly
forbidden: the value of a variable in a child must be the same as its value in the
parent. Nested parallel transactions [1, 4, 2, 29] are similar, but resolve conflicts using the
traditional serializability of transactions: the transaction that commits last wins. This is
the main difference with transactional tasks, which resolve conflicts deterministically using
conflict resolution functions, thus guaranteeing in-transaction determinacy (Sections 4.3
and 5.2). The second major difference is that nested parallel transactions roll back on
conflicts between siblings, while transactional tasks do not, as they resolve the conflicts
instead. In an application without such conflicts, both models operate equivalently.
However, in our motivating example, the Labyrinth application, such conflicts frequently
occur: the parallel expansion of the breadth-first search causes conflicts on overlapping
cells. Nested parallel transactions would cause frequent rollbacks of the inner transactions,
essentially sequentializing them, detrimental to performance. Transactional tasks run
in parallel, but rely on the developer for an appropriate conflict resolution function.
We expect both models to be suited for different applications. In applications in which
non-top-level sibling transactions conflict, we expect transactional tasks to perform better.

Deterministic access to shared memory The model provided by transactional tasks in the
transaction is similar to two existing concurrency models. Firstly, Concurrent Revisions
are a model for task parallelism with shared memory [9]. Its concurrent tasks share
memory using versioned variables. When a task is forked, a conceptual copy is made
of the versioned variables; when a task is joined, the changed variables are merged into
the joining task. This resembles how transactional variables behave inside a transaction
in our model. However, between the transactions we provide serializability. As such,
Concurrent Revisions provide determinacy for the complete program, while transactional
tasks provide determinacy in the transactions, and serializability of the transactions as a
whole.
A similar model is provided by Worlds [30], in which the program state is reified as a
world. The world can be forked into a child world, a conceptual copy of all program state.
The state in a child world can be updated, and eventually committed back (merged) into
its parent world. As such, worlds also behave similarly to the transactional variables in
a transaction. However, the Worlds model does not provide parallelism: a child world
does not run in parallel with its parent. Instead, Worlds are used as a mechanism to
‘undo’ changes to the program state. As a result, when a child world is merged in its
parent there will be no conflicts, as the parent has not changed in the mean time. In the
case of transactional tasks and Concurrent Revisions, it is possible for the parent to have
changed as well, and a form of conflict resolution between parent and child is needed.

Parallel tasks with shared memory Otello [34] allows parallel tasks to access shared memory,
while still running the tasks in isolation. To this end, it introduces assemblies, which
consist of a task and the set of shared objects it owns. When two assemblies conflict, one
is re-executed after the other has finished. However, while Otello re-executes code, it
does not provide transactions and as such does not guarantee serializability.

9 Conclusion

Many modern programming languages and frameworks support multiple concurrency models.
However, the combination of these concurrency models is often either not supported or not
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well defined. In existing languages, using futures to increase the parallelism within a single
transaction is either not allowed (Haskell), or leads to unexpected behavior (Clojure, Scala).

This paper introduces transactional tasks as a mechanism to enable safe parallelism
within transactions. Each transactional task executes within the context of its encapsulating
transaction, hence, transactions remain serializable. Furthermore, the different tasks of
a single transaction are coordinated: they are all committed or retried together. Lastly,
transactional tasks do not introduce non-determinism, and behave as nested transactions,
thereby providing a straightforward and familiar mental model to the programmer.

This paper provides a formalization of transactional tasks, and discusses its implementation
on top of Clojure. Our approach is validated through a case study of several applications from
the STAMP benchmark suite. We show that our approach allows finer-grained parallelism of
performance-critical, long-running transactions to be exploited, leading to a higher speed-up.
As a result, we believe that transactional tasks successfully combine futures and Software
Transactional Memory, allowing the parallelism of a program to be fully exploited with
limited developer effort, while preserving the properties of the separate models where possible.

Acknowledgements. We would like to thank Stefan Marr for insightful discussions and
comments on early drafts. We also thank the anonymous reviewers for their feedback.
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A Syntactical and Semantical Differences with Clojure and Haskell
The syntax and operational semantics introduced in Section 2 closely matches Clojure and Haskell,
with only a few insignificant differences. These are detailed in this appendix.

A.1 Clojure
Clojure 1.7.0 (released June 30, 2015) differs from the presented syntax in the following ways:

Clojure encapsulates all forms in parentheses, as S-expressions. Furthermore, it has a slightly
different syntax for let.
fork and join are named future and deref respectively. That is, deref is overloaded for both
futures and transactional variables.
Clojure’s (dosync e) is equivalent to our atomic (do e;).

The semantics differ only on these two points:
Clojure allows ref and deref to be used outside a transaction: Clojure’s (ref e) and (deref e) are
equivalent to our atomic (ref e) and atomic (deref e), but with an optimized implementation.
Clojure supports alter, commute, and ensure, which are essentially variations of ref-set with
different performance characteristics.

Finally, Clojure allows futures to be created in a transaction, as described in Section 3.

A.2 Haskell
Syntactically, Haskell writes forkIO, atomically, newTVar, readTVar, and writeTVar for fork,
atomic, ref, deref, and ref-set. The semantics differ in the following ways:

Haskell’s forkIO returns a thread identifier, and not a future. Nevertheless, our formalization
models the use of transactions in tasks, in Haskell one uses atomically in a task created using
forkIO.
Moreover, Haskell does not support the join operation on thread identifiers. Instead, waiting
for a thread and retrieving its result is usually implemented manually using an MVar10; while
our language uses futures for this purpose. This aspect does not affect the problem statement of
Section 3, but porting our solution to Haskell does require adding a join operation to Haskell.
Transactions are encapsulated in the STM monad, and the main program is encapsulated in the
IO monad. This leads to a different semantics of the do block, which in Haskell is syntactic sugar
for monad sequencing. Haskell’s do notation allows monadic binding (<-) and let binding, and
may require return.
Haskell does not allow multiple atomically blocks to be nested: the type signature of atomically
is STM a -> IO a, and a result of type IO a cannot be used in an STM block.
Haskell supports retry to abort a transaction, and orElse to compose two alternative STM
actions.

Lastly, one could see transactional tasks as the addition of forkSTM to Haskell, extending its
forkIO to usage in the STM monad.

10As indicated in the documentation of the Control.Concurrent package at https://hackage.haskell.
org/package/base-4.8.1.0/docs/Control-Concurrent.html#g:12.

https://hackage.haskell.org/package/base-4.8.1.0/docs/Control-Concurrent.html#g:12
https://hackage.haskell.org/package/base-4.8.1.0/docs/Control-Concurrent.html#g:12


Staccato: A Bug Finder for Dynamic
Configuration Updates∗

John Toman1 and Dan Grossman2

1 Department of Computer Science & Engineering
University of Washington
Seattle, WA, USA
jtoman@cs.washington.edu

2 Department of Computer Science & Engineering
University of Washington
Seattle, WA, USA
djg@cs.washington.edu

Abstract
Many modern software applications are highly configurable, allowing configuration options to
be changed even during program execution. When dynamic configuration updating is imple-
mented incorrectly, program errors can result. These program errors occur primarily when
stale data—computed from old configurations—or inconsistent data—computed from different
configurations—are used. We introduce Staccato, the first tool designed to detect these er-
rors. Staccato uses a dynamic analysis in the style of taint analysis to find the use of stale or
inconsistent configuration data in Java programs. It supports concurrent programs on commod-
ity JVMs. In some cases, Staccato can provide automatic bug avoidance and semi-automatic
repair when errors occur.

We evaluated Staccato on three open-source applications that support complex reconfig-
urability. Staccato found multiple errors in all of them. Staccato requires only modest
annotation overhead and has moderate performance overhead.
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1 Introduction

Today’s software is highly configurable [42, 43, 17]. This configurability increases the
reusability and portability of software. Software configurations can be specified in several
different ways: static compile-time configuration options [20], command-line options that
can be changed on each program run [37], or options specified in a configuration file read at
startup. Along with high levels of configurability, software is increasingly subject to strin-
gent uptime requirements; restarting an application to effect a configuration change is not
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always feasible. To accommodate configurability and robustness, many applications support
configuration options that can be changed at runtime. We call a configuration change at
runtime a dynamic configuration update (DCU).

Unfortunately, it is difficult to implement dynamic configuration updates correctly. A
bug1 in Solr,2 an open-source text search and indexing server, demonstrates this. The user
may specify analyzers that process text before it is indexed. These analyzers apply case
normalization, remove stop words, and so on. The user specifies analyzers in a configura-
tion file read by Solr at startup. Solr also provides a reload command which re-reads the
configuration file and re-initializes the system. However, the analyzers were not updated to
reflect the new configuration, even though Solr reported the reload complete. Solr would
then silently misprocess data and incorrectly answer user queries. The only indication that
something was wrong was Solr’s output, which required careful inspection on the part of the
user. We found similar defects in multiple applications.

This paper presents, to the best of our knowledge, the first study of defects in dynamic
configuration update implementations. We have developed a dynamic analysis that can
assist developers in finding and diagnosing defects in their DCU implementations. We
implemented our technique in Staccato (STAle Configuration and Consistency Analysis
Tool), a prototype DCU error detection tool for Java programs.

Our approach checks one of two alternative correctness conditions for DCU systems, as
chosen by the programmer. The first condition states that old versions of configuration
options may not be used after a configuration update. The second states that only one
version of a configuration option may be used during a single method execution. Both
conditions provide a possible specification of program behavior in the presence of dynamic
configuration updates. Choosing the appropriate correctness condition for a program unit
requires domain knowledge. We have the user of Staccato select the appropriate condition
with a few lines of high-level annotations (fewer than 0.7 per 1,000 SLOC in our evaluation).

Underlying both conditions is the notion of versioning the software configuration. For
every program value, Staccato tracks which configuration options, and what versions of
those options, were used to construct that value. This information moves with a value as
it transformed and combined with other values. Whenever a value is read by the program,
Staccato checks that the value does not violate the correctness condition selected by the
programmer. Our analysis supports concurrency and requires no changes to the JVM.

In addition to bug finding, Staccato provides support for program repair and bug
avoidance. Staccato can transparently repair program schedules to hide insufficient syn-
chronization around configuration accesses. In addition, when Staccato detects a value
built from an out-of-date configuration, it calls a programmer-provided callback to update
the stale value. We used this functionality to repair DCU errors that we discovered in our
evaluation. We also found this technique to be effective enough that for some projects, we
were able to add DCU support for options that previously required a restart.

We applied Staccato to three large open-source projects with extensive support for
dynamic configurability. These were code-bases with which we were not previously familiar,
but we were still able to effectively use Staccato to find DCU defects in all of them.

In summary, this paper makes the following contributions:
We provide two correctness conditions for software that supports dynamic configuration
updates (DCU).

1 https://issues.apache.org/jira/browse/SOLR-3587
2 http://lucene.apache.org/solr/

https://issues.apache.org/jira/browse/SOLR-3587
http://lucene.apache.org/solr/
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1 class RequestManager implements Reloadable {
2 String targetIp , apiKey ;
3 RequestManager () {
4 targetIp = Config .get(" request .target -ip");
5 apiKey = Config .get(" request .api -key");
6 }
7 String doRequest () {
8 Request req = new ApiRequest ( targetIp );
9 req.send( apiKey );

10 return req. response ();
11 }
12 void reloadConfig () {
13 targetIp = Config .get(" request .target -ip");
14 }
15 }

Figure 1 A bug caused by an incomplete configuration update: after an update reloadConfig()
does not read the updated "request.api-key" option.

1 class SpotService implements WebService {
2 String handleSpotRequest () {
3 return Config .get("verb") + " Spot , " + Config .get("verb") + "!";
4 }
5

6 void handleUpdateRequest ( String newVerb ) {
7 Config .set("verb", newVerb );
8 }
9 }

Figure 2 A bug caused by an inconsistent view of the configuration: the handleSpotRequest
method can observe two versions of the "verb" option in one execution.

We define the problem of detecting and diagnosing errors in DCU code.
We describe how errors in DCU implementations can be discovered with a novel dynamic
information-flow tracking approach.
We describe Staccato, a tool implementing this approach for Java programs.3

Using Staccato, we show that bugs in DCU implementations affect multiple open-
source projects, and that our technique is effective for finding these errors.

The rest of the paper is organized as follows. Section 2 introduces and justifies the
correctness conditions checked by our approach. Section 3 introduces an information-flow
tracking technique for detecting correctness violations in programs that support DCU. Sec-
tion 4 details our approach for bug avoidance and program repair. Section 5 describes our
implementation. Section 6 presents the results from applying Staccato to three open-
source software projects. Section 7 covers related work. Section 8 concludes.

2 Correctness Conditions for Dynamic Configuration Updates

Staccato identifies errors caused by defects in dynamic configuration update mechanisms.
We are unaware of any agreed upon correctness definition for DCU implementations either

3 Staccato is open-source. Our implementation and the tests we ran for this paper can be found at
https://github.com/uwplse/staccato
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in industry or the research literature (see Section 7). Accordingly, we first give two correct-
ness definitions for DCU schemes that we developed after surveying configurable software
systems. Both conditions provide a specification for program behavior in the presence of
DCU. The programmer selects which condition to use for an application, with the option
of switching conditions (or opting out altogether) on a per-method or per-class basis with
annotations.

We begin with two motivating examples found in Figures 1 and 2. Both examples are
invented code fragments that are representative of two common errors we found during
our survey of configurable software. The Config class provides a mapping of configuration
options to string values. In Figure 1, the user may update either the target IP or API key
configuration options, after which the reloadConfig() method is called. The implementation
has an error in its handling of the update: the reloadConfig() method fails to read the new
value of the "request.api-key" configuration option. As a result, the configuration update
requested by the user is not completely applied. The Solr bug described in the introduction
is similar in form to this example.

Figure 2 shows a consistency issue that we frequently found in configurable software. In
this example, SpotService implements a web service that can be configured with an adminis-
trative command. The primary functionality, expressed in the handleSpotRequest method, is
to simply echo back sentences of the form, "Run Spot, Run!". The verb in the response is
controlled with the "verb" configuration option. An administrator can update the "verb"
option by sending an update request that is handled by the handleUpdateRequest method.
If an update request is received concurrently with a regular client request, a user can re-
ceive unexpected responses such as "Run Spot, Bark!" This error occurs because the use
of "verb" in handleSpotRequest is not atomic: a single invocation of handleSpotRequest can
observe two inconsistent versions of the "verb" configuration option.

Guided by these two examples and many others like them found in real programs, we
have developed two conditions for software that supports DCU. The first condition is as
follows:

I Correctness Condition 1 (Staleness). An execution must observe only values derived from
the most up-to-date version of the program configuration.

We call correctness condition C1 the staleness condition as it states that a program may not
use values built from stale configurations. This correctness condition is potentially violated
in both examples. In the first example, after a configuration update the program will read a
stale version of the "request.api-key" option on line 9 in Figure 1. In the second example,
the string returned by handleSpotRequest may be derived (partially or completely) from an
old version of the "verb" option.

While condition C1 is sufficient to identify the bug in Figure 2, it is overly strict. For
example, consider again the scenario where the service in Figure 2 receives two concurrent
requests handled by handleSpotRequest and handleUpdateRequest respectively. Due to non-
determinism in thread scheduling, handleSpotRequest may return the response "Run Spot,
Run!" after handleUpdateRequest has updated "verb" to another value, such as "Bark". This
outcome violates condition C1, but some systems depend on allowing this behavior for
high performance. A more desirable correctness condition would rule out only inconsistent
outcomes, such as "Run Spot, Bark!", which violate the programmer’s expectations about
configuration behavior. This observation motivates a second correctness condition:

I Correctness Condition 2 (Consistency). A method execution may observe only a single
version of each configuration option.
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1 String foo( String a, String b, boolean t) {
2 if(t) { return a; } else { return b; }
3 }
4 // V["foo"] = 2
5 String s = Config .get("foo"); // sH = {"foo" → 2}
6 Config .set("foo", "..."); // V["foo"] = 3
7 String r = Config .get("foo"); // rH = {"foo" → 3}
8 String q = foo(r, s, false ); // qH = {"foo" → 2}
9 q = foo(r, s, true ); // qH = {"foo" → 3}

Figure 3 Example configuration histories in a program. The history of the configuration value
returned by Config.get on line 5 maps "foo" to the current version of "foo", V["foo"] = 2. After
the update on line 6, the epoch of "foo" is incremented and the value returned on line 7 is tagged
with the new version. Notice that on lines 8 and 9 the configuration histories of r and p have moved
through method parameters and return statements automatically.

In other words, a program may use an old version of a configuration option provided that
version is not mixed with any other versions of the same option.

Both correctness conditions are useful in different situations. Which condition is appro-
priate for a given program is application dependent. In practice, we found that condition C2
(consistency) was a reasonable default for the programs in our evaluation set. Nevertheless,
the staleness condition is a good fit for global, configurable objects, such as caches, database
connections, etc. This led to a useful rule of thumb for using our technique: use the staleness
condition for methods that manipulate configurable objects stored in static class members
and use the consistency condition everywhere else. This was sufficient to find several bugs,
and required fewer than 1 annotation per 1,000 SLOC across our evaluation set.

3 Technique

Staccato detects errors in DCU schemes with a dynamic information-flow analysis in the
style of taint analysis. There are three pieces of Staccato’s analysis, described in the next
three subsections. First, Staccato versions the software configuration and associates each
program value with a configuration history (Section 3.1). A value’s history records which
options, and what versions of those option, were used to build that value. Second, when
values are combined, their configuration histories are merged to produce a history for the
output value (Section 3.2). This propagation models the flow of configuration information
through a program. Finally, whenever a value is read by the program, Staccato checks for
violations of the DCU correctness conditions (Section 3.3). To ease explication, we will first
describe our technique in terms of only detecting violations of the staleness condition (C1).
Our approach for the consistency condition (C2) is presented in Section 3.4 as an extension.

3.1 Configurations Values
Staccato models the configuration of a program as a global map from strings to strings.
Following standard terminology, we call each key an option. We call each value in the map
a configuration value. Staccato also internally associates each configuration option with
an epoch counter. These option epochs version the configuration values of a program. The
epoch counters are stored in a map V from options to epochs: the current epoch of an option
is denoted V[o]. When an option o is updated, the value of V[o] is incremented by one. We
will use e to denote arbitrary epoch values.

ECOOP 2016



24:6 Staccato: A Bug Finder for Dynamic Configuration Updates

1 // V["foo"] = 2 and V["bar"] = 4
2 String f = Config .get("foo"); // fH = {"foo" → 2}
3 String g = Config .get("bar"); // gH = {"bar" → 4}
4 String h = f + g; // hH = {"foo" → 2, "bar" → 4}
5 Config .set("foo", "..."); // V["foo"] = 3
6 String j = h + Config .get("foo"); // jH = {"foo" → 2, "bar" → 4}

Figure 4 An example of history propagation and the history merge operation. On line 4, the
input configuration histories have disjoint domains and therefore the merge operation is trivial. On
line 6 the input configuration histories both have "foo" in their domains. According to the merge
rule, the smaller of the two epochs for "foo" is chosen, which in this case is 2.

Staccato also tags each program value with a configuration history. The configuration
history for a value v records the configuration options used to construct that value, along
with the epochs (i.e., versions) of those options. The notation vH = {o1 → e1, o2 → e2, . . .}
denotes that v was constructed using the value of configuration options o1, o2, . . . at versions
e1, e2, . . . We will use vH as a function mapping strings (option names) to epochs. dom(vH)
denotes the set of options that appear in the configuration set vH. The notation xH may
be used when x is a variable to denote the history of the value referenced by x.

Configuration histories are associated with program values (not textual program vari-
ables). Thus, as a value moves through field array, variable assignments, or method bound-
aries, its configuration history automatically moves with it. This is important as DCU bugs
involve complex information-flow: the Solr bug from the introduction involved 7 classes.

Configuration histories are empty for most values: only values that depend on the pro-
gram configuration may have non-empty histories. Initially, the only values associated with
non-empty configuration histories are configuration values themselves. When an option o is
retrieved from the program’s configuration, the returned configuration value is tagged with
the history {o → V[o]} (recall that V[o] is the current epoch of o). An example of this
tagging and epoch counter updating can be found in Figure 3.

3.2 Propagation
Staccato tracks configuration values as they are combined with other values or transformed
by the program. Thus, when multiple values are combined to create a new value, Staccato
ensures that the new value’s configuration history soundly captures all configuration infor-
mation associated with the source values. The process of transferring configuration histories
from operands to outputs is called propagation.

During propagation, configuration histories are merged together pairwise to yield the final
configuration history of the output value. The merge operation for configuration histories
is denoted vH ∪ uH. If dom(vH) ∩ dom(uH) = ∅, then the merge operation is a simple
union. However, it is possible that some option o appears in both vH and uH. Staccato
conservatively handles this situation. Suppose that vH[o] = e and uH[o] = e′. The output
configuration history maps o to the epoch min(e, e′). This definition ensures that the epoch
recorded for a configuration option o in a configuration history xH is the oldest version
of o used (either transitively or directly) to construct x. Figure 4 demonstrates history
propagation and an example of the merge operation.

Staccato does not check for violations of the correctness condition during propagation.
Recall that Staccato allows the programmer to select one of two possible correctness
conditions or to opt out of checking altogether. If we integrated checking into propagation,
we would have to implement three different propagation operations: one for each correctness
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1 class DBConnection {
2 @StaccatoPropagate ( RETURN )
3 static DBConnection connect ( String host , String user) { ... }
4 String fetchRow ( String query) { ... }
5 }
6 User getUser (...) {
7 String host = Config .get("db -host"), user = Config .get("db -user");
8 DBConnection conn = DBConnection . connect (host , user );
9 String userInfo = conn. fetchRow (...);

10 return new User( userInfo );
11 }

Figure 5 Propagation involving objects dependencies. The @StaccatoPropagate annotation the
connect method propagates the configuration histories of the host and user parameters to the
DBConnection object returned from the method. As a result, the configuration history of the conn
in the getUser method has the "db-host" and "db-user" options in its configuration history.

condition and one for propagation without any checking. By separating the check and
propagation operations, we can apply a uniform propagation operation across the entire
program and vary the check operation depending on the correctness condition selected by
the programmer.

Propagation for Object Types

A key design decision we faced is where propagation should occur. Operations such as
integer arithmetic, boolean operations, and string concatenation all naturally propagate
configuration information from source operands to output values automatically. Although
sufficient for tracking simple dependencies, propagation involving only primitive values will
miss dependencies at the object level. Consider the example in Figure 5. In order to verify
that the usage of the connection object created on line 8 is correct, conn must inherit the
configuration information of the host and user configuration values. Therefore, Staccato
also supports propagation from method arguments to outputs. This method-level propa-
gation expresses configuration dependencies at a higher level of abstraction than what is
possible with just primitive operations.

