
Report from Dagstuhl Seminar 16101

Data Structures and Advanced Models of Computation on
Big Data
Edited by
Alejandro Lopez-Ortiz1, Ulrich Carsten Meyer2, Markus E. Nebel3,
and Robert Sedgewick4

1 University of Waterloo, CA, alopez-o@uwaterloo.ca
2 Goethe-Universität – Frankfurt a.M., DE, umeyer@cs.uni-frankfurt.de
3 TU Kaiserslautern, DE, nebel@techfak.uni-bielefeld.de
4 Princeton University, US, rs@cs.princeton.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16101 “Data Struc-
tures and Advanced Models of Computation on Big Data”. In today’s computing environment
vast amounts of data are processed, exchanged and analyzed. The manner in which information
is stored profoundly influences the efficiency of these operations over the data. In spite of the
maturity of the field many data structuring problems are still open, while new ones arise due to
technological advances.

The seminar covered both recent advances in the “classical” data structuring topics as well
as new models of computation adapted to modern architectures, scientific studies that reveal the
need for such models, applications where large data sets play a central role, modern computing
platforms for very large data, and new data structures for large data in modern architectures.

The extended abstracts included in this report contain both recent state of the art advances
and lay the foundation for new directions within data structures research.

Seminar March 6–11, 2016 – http://www.dagstuhl.de/16101
1998 ACM Subject Classification E.1 Data Structures, F.1 Computation by Abstract Devices,

F.2 Analysis of Algorithms and Problem Complexity, H.3 Information Storage and Retrieval
Keywords and phrases algorithms, big data, cloud services, data structures, external memory

methods, information theory, large data sets, streaming, web-scale
Digital Object Identifier 10.4230/DagRep.6.3.1
Edited in cooperation with Sebastian Wild

1 Executive Summary

Alejandro Lopez-Ortiz (University of Waterloo, CA)
Ulrich Carsten Meyer (Goethe-Universität – Frankfurt a.M., DE)
Markus E. Nebel (TU Kaiserslautern, DE)
Robert Sedgewick (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick

About the Seminar

Data structures provide ways of storing and manipulating data and information that are
appropriate for the computational model at hand. Every such model relies on assumptions
that we have to keep questioning. The aim of this seminar was to exchange ideas for new

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Data Structures and Advanced Models of Computation on Big Data, Dagstuhl Reports, Vol. 6, Issue 3, pp. 1–23
Editors: Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/16101
http://dx.doi.org/10.4230/DagRep.6.3.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 16101 – Data Structures and Advanced Models of Computation on Big Data

algorithms and data structures, and to discuss our models of computations in light of recent
technological advances. This Dagstuhl seminar was the 12th in a series of loosely related
Dagstuhl seminars on data structures.

Topics

The presentations covered both advances in classic fields, as well as new models for recent
trends in computing, in particular the appearance of big-data applications.

The talks by Brodal (§3.5), Penschuck (§3.19), Silvestri (§3.29), and Vahrenhold (§3.31)
covered methods in the external-memory model that models the situation that data does
no longer fit into internal memory. This limit can be pushed a bit further by using succinct
data structures, which use only as much memory as absolutely necessary. Such methods
were covered in the talks of Hagerup (§3.14), Raman (§3.25), and Gog (§3.12). If the task is
to generate large random instances, Even (§3.9) showed that one can delay generation of
large parts until they really become requested.

Big-data applications rely on parallel computation to speed up processing. Bingmann
(§3.4) announced the creation of a new framework to simplify developing such applications.
Brodnik (§3.6) presented a parallel string-searching algorithm. Since such methods are often
used in a distributed setting, the cost of communication can become dominating. Sanders
(§3.24) discussed several algorithms from this point of view.

Iacono (§3.15) and Mehlhorn (§3.18) reported on recent advances in the long-standing
open problem of dynamic optimality of binary search trees (BSTs). The classic problem of
finding optimal static BSTs was taken up by Munro (§3.21): it becomes significantly harder
if the objective is to minimize the number of binary comparisons instead of the classic ternary
comparisons.

Wild (§3.32) used the connection between BSTs and recursion trees of Quicksort to
analyze Quicksort on inputs with equal keys, including multi-way partitioning Quicksort.
The latter was discussed in detail by Aumüller (§3.3) who presented a novel analysis for
comparison-optimal partitioning.

Neumann (§3.22) introduced a new randomized dictionary implementation based on
jumplists. Kopelowitz (§3.17) showed a much simplified solution to the file-maintenance
problem.