The user opts-in to method-level propagation on a per-method basis with annotations
like the one seen on line 2 in Figure 5. The annotation argument indicates which output
of the method is the target of propagation. There are two possible outputs: the return
value (specified with the RETURN argument seen in the example) or the method receiver.
The receiver output is used primarily for modeling side-effecting methods such as setters or
constructors. After an annotated method is executed, Staccato combines the configuration
histories of the method’s arguments with the existing history of the receiver or return value
as appropriate. For the purpose of propagation to the return value, the method receiver (if
applicable) is treated as an argument. In the database example, the propagation annotation
ensures that connH contains the "db-user" and "db-host" options.

We experimented with an eager approach that propagated configuration histories uncon-
ditionally from method arguments to method receiver/return values. This seemed reason-
able, as function outputs generally depend on input values. This strategy would properly
capture the relationship between the "db-host" and "db-user" options and the conn object
without user annotation. In practice, this approach suffers from a significant loss of pre-
cision. In Figure 5, automatic propagation also “taints” the value read from the database
on line 9 with configuration information. By extension, the User object created on line 10
would also contain the database configuration options in its configuration history. However,
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using a User object built with data read from an old connection is arguably not an error.
This scenario is the expected behavior envisioned when a configurable database connection
was implemented. In general, automatic propagation tags program data with unintuitive
configuration histories, leading to false positives.

In our experience, configuration propagation is fairly rare; compared to the number of
method definitions in our evaluation code-bases, the number of propagation annotations
required was quite low, requiring fewer than 30 annotations across the entire evaluation set.
We also found that propagation annotations need only be applied at natural API method
boundaries, requiring no reasoning about whole program flow or API usage sites.

3.3 Checking
The final component of Staccato checks that the program does not observe values con-
structed from an out-of-date version of the configuration. Our approach actually checks an
equivalent condition: that the value read by the program reflects only the most recent ver-
sion of the configuration. A value v is up-to-date with respect to the current version of the
configuration (as recorded in V) iff: ∀o ∈ dom(vH), vH[o] = V[o]. In other words, only the
most recent configuration values may have been used (transitively or directly) to construct
v. This check is performed on value reads. For the purposes of our analysis a value is read
when it is: 1) passed as an argument to a method, 2) read from a field, 3) returned from a
method, 4) read from a local variable, or 5) read from an array. If Staccato detects that
the condition has been violated, we have identified a DCU defect and alert the user.

3.4 Extensions for Checking Consistency
We now discuss how to extend our approach to check for violations of the consistency
condition (C2). Recall that the second correctness condition states that a method execution
may not observe inconsistent versions of the program configuration. Checking this condition
requires extending the representation of configuration histories and the merge operator.

In addition to option epochs, Staccato also tracks an extra bit for each option o in a
configuration history. This bit is called the consistency flag. We denote this epoch-bit pair
with 〈e, f〉, where e is an epoch and f is the new consistency flag. The consistency flag
becomes set when Staccato detects that different versions of the same option have been
used to construct a value. Any values derived (in terms of the propagation described in Sec-
tion 3.2) from an inconsistent value are themselves marked as inconsistent. The consistency
flag is initially unset for configuration values returned from the program’s configuration: by
definition, a configuration value always represents a single version of a configuration option.

The definition of the consistency flag gives rise to the following extension to the merge
operator. Given two configuration histories to be merged, uH and vH, such that uH[o] =
〈e, f〉 and vH[o] = 〈e′, f ′〉, the consistency flag in the merged configuration history is set iff:
e 6= e′ ∨ f = 1 ∨ f ′ = 1. The epoch for o is computed using the min function as previously
described.

Given these extensions to configuration histories and the merge operation, checking the
consistency condition is straightforward. The consistency condition requires that at most one
version of each option may be used to build a value. This is precisely what the consistency
flag tracks. Thus, checking a value v against the consistency condition entails checking that
all consistency flags in vH are unset. That is, a value v reflects a consistent view of the
configuration iff: ∀o ∈ dom(vH).vH[o] = 〈e, f〉 → f = 0. This condition is checked at the
same program points as the staleness condition.
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1 int output = getValue ();
2 while (...) {
3 if( Config .get("op") == "+") {
4 output += 2
5 } else {
6 output *= 2;
7 }
8 }

Figure 6 A simplified example of DCU error involving control-flow. If the "op" option is changed
during the execution of the loop, the output variable will be processed inconsistently.

Control-Flow

We have so far discussed the consistency condition in terms of values produced and read
by a program. This misses inconsistent behavior introduced by control-flow. A simplified
example, based on a real bug found in our evaluation set, is shown in Figure 6. In this
example, if the "op" property is updated before the loop has terminated, the output vari-
able can reflect two different versions of the configuration. Lillack et al. [20] have noted
that configuration values are often used in branching decisions so detecting errors involving
control-flow is especially important.

To find errors like the one in Figure 6, we verify that the entire execution of a method
observes a consistent view of the configuration. To check this property, upon entrance to a
method we allocate a special sentinel object Σ. This object has a configuration history, which
is empty at method entry. Unlike regular configuration histories, which record which config-
uration options and versions were used to construct a single value, ΣH records the options
and versions used by the entire method. Whenever a value v is read, ΣH is updated such
that ΣH′ = ΣH ∪ vH. ΣH′ is immediately checked for consistency using the rule described
above. At method exit, Σ and its configuration history are discarded; each invocation begins
with a fresh history. Method histories are not inherited by callers or callees.

To see how this approach catches errors involving control-flow, consider again the ex-
ample in Figure 6. Assume at the entrance to the loop ΣH is initially empty. On the first
iteration of the loop, the Config.get("op") call on line 3 returns a configuration value with
the configuration history {"op" → 〈1, 0〉}. This is merged with Σ’s empty configuration
history, giving ΣH = {"op" → 〈1, 0〉}. At the end of the first iteration, "op" is updated. On
the second iteration, the value returned by the get() call on line 3 is a newer version of the
"op" option, which is tagged with the history {"op" → 〈2, 0〉}. This history is merged with
ΣH. The result of this merge is ΣH = {"op" → 〈1, 1〉}. Notice that the consistency flag for
"op" is now set: this signals that the execution has now observed two conflicting versions
of the "op" option. Staccato immediately reports this as an error.

The assumption that a method execution is the single unit for consistency is a heuristic,
which may admit false positives and false negatives. A more precise approach would re-
quire precise interprocedural tracking of control-flow dependencies. We experimented with
a version of Staccato that integrated an existing off-the-shelf implementation of precise
control-flow tracking found in recent versions of Phosphor [4]. Although this approach was
promising on small test examples, it suffered scalability issues when applied to the programs
in our evaluation set. For example, after applying Staccato with control-flow tracking to a
web application, the program failed to return a response to the client after 5 minutes. This
overhead is due to the large amount of state maintenance required for precisely tracking
control-flow dependencies. In contrast, our approach is relatively cheap to compute and can

ECOOP 2016



24:10 Staccato: A Bug Finder for Dynamic Configuration Updates

find inconsistencies introduced through control-flow. In our experiments, this approach was
not the source of any false positives.

4 Automated Bug Avoidance and Repair

Staccato also uses the techniques developed for checking to (semi-)automatically avoid
DCU errors. Staccato supports two forms of program repair and automatic bug avoid-
ance. The first mechanism (Section 4.1) automatically repairs buggy program schedules that
would expose insufficient synchronization between configuration read and write operations.
Staccato detects uses of configuration-derived values and automatically delays any config-
uration updates that would cause those values to become stale mid-use. Staccato also has
a limited form of value repair (Section 4.2). The programmer may provide a function called
by Staccato that repairs stale values when they are discovered. Both mechanisms target
reducing violations of the staleness condition. In our experience, this condition is harder to
get “right”, and therefore benefits the most from automated assistance.

4.1 Coordinating Configuration Reads and Writes

In a multithreaded environment, it is possible for configuration updates to interfere with
an ongoing use of a configuration-derived value. For example, a method may read some
initially up-to-date variable x and then later re-read x. If an option in x’s configuration
history is updated between the two reads, Staccato would identify the second read as an
error. It is assumed that the program has failed to appropriately react to the configuration
update. However, the use of x—and by extension the options in x’s configuration history—
intuitively spans the two read operations. The error occurs because the update operation
failed to wait for the outstanding use of x (and its corresponding configuration options) to
finish. In general, an update of a configuration option being used in another thread without
proper synchronization can lead to a DCU error.

Staccato can automatically prevent these errors by using a set of per-option read/write
locks, called “option locks”. A read acquisition of an option lock indicates that a thread is
currently using that option (or some value derived from it). Updates to a configuration
option must first acquire the option’s lock in write mode. If the option being updated is in
use, the write acquisition will stall until all outstanding uses of the option finish and all read
holds are released. The option write lock is immediately released after update is effected.
The programmer is not responsible for acquiring the write locks during configuration update:
all updates are delegated to our implementation’s runtime which handles locking.

Read-acquisition of option locks is automatically performed by Staccato during a stal-
eness check. Recall that staleness checks occur after every value read. After a value is read,
but before the staleness check is performed, Staccato read-locks the option locks for every
option in the read value’s configuration history. These locks are held in read mode after
control returns to the host program. The scope of a value’s use is approximated as the
method containing the initial read of that value. Thus, the read-acquisitions on the option
locks acquired during a read are held until the containing method completes. Computing
the scope precisely is not possible, so we use end-of-method as heuristic. However, using
our heuristic was sufficient to prevent several errors that Staccato would have otherwise
occurred during our evaluation.
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1 class RequestManager implements StaccatoFieldRepair {
2 String targetIp , apiKey ;
3 String doRequest () {
4 Request req = new ApiRequest ( targetIp );
5 req.send( apiKey );
6 return req. response ();
7 }
8 Object _StaccatoRepairField ( String fieldName ,
9 Object oldValue , Exception staleException ) {

10 if( fieldName . equals (" apiKey ")) {
11 return apiKey = Config .get("api -key");
12 } else if( fieldName . equals (" targetIp ")) {
13 return targetIp = Config .get("target -ip");
14 } else { throw staleException ; }
15 }
16 }

Figure 7 An updated version of the code in Figure 1 which uses Staccato repair callbacks.
The Reloadable interface has been replaced with the StaccatoFieldRepair. The new method,
_StaccatoRepairField is called when Staccato detects that one of the fields is stale. The updated
value returned from the method automatically replaces stale field.

4.2 Value Repair

Staccato’s value repair is an extension to the staleness checking mechanism. Unlike sched-
ule repair, value repair is not fully automatic: we require the programmer to provide a
repair function that updates a stale value to reflect the latest version of the configuration.
Although Staccato can automatically detect a stale value, automatically updating it to the
correct value is beyond pure automation because how to respond in the presence of stale
data is fundamentally application-specific.

Staccato’s value repair operates exclusively on object fields. Staccato already inter-
cepts all field reads for checking. When the Staccato runtime detects that a value read
from a field is stale, it checks if the object hosting the field implements an interface that
provides the Staccato update callback. If the callback exists, Staccato calls it with the
name and current value of the stale field. The callback may rebuild the stale field in an
application defined way. The updated field value is then returned from the hook and trans-
parently replaces the old, stale value as the result of the original field read. If the callback
is unable to repair a field, the original error is reported as usual; failure to repair a field is
not itself an error. Figure 7 shows a simplified application of this update mechanism to the
example given in Figure 1 in Section 2.

Repairing (or updating) a stale configuration derived value will likely use the same op-
tions used to construct the old value. As a convenience, Staccato calls the update callbacks
while holding the option locks described in Section 4.1 in read mode. Thus, although update
callbacks may execute in a multithreaded context, the callback effectively sees a consistent,
immutable view of the necessary configuration options during the rebuild operation. As a
further convenience, Staccato ensures that no threads concurrently execute the update
callback on the same object.

5 Implementation

We have implemented our technique in a prototype tool named Staccato. Staccato is an
offline bytecode instrumentation tool for Java programs. Staccato modifies a program’s
bytecode to support tracking configuration histories and also inserts code to perform check-
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ing and propagation. The configuration tracking of Staccato is built on top of a modified
version of the Phosphor tool by Bell and Kaiser [4]. Staccato also includes a runtime
library that implements the operations described in Section 3. Staccato does not auto-
matically integrate with the program’s configuration abstraction, this must be performed by
the programmer when initially integrating Staccato into the software (see Section 5.3).

5.1 Basic Operation
Applying Staccato is a two-step process. First, our modified version of Phosphor instru-
ments the source program to add information tracking for primitive types. In a second
pass, Staccato uses ASM [19] and Javassist [7] to add code that calls into the Staccato
runtime to perform the check and propagation operations described in Section 3. For each
method covered by a correctness condition, Staccato instruments all array, variable, and
field reads, as well as method calls to check read values against the correctness condition
selected for the method. Staccato also inserts code at the end of methods annotated with
@StaccatoPropagate to perform history propagation. Phosphor already adds unconditional
propagation from source values to outputs for primitive instructions such as integer addi-
tion; we replaced the merge operation used by Phosphor for these instructions with a call
into our runtime library.

Staccato does not require a modified JVM. To ensure information is soundly tracked
through calls to the Java Class Library, a program must use a version of the JCL that has
been instrumented by Phosphor. To ease integration, we also added propagation to certain
“primitive” operations in the JCL, such as string concatenation or string-to-integer parsing.
To use Staccato, a program must be launched with a special JVM flag that adds our
instrumented versions of the system classes to the system classpath.

5.2 Tracking Configurations
To reduce memory overhead, Staccato does not unconditionally instrument every type to
carry configuration history. Staccato uses the programmer’s @StaccatoPropagate annota-
tions to avoid instrumenting types that will provably never carry configuration information.
For a type that may carry configuration information, Staccato adds a special field to the
class definition. Staccato also modifies the class definition to implement an interface that
marks the class as carrying configuration information. This interface exposes two methods
that provide the functionality to get and set the hidden field. Staccato synthesizes these
methods and inserts them into the class definition. For primitive values (which do not have
fields), we reuse the shadow taint variables added by Phosphor.

We chose the interface approach over using reflection for two reasons. First, determining
if a type carries configuration information reduces to a relatively inexpensive instanceof

check. The second reason is to integrate with other dynamic bytecode rewriting tools.
There are several libraries that perform instrumentation at runtime to introduce features
like database connection pooling.4 These tools introduce wrapper classes that encapsulate
the original configuration carrying values. This hiding makes access to a hidden tag field via
reflection impossible. However, we found that these tools often make an effort to preserve
the interfaces of types being instrumented. This preservation is done at the type level (a
wrapper class for some type T also implements the same interfaces as the original type

4 e.g., http://proxool.sourceforge.net/

http://proxool.sourceforge.net/
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T ) and in terms of the behavior of the generated class (by delegating method calls to the
wrapped value). Using interfaces allowed Staccato to seamlessly integrate with these
dynamic tools. There is no guarantee of interoperability but we found that using interfaces
worked with all the dynamic tools we encountered.

5.3 Host Program Integration
Staccato does not manage the configuration of the software being analyzed: it is the re-
sponsibility of the programmer to integrate the Staccato runtime with the software’s con-
figuration abstraction. Staccato assumes that the software uses a key-value data structure
for configuration information. The key-value abstraction is widely used in practice for stor-
ing configurations, including the Java Properties API, the Windows Registry, and several
real-world software projects [33, 16]. All of the software configurations in our evaluation
used this abstraction. Rabkin et al. have shown that complex, hierarchical configurations
can be adapted to the key-value model [33]. We also assume that all configuration values are
strings. In principle, our approach and implementation could be extended to support con-
figuration values of arbitrary types. In practice, all programs we encountered used strings
for storage and performed parsing/serialization of these strings where necessary.

Integrating a program’s configuration with Staccato requires only minimal source
changes. The programmer must delegate all set, get, and delete operations on the config-
uration key-value store to the Staccato runtime. For example, suppose a program’s con-
figuration abstraction is stored in a HashMap variable named conf. Delegating get operations
to Staccato involves changing calls of the form conf.get(key) to Staccato.get(conf, key).
Similar changes are made for delete and set operations. The delegation ensures that Stac-
cato increments option epochs on configuration update and correctly tags configuration
values read by the program. The API exposed by the Staccato runtime is very general;
we were able to incorporate all configuration abstractions we found in our evaluation.

5.4 Propagation Coordination
Multithreaded execution introduces the possibility for two or more propagation operations
to occur concurrently. If two or more propagation operations involve the same object con-
currently, the Staccato runtime uses locking to impose an arbitrary order on configuration
history propagation. The history merge operation (see Sections 3.2 and 3.4) is commuta-
tive: two or more propagation operations with the same target object can occur in any order
without changing the final configuration history associated with the object.

Adding locking to arbitrary user programs risks introducing deadlocks, so we modeled the
locking protocol of Staccato in the Alloy model finder [15]. Our verification of Staccato’s
locking was bounded, but we used significantly large parameters to achieve high confidence
in our results. Using this model, we verified that the locks introduced by Staccato do
not deadlock. Staccato’s locks can interact with a program’s existing locks to produce
deadlocks. This is because a thread of execution may hold several option locks in read
mode, and perform arbitrary lock acquisitions. In practice, this was never a problem in our
evaluation.

5.5 Polymorphism and Subtyping
Staccato does not instrument every read within a method, only those it cannot prove will
not carry configuration information. During instrumentation, Staccato may encounter
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a value of type T that does not itself track configuration information, but there is some
subtype of T that does. In this scenario, Staccato cannot statically determine if checking
should be performed. Staccato handles this ambiguity by inserting conditional checks. If
the runtime type of an object does not carry configuration information, a conditional check
is a no-op, otherwise a regular check is performed.

Java generics pose a similar problem. Java implements polymorphism using type era-
sure [5]: Object is used to represent type variables at the bytecode level. As every type is
a subtype of Object, the use of type variable in a target program will lead to ambiguity for
Staccato’s instrumentation. However, this situation is simply a degenerate case of the
subtyping ambiguity described above. Staccato therefore resolves all ambiguity caused by
generics by exclusively using conditional checks.

5.6 Limitations

Staccato inserts the code that performs the propagation operation at method return after
the method body has completed. The propagation target’s object’s configuration history will
therefore be updated after the object state has been changed. As a result, the propagation
is not necessarily atomic with the body of the method.5 This can result in the configuration
history for an object briefly not reflecting the current state of the object. Unfortunately, it
is impossible for Staccato to automatically incorporate the propagation operation into a
synchronization scheme for a method. This limitation did not prevent us from effectively
finding bugs and did not admit any false positives.

The association of configuration histories with program values requires that two logical
values with distinct configuration histories must have unique identities. This restriction
means that Staccato interacts poorly with memoization or singleton objects, as two or
more logically separate configuration histories may be conflated in the same program value.
This was primarily a problem for literal strings and enumeration variants. All occurrences
of the same string literal and enumeration variant within a single JVM instance have the
same object identity. For literal strings, boolean options were particularly problematic:
boolean configuration values were almost always stored using the literals "true" and "false".
Staccato conservatively performs a deep-copy when it detects it would otherwise propagate
configuration history to a string literal or enumeration.

However, copying enumerations will break a program that relies on the referential equality
between two enumeration variants with the same name. To work around this, unboxing
operations are added to equality tests that involve enumerations. Unboxing restores a copied
enumeration back to the original singleton object for purposes of comparison. This unboxing
imposes a non-trivial overhead, and the programmer must opt-in to this mechanism.

Finally, incorrect annotations by users can produce incorrect analysis results. Over-
annotating can lead to false positives. However, these false positives reveal where the pro-
grammer’s assumptions (expressed in his/her annotations) about how a program handles
DCU are incorrect. Under-annotation results in bugs being missed, but existing analyses
that track the flow of configuration values, e.g. Lotrack [20], and ConfAnalyzer [32], can
help guide the user to the correct annotations. This limitation is inherent and would require
a user-study to measure the extent of the problem in practice.

5 If the method is marked as synchronized, the propagation is protected by the object monitor that
protects the entire method body.
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6 Evaluation

Having defined our approach to finding bugs in dynamic software configuration, we present
our evaluation of Staccato’s effectiveness. In evaluating Staccato, we were interested in
the following 4 questions:
1. Does software with dynamic configurability have violations of our correctness conditions?
2. How effective is Staccato at finding these errors?
3. For some real applications, what is the annotation burden of using Staccato?
4. What is the performance impact of using Staccato?

We focused our evaluation on open-source applications with high-levels of run-time con-
figurability. We chose three projects of substantial size but approachable complexity: Open-
fire (version 3.9.3),6 a full featured chat server that implements the XMPP IM protocol,
JForum (version 2.1.8),7 a widely deployed forum software, and Subsonic (version 5.2.1),8
a music streaming server. Each project has many configuration options and extensive con-
currency.

We did not perform an exhaustive evaluation on Solr as the code-base was close to
500,000 SLOC: considerably larger than our next largest evaluation target (Openfire). No
technical limitation prevents using Staccato on Solr: the instrumentation process and
dynamic analysis scale independently of code-base size. However, using Staccato requires
understanding a code-base and 500,000 lines felt beyond what we could reliably do ourselves.
We did perform an informal evaluation on Solr where we tried to detect the bug mentioned
in the introduction using Staccato. We needed only a handful of propagation annotations
and one check annotation to re-find the bug. We believe, but haven’t substantiated, that a
team familiar with Solr could use Staccato without undue burden.

Experimental setup

We manually annotated each application after first becoming familiar with the code-base and
how the software uses configuration values. We also integrated each software’s configuration
abstraction with the Staccato runtime.

We were unable to find extensive functional tests for any of the projects. We developed
our own functional tests for each of the three software projects. Due to the differences in
the software under evaluation, we had to use different evaluation techniques depending on
the software. For Openfire, we used Tsung9 version 1.4.2. For JForum and Subsonic we
used Apache JMeter10 version 2.12. We developed test plans in these tools that exercised
core functionality of each software (these tests are included in the Staccato distribution).
Each functional test client executes in a loop. On each iteration of the loop, a test clients
sleeps for a short, randomly selected period of time and then performs a randomly selected
test action. These test actions were prepared by us and were designed to use one piece of
the core functionality of the software under test. For example, one of the test actions for
JForum involves sending a private message from one user to another.

To induce configuration errors, we also developed a havoc mechanism. This havoc mech-
anism consists of several test clients that execute alongside the functional test clients. Each

6 http://www.igniterealtime.org/projects/openfire/index.jsp
7 http://jforum.net/
8 http://www.subsonic.org/pages/index.jsp
9 http://tsung.erlang-projects.org/
10 http://jmeter.apache.org/
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havoc client executes in an infinite loop. During each iteration of the loop, the havoc client
sleeps for a short, randomly selected period of time and then performs a mutation to the
software’s configuration. This mutation was done by simulating an HTTP request to the
administrative webpages of the software under test. These administrative webpages also val-
idated our havoc updates (e.g., by rejecting attempts to select negative port numbers). The
havoc clients were also restricted to choosing mutations that we had manually prepared in
consultation with the program code and documentation. Any errors reported by Staccato
during testing were logged for collection. We report our findings from these experiments in
Section 6.3.