In the context of large sparse graphs, Andoni (§3.2), Fagerberg (§3.10), and Sun (§3.30)
showed how to exploit special structure in the input for algorithmic applications. Pettie
(§3.28) showed how to efficiently answer connectivity queries in graphs when vertices can be
deleted.

The seminar also enjoyed contributions on new algorithms: two innovative applications of
hashing were presented by Silvestri (§3.29) and Jacob (§3.16); Meyer auf der Heide (§3.20)
applied the primal-dual approach for online algorithms to online leasing problems. Driemel
(§3.7) reported on clustering methods for time series.

The theory-focused talks were complemented by broader perspectives from practice:
Ajwani (§3.1) presented his vision for future communication tools that are supported by
context-sensitive agents, and Sedgewick (§3.27) sketched his views on the future of higher
education. Finally, Salinger (§3.26) summarized the approaches taken by SAP to include
data-specific algorithms directly in their HANA database system.

New models of computation were also discussed. Owens (§3.23) explained how the
architecture of graphic cards calls for different approaches to design data structures; Dütsch
(§3.8) discussed the cost of virtual address translation in several algorithms. Finally, Farach-
Colton (§3.11) and Graefe (§3.13) challenged the claim that data structures are independent

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 3

of the application they are used in: they showed intriguing examples where the context a
data structure was applied in entailed unforeseen additional requirements.

Final Thoughts

The organizers would like to thank the Dagstuhl team for their continuous support; the
welcoming atmosphere made the seminar both highly productive and enjoyable. They also
thank all participants for their contributions to this seminar.

16101

4 16101 – Data Structures and Advanced Models of Computation on Big Data

2 Table of Contents

Executive Summary
Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 1

Overview of Talks
Towards fully-informed communication
Deepak Ajwani . 6

Parallel Algorithms for Geometric Graph Problems
Alex Andoni, Grisha Yaroslavtsev, Krzysiek Onak, and Sasho Nikolov 6

News on Multi-Pivot Quicksort
Martin Aumüller . 6

Thrill: Distributed Big Data Batch Processing in C++
Timo Bingmann . 7

External Memory Three-Sided Range Reporting and Top-k Queries with Sublogar-
ithmic Updates
Gerth Stølting Brodal . 7

Parallel Queries
Andrej Brodnik . 8

Clustering time series under the Frechet distance
Anne Driemel . 8

Algorithm Design Paradigms in the VAT-Model
Fabian Dütsch . 9

Sublinear Random Access Generators for Preferential Attachment Graphs
Guy Even . 9

On Routing in Geometric Spanners
Rolf Fagerberg . 10

Migrating a data structure from one system to another
Martin Farach-Colton . 10

Practical Compact Indexes for Top-k Document Retrieval
Simon Gog, Gonzalo Navarro, and Roberto Konow 10

Lock-free data structures
Goetz Graefe . 11

Succinct Choice Dictionaries
Torben Hagerup and Frank Kammer . 11

Weighted dynamic finger in binary search trees
John Iacono . 12

Fast Output-Sensitive Matrix Multiplication
Riko Jacob . 12

File Maintenance: When in Doubt, Change the Layout!
Tsvi Kopelowitz . 13

Self-Organizing Binary Search Trees: Recent Results
Kurt Mehlhorn . 13

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 5

Generating Massive Scale-Free Networks under Resource Constraints
Ulrich Carsten Meyer and Manuel Penschuck . 14

Online Resource Leasing
Friedhelm Meyer auf der Heide . 14

Optimal search trees with 2-way comparisons
Ian Munro and Mordecai Golin . 15

Randomized k-Jumplists
Elisabeth Neumann . 15

Dynamic Data Structures for the GPU
John D. Owens . 16

Communication efficient algorithms
Peter Sanders . 16

Encoding Data Structures
Rajeev Raman . 16

Towards a Web-scale Data Management Ecosystem Demonstrated by SAP HANA
Alejandro Salinger . 17

A 21st Century Model for Disseminating Knowledge
Robert Sedgewick . 17

Connectivity Oracles
Seth Pettie . 18

I/O-Efficient Similarity Join
Francesco Silvestri . 18

Fast construction of graph sparsification: graphs, ellipsoids, and balls-into-bins
He Sun . 19

Revisiting the Construction of SSPDs in the Presence of Memory Hierarchies
Jan Vahrenhold . 19

Quicksort with Equal Keys
Sebastian Wild . 19

Open problems
Open Problem 1
Deepak Ajwani . 20

Open Problem 2
Alejandro Lopez-Ortiz . 21

Open Problem 3
Sebastian Wild . 21

Participants . 23

16101

6 16101 – Data Structures and Advanced Models of Computation on Big Data

3 Overview of Talks

3.1 Towards fully-informed communication
Deepak Ajwani (Bell Labs – Dublin, IE)

License Creative Commons BY 3.0 Unported license
© Deepak Ajwani

I described a vision of a software cognitive layer that provides users with all the information
they need at the time of communication. To realize such a vision, a communication platform
should understand a user’s communication, link it to other information available and mine
the linked information in real-time. I presented a range of open problems related to graph
algorithms and graph systems, to address these challenges.