We evaluated the performance impact of Staccato along two dimensions, slowdown
and memory overhead. To calculate the slowdown, we ran each software’s test suite on
the instrumented and uninstrumented versions 5 times each and measured response times.
Before collecting any data we ran a shorter version of each project’s test suite to control for
the effects of JIT compilation and application-specific startup actions. We disabled the havoc
mechanism during performance testing, as the high rate of configuration updates (several
times per second) is not realistic for measuring performance. To measure the memory
overhead of Staccato, we ran the same test suites (again with a brief warmup period)
and used Java’s JMX technology to monitor the program’s memory usage. We sampled the
JVM’s reported memory usage at one second intervals. Before taking each measurement we
triggered a garbage collection.

All experiments were run on a Dell Latitude E-5440 with a 4 core Intel Core i5 processor
at 2.00 GHz and with 16GB of RAM. We used version 1.7.0-91 of the OpenJDK JVM.

6.1 Summary

The annotation burden of using Staccato is extremely low: the ratio of annotation to SLOC
is below 1%. Even including changes to integrate with Staccato and update handlers, we
found that the effort needed to use Staccato in a project is minimal. Further, Staccato
was able to accommodate most configuration options of interest and usage patterns in the
projects that we evaluated.

We found DCU errors in all of our evaluation targets, despite widely different approaches
to configuration discipline and multithreading. Many of the DCU errors that we found were
violations of the staleness condition caused by two concurrent configuration updates. Two of
the projects we evaluated with Staccato also had DCU errors that could occur in a single-
threaded context, indicating that DCU errors are not just the result of insufficient testing
of multithreaded software. We encountered only one false positive during our analysis.

Staccato imposed a moderate performance penalty in our tests; we measured a maxi-
mum overall slowdown of 5.30x and a memory overhead of at most 144.40%. This is overhead
low enough to use Staccato as a bug-finding tool in pre-deployment. Our experience sug-
gests combining Staccato with an automated havoc test like those used in our evaluation
can be an effective technique for finding DCU errors. Staccato’s overhead makes it unlikely
that the repair mechanisms described in Section 4 can be used in production. However, a
developer can use Staccato’s repair mechanisms to rapidly develop DCU implementations
or fixes. From an initial implementation using Staccato, a programmer can develop a
more efficient manual solution.
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Table 1 Counts of lines changed to integrate with Staccato. Annot. counts explicit check
and propagation annotations. Flow are changes to calling conventions, the introduction of helper
methods, or the use of wrapper classes for integration with Staccato. Repair CB are repair
callback code. Bug-Fixes are fixes for concurrency bugs in the project. These consist primarily of
field accesses that were not well ordered according to the Java Memory Model [26]. Conf-Abs. are
changes to integrate the project’s configuration abstraction with the Staccato runtime. SLOC
counts the total source lines of code in the original, uninstrumented project.

Project Annot. Flow Repair CB Bug-Fixes Conf-Abs. Total SLOC
Openfire 100 184 451 78 212 1,025 85,416
JForum 11 44 13 2 29 99 29,568
Subsonic 13 52 0 0 118 183 29,592

6.2 Integration Effort
As a proxy for programmer effort, we measured the number of line changes necessary to
integrate Staccato with each of our evaluation targets. We count explicit propagation
and checking annotations as well as lines changed to integrate the software’s configuration
abstraction with Staccato’s runtime, changes to calling conventions to ease application of
annotations, and repair callbacks. The breakdown of lines changed is shown in Table 1. The
ratio of annotations to total lines for each project is 0.12%, 0.04%, and 0.04% for Openfire,
JForum, and Subsonic respectively. Including all source lines changed gives: 1.20%, 0.33%,
and 0.62% for Openfire, JForum, and Subsonic respectively. The relatively high percentage
for Openfire can be attributed to large number of lines added for update callbacks (column
Repair CB in the table).

Qualitatively, most of our effort was spent understanding each code-base. A team famil-
iar with an application would be spared this effort. Adapting a program once we understood
how its dynamic configuration worked was largely formulaic. Many bugs were found with
no extra annotations as many methods are checked by default against the consistency con-
dition. Finding staleness violations required some manual annotation. However, recall that
annotations to control checking by Staccato can be applied to an entire class. Thus,
when we added annotations for finding staleness violations, no pre-existing knowledge of
exact bug location was required, only an intuition that a class encapsulated some persistent,
configuration-derived state. Finally, we found most candidates for propagation annotations
simply by inspecting configuration access sites and determining what methods were called
with the newly returned configuration values.

Checking Coverage

We found that the configuration model and primitives exposed by Staccato were sufficient
to achieve good coverage of options checked in each evaluation target. Our functional tests
exercised between 25%–86% of options in our evaluation programs. Staccato was able to
track and check all options exercised by our tests.

We measured coverage by modifying the Staccato runtime to record the options checked
by Staccato and the correctness condition being checked. We also recorded which options
were read or updated during test execution. Options not involved in at least one update op-
eration are not counted for coverage purposes. Uses of these options were trivially validated
by Staccato but are uninteresting for evaluation purposes. Options that were updated
but never re-read are included; Staccato still validated that old copies of the option were
used consistently and did not cause violations of the consistency condition.
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Table 2 Classification of options available in each application and coverage of our functional
test suite. Checked counts options checked during our tests. Update are options updated using
Staccato’s repair mechanism. The next 3 columns count options not included in our tests. Imm.
are immutable and therefore uninteresting for our evaluation. Int. are internal, undocumented
options for which we lacked sufficient domain knowledge of the software. Other are options that
were untestable because of missing proprietary technology or update mechanisms with unfixable
concurrency bugs. Untested are all remaining options not exercised by our functional tests. Cov
measures the percentage of options tested in our evaluation.

Project Checked Update Imm. Int. Other Untested Total Cov.
Openfire 24 21 68 73 4 61 251 25.14%
JForum 37 1 3 0 0 6 47 86.36%
Subsonic 33 0 0 0 0 15 48 68.75%

Table 3 Counts of errors found by Staccato. Stale Read are violations of the staleness
condition. Incons. Read are violations of the consistency condition. Incons. CF are violations
of the consistency condition for control-flow.

Project Stale Read Incons. Read Incons. CF
Openfire 11 0 0
JForum 0 5 0
Subsonic 1 2 1

In all tests, every configuration option mutated by the havoc mechanism was checked
at least once. This result indicates that our approach accurately models the configuration
updates of the evaluation programs. Across all projects, most options were checked against
the consistency condition rather than the staleness condition. However, all programs used
checks for staleness at least once. Openfire and Subsonic both used the condition to find
bugs and JForum used staleness checking in combination with repair to add support for
configuration updates.

Our tests exercised only a representative set of options for each program in our evalua-
tion. There is no restriction other than annotation and test development effort preventing
100% coverage of options. We felt that achieving full coverage in our tests would provide
low marginal benefit for the amount of effort required. For example, we did not test the
configuration options that control Openfire’s operation in multi-server clusters. An overview
of which options we checked during our evaluation is presented in Table 2. We calculate the
coverage of our tests as:

Checked + Update

Checked + Update + Untested + Internal

Coverage for our evaluation set is 25.14% 86.36% and 68.75% for Openfire, JForum, and
Subsonic respectively. Openfire’s relatively low coverage is due to the high number of options
available in that program. Some of these options (counted in column Untested) controlled
functionality that was difficult to test automatically or that required complex test environ-
ments (e.g., mutli-server cluster options). We also excluded many undocumented options
available in Openfire that cannot be set via normal means (counted in column Internal).
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1 public void setLogDir ( String directory ) {
2 Config .set("audit.log.dir", directory );
3 this. auditDir = directory ;
4 }

Figure 8 Simplified atomicity bug during configuration update. If two threads concurrently
execute setLogDir, the value in the auditDir field may not be the most recent version of
"audit.log.dir" option. This violates the object’s implicit invariant. Staccato detects this
error on subsequent reads of the auditDir field.

1 static Map <String , ContactList > cache = ...;
2 ContactList getContactList ( String user) {
3 if(cache. containsKey (user )) {
4 return cache.get(user );
5 } else {
6 ContactStorage store = getContactStorage ();
7 cache.put(user , new ContactList (user , store ));
8 return list;
9 }

10 }
11 ContactStorage getContactStorage () {
12 String backend = Config .get(" contact . classname ");
13 /* reflectively instantiate the backend specified by
14 "contact.classname" */
15 }

Figure 9 Simplified example of contact list bug in Openfire. A stale version of the backend
specified by "contact.classname" will persist in ContactStorage objects cached in cache.

6.3 Effectiveness
Table 3 summarizes the errors that we found in our three evaluation targets. In every
evaluation target, Staccato found multiple dynamic configuration update errors. In total,
Staccato discovered 20 errors across the three evaluation programs. The most common
bugs are staleness violations that occur when two concurrent configuration updates were
performed. However, two of the three projects also contain errors that do not depend on
concurrency to manifest. We now discuss some example bugs found in each evaluation
target.

6.3.1 Openfire
All of the bugs found in Openfire were violations of the staleness condition. The most
common error in Openfire was reads of out-of-date configuration data caused by non-atomic
configuration updates. Figure 8 shows a simplified example of the problematic configuration
update idiom behind these errors.

We also found a DCU error in Openfire that does not require a specific thread schedule.
The server administrator may configure, at runtime, the implementation used to store a
user’s contact list. Each user’s contact list object holds a reference to the storage backend
specified by the administrator. Staccato found that contact lists loaded before a change to
the storage backend would continue to use the old backend object. This could cause changes
made to a user’s contact list to be lost. The underlying defect was caused by the contact
list objects being cached in a static field. A sketch of this scenario is shown in Figure 9.

Using the repair callback mechanism described in Section 4, we were able to introduce
dynamic updates for 21 options. We also added repair for 2 of the errors that we found in
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our evaluation. The locking guarantees provided by Staccato allowed us to write update
callbacks that focused only on implementing the actual configuration update and did not
require us to add any extra locking. Staccato also ensured that we did not introduce any
new dynamic configuration update errors when adding this new DCU functionality. We
validated that our update code was correct by extending the havoc mechanism to include
changes to the configuration options for which we wrote update callbacks; no errors were
reported by Staccato in any of the options we tested in this way.

6.3.2 JForum
JForum maintains less configurable global state than Openfire, so Staccato did not find
any violations of the staleness condition. However, Staccato found 5 violations of the
consistency condition.

Most of these errors were the result of two or more reads of the same configuration option
without any synchronization. For instance, when generating a response, JForum reads an
option twice to set two separate response parameters. The two reads are not protected
by any synchronization, and Staccato detected that a concurrent update of the option
would yield an inconsistent response. The single false positive found during our evaluation
occurred under similar circumstances. JForum reads a single option twice (again, without
synchronization), except that both reads populate the same response parameter. Staccato
was unable to detect that the second write overwrote the first, concealing any inconsistency.

One of the consistency errors Staccato discovered caused JForum to mislabel the en-
coding used in an HTTP response. Finding this error involved tracking object dependencies
at a level not possible with just primitive value dependencies. The bug is caused by the
configuration option that controls response encoding being read twice during request han-
dling: once in the method that generates the HTML response, and in another method that
sets the response headers. Using to @StaccatoPropagate annotations, Staccato was able
to capture the dependencies between the encoding option, the generated output, and the
response headers.

Staccato also found a consistency error that does not rely on a specific thread schedule
to manifest. JForum pre-computes the URLs of emojis available on the forum and stores
the results in a cache. The emoji URLs are built in part using the URL of the forum, which
is configurable. However, after the forum URL is updated, the emoji URLs in the cache are
not updated. The forum URL is also read on each request to render the header and footer
content of each page. Staccato detected that after the forum URL is updated, responses
that include emojis contain two inconsistent versions of the forum URL.

The handful of options that control persistent state all require a restart to take effect,
indicating a conservative approach on the part of the JForum developers towards configu-
ration updates. We were able to use Staccato’s repair functionality to transparently and
safely introduce online updates for one of these options.

6.3.3 Subsonic
Compared to JForum and Openfire, Subsonic has little configurable global state. The one
exception was in the LDAP integration component. Subsonic caches its connection to an
LDAP server in a static field and rebuilds the connection when it detects that the LDAP
configuration has changed. A simplified form of this update algorithm is shown in Figure 10.
However, although the getConnection method is synchronized, the method does not synchro-
nize with updates to the software configuration. As a result, lastChecked may hold the most
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1 static LdapConnection ldapConnection = ...;
2 static Time lastChecked = ...;
3 synchronized LdapConnection getConnection () {
4 if( lastChecked < Config . lastUpdateTime ()) {
5 ldapConnection = Ldap. connect ( Config .get("ldap - config "));
6 lastChecked = Config . lastUpdateTime ();
7 }
8 return ldapConnection ;
9 }

Figure 10 A sketch of the Subsonic LDAP connection staleness bug. In this example
Config.lastUpdateTime() returns the time of the most recent update to the configuration. Al-
though the update code uses synchronized, the update still contains an error. If an update to the
"ldap-config" option occurs between lines 5 and 6, the program incorrectly concludes that the
ldapConnection field is up-to-date.

recent update time for the configuration but the ldapConnection could contain a connection
built with an old version of the "ldap-config" option. Notice that this idiom is very similar
to the value repair scheme described in Section 4.2, although the option locks (Section 4.1)
prevent a smiliar error from occurring within our implementation.

Subsonic also contains a control-flow consistency error. A method that controls the music
play queue iterates over a list of playlist items and on each iteration checks an option that
determines if Subsonic is running behind a firewall. If this option is set, extra processing is
performed on the playlist item. Staccato flagged that if the option was changed during
an iteration of the loop, Subsonic would inconsistently process the entire list as a result.

One final example bug found by Staccato was caused by one logical option (the server
locale) being stored across three different configuration options. The reads of the three
options where not synchronized with the update mechanism of the options. As a result, if a
read of the three locale options occurred concurrently with an update, Staccato detected
that the user would receive an invalid locale (e.g, the US version of Japanese).

6.4 Performance Impact
Finally, we measured the performance impact of Staccato on our evaluation targets. We
measured two metrics: memory overhead and overall slowdown. Across all evaluation pro-
grams, the largest overall slowdown (averaging over test actions) was 5.30x and memory
overhead was below 2x. A graph of the slowdown results can be found in Figure 11.

We calculated overall slowdown as the geometric mean of the ratio between average
response times with and without Staccato, after excluding the largest 5% of response times
as outliers. Tsung (the technology used to test Openfire) did not provide individual response
times, so we did not filter outliers when calculating Openfire’s slowdown. The number and
duration of the outliers was broadly similar with and without Staccato, with high variance
across runs.

The overall slowdown for the projects was 1.26x, 5.30x, and 2.11x for Openfire, JForum,
and Subsonic respectively. This is generally competitive with other dynamic analyses and
is consistent with the performance reported for the Phosphor tool [4] on top of which Stac-
cato is built.11 The majority of extra time is spent combining configuration histories for

11The slowdown reported in the Phosphor paper is for a version that supported only integer valued tags.
Staccato is built using a more recent version that supports arbitrary tag types, which is necessarily
slower.
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Figure 11 The average slowdowns for the evaluation applications. Each individual bar represents
the average slowdown of a single test action in the test suites we created for the project. For example,
the “PM Send” bar measures the average slowdown experienced when sending a private message
to another user on the forum. Similarly, the “Search” and “Chat 1” bars respectively measure the
average slowdown for searching Subsonic’s music catalog and sending a sequence of chat messages on
the Openfire server. The overall slowdown for each application is computed by taking the geometric
mean of these average slowdowns.

primitive types. History merging is performed via a relatively expensive method call that
is inserted after every arithmetic, floating point, and boolean operation. In the common
case, the configuration histories being merged are empty. Although we optimized our run-
time heavily for this common case, Staccato runs into the inherent overhead of method
calls. Staccato could be combined with a whole-program static analysis to prune merge
operations when the configuration histories involved are provably empty.

The memory overhead of Staccato was: 110.83%, 144.40%, and 114.43% for Openfire,
JForum, and Subsonic respectively. For each application, we calculated the memory over-
head by averaging the observed heap sizes during the instrumented test runs, and similarly
for the uninstrumented test runs. We took the ratio of these two averages to be the to-
tal memory overhead. Most of this memory overhead is added by Phosphor for shadowing
primitive variables as noted in the Phosphor paper. Our memory overhead is generally lower
than that reported for Phosphor as we do not add tag fields unconditionally to every object
as explained in Section 5.2. We expect that memory usage could be improved with a static
analysis to remove provably empty shadow state.

7 Related Work

Configuration management is an active area of research [42, 39, 40, 1, 2, 16, 43, 9, 34, 27,
20, 33, 41]. To our knowledge, no existing research has examined the problem of DCU
errors. Some existing work has used approaches similar to ours to study different problems.
ConfAid [3] uses a dynamic information-flow analysis similar to ours to diagnose software
misconfigurations. It associates each program value with a configuration set: this set tracks
which configuration options potentially influenced the construction of the value. This is
very similar to Staccato’s configuration histories. However, ConfAid reasons only about
static configurations, and does not track versions like Staccato. Rabkin et al. [32] also
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tracked configuration values for the purposes of diagnosing configuration errors. However,
their analysis does not reason about dynamic configuration updates, and uses a conservative
static analysis.

Staccato’s analysis builds on extensive work on dynamic information-flow analysis [11,
12, 4]. Our approach precisely tracks data dependence, but handles handles dependencies
from indirect flow using a heuristic. Dynamic analyses that precisely track dependencies
from control-flow do exist (e.g., [18, 8]) but suffer scalability that limits their application
to large programs such as the ones we use in our evaluation. However, given a scalable
framework for control-flow tracking, Staccato could be extended to support control-flow.

Several of the DCU errors we found were the result of atomicity violations, such as the
JForum response parameter bug, or the example in Figure 8. These errors are similar to
linearizability errors. There is research into automatically checking linearizability [35, 6, 36]
and repairing operations that are not linearizable [23]. However, existing linearizability
research focuses on linearizability of ADT operations and cannot handle the arbitrary op-
erations performed on configuration options. Current work on dynamic atomicity checkers
[10, 38] offer another possible solution to detect consistency violations involving configu-
rations. However, linearizability and atomicity checkers would not find DCU errors that
involve our staleness condition.

Staleness violations result from a DCU invalidating one thread’s assumptions about the
(global) configuration state. This is similar to check-then-act errors [22, 21, 29] that result
from a concurrent update invalidating assumptions established by a check operation. In
contrast to check-then-act errors, Staccato’s consistency condition allows concurrent updates
to the global configuration, provided that a thread never observes inconsistencies.

Finally, there has been considerable research in the field of dynamic software updates
(DSU) [24, 13, 30, 25, 14, 31, 28]. DSU attempts to introduce arbitrary code changes
to running software without service interruption. Dynamic configuration updates can be
viewed as a specific case of DSU: each configuration update is a controlled change to running
software at runtime. However, existing DSU research does not provide checking for bugs in a
software’s current dynamic configuration mechanism, and offers only a potential alternative
for current DCU mechanisms. Unfortunately, even in the state of the art, existing DSU
techniques require significant effort on the part of the programmer to integrate with existing
applications and impose non-trivial performance overhead. One interesting common point
between existing DSU research and the approach in Staccato is how to maintain consistent
application state in the presence of an online update. Many existing approaches require the
programmer to write update hooks (e.g., [28]): this is similar to the approach taken by
Staccato for program repair (Section 4.2).

8 Conclusions and Future Work

This paper presented the first study of errors in dynamic configuration updates. We attacked
the problem of diagnosing incorrect updates with a dynamic analysis tool Staccato, which
detects stale or inconsistent views of the software configuration. We evaluated Staccato
on three open-source projects and found bugs in all three. Staccato imposes moderate
performance overhead, and requires only low manual annotation overhead. In future work,
we hope to complement Staccato with static analysis to lower the need for test cases to
find DCU errors.
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Abstract
Transforming programs between two APIs or different versions of the same API is a common

software engineering task. However, existing languages support for such transformation cannot
satisfactorily handle the cases when the relations between elements in the old API and the
new API are many-to-many mappings: multiple invocations to the old API are supposed to be
replaced by multiple invocations to the new API. Since the multiple invocations of the old APIs
may not appear consecutively and the variables in these calls may have different names, writing
a tool to correctly cover all such invocation cases is not an easy task.

In this paper we propose a novel guided-normalization approach to address this problem. Our
core insight is that programs in different forms can be normalized to a semantically equivalent
basic form guided by transformation goals, and developers only need to write rules for the basic
form to address the transformation. Based on this approach, we design a declarative program
transformation language, PATL, for adapting Java programs between different APIs. PATL
has simple syntax and basic semantics to handle transformations only considering consecutive
statements inside basic blocks, while with guided-normalization, it can be extended to handle
complex forms of invocations. Furthermore, PATL ensures that the user-written rules would not
accidentally break def-use relations in the program.
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We formalize the semantics of PATL on Middleweight Java and prove the semantics-preserving
property of guided-normalization. We also evaluated our approach on three non-trivial case
studies: i.e. updating Google Calendar API, switching from JDom to Dom4j, and switching
from Swing to SWT. The result is encouraging; it shows that our language allows successful
transformations of real world programs with a small number of rules and a small number of
manual resolutions.

1998 ACM Subject Classification D.1.2 Automatic Programming.

Keywords and phrases Program transformation, API migration

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2016.25

1 Introduction

Modern programs depend on library APIs, and when those APIs change, usually many places
of the client programs need to be changed. As a result, it is desirable for API vendors to
provide program transformation tools that automate the task of transforming client programs.
In practice, such transformation tools are developed for two purposes. One is for API
upgrade [11, 19]: when an incompatible new version of an API is released, the tool helps
upgrade the client programs to work with the new API. For example, a tool named 2to3
script [30] is provided to help users migrate programs from Python 2 to Python 3. Another
is for API switching [34], where the tool migrates programs from one platform to another
platform. For example, RIM provides a migration tool for transforming Android applications
to Blackberry applications in order to attract more developers to the Blackberry platform.

Given the importance of developing program transformation tools, dedicated program
transformation languages have been proposed, such as SmPL [27], Stratego [6], TXL [9],
Syntax Macros [38], Twinning [24] and SWIN [18]. These languages typically allow the
developers to describe a set of rules for program transformation, and a rule usually consists
of a pattern that matches a piece of code and an action for generating new code to replace
the matched one.

For example, the rule rSetAlign in the left of Figure 1 is a simple rule to transform
a method invocation in Swing to its counterpart in SWT. The rule is written in PATL
(PAtch-like Transformation Language), the transformation language to be introduced in the
paper, with a similary patch-style syntax used in SmPL [27]. This rule matches a call to
method JButton.setAlignmentX and replaces it by a call to method Button.setAlignment. The
line marked with ‘-’ describes a pattern to match a statement, while the line marked with ‘+’
describes a pattern for generating statements. The declaration of parameter jb declares a
metavariable used in the patterns and JButton->Button indicates that jb is of type JButton in
the old API and of type Button in the new API.

Though program transformation languages have greatly reduced the difficulty of writing
program transformations, dealing with many-to-many mappings between APIs remains
difficult. Many-to-many mapping means that a sequence of invocations to the old API is
mapped to a sequence of invocations to the new API, and this mapping is minimal: there
exists no mapping from a subsequence of invocations to the old API to a subsequence of the
new API. As shown by existing studies [34, 4], many-to-many mappings are very common
in transformation between APIs. Below we present the two key challenges in dealing with
many-to-many mappings.

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.25
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// rule rSetAlign
(jb: JButton ->Button , align : int ->int){

- jb. setAlignmentX ( align );
+ jb. setAlignment ( align );

}

// rule rButton
(jb: JButton ->Button ,

parent : JPanel -> Composite ) {
- jb = new JButton ();
- parent .add(jb);
+ jb = new Button (parent , SWT.PUSH);

}

Figure 1 Two transformation rules used in transformation of programs between Swing to SWT.

1 // Case 1:
2 jb = new JButton ();
3 if( parent != null) {
4 parent .add(jb);
5 }

1 // Case 2:
2 jb = new JButton ();
3 s = jb. getUIClassID (();
4 parent = new JPanel ();
5 parent .add(jb);

1 // Case 3:
2 jb = new JButton ();
3 defaultButton = jb;
4 parent .set( defaultButton );

Figure 2 Three examples of non-consecutive API invocations.

Challenge 1. The first challenge is that the same sequence of API invocations at runtime
can appear in many different forms in the code, and all such possible forms should be
considered in transformation.

Let us consider the rule rButton in the right of Figure 1. In this case, the class JButton is
mapped to the class Button, and the two calls in the Swing API are merged into one call to
the constructor of Button in SWT. While this rule captures the basic forms of consecutively
invoking the respective methods, many other different forms may produce the sequential
invocation to these two statements, such as those in Figure 2.

In this first case, every time the program enters the if-branch, the calls to jb = new

JButton() and parent.add(jb) actually form consecutive calls defined in the pattern, while in
the else-branch, such consecutive calls will not be produced. In the second case, though the
two invocations are not consecutive, their behavior is equivalent to consecutive invocations
and thus should be transformed. (In this case, the third statement parent = new JPanel() has
no dependency on the first two statements, nor does the second statement depend on the
last two statements. So the whole execution is equivalent to an execution of statements 4, 2,
5, 3, where 2 and 5 are consecutive.) In the third case, though the argument defaultButton

in the third statement is different from jb in the first statement, they match the patterns in
the rules as these two variables are aliases and they both refer to the same object. None of
the three cases are directly captured by rule rButton.

Researchers have noticed this problem and have proposed different mechanisms to match
the above cases, such as flow-based matching [7] and context-sensitive matching [9]. Given a
rule that is similar to the rule rButton, these approaches can identify statements that may
produce the same sequence of invocations at runtime, and return these statements as output.
For example, in the first program in Figure 2, these approaches can identify the match
between the rule rButton and the two statements in lines 2,4.

However, safely transforming these matched statements is challenging: contexts for
matched statements should be considered and thus it is difficult to transform them uniformly
using a simple strategy. For example, a common strategy used in existing approaches is to
specify which statements in the ‘+’ block replace which statements in the ‘-’ block1. In this
example, we can specify either the generated statement to replace the first statement marked
with ‘-’ or replace the second one. However, neither strategy can correctly handle even a
simple case like Case-2 in Figure 2. Replacing the first statement (left program below) will

1 This strategy can be implemented as context-sensitive rules in TXL [9], dynamic rules in Stratego [6],
and standard placement of ‘+’ statements in SmPL [27].
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lead to the problem that the parent used in the first statement (line 2) is either uninitialized
or captures some undesirable value defined by the previous context. Similarly, replacing
the second statement will lead to the fact that the statement jb.getUIClassID() refers to a
variable jb undefined or defined by some undesirable object in the previous context.

1 // jb = new JButton ();
2 jb = new Button (parent , SWT.PUSH);
3 /* other rules will transform the

following two statements */
4 s = jb. getUIClassID (();
5 parent = new JPanel ();
6 // parent .add(jb);

1 // jb = new JButton ();
2 /* other rules will transform the

following two statements */
3 s = jb. getUIClassID (();
4 parent = new JPanel ();
5 // parent .add(jb);
6 jb = new Button (parent , SWT.PUSH);

To correctly handle such cases in existing languages [27, 6, 9], we have to write rules
separately for different cases, capturing all possible contexts for all transformations that need
to be performed. This adds a lot of burdens to the developers, and also there is no guarantee
on whether these more complex patterns have the same meaning expressed in the basic rule.

In this paper, we present a novel transformation technique, guided normalization, which
extends the notion of syntactical transformation expressed with a simple patch rule into a
more expressive transformational semantics that can match and transform statements in
control flow graphs. Using our approach, the developer only has to specify the transformation
rules for consecutive blocks. The system first finds matched statements in a way similar
to existing approaches, and for code pieces that cannot be directly transformed, a guided
normalization process is performed: the system performs a set of semantics-preserving
transformations to the program so that the matched statements become a consecutive block
and can be directly transformed by simply syntactic substitution. If the normalization
procedure cannot be found by the system, a warning is generated to the user.

In this paper, we consider several semantics-preserving transformation primitives that are
verified and widely used in compiler optimization [37, 1, 8, 14] and refactoring [33, 26, 31],
including (1) shifting unconditional statements into all conditional branches when data
dependency2 does not break, (2) swapping two adjacent statements that have no data
dependency with each other, and (3) renaming variables to their must-aliases or fresh names.
Applying the three primitives on the three cases above, we can get the following programs,
all of which can be directly matched and transformed by rButton.

// Case 1’:
if( parent != null) {

jb = new JButton ();
parent .add(jb);

}

// Case 2’:
parent = new JPanel ();
jb = new JButton ();
parent .add(jb);
s=jb. getUIClassID (();

// Case 3’:
jb = new JButton ();
parent .set(jb);
defaultButton = jb;

A particular difficulty in designing guided-normalization algorithm is that several match
instances can intertwine with each other, thus, a global solution is necessary to ensure that
the normalization guided by one rule would not prevent the normalization guided by another
rule. In our approach, we globally consider constraints brought by matches and dependencies,
and then normalize the program without breaking any of them.

Challenge 2. With guided normalization, we can ensure that code pieces in different
forms are transformed as a consecutive block. However, the basic transformation specified by
the user rules may also lead to undesirable conflicts with other code pieces. Here we focus
on one type of such conflicts: breaking def-use relation.

2 Note there are three types of data dependencies: read-after-write, write-after-read, and write-after-write.
In this paper, when we use the term “data dependency”, we refer to all the three.
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An example of breaking def-use relation is shown below.

1 // BadRule :
2 (x: ClassX ->ClassX2 ,
3 y: ClassY -> ClassY2 ) {
4 - x = new ClassX ();
5 - y.add(x);
6 + y = new ClassY2 (x);
7 }

1 // Program
2 y = System . defaultY ();
3 x = new ClassX ();
4 y.add(x);
5 SomeUse (y);
6 SomeOtherUse (x);

BadRule−−−−−→
1 // Transformed Program
2 y = System . defaultY ();
3 y = new ClassY2 (x);
4 SomeUse (y);
5 SomeOtherUse (x);

As we can see, BadRule breaks the def-use relation in the program. The value y used in
SomeUse(y) was defined by line 2 in the original program (left) and now is defined by line 3 in
the transformed program (right). Similarly, the value of x in SomeOtherUse(x) was defined in
the old program, and becomes undefined after the transformation. This problem is caused
by the definition of BadRule, where a definition of y is undesirably added and a definition to
x is undesirably removed.

We solve this problem by providing a static checker to check the def-use safety by looking
into the set of transformation rules. Though this restricts the forms of the patch patterns
to write, we will show in the evaluation section that such restriction will not damage our
expressiveness in expressing API transformation problem.

Contributions. Concretely, this paper makes the following contributions.
We propose a novel transformation technique, guided normalization, for program trans-
formation with many-to-many mappings. In our approach, the developers specify the
transformations only for consecutive method invocations, and the system automatically
applies the transformation to many different forms via guided normalization.
We design a patch-rule like programming language, PATL, to transform programs between
APIs, and provide a static checker to ensure block-level transformation safety in terms
of def-use relation. We formalize the semantics of core PATL atop of Middleweight
Java [5], and prove (1) the guided normalization is semantics-preserving, and (2) the
transformation never breaks def-use relations.
We have evaluated our language with three non-trivial case studies for Google Calendar
API updates, switching from JDom to Dom4j, and switching from Swing to SWT. The eval-
uation shows that our language allows successful transformations of real world programs
with a small number of rules, requiring only a small amount of manual resolutions.

In the rest of the paper, we first present the syntax and basic semantics of PATL
(Sections 2, 3). Then we describe how we address the two challenges (Sections 4, 5). Next,
we present the implementation (Section 6) and evaluation (Section 7). Finally, we discuss
related work (Section 8) and conclude the paper (Section 9).

2 PATL Syntax

2.1 Background: Middleweight Java
Our discussion of PATL is based on a formal imperative core of the Java language, Mid-
dleweight Java (MJ) [5]. To simplify the formal presentation, we only consider MJ in
three-address form, and in Section 6 we shall discuss how to transform a program into and
out of three-address form.

In three-address MJ, arguments of method invocations or object constructions, field access
targets, if condition expressions and while condition expressions are limited to variables.
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p ::= cd (Program)
cd ::= class C extends C {fd cnd md} (Class Definition)
fd ::= C f (Field Definition)

cnd ::= C(C̄ x̄){super(ē); vd; s̄} (Constructor)
md ::= τ m(C̄ x̄){vd; s̄ return x; } (Method Definition)
τ ::= void | C (Return Types)
vd ::= C̄ x̄ (Variable Declaration)
s ::= ps (Statement)

| if(x) {s̄} else {s̄}
| while(x){s̄}

ps ::= x = e; | x.f = e; | pe; (Primitive Statement)
e ::= null | x | x.f | (C) x | pe (Expression)
pe ::= x.m(x̄) | new C(x̄) (Promotable Expression)

Figure 3 Syntax of three-address MJ, where x ranges over MJ variables, f ranges over field
names, C ranges over class names, and m ranges over method names.

Π ::= π1, ..., πn (Rule Sequence)
π ::= (d̄) {I−; I+} (Transformation Rule)
d ::= u : C ↪→ C (Metavariable Declarations)
I− ::= − p1 , ...,− pn (Source Pattern)
I+ ::= + p1 , ...,+ pn (Target Pattern)
p ::= u = r; | r; (Statement Pattern)
r ::= u.m(ū) | new C(ū) | u.f (Expression Pattern)

Figure 4 PATL syntax, where u ranges over PATL metavariables and C ranges over MJ types.

Besides all local variables in a method body are declared before the statements. The syntax
of three-address Middleweight Java is presented in Figure 3.

In the formal notations, we use the bar notation adopted by Pierce [29] for repetitive
elements: ā indicate a sequence a1, a2, ..., an, and all operations defined on single values
expand component-wisely along with the sequence, e.g. C̄ f̄ , is equal to C1 f1, · · · , Cn fn,
where n is the length of C̄ and f̄ .

2.2 Syntax
The syntax of PATL is formally presented in Figure 4. Similar to SmPL [27] and SWIN [18],
a PATL program is a set of patch-like transformation rules. Each rule π in a PATL program
consists of two parts: 1) metavariable declarations with type information of metavariables: a
declaration v : C1 ↪→ C2 means that the type of v in old API is C1 and its type is C2 after
transformation, and 2) the rule body consists of a sequence of patterns. The I− pattern
block describes the statements to be deleted and the I+ block describes the statements to be
generated. In a PATL rule π, all metavaribales used in I− and I+ are required to be declared
in the metavariable declaration part of that rule, and particularly, when a metavariable u is
newly-introduced in I+ (u does not appear in I−, meaning that u has no source type), u
should be defined with a dummy type ⊥ as its old type in its declaration.

3 Basic Semantics

Basic semantics of PATL performs only strict match on consecutive blocks and syntactical
transformation. In Section 5 we shall describe how to extend the basic semantics to deal
with code blocks in different forms.
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3.1 Match
Intuitively, statements s̄− in method M are matched by a rule π defined in a rule set Π, if 1)
s̄− is a sequence of consecutive statements in M that can be matched by the source pattern
π.I−, and 2) all variable occurrences matched by a same metavariable should have a same
name. The formal definition is presented below. We assume each location in a program is
uniquely identified, and use the notation xl in the rest of the paper to denote the occurrence
of variable x at location l in the program.

I Definition 1 (Match). Given a method M , statements s̄− in M are said to form a match
instance with a transformation rule π = (d̄){I− I+} if the following conditions are satisfied.

(Block) A basic block s̄ exists in M , s.t. s̄− is a consecutive statement sequence in s̄.
(Source pattern match) s̄− can be matched by the pattern block I− syntactically. There
exists a map φ from variable occurrences to metavariable names, s.t. by substituting each
variable occurrence in s̄− with its image in φ, s̄− is exactly the same as I−.
(Variable mapping) Suppose xl and yl′ are two variable occurrences matched by the
same metavariable u, then x ≡ y (i.e. x and y are the same variable), and these two
occurrences xl, yl′ are must aliases.
(Variable typing) Suppose a variable occurrence xl is matched by a metavariable u, then
type(x) <: type(u) if xl is a right-value in M , and type(u) <: type(x) if xl is a left-value
in M (Function type(x) refers to the type of x in M , and type(u) refers to the source
type of metavariable u in π). J

We denote a match instance as a triple b = (s̄−, π, σ), where σ = {u1 7→ [xl1 , ..., xln ], ...}
is the set of mappings from metavariables to variable occurrences formed in the match.
An element u1 7→ [xl1 , ..., xln ] ∈ σ indicates that the metavariable u matches to different
occurrences xl1 , ..., xln of the variable x in the program.

I Definition 2. A matching instance set B is a set of match instances {b1, ..., bn} formed
by matching a method M against a set of rules Π, such that for any b1 6= b2 ∈ B, where
b1 = (s̄−1 , π1, σ1) and b2 = (s̄−2 , π2, σ2), the statements s̄−1 and s̄−2 should have no overlap.

The ‘none-overlapping’ constraint is to ensure that one statement will not be deleted twice
in transformation, and a warning will be generated if two mapping instances overlap.

Note that in our pattern definition there is no syntax for capturing a field access expression.
Here we simply treat field access expressions as variables and allow metavariables to match
them.

Example. A match instance set is presented in Figure 5: given the source program on left
of Figure 5 and the transformation rules in Figure 1, the two statements in lines 2,3 will
be matched by the rule rButton, and the statement in line 5 can be matched by the rule
rSetAlign, and the match instance set is presented below: (Here, s2 refers to the statement
btn=new Button(); in line 2, and btn2 refers to the occurrence of the variable btn in line 2,
other notations are similar.)3

B =
{

(s2s3, rButton,
{

jb 7→ {btn2, btn3}, parent 7→ {panel2}
}

),
(s5, rSetAlign,

{
jb 7→ {btn5}, align 7→ {alX5}

}
)
} (1)

3 If there exist two variables at the same line, the encoding of l will not just be the line number but both
its line number and its character offset number, but as there is no such case in this example, we only
use line number for convenience.
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1 // Program
2 btn = new JButton ();
3 panel .add(btn);
4 alX = 10;
5 btn. setAlignmentX (alX);

rButton−−−−−−−→
rSetAlign

1 // Transformed Program
2 btn = new Button (panel , SWT.PUSH);
3 alX = 10;
4 btn. setAlignment (alX);

Figure 5 A transformation example with rules defined in Figure 1, the statements in lines 2,3 (left)
are transformed into the statement in line 2 in the result program (right) by rule rButton. Similarly,
the statement in line 5 is transformed to the statement in line 4 (right) by rule rSetAlign. In our
examples, variables are always declared in the previous context, but we omit them for concision
consideration.

3.2 Transformation
The transformation of a program based on a match instance set B is defined below.

I Definition 3 (Target Pattern Instantiation). Given a match instance set B, suppose b =
(s̄−, π, σ) ∈ B, then π.I+ will be instantiated into s̄+ by substituting each metavariable u in
π.I+ with an MJ variable:

If u is a metavariable in π.I+ and there exists u 7→ [xl1 , ..., xln ] ∈ σ, then u will be
substituted with x.
If u is a metavariable in π.I+ and u is a metavariable not appearing in π.I−, but defined
in π.I+, then u will be instantiated as a new variable name.

I Definition 4 (Statement-level Transformation). Given a method M (with its statement
body s̄M ) and a rule Π we denote the transformation of s̄M by Π as Π . s̄M . Suppose
B = {b1, ..., bn} is the set of match instances between M and Π where bi = (s̄−i , πi, σi), then
Π . M is the result of substituting all s̄−i with s̄+

i (statements instantiated from πi.I
+ with

bi). Formally, Π . s̄M = [s̄−1 7→ s̄+
1 , ..., s̄

−
n 7→ s̄+

n ]s̄M . J

Besides statement-level transformation, we will also 1) add the definitions of newly
introduced variables in the variable declaration field of M (the type of a newly introduced
variable is the target type of its corresponding metavariable defined in the rule) and 2)
transform the types based on the type mapping information provided in metavariable
declarations in each rules in Π. But as they are not our focus in this paper, we do not
formalize these two transformations.

Example. Given the match instances in Equation 1 between the program in left Figure 5
and rules in Figure 1, target statements will first be generated before substitution. In the
first match instance, the target statement is generated by substitution of metavariable jb

with button, and substitution parent with panel. The resulting target statement is btn=new

Button(panel, SWT.PUSH);. Similarly, by substituting jb with btn and substituting align with
alX, we obtain the target statement btn.setAlignment(alX); from the second match instance.
By substituting source statements in each match instance with its corresponding target
statements, the desirable result can be obtained (right of Figure 5).

4 Preserving Def-Use Relations

As mentioned in Challenge 2 in the introduction, we would like to disallow rules that may
change def-use relations. Thus, besides checking the syntax and type correctness of the
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rules as SWIN [18] did, an addition set of well-formedness conditions are checked against a
transformaion program Π to ensure the it will perserve def-use relations in transformation.

I Definition 5 (Well-Formedness Conditions). A PATL program Π = π1, ..., πn is well-formed
if the following four conditions are satisfied.

(Definition deletion) For all π, if there exists a pattern − u = r in I−, then there should
also be a pattern + u = r′ in I+.
(Definition introduction) For all π, if there exists a pattern + u = r in I+, then either
there exists − u = r in I− or u does not appear in I−.
(New metavariable introduction) Given a rule π, if there exists a pattern +p in π.I+ such
that a metavariable u in p does not appear in π.I−, then there exists a pattern +u = r

in π.I+ that introduce the definition of u. J

(SSA pattern form) For all π, the code block formed by I− (and I+) must be in static
single assignment (SSA) form, i.e. each variable is assigned at most once.

The first and second conditions ensure the def-use relations of existing variables. The
third condition ensures that the new variables are used after definition. The fourth condition
makes the other three conditions simpler, and also contributes to guided normalization to be
introduced in the next section. As an example, the BadRule in the introduction violates the
first two conditions, and thus can potentially violate def-use relations.

Now we can formally define and prove the def-use preservation property of a checked
PATL program Π. Suppose B is the match instance set between a method M and Π, Π(s) is
used to refer to the statements corresponding to s after transformation, defined as: (1) the
statements generated from a binding b, if exists b = (s̄−, π, σ) ∈ B s.t. s ∈ s̄−, or (2) s itself,
if s is not matched by any rule. We have the following theorem.

I Theorem 6 (Def-use Preservation4). Given a method M and a checked PATL program Π,
suppose the statement-level transformation is Π . s̄M = s̄′M , then:
1. Suppose s1 and sn are two statements in a basic block in s̄M , and there exists a variable

x that is used in sn and defined in s1, then after transformation, either Π(sn) does not
use the variable x, or the occurrences of x used in Π(sn) is defined in Π(s1).

2. Suppose x is a variable newly introduced in s̄′M , then x is used after definition.

5 Extending Basic Semantics via Guided Normalization

As mentioned in Challenge 1 in the introduction, we use guided normalization to extend the
basic semantics to different cases. We first start with the introduction of program analysis
techniques used in our approach, then introduce the extended match that identifies different
cases, and show how to guided-normalize the matched statements into the basic form.

5.1 Program Analysis

In order to apply a semantics-preserving transformation to a program p, the following two
program analysis results are required.

4 Please refer to the appendix for proofs of all theorems and properties.
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1. Alias relations between variable occurrences in p: given two variable occurrences xl1 and
yl2 , identify whether xl1 and yl2 are none-aliases, may-aliases or must-aliases5.

2. Dependency relations between statements in p: given two primitive statements s1 and
s2, whether there are no dependencies between them or there may exist dependencies
between them, considering both data dependency and control dependency.

As the transformation algorithm only requires the analysis results, the analysis algorithm is
orthogonal to the transformation phase and any conservative program analysis tool providing
these results can be used. And as we will show later, the precision of analysis result will not
affect the semantics-preserving property of the transformation process due to our conservative
treatment of the analysis result, but less precise analysis result may increase the number of
warnings reported by the transformation algorithm that require manual resolutions.

5.2 Extending Match
Now we define the extended match, considering match instances formed by potentially
scattered consecutive statements and rules.

I Definition 7 (Match*). Given a method M , statements s̄− in M are said to form a match
instance with a transformation rule π = (d̄){I− I+} if the following conditions are satisfied.

(Path*) There exists a statement sequence s̄, which forms an execution path in the control
flow graph of M , s.t. s̄− is a (potentially scattered) sub-sequence in s̄ .
(Source pattern match) s̄− can be matched by pattern I− syntactically.
(Variable mapping*) Suppose xl and yl′ are two variable occurrences matched by the
same metavariable u, then xl and yl′ are may-aliases in M .
(Variable typing) Suppose a variable occurrence xl is matched by a metavariable u, then
type(x) <: type(u) if xl is a right value in M , and type(u) <: type(x) if xl is a left value
in M . J

Different from Definition 1, in Definition 7: (1) statements are only required to appear in
a path in the control flow graph, and (2) variable occurrences bound to the same metavariable
are only required to be may-aliases. Here, we use B∗ = {b∗1, ..., b∗n}, where b∗i = (s̄−i , πi, σ

∗
i ),

to refer to the set of match instances formed between a method M and a PATL program
Π with extended match definition Match∗. The difference between σ∗ and σ is that given
u 7→ [xl1

1 , ..., x
ln
n ] ∈ σ∗ (indicating metavariable u maps to the variable occurrences xl1

1 , ..., x
ln
n

in the match instance), occurrences xl1
1 , ..., x

ln
n are only required to be aliases but not

necessarily with the same name.

Match Finding and Checking. Given a method M and a set of rules Π, we use a dataflow
analysis to obtain all match instances between statements in M and rules in Π. The behavior
of the dataflow analysis is similar to the method presented by Brunel et al. [7]. Due to space
limit, we omit the details here.

As mentioned before, not all match instances can be guided-normalized. If there exist
match instances that cannot be handled by guided-normalization, we will report them to
users as warnings. Some untransformable match instances can be easily identified by static
condition check. More will be identified during the process of guided normalization. Basically,

5 Typical analysis tools will only provide none-alias relations and may-aliases relations, but enhancing
them with a conservative intra-procedural aliases analysis can further provides must-alias relations
between variable occurrences.
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we identify any match instance b∗ = (s̄1, π, σ
∗) satisfying one of the following three conditions

and report it as a warning.
Any two variable occurrences matched by the same metavariable in σ∗ are not must-aliases.
Statements s̄1 appear across methods.
Statements s̄1 appear across boundary of a while statement, i.e., the matched statements
are in different iterations, or, some are inside a loop while some outside.

The latter two conditions are checked after the matching process, while the first condition is
checked after the guided-shift step in guided normalization (introduced later in this section).
This is because the guided-shift step will eliminate some may-aliases, and after checking, all
uncertain aliases between variables occurrences involved in match instances are resolved. On
the other hand, other uncertain aliases relations will not need to be handled as they will not
affect transformation correctness, as a result, only a small part of uncertainties is required to
resolve to proceed transformation.

Example. An example program demonstrating extended match definition with rules rButton

and rSetAlign is presented below on the left of Figure 6. In this program, firstly, the alignment
field of the button is set via a call to “btn.setAlignmentX(alX);”. Then, before adding the new
JButton object to panel, it checks whether panel is null: if it is not null, then the btn is added
to panel, otherwise the button is assigned to defaultBtn, added to a default panel defaultPnl.

From pointer analysis we can obtain that all occurrences of btn and defaultBtn are may-
aliases. Thus, three match instances (in Match*) can be obtained between the program and
the rules in Figure 1: i.e. 1) statements in lines 1,6 can form a match instance with the rule
rButton, 2) statements in lines 1,9 can form another match instance with the rule rButton

and 3) statement in line 2 can be matched by the rule rSetAlign. And these match instances
can be represented as Equation 2:

B∗ =
{

(s1s6, rButton,
{

jb 7→ {btn1, btn6}, parent 7→ {panel6}
}

),
(s1s9, rButton,

{
jb 7→ {btn1, defaultBtn9}, parent 7→ {defaultPnl9}

}
),

(s2, rSetAlign,
{

jb 7→ {btn2}, align 7→ {alX2}
}

)
} (2)

5.3 Guided Normalization
Guided normalization transforms the program in a semantics-preserving manner such that
the match instance in the extended semantics can be transformed by the basic semantics.
We first demonstrate the result of guided normalization by example.

Example. A desirable guided-normalization for the program with the match instances in
Equation 2 is presented below (6 right), as after normalization, statements matched to
a same rule appear consecutively in basic block and variable occurrences matched by a
same metavariable have same name. It is obvious that after guided-normalization, the
transformation defined in Section 3 can be performed as all extended match instances become
the basic in-block matches. Please note in this program different API methods do not write
or read to the same field, so there is no dependency between these method calls. This
information can be obtained by a dependency analysis.

Semantics Preserving Transformation. As mentioned in Section 1, the key point of guided-
normalization is to ensure that the normalization process is semantics-preserving. Thus
before moving to an algorithmic description of guided-normalization, we shall first define
which transformations are semantics-preserving.

ECOOP 2016



25:12 Transforming Programs between APIs with Many-to-Many Mappings

1 btn = new JButton ();
2 btn. setAlignmentX (alX);
3 System .out. print (alX);
4 b = panel != null;
5 if (b) {
6 panel .add(btn);
7 } else {
8 defaultBtn = btn;
9 defaultPnl .add( defaultBtn );

10 }

normalize−−−−−−−→

1 System .out. print (alX);
2 b = panel != null;
3 if (b) {
4 btn = new JButton ();
5 panel .add(btn);
6 btn. setAlignmentX (alX);
7 } else {
8 x = new JButton ();
9 defaultPnl .add(x);

10 btn = x;
11 defaultBtn = btn;
12 btn. setAlignmentX (alX);
13 }

Figure 6 An Example Program to be Transformed by Rules rButton and rSetAlign and its guided
normalized result. The program on the right is normalized with match instances in Equation 2, and
after guided normalization, the match instances become: 1) statements in lines 4,5 form a match
with rule rButton, 2) statement in line 6 form a match with rule rSetAlign, 3) statements in lines
8,9 form a match with rule rButton and 4) statement in line 12 form a match with rule rSetAlign.

I Definition 8 (Semantics-preserving transformation). A method M (the body of M is s̄M ) is
said to be semantics-equivalently transformed into M ′, if M can be transformed into M ′ with
a series of the transformation primitives defined below. We denote such semantics-preserving
transformation as M ∼−→M ′.

Alias Renaming Primitive: In s̄M , if xl is a must alias of variable y in the statement of l,
renaming x to y at the statement of l is semantics-preserving.
Left-value Renaming Primitive: In s̄M , suppose x = e; is a statement defining the value
of x, and y is a free name in M , then after declaring y in M , substituting x = e; with
y = e;x = y; is semantics preserving.
Fresh-variable Introduction Primitive: In s̄M , suppose x is a fresh variable name in
M , then declaring x in M and inserting x = y; at a location where y is defined is
semantics-preserving.
Swapping Primitive: In s̄M , suppose s1s2 are two adjacent statements with no dependency,
then transforming them into s2s1 is semantics preserving.
Shifting Primitive: In s̄M , (1) given s1if(x){s̄2}else{s̄3} and suppose x does not
depends on s1, then substituting it with if(x){s1s̄2}else{s1s̄3} is semantics preserving.
(2) given if(x){s̄2}else{s̄3}s1, substituting it with if(x){s̄2s1}else{s̄3s1} is semantics
preserving. J

The transformation primitives defined above are verified and commonly used in compiler
optimization [37, 1, 8, 14] and semantics-preserving refactoring [33, 26, 31], and as long as
we can show that a transformation algorithm can be decomposed into such series of transfor-
mation primitives, the transformation process is guaranteed to be semantics-preserving.

Transformation Stages. Algorithmically, the guide-normalization process can be decom-
posed into the following three stages:
1. Stage-1: Transforming the program with GuidedShift Algorithm so that statements matched

by a rule will appear in a basic block in the resulting program.
2. Stage-2: Transforming the program with GuidedRename Algorithm, and variable occur-

rences matched a same metavariable in a rule will have same name and definition.
3. Stage-3: Transforming statements in basic blocks with GuidedReorder Algorithm, so that

statements matched by a same rule will appear consecutively in the block.
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In the rest of the section, we will concretely describe each guided normalization stage and
prove its semantics-preserving property. The guided normalization process consists of three
transformation stages (three algorithms), i.e. GuidedShift, GuidedRename and GuidedReorder.

In our algorithms, we use ∆ to denote a must-alias checker, which is obtained by program
analysis, i.e. given two variable name x, y and a location l, ∆(x, y, l) = true indicates that
x and y are must-aliases at the location l otherwise not. We also use Θ to represent a
dependency checker, i.e. given two statements, Θ(s1, s2) = true indicates that s1 and s2
may have dependencies otherwise not 6. Particularly, besides dependencies obtained from
analysis, here we also consider match dependency: two statements s1 and s2 are said to have
match dependency when they are in a same match instance in B∗. We shall refer match
dependency and data dependency uniformly as dependency.

5.3.1 GuidedShift Algorithm
In the first stage, we make all statement sequences in a match instance appear in the
same basic block, i.e. given the match instance set B∗ = {(s̄−1 , σ∗1 , π1), ...}, if s̄′M =
GuidedShift(s̄M ,STB∗ ,Θ), then all s̄−i in match instances from B∗ will appear in a ba-
sic block in s̄′M . Here STB∗ is the shifting targets of B∗, indicating which statements are
supposed to appear in a basic block. STB∗ is calculated by including all adjacent statement
pairs in s̄−i , formally, given b∗ = (s̄−i , σ∗i , πi) ∈ B∗, if s1s2 are two adjacent statements in s̄−i ,
then a pair (s1, s2) is added into STB∗ .

The function locateBlock(s) is used to find the basic block where s is in, ShiftDownInto
(ShiftUpInto) is used to move a statement into the beginning (end) of both branches of an
if statement without moving any other statement, and UpdateLocation is used to update
locations for all statements whenever a shift operation happens (as it changes locations of
statements).

In the algorithm, given a target pair (sa, sb), we will first find two compound statements
s1, s2 such that s1, s2 appear in the same basic block and s1 contains or equals sa, s2 contains
or equals sb (line 2). Then we determine whether s1 is a compound statement containing sa.
If so, we shift s2 into an inner level of the block s1 (lines 3-13). In the shifting process, we
visit each statement after s1 in the block s1 is in, and when a statement s′ having dependence
with s2 is found, it will be shifted first to avoid dependency breaking (lines 8-10). If no
such statement exists, s2 will moved into an inner level of the block s1 using the shiftUpInto
function (line 8-10). When s1 = sa, meaning that sa is in an outer block level compared to sb,
we need to shift sa into s2 unless sa and sb are already in the same basic block (lines 14-28).
This process is similar to the former part except that dependence relation will be checked
when we try to shift a statement into an if statement, if dependence between the condition
variable and the statement exists, an warning will be generated for user to handle (line 24).

The algorithm will always terminate as the block-level (the number of nested blocks
a statement is in) of some statement will increase in each loop. And the algorithm only
terminates when the shifting goal is satisfied. The semantics-preserving property of the
algorithm is presented below.

I Property 9 (GuidedShift semantics-preserving). Let M be a method (s̄M be its body), Θ
be a dependency checker that contains all statement dependencies in s̄M , and ST be a

6 If may-dependence relation is reported between two statements s1 and s2, the result will be treated as
“s1 and s2 have dependencies” in our approach. This treatment ensures that any possible dependencies
will not be broken in transformation.
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Algorithm 1: GuidedShift algorithm.
Input: statements s̄, shifting targets ST = [(sa, sb), ...],

dependency checker Θ.
Output: shifted statement sequence s̄′

1 while exists tuple (sa, sb) ∈ ST , s.t. sa and sb are not in the same block do
2 find s1, s2, s.t. s1 is the statement containing sa, s2 is the statement containing sb and s1, s2

are in the same basic block.
3 if s1 6= sa and s1 is a compound statement containing sa then
4 s̄t ← locateBlock(s1);
5 i1 ← indexOf(s1, s̄t);
6 for i← i1 + 1, ..., size(s̄t)− 1, do
7 sx ← s̄t[i]
8 if sx == s2 then
9 shiftUpInto(s2, s1); updateLocations(s̄);

10 break;
11 if Θ(s2, sx) == true then
12 GuidedShift(s̄t, [(sx, s1)]);updateLocations(s̄)
13 break;
14 else if s1 = sa and s2 = if(u){s21}else{s22} then
15 s̄t ← locateBlock(sa);
16 i2 ← indexOf(s2, s̄t);
17 for i← i2 − 1, ..., 0 do
18 sx ← s̄t[i]
19 if sx == sa then
20 if Θ(u, sa) == false then
21 shiftDownInto(sa, s2); updateLocations(s̄);
22 break;
23 else
24 report(); retract(); exit();
25 if Θ(sx, s1) == true then
26 s̄t ← GuidedShift(s̄t, [(sx, s2)]);
27 updateLocations(s̄)
28 break;

set of shifting targets. We have M ∼−→ [s̄M 7→ s̄′M ]M if the invocation to the algorithm
GuidedShift(s̄M ,ST ,Θ) = s̄′M finishes without warning.

Example. Given the example in Figure 6, the first stage transformation is shifting, and it
is performed as follows in Figure 7.

5.3.2 GuidedRename Algorithm

The second stage of guided-normalization is to deal with variable names in s̄M , so that if
there exist two variable occurrences xl1 , yl2 matched to the same metavariable u in a match
instance (xl1 , yl2 are aliases to form such match), we will rename them into a uniform name
via semantics-preserving transformation. Since a variable may be re-assigned or used outside
a matching instance, to avoid disturbance to the code outside a matching instance, we always
introduce a new variable and renaming to the new variable.

Similar to the previous normalization stage, the renaming targets RTB∗ are calculated first
based on the B∗. Given a match instance b∗ = (s̄−, π, σ∗) ∈ B∗ and u 7→ [xl1

1 , ..., x
ln
n ] ∈ σ∗,

we add [xl1
1 , ..., x

ln
n ] into the renaming targets, as these variable occurrences are matched by

the same metavariable u in b∗. When we obtain RTB∗ from B∗, we will run GuidedRename
on RTB∗ and M to obtain the desirable normalized program.

In our algorithm, we use the following auxiliary functions: 1) Occurs(RT ) calculates the
set of all variable occurrences appearing in RT , 2) FreshName(M) generates a fresh variable
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1 btn = new JButton ();
2 btn. setAlignmentX (alX);
3 System .out. print (alX);
4 b = panel != null;
5 if (b) {
6 panel .add(btn);
7 } else {
8 defaultBtn = btn;
9 defaultPnl .add( defaultBtn );

10 }

GuidedShift−−−−−−→

1 System .out. print (alX);
2 b = panel != null;
3 if (b) {
4 btn = new JButton ();
5 btn. setAlignmentX (alX);
6 panel .add(btn);
7 } else {
8 btn = new JButton ();
9 btn. setAlignmentX (alX);

10 defaultBtn = btn;
11 defaultPnl .add( defaultBtn );
12 }

Figure 7 Guided-shift result of the example in Figure 6 left. Based on the match instances
defined in Equation 2, the statement in line 1 is the target statement to be shifted into branches.
Besides, the statement in line 2 is also shifted into branches as it depends on the statement in line 1.

1 System .out. print (alX);
2 b = panel != null;
3 if (b) {
4 btn = new JButton ();
5 btn. setAlignmentX (alX);
6 panel .add(btn);
7 } else {
8 btn = new JButton ();
9 btn. setAlignmentX (alX);

10 defaultBtn = btn;
11 defaultPnl .add( defaultBtn );
12 }

GuidedRename−−−−−−−−→

1 System .out. print (alX);
2 b = panel != null;
3 if (b) {
4 btn = new JButton ();
5 btn. setAlignmentX (alX);
6 panel .add(btn);
7 } else {
8 x = new JButton ();
9 btn = x;

10 btn. setAlignmentX (alX);
11 defaultBtn = btn;
12 defaultPnl .add(x);
13 }

Figure 8 Guided-rename result following the previous result in Figure 7, a new variable name x
is introduced to rename btn8 and defaultBtn11.

name that is not used in M , 3) UpdateAlias() updates variable locations in both M and RT
after transformation and 4) rename(x, y, l) renames x into name y at the location l.

In GuidedRename algorithm, we will deal with left-value renaming in lines 1-9 and deal
with right-value renaming in lines 10-21.

Left-value renaming (line 1-9) is used to deal with situations that the first element xl1
1 in

a renaming target rt = [xl1
1 , ..., x

ln
n ] is a left-value in M . (As we can prove, the only possible

left-value in a rt is the first element, as the patterns are required to be in SSA form and all
xli

i are matched by a same metavariable u in a rule.) Firstly, we will find the statement that
defines the value of xl1

1 and collect all such statements in a set S1 (line 1). And then, for
each collected assignment statement, we will generate a fresh name to rename it through
the Left-value renaming primitive defined in Definition 8 (lines 2-5). Then, as all these xli

i

appear in a same basic block (as a result of the GuidedShift algorithm), we will rename all
variable occurrences in rt into the new name (lines 7-8). Similarly, Right-value renaming
(lines 10-23) helps renaming a target such that all variable occurrences are right values.

Example. The guided-renaming phase for the program in Figure 7 is shown below in
Figure 8. As in the match instance between statements in lines 8-11 and the rule rButton

involves an alias-pair (i.e. btn8 and defaultBtn11), they will be renamed to have the same
name. The renaming process is done by introducing a new variable name x following the
left-value renaming part defined in the GuidedRename algorithm (lines 8,9,12 in the right of
Figure 8).
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Algorithm 2: GuidedRename algorithm.
Input: method M = τ m(C̄ x̄){vd; s̄M ; return x; },

renaming targets RT = {[xl11
11 , ..., x

l1n1
1n1

], ...}
Output: method M with some variables in the body renamed

1 S1 ← Assignment statements with left-value in Occurs(RT);
2 foreach sd ∈ S1 (sd of form yl = e;) do
3 x1 ← FreshName(M);
4 M.vd ←M.vd ∪ {type(yl) x1};
5 M.s̄M ← [sd 7→ x1 = e; y = x1; ]M.s̄M ;
6 UpdateAlias();
7 foreach yl′ where yl′ and yl are in a rt ∈ RT and l 6= l′ do
8 rename(y, x1, l

′); UpdateAlias();
9 S2 ← ∅;

10 foreach rt = [xli1
i1 , ..., x

lini

ini
] ∈ RT do

11 if Foreach xlij

ij ∈ rt, xlij

ij is a right-value then
12 S2 ← S2 ∪ {statement use xli1

i1 };
13 foreach s ∈ S2 do
14 foreach variable yl used in s do
15 if yl ∈ Occurs(RT) and yl is the first element of a rt ∈ RT then
16 x1 ← FreshName(M);
17 M.vd ←M.vd ∪ {type(yl) x1};
18 M.s̄M ← [s 7→ (u = y; [y 7→ x1]s; )]M.s̄M ;
19 UpdateAlias();
20 foreach other yl′ in rt do
21 rename(y, x1, l

′); UpdateAlias();
22 return M ;

Similar to GuidedShift algorithm, GuidedRename is also semantics preserving, and we
present the proof below.

I Property 10 (GuidedRename Semantics-preserving). Let M be a method, Π be a transfor-
mation program, B∗ be a set of match instances between M and Π, and RTB∗ be a set of
renaming targets generated from B∗. We have M ∼−→M ′ if GuidedRename(M,RTB∗) = M ′.

5.3.3 GuidedReorder Algorithm
The last phase of guided normalization is guided-reordering, in which we want to reorder
statements in blocks so that given a match instance b∗ = (s̄−, π, σ∗) ∈ B∗, statements s̄−,
will appear consecutively.

The reordering targets OT required by the algorithm will first be built: starting from
an empty set, for each b∗i = (s̄−i , πi, σ

∗
i ) ∈ B∗, s̄−i will be added into OT , i.e. the goal is to

make all such statement sequences matched by source patterns appeared consecutively. The
dependency checker Θ here is same as the checker used in GuidedShift.

In the GuidedReorder algorithm, firstly, for each block s̄, we assign each statement s ∈ s̄
with a field l indicating its target location. Then, we encode the goal as constraints using
by these locations, and then these locations can be calculated by solving the constraints.
Concretely, the constraints are built in the following way:

For each si, sj ∈ s̄, if Θ(si, sj) = true, add si.l < sj .l into the constraint set if i < j,
otherwise add sj .l < si.l if j < i (line 6-10). These constraints ensure that the statement
dependencies are kept after reordering.
For each statement sequence s̄k ∈ OT , add sk(i).l + 1 = sk(i+1) into the constraint set
(line 11-13). These constraints ensure that target statements will appear consecutively in
the right order.
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Algorithm 3: Statements Reordering.
Input: method M , dependency checker Θ,

reordering targets OT = [s̄a, ...]
Output: Re-ordered statement sequence s̄′

1 foreach basic block s̄ in M do
2 OTs ← {statement sequences from OT and in s̄};
3 (Suppose OTs is {s̄1, ..., s̄m})
4 n← length(s̄);
5 Constraints ← ∅;
6 foreach si 6= sj ∈ s̄ do
7 if Θ(si, sj) and i < j then
8 Constraint ← Constraint ∪ {si.l + 1 ≤ sj .l};
9 else if Θ(si, sj) and j < i then

10 Constraint ← Constraint ∪ {sj .l + 1 ≤ si.l};
11 foreach s̄k ∈ OT do
12 foreach i = 1 to length(s̄k)− 1 do
13 Constraint ← Constraint ∪ {si.l + 1 = si+1.l};
14 if TrySolve(Constraints) successful then
15 s̄′ ← Sort s̄ according to s.l;
16 M ← [s̄ 7→ s̄′]M ;
17 else
18 report();
19 return M ;

As these constraints form a system of difference constraints [10], and we can solve it
through shortest path algorithm. When we successfully solve the constraints, we will then
reorder the statements accordingly in M to obtain the desirable result. If there exists no
solution to the constraints, warnings will be generated to users, as we cannot make all
matched statements appear consecutively due to dependency issues.

Example. After performing GuidedRename the program in Figure 8, we only need to reorder
the statements in lines 4,6 and statements in lines 8,12 in program (right of Figure 8) to
obtain the desired program in Figure 6 left. At this point, we successfully guided-normalize
the program as presented in 6.

The following property shows that GuidedReorder is semantics-preserving.

I Property 11 (GuidedReorder semantics-preserving). Let M be a method, Θ be a dependency
checker containing all statement dependencies in M , and OT be a set of reordering target.
We have M ∼−→M ′ if M ′ = GuidedReorder(M,Θ,OT ).

5.4 Main Theorem
Here we present the main theorem on the semantics-preservation of guided normalization.

I Theorem 12 (Main Theorem). Let M be a method, Π be a rule set, and B∗ be a set
of match instances between statements in M and rules in Π. We have M ∼−→ M ′ if the
guided normalization of M with B∗ returns M ′. In other words, the transformation is
semantics-preserving.

Proof. This theorem is a simple derivation of Property 9, 10 and 11. J

6 Full Language Implementation

Based on the core PATL presented in previous sections, we implemented a version of PATL
for Java (Patl4J). On top of core PATL, there are several extensions in the full language.
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First, the full language supports standard Java programs that are not necessarily in
three-address code. Before matching and transformation, we first convert the Java program
into three-address code. This is achieved by introducing a set of temporary variables to
decompose statements that are not in three-address form. We give special names to the
temporary variables, and after the transformation, we try to apply the “inline variable”
refactoring to inline these variables to recover the original program. In this way we can
ensure the structure of the original program is retained to some degree.

Second, the full language supports context-sensitive matching, similar to the context-
sensitive matching in SmPL [27] and TXL [9]. We introduce a new type of pattern to match
a context of a rule. A context is a sequence of statements (not necessarily consecutive)
that always appear before the matched statements in all paths in the control flow graph,
and transformation only when its context is matched by the rule. An example of the
context-sensitive matching can be found in the evaluation section.

Finally, the full language provides a new type of transformation rules to change method
definitions. In Java, we may define a class that extends a library class or implements a library
interface. When the library class/interface is mapped to a new class/interface, the client
definition should also be changed. Our rule works similarly to refactorings [13], allowing to
rename a method, reorder the parameters of a method, or introduce a new parameter.

Currently, the full language is implemented as an Eclipse Plug-in using the Eclipse JDT
parser to manipulate the syntax tree and obtain type and use Soot [35] to perform program
analysis for the client program. Concretely, in our implementation, desired program analysis
results are obtained using SOOT Spark pointer analysis tool, where 1) the alias relation
between two variable occurrences is determined by querying the anaylsis tool whether two
variable occurrences always points to the same memory location and 2) the dependence
relations between two statements is determined by querying the tool whether there exists
variable occurrences in the two statements accessing the same memory location. Our
prototype can be found in its web site7 8.

7 Evaluation

How effective is PATL for transforming real-world industrial cases? To answer this question,
we evaluate our approach on three groups of widely-used Java API cases, i.e. Jdom to Dom4j,
Google Calendar version 2 to version 3, and Swing to SWT.

7.1 Data Set
In our experiments, we chose three case studies that migrate programs from Jdom9 to Dom4j10,
from Google Calendar11 version 2 to version 3, and from Swing12 to SWT13, respectively.
Jdom and Dom4j are two popular XML parsers, but Dom4j has better performance over

7 https://github.com/Mestway/Patl4J.
8 As a proof-of-concept, the type analysis, interprocedural dependency analysis, and some transformation

steps in our implementation are not fully automated and require user inputs. Nevertheless, this is purely
a pragmatic problem due to our limited resource on implementation; our approach can be implemented
fully automatically.

9 http://www.jdom.org/
10 http://www.dom4j.org/
11 https://developers.google.com/google-apps/calendar/
12 http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
13 http://www.eclipse.org/swt/
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Table 1 Subject Client Programs.

Client KLOC Classes Methods Case

husacct 195.6 1187 5977 Jdom/Dom4j
serenoa 12.2 52 523 Jdom/Dom4j

openfuxml 112.5 727 4098 Jdom/Dom4j
clinicaweb 3.9 74 213 Calendar

blasd 9.7 199 729 Calendar
goofs 8.6 78 643 Calendar

evochamber 12.8 132 868 Swing/SWT
swingheat 2.3 30 186 Swing/SWT
marble 1.6 10 56 Swing/SWT

Total 359.2 2489 13293 –

Jdom on a number of tasks, so it is desirable to migrate programs from Jdom to Dom4j.
Google Calendar API is a web service provided by Google to access personal calendar data.
The interface for version 2 has been shut down, and version 3 is not compatible with version
2 clients, so the clients will not work unless migrated to version 3. Swing and SWT are two
Java GUI libraries. Swing uses platform-independent components while SWT is designed as
a light-weight wrapper of native GUI. SWT is sometimes considered faster than Swing, and
some platforms such as Eclipse only supports SWT. We chose the three case studies because
they are real-world program migration cases, and a large number of clients are available for
the evaluation. Also, the three cases cover the two main types of program migration: API
switching and API upgrading.

To evaluate the transformation program we wrote, we also collected a number of client
programs that use the source API. These clients are obtained by searching the source API
methods in searchcode14. In total, we used nine client programs in our evaluation. The
statistics of the subject programs can be found in Table 1. In total, the projects totally
contain 342.5 KLOC, including 2317 classes and 12183 methods, details about these projects
can be found in our implementation website.

7.2 Procedures
For each case, we first wrote PATL rules that capture the correspondence between the old
and the new APIs. Since the changed portion of the API is large, and it is important to test
the rule under a real client, we only dealt with the portion of API that is used in our subject
client programs. However, the rules we wrote are generic rules for any possible client, not
specific to the subjects in our evaluation.

Next we transformed client programs that contain source API invocations using our
transformation tools. To produce working clients, we manually resolved warnings reported
during the transformation. A few API invocations are impossible to be transformed due to
the limitation of PATL, and we create mock objects for them.

To ensure that the transformation is performed correctly, we performed three different
tests for these converted clients. (1) Client EvolutionChamber comes with a set of 28
functional and 4 performance tests, and we ensure that the transformed client passes all

14 http://searchcode.com
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Table 2 Transformation Rules.

Transformation Rules Classes Methods M-to-m

Jdom/Dom4j 84 12 77 12(14.3%)
Calendar 42 14 45 21(50.0%)

Swing/SWT 110 40 82 54(49.1%)

Total 236 66 204 87(36.9%)

Table 3 Results of the Transformations.

Client CF CL W U I MM GN

husacct 42 852(100%) 0(0%) 0(0%) 0 0(0%) 0(0%)
serenoa 8 273(98.9%) 0(0%) 3(1.1%) 0 9(3.3%) 0(0%)

openfuxml 72 983(94.8%) 0(0%) 54(5.2%) 15 2(0.2%) 0(0%)
clinicaweb 5 81(100%) 0(0%) 0(0%) 8 34(42%) 0(0%)

blasd 5 26(63.4%) 8(19.5%) 7(17.1%) 0 13(50%) 2(15.4%)
goofs 13 100(80.0%) 12(9.6%) 13(10.4%) 27 27(27%) 0(0%)

evochamber 9 587(98.3%) 10(1.7%) 0(0%) 0 330(56.2%) 109(33.0%)
swingheat 21 653(100%) 0(0%) 0(0%) 0 461(70.6%) 394(85.5%)
marble 6 488(98.6%) 0(0%) 7(1.4%) 0 240(49.2%) 220(91.7%)

Total 181 4043(97.3%) 30(0.7%) 84(2.0%) 50 1116(27.6%) 725(65.0%)
CF = number of changed files, CL= number of changed lines, percentages in CL = CL / (CL+W+U), W
= the number of lines of code that have warnings, percentages in W = W / (CL+W+U), U = number of
lines that PATL cannot transform, percentages in U = U / (CL+W+U), I = number of lines impossible
to transform, MM = number of lines that are involved in many-to-many mappings, percentages in MM =
MM / CL, GN = number of lines that require guided normalization, percentages in GN = GN / MM.

transformed tests. (2) We check whether they behave normally without exceptions, error
messages, or crashes.. (3) For the clients in JDom/Dom4j and Swing/SWT, we side-by-side
executed both the original and transformed clients to ensure they behaved the same. Note
that we cannot apply the last test to the clients of Google Calendar because Calendar API
v2 is already shut down.

7.3 Results
Rules Written. The statistics for the rules and transformed source APIs are summarized
in Table 2: the ‘Rule’ column shows the number of the rules. The ‘Class’ and the ‘Method’
columns contian the number of API classes and methods covered by the rules. In total, we
wrote 236 rules for the three case studies, and 66 classes and 204 methods in the source API
are covered.

Basically, the number of rules is close to the number of covered methods. Furthermore,
most rules are easy to write: only 14 rules in total that have a body longer than 4 lines. This
indicates that PATL rules are friendly to users: they only need to capture basic forms in
writing the rules without worrying about complex program context.

Effectiveness of Client Transformation. To evaluate the effectiveness of our approach on
transforming clients, we counted the following numbers in our evaluation: (1) the number of
files transformed by the rules (CF), (2) the number of lines transformed by the rules (CL),
(3) the number of lines in the source client code on which warnings are generated (W), (4)
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// Rule -1
(x: CalendarEntry -> CalendarListEntry

,
y: TextConstruct ->String ,
z : String -> String ){

m y = new PlainTextConstruct (z);
- x. setTitle (y);
+ x. setSummary (z);

}

// Rule -2
(y: TextConstruct -> String ){

- y = new PlainTextConstruct (z
);

+ y = "";
}

Figure 9 Two transformation rules used in transforming Google Calendar v2 to v3.

the number of lines where transformed code exists but the transformation rule cannot be
specified in PATL (U). Details of the data are presented in the first five columns in Table 3.

As we can see from the table, the 236 rules changed in total 4043 lines distributed in
181 files. This result reflects the effort saved from manual migration. The efforts saved are
twofold: (1) to locate these lines from different files, (2) to derive transformation solution for
each line based on the context surrounding this line.

Furthermore, the number of lines transformed by PATL consist of 97.3% of the lines that
need to be converted. The rest of lines need manual resolution: the lines where warnings are
reported and the unconvertible lines. These lines amount to 114 lines, consisting of 2.7% of
total lines. This result indicates that PATL is able to handle the majority of the cases in
practice.

Many-to-Many Rules. A significant portion of the transformation rules are many-to-many
rules. As we can see from the last column of Table 2, in total 36.9% of the rules are
many-to-many rules, and in the case of Google Calendar upgrade the percentage is as high as
50%. These many-to-many rules is responsible to transform a significant portion of the client
code. As shown in column “MM” in Table 3, in total 27.6% of the lines are transformed by
many-to-many rules, and in project swingheat the percentage is as high as 70.6%.

From our running example we have seen a typical case where many-to-many rules can
be applied. Here we show another typical case: a wrapper class in the source API does not
exist in the target API. For example, in the old version of Google Calendar, a wrapper class
called PlainTextConstruct is used to wrap a string. For example, client goofs contains the
following two lines of code (e in the statement is a variable of type CalendarEventEntry).

e. setTitle (new PlainTextConstruct (name));

In the new API, the use of the wrapper class is removed as many as possible. As a result,
the above two lines should be converted to the following line of code.

e. setSummary (name);

This instance is a typical many-to-many mapping instance, and the transformation can
be captured by the two rules in Figure 9.

The first rule uses context-sensitive matching described in Section 6. The statement
annotated with “m” is a context pattern, which indicates that x.setTitle(y) is only matched
and transformed if there is y = new PlainTextConstruct(z) before it. The first rule captures
the wrapping of a string and the use of the wrapper, and converts it into a proper method
invocation based on how the wrapper is used. The second rule removes the useless variable
y. Note that the target method setSummary is decided by both the argument passed to
PlainTextConstruct (in this case, a string but not an html object) and the invoked source
method on x (in this case setTitle), so this rule has to be many-to-many.
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XMLOutputter out = new XMLOutputter ();
for ( Element e : rulesElements )

rulesToRegister += out. outputString (e);

StringWriter sw = new StringWriter ();
XMLWriter out = new XMLWriter (sw);
for ( Element e : rulesElements )

out. write (e);
rulesToRegister += sw. toString ();

Figure 10 An example using the JDom that PATL cannot handle.

Guided Normalization. The number and percentage of lines in the source clients that
require guided normalization are shown in the last column of Table 3. As we can see from
the table, a significant portion of lines involved in many-to-many rules, i.e., 65.0% of lines,
requires guided normalization to correctly perform the transformation. This result indicates
(1) guided normalization is necessary; (2) guided normalization is only performed on necessary
lines but not all lines, avoiding excessive change to the layout of the source code.

Besides guided normalization, a conversion to three-address code is performed at the
beginning of the transformation, and the introduced temporary variables will be inlined at
the end of the transformation. In our experiment, all temporary variables are inlined at the
end. This result indicates that the conversion to three-address code would not significantly
affect the source code, either.

In particular, most lines requiring guided normalization exist in the clients of the
Swing/SWT. This is because a lot of UI elements are first initialized and then added
to their parents, such as the following example, in which we need to first swap the statements
at line 2 and line 3 and then the rule in our running example becomes application.

button = new JButton ();
button . setText ("OK");
panel .add( button );

Unspecifiable Cases. As shown by the column “U” in Table 3, there are in total 84 lines of
code whose transformation patterns cannot be captured by PATL rules. These unsupported
mapping patterns are summarized into the following three categories.

The first category is that type mapping does not form a function. For example, a class
may split into two classes, each inherits part of the functionalities of the original class. Since
in the meta variable declaration we only allow to map one class to another class, we cannot
write a rule for such cases. Most lines, 74 out of 84 belong to this category.

The second category is that the transformation needs high-level coordination between
match instances, and only one such instance of three lines is observed. This instance is from
Jdom/Dom4j. Below is the source client code (left of Figure 10), which converts elements in
rulesElements into a string in rulesToRegister. An ideal transformation of this case is shown
on right: instead of directly converting each element into string, they are written into a
StringWriter to get the concatenated string. While we can write rules to generate the first
three lines of the target code, We cannot generate the call to sw.toString() at the end of the
target client code because there is no corresponding source statement. Generating this type
of “closing” statement remains future work.

The last category relates to the use of JPopupMenu in Swing. In the evaluation 7 out of
the 84 lines belong to this category. In Swing, to show and hide a pop menu, we need to
implement a listener in which we write code to show and hide the pop menu. In SWT, we
only need to call a method setMenu. To perform this transformation, we need to match both
a method definition as well as the method body, which is not supported in PATL.
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Warnings. As shown in the “W” column in Table 3, there are in total 30 lines of code on
which warnings are generated. There are several reasons why warnings are generated. The
first one, also the largest category, is that some code pieces cannot be transformed or shifted
together because of dependencies among statements. 18 out of 30 lines belong to this category.
The second one is that one line is matched by multiple “-” block in different rule instances. 2
out of 30 lines belong to this category. These two categories actually show the usefulness of
guided normalization: unsafe transformations are disabled by guided normalization.

The last category is that the matched code is scattered in several methods. Since we do
not move statements across method boundaries, our approach reports warnings on these lines.
10 out of 30 lines belong to this category. This shows a limitation of our current approach.

Untransformable code. As shown in the “I” column in Table 3, there are in total 50 lines of
source code that are impossible to transform. This is because we cannot find any counterpart
in the target API for a portion of the source API, and any lines invoking this portion
cannot be transformed. The portion of untransformable API in the Google Calendar case is
confirmed by the official Google Calendar upgrade guide, which states some functionalities
are removed and will not be supported any more.

8 Related Work

Pattern finding in programs. Several works have been done in enhancing the pattern
finding technique to enable finding program patterns with simpler rules [28, 7]. Among them,
the most related is the approach proposed by Brunel et al. [7], which enables users to specify
a sequence of consecutive statements to match different form statements against patterns
with same semantics via model checking. The match part of our transformation technique is
similar to this matching mechanism, while differently, besides matching, our language also
performs transformation using these consecutive statement patterns.

Transformation languages. A lot of different program transformation approaches have
been proposed for different purposes.

Some of these approaches [24, 18, 3, 36, 21, 20] are specialized for handling one-to-many
mappings: one method invocation is replaced by a sequence of invocations. Among them the
most related are Twinning [24] and SWIN [18], both of which are designed for handling the
API migration problem with one-to-many mapping rules. Our basic semantics and the type
mapping design are similar to them. Another related approach is update calculus [21, 20],
which ensures the type-safe update of programs. Our approach currently does not ensure
type safety, and potentially can be combined with update calculus and SWIN to ensure
type safety. Overall, compared with these languages designed for one-to-many mappings,
our approach supports many-to-many mappings, the importance of which is recognized by
several empirical studies [4, 34] as well as our evaluation.

Besides, a number of program transformation languages or frameworks can be used to
handle program transformation involved in many-to-many mappings.

SmPL [27] is a transformation language designed to document and automate the collateral
evolutions of large C programs with patch rules. Our syntax for specifying the three
patterns are inherited from semantic patches. SmPL also includes a state check [7] to check
transformations that may potentially break data dependency relations, and a failure will be
report on Case-2 in introduction (which our approach successfully handles). Stratego [6]
is a general purpose program transformation language. It handles the context-sensitive
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transformation with the support of dynamic rules: dataflow facts in can be collected and
propagated [25] and users can write rules at places where context information is not yet
available. TXL [9] is another general purpose transformation language, which allows acquiring
the context information during abstract syntax tree traversal. Lacey and De Moor [17]
propose a graph rewriting language where conditions on execution paths can be specified
using temporary logic. Crossver [32] proposed a way to combine dataflow analysis with
aspect-oriented programming to transform programs.

Overall, though these languages have provided more general and expressive operations
for matching and transforming programs, they are relatively low-level in API transformation
cases and require more effort to create correct and generic transformation. Differently, our
language focuses on a more restrict but simpler language interface for the API transformation
tasks.

Automated Transformation for APIs. Several approaches try to further reduce the cost of
program adaptation between APIs by automatically discovering the transformation program.
Typical approach includes recording the API refactorings and replay them on the client
code [13, 12], and analyzing manually adapted code pieces [2, 23, 22] or clients [40, 39].
Currently, none of these approaches guarantee the safety of many-to-many transformations.
Our approach can be potentially combined with those approaches to reduce the effort of
writing code.

Normalization. Normalization techniques are commonly used in compiler optimization[15,
1, 14, 37, 8], semantics-preserving refactoring [26, 31] and procedure extraction [16].

Komondoor and Horowitz [16] presented a normalization technique that helps to move a
set of identified statements to form a consecutive sequence, for program extraction purpose.
However, due to the different domain requirements, their approach [16] handles only the
situation that the normalization target is one sequence of statements, while our approach
is required to normalize multiple sequences at the same time. As a result, we restrict
the transformation primitives to retain the semantics-preserving property with the more
complex normalization goal. Furthermore, transforming programs between APIs also requires
performing renaming between aliases, which is not supported by Komondoor and Horowitz’s
approach [16] as it is not a requirement in code extraction.

Code motion [15] is an optimization technique which, when applied to if-branches, behaves
similarly to our shift operation. However, these operations are not designed for user-specified
program transformations. In addition, different from their approach and other compiler
optimization approaches [1, 14, 37, 8], normalization in our approach are guided by match
instances so that most original program structure can be kept after normalization.

9 Conclusion

In this paper we have presented PATL for safe transformation of complex programs between
different APIs with simple Many-to-Many mapping rules. The key insight for PATL is to
bridge the gap between simple in-block transformation semantics and complex program
structures using guided normalization, which automatically changes the program so that
code in different forms can be transformed in a unified manner. We applied PATL to three
real world program transformation cases. The evaluation showed that PATL is expressive
in handling real world scenarios, and with the help of guided normalization, only a small
amount of manual resolution is required.
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Abstract
Program analysis is fundamental for program optimizations, debugging, and many other tasks.
But developing program analyses has been a challenging and error-prone process for general users.
Declarative program analysis has shown the promise to dramatically improve the productivity in
the development of program analyses. Current declarative program analysis is however subject
to some major limitations in supporting cooperations among analysis tools, guiding program
optimizations, and often requires much effort for repeated program preprocessing.

In this work, we advocate the integration of ontology into declarative program analysis. As a
way to standardize the definitions of concepts in a domain and the representation of the knowledge
in the domain, ontology offers a promising way to address the limitations of current declarative
program analysis. We develop a prototype framework named PATO for conducting program ana-
lysis upon ontology-based program representation. Experiments on six program analyses confirm
the potential of ontology for complementing existing declarative program analysis. It supports
multiple analyses without separate program preprocessing, promotes cooperative Liveness ana-
lysis between two compilers, and effectively guides a data placement optimization for Graphic
Processing Units (GPU).
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1 Introduction

Program analysis [45] is a common way for deriving various properties of a program from
its code. It is fundamental for many aspects of modern computing, including program op-
timizations, vectorization and parallelization, performance or correctness bug identification,
task scheduling, and so on.
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There are mainly two ways to implement a program analysis. A traditional way is
imperative, in which, thousands of lines of code (often in some imperative programming
languages) is developed based on some compiler framework for analyzing program constructs,
types, control or data flows to infer certain properties of the target program. Programmers
typically need to go through some steep learning curve about the structure and internal
details of a complex compiler, while the results are often unsatisfactory: The code is often
difficult to maintain, and bugs are common [63]. The analysis, being specific to a particular
compiler, is hard to extend, to compose, or to reuse for other compilers.

The second approach, declarative program analysis, has been proposed to overcome the
productivity issues [56, 32, 17]. With it, the developers just need to define some abstract
domains and then use some logic programming language (e.g., Datalog [60]) to describe the
analysis rules that govern the relations or properties of interest. Some automatic tools can
then automatically do the inferences over a certain representation of some relations in the
target program to find out the wanted relations or properties of the program. Experiments
have shown that, with this approach, the code size of a program analysis often reduces by
orders of magnitude compared to the imperative approach, and the analyses become easier
to maintain and extend [13]. Moreover, with the substantial improvement in optimizations
of the logic processing engines (e.g., bddbddb [59] and numerous optimizations to inference
engines [62]), the performance and scalability concerns of declarative program analyses have
been largely resolved.

In this work, we aim to further improve this promising paradigm of program analysis,
particularly, to investigate solutions to three most important limitations of the current
declarative program analysis:

Cooperations. By expressing the analysis at a high level, different analysis tools could
potentially reuse an analysis, and different analyses could get composed together into
a more sophisticated analysis. However, in practice, these benefits have been difficult
to achieve in general, due to the differences in the analysis-specific representations of
programs and relations. In one analysis, the domain may be variable names and heap
addresses, and the relation may be “assigning one address to a variable”; in another
analysis, the domain may be expressions and the relation may be “calculated before a
program point”. To compose the two analyses, the variable names and heap addresses
in the first analysis may have to be mapped to the expressions in the second domain,
which would require much code development (likely entwined with the code in the com-
pilers), especially if the two analyses were developed by different users based on different
compilers that use different intermediate representations (IRs).
Optimizations. So far, explorations of declarative program analysis have been focused
on understanding program behaviors (largely for the purpose of debugging), for which,
program-level knowledge has been enough. It is, however, insufficient for another im-
portant purpose of program analysis, guiding program optimizations. For the multi-facet
dependence of performance, program optimizations often need knowledge from various
sources: the program itself, the hardware, the algorithms, the program input datasets,
and various domain-specific or problem-specific knowledge. Consequently, to provide
useful optimization guidance, declarative program analysis must support the represent-
ations of the various kinds of knowledge, and allow easy linkage among them, even if
the various kinds of knowledge may come from different sources. The analysis-specific
nature of the current declarative analysis designs offers poor support to these needs.
Preprocessing. A declarative program analysis typically requires some preprocessing to
extract useful relations from the target programs to build up a relational database. This
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step hurts the productivity benefits of this approach: As it is usually tightly coupled
with some compiler framework, it is tedious and error-prone to develop. What makes
this especially problematic is that different program analyses often use different relations
or ways to define the same or similar relations. As a result, preprocessing needs to be
developed for almost every newly developed program analysis, seriously throttling the
productivity benefits of declarative program analysis.

In this work, we advocate the integration of ontology into declarative program analysis to
address the three limitations all together. Our proposal comes from the observation that all
the three major limitations essentially stem from a single fundamental shortcoming in current
declarative program analysis: the lack of a systematic conceptual framework to govern the
definition, representation, and organization of the various kinds of knowledge (relations in a
program, rules, domains, hardware configurations, etc.) related with program analysis. The
ad-hoc analysis-specific approach used in today’s designs of declarative program analysis is
the fundamental reason for the much effort required for preprocessing, and the barriers for
supporting cooperations and optimizations.

Ontology, a concept originated from Philosophy, refers to the study of the nature of
being, as well as the basic categories of being and their relations [47]. In recent decades, it
has become a branch in Information Science, serving as the primary way to standardize the
concept definitions and knowledge representations for a domain. It includes three concrete
components: A standard vocabulary and definitions of some common concepts and their
relations in a given domain, a standard format (e.g., the Web ontology Language (OWL))
for representing the various instances and concepts in any concrete problems in the domain
and their relations, and a whole set of tools that have been developed in the last several
decades for the development of an ontology and automatic logic inference upon it.

The key idea in our proposal is to leverage ontology to help standardize the definitions
of domains, relations, and other concepts in program analysis, and to establish a single
flexible representation of program constructs as well as other kinds of knowledge related
with program analysis and its usage. With that, knowledge from various sources may be
linked seamlessly as long as they follow the standardized representation. Sharing the same
conceptual framework and set of terminology, different program analyses will be easy to
compose and interoperate together. The standardization will also make it possible to develop
a single comprehensive database of the relations of a program to serve for various program
analyses, removing the needs for the separate development of preprocessing for each analysis.

Ultimately, it would be desirable to establish a standard Program Analysis ontology to
describe programs, analysis, and related concepts—liken how the Semantic Sensor Network
ontology by W3C [15] facilitates the work in the sensor network domains. Reaching that
goal would require the coordinated effort from the community and goes beyond the scope
of this paper.

This work instead focuses on the following four-fold objectives:
To introduce the idea of integrating ontology into program analysis, and explain the
concept of ontology-based program analysis and its potential benefits.
To investigate the feasibility of having a single representation of a program in ontology
to facilitate various program analyses and hence reduce the much effort for developing
program preprocessing as required in current declarative program analysis.
To validate the promise of ontology as the representation of various kinds of knowledge
related to program optimizations, and hence extend existing declarative program analysis
to guide program optimizations.
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To confirm the benefits of ontology for facilitating easy cooperations of different analysis
tools.

To reach the four objectives, we have developed a prototype framework named PATO
(which stands for Program Analysis Through ontology). In this prototype, we explore the
use of several principles to define a concept-proof ontology for C program representations.
Based on it, we have developed five program analyses: canonical loop analysis, pointer ana-
lysis, control flow graph construction, data access pattern analysis, and GPU data place-
ment guidance. These analyses differ in domains, relations, scopes, and intended usage.
Our experiments show that a single ontology-based representation can successfully support
all these analyses (without separate preprocessing per analysis). The analyses inherit the
productivity benefits of declarative program analysis, reducing the lines of code by tens of
times compared to imperative implementations. Using the liveness analysis on two compilers
(ROSE [4] and LLVM [39]), we confirm the benefits of ontology for promoting cooperations
among different analysis tools. And using GPU data placement optimization, we demon-
strate the seamless linkage of various sources of knowledge (programs, domain experts, and
hardware) enabled by ontology, and reveal the potential of ontology-based program analysis
for guiding program optimizations.

We acknowledge that this work is just the first step towards ontology-based program ana-
lysis. The ontology implemented in this work is for only the representations of C programs
(and GPU data placement), and the analysis has not exploited the potential of ontology
much beyond logic programming upon ontology-based program representations. A full de-
velopment of ontology-based program analysis would require also the ontology and formal
definitions of common concepts in program analysis (e.g., dominator, post order, alias), their
relations, and some deep investigations of the opportunities that ontology may bring to pro-
gram analysis. Through this first step, by demonstrating the promise of ontology-based
program analysis, we hope that this work will stimulate further studies by the community
into this promising direction.

2 Background

Ontology is a concept originating in Philosophy, referring to the study of the nature of
being, as well as the basic categories of being and their relations [47]. In recent decades, it
has become a branch in Information Science for representing the knowledge in a particular
domain. In this context, an ontology is a formal explicit description of a domain’s knowledge,
including concepts (or classes), properties of each concept (or relations) and individuals (or
instances of classes) [53]. An ontology is often visualized as a graph in which nodes indicate
concepts and edges indicate relations between concepts. It is often represented in some
standard triple format as we will describe later in this section. Developing an ontology
for a domain has many benefits, including 1) making domain knowledge explicit to expose
what is known and what is unknown, 2) enabling knowledge interoperability by providing
a common taxonomy and vocabulary, 3) providing knowledge reuse since the ontology is
a persistent knowledge base, and 4) facilitating knowledge validation and reasoning using
existing inference engines (or reasoners).

Figure 1 shows an example borrowed from an introductory article of ontology [47]. A class
(e.g., “Winery”) describes concepts in a domain. A class can have subclasses, representing
the “kind of” relations among concepts (e.g., “red wine” may be a subclass of “wine”).
A class can have many individual instances (e.g., “Chateau Lafite Rothschild Pauillac”
is an instance of the class “Pauillac”). A property describes the attribute of a class or
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Figure 1 An example ontology for the domain of winery.

instance. It is usually represented as an edge between classes or instances. For instance, the
“maker” property in Figure 1 shows that the maker of “Chateau Lafite Rothschild Pauillac”
is “Chateau Lafite Rothschild”. A property may have some constraints, which describe the
value type, allowed values, the number of the values (cardinality), and other features of the
values which the property can take.

The theory foundation of ontology is Description Logic (DL) [36], a family of formal
knowledge representation languages for formal reasoning on the concepts of a domain. DL
is expressive enough to build sophisticated knowledge bases while still supporting efficient
inference. It has a popular standardized dialect, Web ontology Language or OWL [44]. DL
allows the use of axioms to describe a knowledge base. For instance, an axiom Person(Alex)
describes that “Alex” is an instance of class “Person”, and Person w Human describes the
subsumption relationship between concept Person and concept Human. DL languages could
use different grammars. Conventionally, a simple yet uniform format to represent axioms
is (subject, property, object) triple. Axioms in DL languages can all be mapped to such a
format. For instance, in Person(Alex), “Alex” is the subject, “instance of” is the property,
and “Person” is the object. Visually, it is an “instance of” edge flowing from the “Alex”
node to the “Person” node in an ontology graph.

Through decades of development, a large body of tools (e.g., Stanford Protégé [25],
SWI-Prolog Semantic Web Library [62], etc.) have been developed for creating ontologies
and automatic reasoning upon an ontology-based knowledge base, which enables automatic
questions-and-answers, consistency check of the knowledge base, derivation of new know-
ledge, and so on.

Like declarative program analysis, most of these tools leverage logic programming lan-
guages (e.g., Prolog) for inferences. In logical programming, a program is composed of a list
of rules written in the form of clauses:

H:-B1, . . . , Bn.

which reads as

H is true if B1 is true and ... Bn is true.

H is called the head of the rule and B1, . . . , Bn is called the body. When the body is
empty, the rule becomes fact; for instance, variable(a) states the fact that a is a variable.

3 Overview

By offering a generic way to represent the knowledge in a domain, ontology simplifies the
accumulation and share of various kinds of knowledge among people or software agents. At
the same time, it allows automatic analysis and utilization of knowledge through high-level
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Figure 2 Overview of using ontology for program analysis.

declarative logic programming, thanks to its description logic foundation. These properties
make it potentially valuable for facilitating program analysis which is essentially about
reasoning about the knowledge related to a program.

Figure 2 illustrates the basic idea of ontology-based program analysis. It centers around
a knowledge base built upon ontology. The knowledge base may consist of the basic know-
ledge about the code of the target program, as well as other knowledge (e.g., architecture
attributes) relevant to the program analysis. An ontology converter, equipped with a parser,
derives the basic program knowledge from the code of the program, expresses the knowledge
in a standard format, and puts it into the knowledge base. This basic knowledge may include
the structures and components (control blocks, data structures, etc.) of the program. In
addition, the knowledge base may include some knowledge that could be imported about
some libraries, or directly input by a domain expert about some properties of the program
or the hardware it executes on (for optimizations).

Built upon description logic, ontology-based program analysis keeps the conveniences
of declarative program analysis. Rather than writing thousands of lines of code inside a
complex compiler, users can simply write some logic queries about the kind of properties
(e.g., which loops are canonical loops) of the program that they want to know. These queries
should follow some ontology query APIs. The APIs will then return the answers that are
automatically obtained from the ontology-based knowledge base. For complex queries, it
can leverage many existing ontology reasoning tools [62, 55]. Users of the ontology-based
knowledge base can be humans or software agents (e.g., tools for program optimizations or
testing.)
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Figure 3 Specification of a canonical loop (derived from OpenMP manual [48]).

Example. We use canonical loop analysis to illustrate how the idea of ontology-based pro-
gram analysis works. A canonical loop is a type of well-structured loop conforming to
specifications as shown in Figure 3. Because of its regular structure, it has been the focus
of many studies on parallelization and loop optimizations [35, 41, 16].

The goal of canonical loop analysis is to recognize whether a loop is in a canonical
form. Traditional implementations of the analysis (e.g., the implementation in the ROSE
compiler [4]) contains hundreds of lines of code for examining the IR of a loop. The code is
tied to a particular internal data structure of the chosen compiler, hard to port to another
compiler or maintain.

In a traditional program analysis development, the task requires an insertion of a sep-
arate pass over some intermediate representation of the whole program, which may need
the development of thousands of lines of code. For example, in the ROSE compiler [4] (a
source-to-source compiler broadly used in High Performance Computing), the pass works
on an Abstract Syntax Tree (AST). To analyze the code at that level, a programmer needs
to implement many lines of code written in procedural languages (C/C++). The canon-
ical loop analysis in the ROSE compiler consists of 380 lines of source code for examining
the representations of the structure of each loop and check them against the conditions in
Figure 3.

In ontology-based program analysis, the process is simpler. The programmer needs to
invoke some provided ontology converter on the code of the target program. An ontology-
based knowledge base is then produced to capture the program constructs, components,
and their relations. The programmer then just needs to use a declarative logic programming
language to describe rules governing the forms that a canonical loop should conform. Treat-
ing those rules as queries on the ontology of the program, existing logic reasoners can then
automatically find all the canonical loops in the target program. For example, a fragment of
C code is shown in Listing 1. The code’s corresponding ontology representation is shown in
Listing 2. Each line is a triple: (subject, predicate, object). The numbers in the subjects or
objects are the line and column numbers of the beginning and ending positions of a language
construct in the source code. (Next section explains the triples in the example in details.)
The different program constructs can be easily extracted by Prolog queries like those in
Listing 3.

Allowing the use of logic programming, ontology-based program analysis inherits the
productivity benefits of declarative program analysis. More importantly, it overcomes the
three aforementioned shortcomings of existing declarative program analysis by leveraging
ontology for standardizing the concept definitions in a domain and the flexible representation
of various sources of knowledge.
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Listing 1 Example C code fragment.
0 // s.c
1 int a = 0;
2 int foo () {
3 for (int i = 0; i < 10; i++) {
4 a = a + i;
5 }
6 return 0;
7 }

Listing 2 Sample ontology for C snippet (“x rdf:type y” indicates that y is the type of the code
segment in the range x).

1 ( ’3:1 ,5:1 ’ , rdf:type , ’ForStatement ’)
2 ( ’3:6 ,3:14 ’ , rdf:type , ’VariableDecl ’)
3 ( ’3:6 ,3:10 ’ , rdf:type , Variable ’)
4 ( ’3:1 ,5:1 ’ , ’hasForInit ’, ’3:6 ,3:14 ’)
5 ( ’3:1 ,5:1 ’ , ’hasForTest ’, ’3:17 ,3:22 ’)
6 ( ’3:1 ,5:1 ’ , ’hasForIncr ’, ’3:25 ,3:27 ’)
7 ( ’3:1 ,5:1 ’ , ’hasBody ’, ’3:30 ,5:1 ’)

4 Challenges and Solutions

The challenges for integrating ontology into program analysis exist in each of the four main
steps: the design of an ontology for the domain, the generation of the knowledge, the
utilization of the knowledge base, and the design of the entire framework. In this section,
we discuss each of the challenges and present some principles we use to address them. At
the end, we describe PATO, the prototype framework we have developed to do program
analysis upon ontology-based program representations.

4.1 Ontology Design
Challenges. To create an ontology for any domain, the first primary task is to define
the vocabulary to be used in the domain. That includes the definition of the concepts,
properties, and restrictions in the domain. These definitions establish the conceptual terms
and their relations of the ontology-based knowledge base for the domain. Even though there
are some de facto procedures on designing an ontology [47], program analysis has some
special challenges. Program analysis has a large variety of tasks (e.g., loop analysis, data
access pattern analysis, alias analysis, dependence analysis, liveness analysis, busy expression
analysis, etc.) involving a huge set of diverse concepts and relations. Even a larger variety
exists in the input programs. So the first question to use ontology for program analysis
is how to design an intuitive, efficient and flexible ontology that can facilitate the various
program analyses and input programs.

Solutions. In this work, we focus on the design of ontology for representing programs of
a particular programming language (C). The design of the complete ontology of program
analysis is left to future work.

Through our explorations, we have found the following three principles helpful.
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Listing 3 Sample analysis rules.
1 isForStatement (Loop) :-
2 rdf(Loop , rdf:type , c: ForStatement ).
3 hasForInit (Loop , InitExpr ) :-
4 rdf(Loop , c:hasForInit , InitExpr ).

Figure 4 Top-level ontology for C program analysis.

Language standard-oriented design. When designing the vocabulary of an ontology, it
helps if one starts with reusing language constructs and their categorizations defined in the
standard of the programming language of the target programs. Despite the variety of the
input programs, they are all artifacts following the particular programming language. With
the constructs and their categorizations of the programming language covered, we can easily
express programs using the language in the ontology-based knowledge base. This approach
helps achieve a good coverage of the input programs with a vocabulary familiar to users.
For example, to model C programs in an ontology, we followed the standard of C99 and
enumerate all program constructs and concepts in a top-down fashion. Figure 4 shows a
fraction of the top-level ontology for C programs. The main concepts in the domain include
variables, expressions, statements, and so on. The “construct” on the edges indicate these
vocabularies are the basic constructs in the C program domain.

Being generic in property designs. Besides classes of concepts, an ontology also contains
a vocabulary for properties (or called relations). For example, an Expression instance may
have some Type, an Identifier may refer to some Definition. Because there may be many
properties to express, in our practice, we follow a principle trying to define properties in a
generic way, and encode semantic meanings into concepts whenever possible. That allows
the possible use of a small set of properties and their combinations to express a large number
of possible properties in a program. For example, when describing an identifier has static
storage class, one approach is to define a property hasStaticStorage and use it like (someVar
hasStaticStorage true). Alternatively, we may define the concept Storage as a class and use a
simpler property hasStorage as (someVar hasStorage static), where static is a member of Stor-
age. There are several benefits for this second choice. First, using generic properties makes
the set of property vocabularies small and thus easy to manage. For example, hasStorage
is used to describe all storage classes instead of creating specific properties for each storage
class. Second, stripping semantics from property make writing logic rules more flexible.
For example, the knowledge of (someVar hasStorage static) can be queried by the keyword
hasStorage. Otherwise, users may need to use many specific keywords as hasStaticStorage,
hasExternStorage, and so on.

Continuous enrichment. In our exploration, we find that continuous enrichment of the
ontology vocabulary can be helpful. For instance, in a canonical loop analysis, a user
gives the description of the concept of a canonical loop. If that concept turns out to be
needed frequently (by many users), the concept could then be integrated into the ontology
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framework to save the need for repeated descriptions. Given that the program analysis
ontology is intended to be used by a community, a complexity is that different users may use
different names for a single user-defined relation (e.g., canonical loop), making the detection
of the repeated use of a user-level concept difficult. Ontology-based logic reasoners come
in handy. As the descriptions of user-defined relations all use the vocabulary in the same
ontology, the reasoners can easily do a logic reasoning on the descriptions to decide whether
two user-defined relations are equivalent. After recognizing the frequently needed user-level
concepts, such concepts can be added into the standard ontology for future reuse.

Based on the three principles, we came up with an ontology for C program representations
to facilitate C program analysis. It contains 178 concepts and 68 properties. It is not
intended to be complete (e.g., many program analysis concepts are not yet defined), but
is sufficient for examining the support of a single ontology to multiple different program
analyses as we will show later in this paper.

4.2 Knowledge Generation
Challenges. Building up a knowledge base is essential for any application of ontology. For
program analysis, the knowledge base shall include the important knowledge related with the
to-be-analyzed program. There are three main questions to answer. (1) ontology converter.
How to construct an ontology converter that can automatically convert a given program
into the ontology representation needed by many common program analyses. (2) Naming.
A program may contain functions, statements, expressions, variables, and so on. Any of
them may appear many times in different locations. A challenge is what naming scheme
the ontology should use to reference each reference to avoid ambiguity. (3) Mapping. One
of the objectives of ontology-based program analysis is to facilitate the cooperations among
different compilers and other program analysis tools. A difficulty is that they may have
different internal representations of a program. To make them able to interact based on
the program ontology, the instances of program constructs in the knowledge base should be
possible to map to some common ground meaningful to the different tools. One intuitive
choice of such common ground would be the source code of the program. That will also
make it easy for human to collaborate with program analysis tools. A complexity in using
source code for references is how to make the naming robust to code changes. (4) Space.
The knowledge about a program can be tremendous. Besides the basic knowledge directly
driven from the program, there could be many other kinds of higher-level knowledge such as
canonical loops, data dependences among statements, and so on. The higher-level knowledge
is derivable from the lower-level knowledge. The derivation through reasoning may take non-
trivial time. But if all this knowledge is saved in the knowledge base, the space cost could
be large. How to strike a good balance is important for practical usage of this new program
analysis paradigm.

Solutions. We come up with the following solutions to these challenges.
Ontology converter. Our experience shows that an ontology converter can be easily

created through a translator built on top of a source-to-source compiler such as ROSE [4].
A source-to-source compiler usually produces an abstract syntax tree (AST) representation
which is close to the input code. The translator traverses the AST of the program to
get structural and semantic information, which is then stored into the knowledge base as
ontology. The program constructs are represented as individuals (i.e. instances) of some
of the classes defined in the language ontology. Relations between them are represented by
properties.
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Naming and Mapping. In our naming scheme, we borrow the internationalized re-
source identifiers (IRIs) [28] that OWL uses. It helps avoid name conflicts. For the on-
tology of C program language, names of concepts are built directly from the corresponding
terms used in the C language standard1. For example, the concept type is referenced as
c:Type. An example IRI for the concept of types in a C program domain can look like
“http://example.com/owl/CProgram:Type”. Some aliases can be defined as short names
for the prefix strings of a domain.

More care needs to be taken for designing the naming scheme for representing the in-
stances of a program construct. Named constructs such as types, variables, functions can
use the C++ qualified name concept to uniquely identify them. For an unnamed construct
(e.g., an assignment statement) or a reference to named construct (e.g., variable reference),
a common intuitive approach is to use its location in the source code of the program, such as
file url, start location, end location where the location is a pair of (line number, column num-
ber). For instance, “http://my.com/file1.c, 3:1, 5:1” could refer to a loop that spans from
the beginning of the third line to the beginning of the fifth line of file1.c. The problem with
this scheme is that some minor changes to the original program may invalidate all the names
of the constructs after the modification point.

We find scoped IRI useful to restrict the impact of a code change to the names. In scoped
IRI, a name is composed of some qualified names and some relative locations in the source
code. For constructs like functions, structures, global variables, we add their scopes before
their names. Other constructs within these constructs are named by their locations, while
the line numbers are relative to the start line number of their surrounding constructs rather
than the beginning of the source-code file. Using this method, a global variable declared in
the first line of a file “s.c” (from column 5 to 6) can be named as s.c::1:5,1:6, while a variable
declared on the first line inside a function foo in file “s.c” (from column 6 to 10) can be
named as s.c::foo()::1:6,1:10. Thus, if there is some change of the code, only the names in
the same scope as the changing point is need to be updated.

Space. To address the space challenge of putting everything into a knowledge base,
we split the knowledge base into a core knowledge base and multiple loadable supplemental
knowledge bases. The core knowledge base is always loaded and others are loaded as needed.
We also design a cache-like management mechanism to alleviate the problem. It maintains
a buffer to store derived supplemental knowledge. When the upper limit of the buffer gets
reached, it starts to evict some of the stored knowledge (which would need to be rederived
when needed). For the eviction policy, there can be multiple choices: least-recently-used
(LRU), least-frequently-used (LFU), and their variants.

4.3 Knowledge Utilization
Challenges. Some challenges also exist in the utilization of the knowledge base for program
analysis. (1) Efficiency. In many cases (e.g., analyzing a large program), the runtime
efficiency of conducting a program analysis could be important. A question to answer is
whether the improved productivity of the new paradigm hurts the runtime efficiency and if
so, how to improve the efficiency. (2) Generality. Using declarative programming languages
could be awkward for some usage cases, especially when they involve some mathematical
computations. Such cases however do exist in some program analysis and optimizations, for
instance, when they relate with some performance models (an example is the data placement

1 We follow the naming convention of UpperCamelCase for classes and lowerCamelCase for properties.
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optimizations Section 5 will describe). Effectively overcoming such limitations is important
for the general applicability of ontology-based program analysis.

Solutions. We address these issues by both creating some shortcuts and leveraging the
features of existing ontology tools.

Efficiency. Recent years have seen some significant improvement of the performance
of logic reasoners [55, 9]. Many optimizations have been developed. For instance, in SWI-
Prolog, the ontology is stored as relation triples of (subject property object) with C extensions
and some indices are built for each element in the triples. So a search of a particular element
can be done in constant time. Additional optimizations can be applied to queries. For in-
stance, Prolog provides the cut operator (i.e., the ! symbol) to avoid unwanted backtracking
in search. We find that following some existing guidelines when writing queries [12] can be
quite helpful for quickly narrowing down the reasoner’s search space.

In scenarios where the relevant knowledge base is simple and consists of straightfor-
ward facts in triples (e.g., some memory configurations), one may construct a customized
lightweight parser in high performance languages, which can further help achieve good per-
formance than going through a heavy-weight logic reasoner.

Generality. Ontology-based logic reasoning meets the needs of many typical program
analyses, but is not quite suitable for expressing analyses that involve a lot of mathematical
computations (e.g., a regression-based performance modeling). We find that a mechan-
ism called computable [54] originating in Robotics can help resolve the issue. Computable
is some special ontology entity that can attach procedures to some classes or properties.
When the deduction rule queries the individuals of one of the classes or the properties, the
associated procedures are invoked to compute individuals for the target class or property.
The procedure can be written in a wide range of programming languages (e.g., C, C++,
Python).

Besides allowing the direct input of queries by users written in logic programming lan-
guages, ontology-based program analysis also allows queries coming from a third-party soft-
ware (which could be written in even imperative languages like C, C++ or Java.) For
such cases, the ontology can be processed with libraries for those languages (e.g., the OWL
API [31] or Prolog interface to foreign languages[7]). That offers the conveniences for existing
software tools (e.g., a compiler) to easily leverage ontology for program analysis.

4.4 Framework Design and PATO
The final challenge is how to organize the various components together into a unified frame-
work for program analysis. It includes choosing the DL language and the reasoner that suit
the needs of program analysis, designing and implementing the APIs for both knowledge
base construction and queries, and integrating all the components together into a complete
cohesive framework that offers effective support to various program analyses.
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Figure 5 Structure of PATO.

To answer these questions, we have developed a prototype framework named PATO,
which integrates all the aforementioned solutions to the various challenges, and leverages
the power of existing ontology tools.

Figure 5 outlines the main components of PATO. The knowledge base in PATO can be
in two forms, represented by the two round-corner boxes on the right part of the figure. On
the disk, the knowledge is stored as OWL files. Each entry in the files is in an OWL triple
(subject, property, object). For instance, (var1, hasValue, 0) means a variable has a constant
value of 0. The reason for selecting this form is that OWL triple is one of the standard (and
space-efficient) formats for ontology representations and is accepted by many ontology tools.
Another part of the knowledge base is the computables, which are attached to the concepts
and properties in the triple collection. The cache-like buffering mechanism is used for the
space efficiency of the knowledge base.

Two of the primary ways to add knowledge into the knowledge base are shown at the
bottom of Figure 5. In the first way, there is a parser (based on ROSE [4]) for converting
an input program code into an AST preserving source level information. We have also
developed a translator that translates the basic program knowledge on the AST into OWL
triples and stores them into the knowledge base. During the translation, the translator uses
the scoped IRI as the naming scheme. In the second way, we adopt Stanford Protégé [25],
an interactive tool for ontology creation and manipulation. Through its GUI, a user can
intuitively add entries into the knowledge base. The plugins of Protégé also provide many
other features to the users, such as visualization, validation, and querying.

There are two ways to use the knowledge base. The first is shown at the top of Figure 5.
It is through the SWI-Prolog reasoning engine. To use the knowledge base in this way, at the
beginning, the OWL files are loaded into memory; through it, the OWl files are converted
into an internal knowledge base through the existing Semantic Web Library [62]. The in-
memory organization of the knowledge base features some efficient indexing schemes. When
seeing a query from a user or software agent, the Prolog engine would start working on
the internal knowledge base to provide the answers. Prolog provides a general interface for
input logic rules and queries. We have further developed a higher-level set of API tailored to
represent some common terms used in program analysis tasks (e.g., loops, functions, etc.),
through them, the users may write even more concise descriptions.

The second way to use the knowledge base is shown as the shortcut (the diagonal path)
in Figure 5. Through a direct query interface we have developed in C++, the user or
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software agent may directly work on the OWL file collection (and computables) without
going through Prolog. This shortcut is useful when Prolog is not available to a user or too
costly to use in some special scenarios. For tasks which only need some simple fact search
(without the need for much reasoning), this approach is more efficient than the Prolog-based
approach because it avoids the overhead in Prolog interpretation and other associated cost.
Both the Prolog and the shortcut approach can insert new knowledge (e.g., derived in a
previous program analysis) into the knowledge base.

It is worth noting that the rich set of available tools on ontology proves helpful in our
development and usage of PATO. Besides the aforementioned usage of Protégé [25] for onto-
logy development, we find the FaCT++ reasoner [55] helpful for checking the consistency of
the ontologies, the Prology semweb library [61] useful for loading, parsing, and manipulating
ontology-based knowledge bases, and the Prolog engine [62] a convenient tool for inferences
upon the knowledge bases.

5 Experience

This section describes our experience of using PATO for program analysis. To examine
the feasibility of using a single ontology to support multiple different program analyses
efficiently, we implement five types of program analysis on PATO: canonical loop analysis,
pointer analysis, control flow graph construction, data access pattern analysis, and GPU data
placement guidance. They differ in domains, relations, scopes, and intended uses. Using
GPU data placement optimization, we examine whether ontology can indeed enable seamless
linkage of various sources of knowledge (programs, domain experts, and hardware) and
whether ontology-based program analysis can actually help guide program optimizations.
Using the liveness analysis on two compilers (ROSE [4] and LLVM Clang [39]), we examine
the benefits of ontology for promoting cooperations among different analysis tools.

For the interest of space, our description concentrates on the canonical loop analysis, the
pointer analysis, and the cooperative liveness analysis. We briefly cover the other analyses
and the GPU data placement experiment at the end. Without noting otherwise, each repor-
ted timing result is the average of 10 times of repeated measurements collected on a machine
equipped with Intel Core-i5 CPU of 3.2GHz (8GB DRAM, 500Gb HDD hard drive) running
Ubuntu 14.04. For the results that show large variances, we also report the statistics on the
variances. The Prolog used is SWI Prolog, and the primary compiler is the ROSE compiler
(EDG 4x-Based versoin) [4].

5.1 Canonical Loop Analysis
We first explain the Prolog code for canonical loop analysis. As mentioned earlier, canonical
loop analysis (CLA) checks whether a loop is in a predefined canonical form. Our experiment
uses the canonical loop form defined in the OpenMP specification [48], shown in Figure 3.
The specification of an OpenMP canonical loop can be written as declarative Prolog rules
as shown in Listing 4. We use italic font to distinguish variable from normal symbols.

In the Prolog specification, the head cannonicalLoop(Loop) asks for individuals that sat-
isfy all clauses in the body. The (,) plays the role of logic conjunction (AND operation). Every
clause in the body is deducted by its own rule. In the end, the deduction is backed by queries
on the existing knowledge base. The isForStatement(Loop) is a more readable wrapper of
the ontology query Loop is-a ForStatement, where the variable Loop binds to individuals if
ontology triples (some-loop is-a ForStatement) exist in the knowledge base. Once the Loop is
bound to some individual, clauses like hasForInit(Loop, InitExpr) search the knowledge base
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Listing 4 Prolog specification of an OpenMP canonical loop (italic upper-case for variables,
lower-case for properties).

1 % top level rule to find canonical loop
2 canonicalLoop (Loop ) :-
3 isForStatement (Loop ), !, %’!’ prevents backtracking
4 hasForInit (Loop , InitExpr ), %’,’ means logic AND
5 canonicalInit (InitExpr , LoopVar ),
6 hasForTest (Loop , TestExpr ),
7 canonicalTest (TestExpr , LoopVar ),
8 hasForIncr (Loop , IncrExpr ),
9 canonicalIncr (IncrExpr , LoopVar ),

10 (
11 hasType (LoopVar , ’IntType ’); %’;’ means logic OR
12 hasType (LoopVar , ’PointerType ’)
13 )
14 hasBody (Loop , ForBody ),
15
16 % supportive rules to find canonical init -exp
17 canonicalInit (Init , LoopVar ) :-
18 hasOperator (Init , AssignOperator ), !,
19 hasLeftOperand (AssignOperator , VarRef ),
20 referTo (VarRef , LoopVar ),
21 hasRightOperand (AssignOperator , LB ).
22
23 % rules with same heading : combined using logic OR
24 canonicalInit (Init , LoopVar ) :-
25 hasVarDecl (Init , LoopVar ),
26 hasInitializer (Init , Initializer ),
27 hasValue (Initializer , LB ),
28 % the rest is omitted ...

for (some-loop hasForInit some-init-expr) triples. Then canonicalInit(InitExpr, LoopVar) checks
if the found initial expression individuals conform to the language specification. The query
also returns the loop variable LoopVar if it can find it.

The analysis further checks whether the loop’s init construct conforms to the specifica-
tion. The first rule handles the var = lb style while the second rule deals with other styles.
Different rules with the same head name form the logic disjunction (OR operation). The
cut operator (i.e., the ! symbol) is used to prevent unwanted backtracking. It means that,
as long as the first rule matches the form hasOperator(Init, AssignOperator), there’s no need
to check the second rule of the variable declaration form. Line 11 to 12 are the rules to
do the type checking of loop variables. The (;) means logic disjunction (equivalent to two
separated rules).

Experimental Results. The ontology in PATO successfully supports the analysis. We
compare it with the imperative implementation in the ROSE compiler. The algorithm in
ROSE traverses the AST tree of a program to find for statement nodes and check whether
their sub-tree are in the canonical form. The code is written in C++ and is specific to the
ROSE AST’s internal data structures. The time complexity is O(n), where n is the number
of AST nodes.

The code length of PATO-based analysis is about half of the imperative implementation
in the ROSE compiler (190 versus 380 lines). We use the NAS Parallel Benchmarks (NPB) [8]
for the measurement.

The results are shown in Figure 6. The frontend time corresponds to the parsing time
of the parser in Figure 5. PATO uses the same frontend as the ROSE implementation. The
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Figure 6 Time comparison of the canonical loop analysis. The X-axis shows the benchmark
names and their numbers of source-code lines.

time of program knowledge generation (KB gen) represents the time taken by the ontology
translator in the PATO framework. Finally, the other two bars are the time of the canonical
loop analysis with PATO and ROSE respectively.

For the canonical loop analysis alone, we can see that the PATO declarative approach
even beats the native implementation for most cases. It is slower only when the line number
is small. One reason is that the ROSE’s imperative implementation traverses the whole
AST tree to find all for loops. For PATO’s declarative implementation, the isForStatement
relation information is stored explicitly and can be efficiently accessed by the hash-indexed
keyword implementation of Prolog.

The ontology-based declarative analysis does have an obvious overhead: It needs an extra
step to traverse the AST tree and build the initial knowledge base. However, as shown in
the figure, the overhead is smaller than the frontend time. Besides, for the PATO system,
the generated knowledge base can be reused for different program analyses (e.g., control flow
graph analysis).

Extensibility. An appealing property of using ontology is the good extensibility. The pre-
vious discussion only covers canonical loops in C programs that use primitive loop variable
types, such as pointer and integer types. OpenMP allows C++ canonical loops that use com-
plex iterators as long as the iterator supports random access to the data elements. Examples
of random access iterators include std::vector<T>::iterator and std::deque<T>::iterator. Also,
programmers often define their own random access iterators. A conventional solution to ex-
tend an imperative CLA implementation is to store the known random access iterators,
including the custom-defined ones, into a container for the compiler implementation to look
up. The ad-hoc solution imposes barriers for exchanging the knowledge with other tools or
developers. In PATO, adding such a support is simpler. One can easily add the concept
RandomAccessIterator in the ontology and define it as is-a(Iterator)∧has(RandomAcess). The
knowledge of is-a(Iterator) property can be gained by the knowledge builder while the know-
ledge has(RandomAcess) can be inserted into the knowledge base using the standard OWL
API, either automatically by tools or manually by developers. The analysis rules can then
reason about random access iterators. The resulting ontology can be then shared and reused
by different analyses.



Y. Zhao, G. Chen, C. Liao, and X. Shen 26:17

Table 1 Constraints in Andersen’s pointer analysis.

Constraint type Statement Propagation rule
Base p = &b loc(b) ∈ pts(p)
Simple p = q pts(p) ⊇ pts(q)
Complex p = ∗pp ∀v ∈ pts(pp) · pts(p) ⊇ pts(v)
Complex ∗pp = q ∀v ∈ pts(pp) · pts(v) ⊇ pts(q)

Listing 5 The Prolog rule to match the address-taken instruction.
1 matchAddressTaken (RHS ) :- hasOperator (RHS , AddressOp ),
2 hasOperand (RHS , LocRef ), referTo (LocRef , Var ).

5.2 Pointer Analysis

This part describes our experience in implementing Andersen’s pointer analysis in PATO.
Andersen’s pointer analysis is a well-known inclusion based analysis [5]. The analysis result
is typically represented as the points-to set pts(x) for each pointer variable x. It is flow-
insensitive and does not distinguish different program execution points but computes what
the pointers may refer to at any time of program execution.

The analysis is commonly regarded as solving a set constraint problem. It classifies
assignments involving pointers into several kinds: taking the address of a stack variable or
a heap allocated space, copying a pointer from one variable to another, and assignments
through dereferences or references to a multilevel pointer. It defines a propagation rule (or
called constraint) for each of the cases as illustrated in Table 1 (for C programs).

The analysis consists of two steps. The first step preprocesses the target program to pro-
duce a simplified intermediate representation, which keeps only the statements that involve
pointer manipulations. Each kind of the assignments involving pointers is represented with
a special notation. For example, p = &b is represented as stackLoc(p, b), p = malloc(...) is
represented as heapLoc(p, ...), p = ∗pp becomes load(p, pp), and ∗pp = q turns into load(pp,
q).

The second step propagates the points-to relations based on those constraints and solves
the problem by computing graph transitive closures through an iterative worklist
algorithm [5].

In our implementation on PATO, the preprocessing step is done on the program ontology
representation through some simple pattern matching rules. For example, the address taken
pattern (p = &b) is matched by the following: The implementation breaks complex state-
ments into simple ones by introducing temporary variables. For example, ∗p = ∗q becomes
tmp = ∗q; ∗p = tmp. Structures are analyzed in a field-sensitive manner, while an array is
regarded a single data object as done in most previous studies [5, 27, 13].

For the analysis step, the propagation rules in Table 1 can be directly mapped into logic
rules in Prolog as shown in Listing 6.

However, our experiments show that Prolog inferences based on these rules are not
efficient. It evaluates the rules in a top-down manner with deep recursions and costly search
through a large space. Inspired by previous work [13, 59], we instead implement the classic
worklist algorithm in Prolog as illustrated as follows:

Line 11 in the listing means that as soon as Prolog finds out that there is no edge from
A to P, it stops search and instead add A into the worklist and continue with next A’ in
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Listing 6 The Prolog rules for the points-to computation.
1 % p = &a; p = malloc ()
2 pointsTo (P , Loc ) :- stackLoc (P , Loc ); heapLoc (P , Loc ).
3 % p = q
4 pointsTo (P , X ) :- copy(P , Q ), pointsTo (Q , X ).
5 % p = *pp
6 pointsTo (P , X ) :- load(P , PP ), pointsTo (PP , V ), pointsTo (V , X ).
7 % *pp = q
8 pointsTo (V , X ) :- pointsTo (PP , V ), store(PP , Q ), pointsTo (Q , X ).

Listing 7 The worklist algorithm for pointer analysis in Prolog.
1 andersenPtr :-
2 select (WorkList , V ),
3 propLoad (V ); propStore (V );
4 propFieldLoad (V ); propFieldStore (V );
5 propEdge (V ),
6 andersenPtr . % itratively execute the analysis
7
8 propLoad (V ) :-
9 load(P , V ),

10 pts(V , A ), % for each A in pts(V)
11 (\+ edge(A , P ) -> assertz (edge(A , P )), add(WorkList , A )).
12 % others are omitted

pts(V, A’). The use of→ enables an early stop of useless searches, bringing large performance
benefits.

The entire implementation takes less than 500 lines of code, about 300 lines of which
are for the preprocessing step. When being applied to the NPB benchmarks, the analysis
takes no more than 2 seconds on a program. We have also applied the analysis to three
programs [2] with more pointer operations: bzip2 (7K lines of source code), gzip (8.6K
lines), and oggenc (58K lines). The analysis times are 2.1 sec, 3 sec, and 36 sec respectively.

5.3 Facilitating Cooperations

In the final experiment, we try to examine the potential benefits of leveraging the standard
representation of ontology to promote synergy between different compilers. Particularly, we
use Liveness analysis as an example.

As a may-type data flow analysis, Liveness analysis is conservative—that is, if a variable
belongs to the Liveout set of a basic block, it means that the compiler is uncertain whether
the variable is dead at the end of the basic block. So, for two different Liveness analyses
(both are sound and conservative), if a variable belongs to the result from one analysis but
not that from the other, we can conclude that that variable is not Live at the end of the said
basic block. In another word, the intersection of the results of the two Liveness analyses
gives a more precise result than either of the two analyses.

Both LLVM Clang and ROSE have their own Liveness analysis developed before. By
using the ontology converters we have developed for the two compilers, we convert the
Liveness analysis results from them into our ontology. By writing several lines of Prolog
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Figure 7 Enhancement of Liveness analysis by leveraging ontology to combine the results from
the Liveness analysis in LLVM Clang and ROSE. (Dots show outliers). Left bars: the enhancement
over LLVM Clang results; right bars: the enhancement over ROSE results.

code, the Prolog engine immediately extracts out the intersection of the sets of Live variables
reported by the two compilers for each basic block of a given program.

We define a metric called enhancement rate to characterize the benefits of such a com-
bination. Let A and B stand for two Liveness analyses and RA and RB be their Liveout set
for a given basic block. The enhancement rate over A is defined as

enhancementRate(A) = |RA|
|RA ∩RB |

The enhancement rate over B is defined similarly.
The results are shown in Figure 7. Box plots are used to show the distribution of the

enhancement rates over all the basic blocks in the program. In the plot, the dots are
outliers, and the intervals show the range of the lower 75 percentile of the enhancement in
the observed result. The plot considers only the basic blocks whose Liveout sets are not
empty in the result from at least one of the two compilers. The results indicate that the
synergy improves the average precision of Liveness analysis by over 10% and 20% for LLVM
Clang and ROSE respectively.

It is worth noting that the two compilers use different internal representations for pro-
grams and the Liveness analysis results. It is possible to write some special code to map
their results to enable such a combination without using ontology. However, using the
ontology designed in this work, the benefits come as simple side products of the ontology-
based program analysis (by leveraging the converters and the standardized representation
developed for many other program analyses). The productivity benefits would become even
more prominent when many types of analyses cooperate across compilers.

5.4 Other Experience
For the interest of space, we briefly describe three other experiments.

One of them is an analysis to find out a program’s array access patterns, including the
access expressions to each array, lower and upper bounds of the loops surrounding an array
reference, numbers of reads and writes to an array, and the ranges of its elements that are
accessed. With PATO, each of the types of information can be easily extracted from the code
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through just a few lines of Prolog statements. A previous imperative data access pattern
analysis [14] has more than 2000 lines of source code. PATO, on the other hand, only needs
180 declarative rules to implement that analysis.

The second is to write code for control flow graph construction. It requires the examina-
tion of control flows of the whole program. On PATO, it is done through a set of simple rules
based on the algorithm of inductive graph constructions [23]. We compare our PATO imple-
mentation with the implementations of ROSE and Clang [38], which also use the inductive
construction algorithm but differ in the internal data structures and implementations. The
PATO version uses only 400 lines of code, up to 8.75X shorter than the traditional compiler
implementations (1200 and 3500 lines for ROSE and Clang respectively). The speed of the
PATO analysis is similar to that of the Clang, and is 10-40% faster than that of the ROSE
thanks to its efficient storage and query of the knowledge base.

Finally, we experiment with PATO for guiding data placement on Graphic Processing
Units (GPU). A GPU has multiple types of memory with different performance character-
istics. Prior studies have proposed some rule-based methods [34] and analytic model-based
methods [14] for determine the placements of data that best suit the data access patterns of
a GPU program and showed significant performance benefits. In this experiment, we build
a data placement optimizer based on PATO, and find it much simpler to do than previous
implementations. Because both the program knowledge and the hardware knowledge are
represented in the standard triple format, they can be automatically linked into one single
knowledge base, making automatic reasoning about data placement possible. It also simpli-
fies the integration of heuristic rules and analytic models into a single analysis. Experiments
on NVIDIA K20c GPU show that the PATO-based analysis gives similar placements as prior
methods do [14]. Its analysis time is 5% longer, but it exhibits a better extensibility thanks
to its ontology representation and declarative implementation. For example, in the previous
work [14], to add the knowledge on some new GPUs memory features, one needs to extend
a hardware specification language by adding some new constructs, and revise the code for
parsing and performance modeling. In PATO, the needed changes are simpler: Through the
Prolog GUI, users can easily add or remove a concept, and add queries on the new features
into the analysis rules.

6 Related Work

Ontology has been used to build various knowledge bases in different domains, including
Biology [6], Ambient Intelligence [19, 50, 51], Robotics [54], and others [43, 46, 49]. This
work was enlightened by these studies, but concentrates on the special challenges facing
program analysis.

In the software domain, ontology has been introduced, but mainly for software manage-
ment and teaching of programming concepts, rather than program analysis. Specifically,
Software ontology (SWO) [42] in the domain of software engineering focuses on the meta
information of software (e.g., licenses, publishing processes, data formats). COPS [37] of-
fers a sub-ontology for managing the knowledge related with image processing. Eden and
others [21] have provide some theoretical discussions on the unique aspects in designing
an ontology for programs, but without exploring the use of ontology for program analysis.
There are several ontology designs for teaching some programming languages [52, 24]. This
current work, to our best knowledge, is the first proposal on a systematic integration of
ontology into program analysis.

There are some prior efforts trying to ease the difficulties in the development of program
analysis. We discuss them in two aspects.
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The first aspect is in the construction of a program analysis. Some prior studies have
offered some interfaces for simplifying the construction of a program analysis. OpenAna-
lysis [3], for instance, introduces a set of analysis-specific interfaces (e.g., traverse all state-
ments) as the building blocks for constructing a specific analysis. Other efforts in the same
direction include GENOA [18] and StarTool [33]. These tools focus on imperative program
analysis. There are some efforts that employ declarative program analysis to improve the
productivity of program analysis development. JTransformer [1], for instance, is a tool
integrated into Eclipes that allows the use of Prolog for analyzing and transforming Java
source code. JunGL [57] introduces a scripting language for writing program analyses. It
combines ML and Datalog. SemmleCode [58] is a tool that stores program-related data into
a knowledge base, and allows the use of Datalog to write a program analysis that analyzes
the program by querying the knowledge base. There are some other work [26, 13, 59] falling
into the same category.

The second aspect is in the representation of a program. Some prior work has tried
to develop a common software exchange format (SEF) for representing a program to fa-
cilitate the interoperation of software analysis and refactoring tools. Such a format needs
both a schema (or called metamodel) that describes the objects and relationships, and a
syntax that describes how model elements are to be stored and transmitted. The Dag-
stuhl Middle Metamodel (DMM) [40] is a representative of the former. DMM consists of
a set of models that capture program elements and their relations. It follows some prior
efforts such as Columbus [22] for C++ and the UML metamodel [11]. There are some other
metamodels developed, such as Program Element Fact (PEF) developed in JTransformer [1],
and DIMPLE [10]. Graphs are the most popular format for storing program elements in
memory. TA [29] and TGraphs [20] are two examples, which are both based on typed graphs
(i.e., directed graphs with attributes on both nodes and edges). GXL [30] was introduced as
a generic way to use XML to represent such graphs. JunGL [57] uses some special graphs
along with abstract syntax trees.

This current work shares some similarities with these prior studies, such as the use of
logical programming to simplify the development of program analysis, and the creation of a
common program representation. However, this work differs from the prior studies in several
major aspects. First, it is the first work that points out the potential of ontology for the
program analysis community to standardize the conceptualization for program analysis, and
to promote the reuse and interoperations of analysis tools. It demonstrates the potential be-
nefits through the Liveness analysis by two full-fledged existing compilers. Second, this work
is the first that points out the benefits of ontology as a unified representation for not only
program elements and relations but also knowledge from other sources (e.g., hardware know-
ledge) that are essential for program optimizations. It demonstrates the promise through
GPU data placement optimizations. Third, unlike many of the prior studies that attempt to
create a standalone tool for program analysis (e.g., JTransformer [1], Semmlecode [58]), this
work aims to proposing an approach or a paradigm, which could potentially be employed by
many program analysis tools and compilers, as demonstrated by the expeirments described
in the previous section.

7 Conclusion

This work demonstrates the promise of ontology for overcoming the three major limitations
of today’s declarative program analysis. The five types of data analyses on PATO show
that a single ontology is able to support multiple different program analyses efficiently. The
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GPU data placement experiments indicate the promise of ontology for seamlessly linking
knowledge from different sources, extending declarative program analysis with the capability
to effectively guide program optimizations. The cooperative Liveness analysis demonstrates
that with ontology-based program analysis, cooperations among different compilers or other
program analysis tools become simple, and the synergy turns out to be quite beneficial.
Overall, the study shows some promise of the integration of ontology into program analysis.
Establishing this new way of program analysis, however, requires the development of an
ontology for Program Analysis and some deep investigation of the opportunities that onto-
logy may bring to program analysis and optimizations. We hope that this work will prompt
further investigations by the community into this promising direction2.
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