3.2 Parallel Algorithms for Geometric Graph Problems
Alex Andoni, Grisha Yaroslavtsev, Krzysiek Onak, and Sasho Nikolov

License Creative Commons BY 3.0 Unported license
© Alex Andoni, Grisha Yaroslavtsev, Krzysiek Onak, and Sasho Nikolov

Main reference A. Andoni, A. Nikolov, K. Onak, G. Yaroslavtsev, “Parallel algorithms for geometric graph
problems”, in Proc. of the 46th Annual ACM Symp. on Theory of Computing (STOC’14),
pp. 574–583, ACM, 2014.

URL http://dx.doi.org/10.1145/2591796.2591805

Motivated by modern parallel computing models (think MapReduce), we give a new al-
gorithmic framework for geometric graph problems. Our framework applies to problems such
as the Minimum Spanning Tree (MST) problem over a set of points in a low-dimensional
space, which is useful for hierarchical agglomerative clustering. Our algorithm computes a
(1 + ε)-approximate MST in a constant number of rounds of communication, while using
total space and communication proportional to the size of the data only.

Our framework proves to have implications beyond the parallel models as well. For
example, we consider the Earth-Mover Distance (EMD) problem, for which we obtain a new
near-linear time algorithm as well as a first streaming algorithm (assuming we can pre-sort
the points). Technically, our framework for EMD shows how to effectively break up a “big
Linear Programming problem” into a number of “small Linear Programming problems,”
which can be later recombined using a dynamic programming approach.

3.3 News on Multi-Pivot Quicksort
Martin Aumüller (IT University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Martin Aumüller

Joint work of Martin Aumüller; Martin Dietzfelbinger; Clemens Heuberger; Daniel Krenn; Helmut Prodinger
Main reference M. Aumüller, M. Dietzfelbinger, C. Heuberger, D. Krenn, H. Prodinger, “Counting Zeros in

Random Walks on the Integers and Analysis of Optimal Dual-Pivot Quicksort”, arXiv:1602.04031
[math.CO], 2016.

URL http://arxiv.org/abs/1602.04031

We discuss two results with respect to multi-pivot quicksort.
In the first part of this talk, we present an exact average case analysis of two variants of

dual-pivot quicksort, one with a non-algorithmic comparison-optimal partitioning strategy,
the other with a closely related algorithmic strategy. For both we calculate the expected

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2591796.2591805
http://dx.doi.org/10.1145/2591796.2591805
http://dx.doi.org/10.1145/2591796.2591805
http://dx.doi.org/10.1145/2591796.2591805
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1602.04031
http://arxiv.org/abs/1602.04031
http://arxiv.org/abs/1602.04031
http://arxiv.org/abs/1602.04031

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 7

number of comparisons exactly as well as asymptotically, in particular, we provide exact
expressions for the linear, logarithmic, and constant terms. An essential step is the analysis
of zeros of lattice paths in a certain probability model. Furthermore, we show that the closely
related algorithmic strategy yields a comparison-optimal dual-pivot algorithm.

In the second part of this talk, I will talk about rearranging elements to produce a
partition. A substantial part of the partitioning cost is caused by rearranging elements. A
rigorous analysis of an algorithm for rearranging elements in the partitioning step is carried
out, observing mainly how often array cells are accessed during partitioning. The algorithm
behaves best if 3 or 5 pivots are used. Experiments show that this translates into good
cache behavior and is closest to predicting observed running times of multi-pivot quicksort
algorithms.

3.4 Thrill: Distributed Big Data Batch Processing in C++
Timo Bingmann (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Timo Bingmann

We present on-going work on a new distributed Big Data processing framework called Thrill.
It is a C++ framework consisting of a set of basic scalable algorithmic primitives like
mapping, reducing, sorting, merging, joining, and additional MPI-like collectives. This set
of primitives goes beyond traditional Map/Reduce and can be combined into larger more
complex algorithms, such as WordCount, PageRank, k-means clustering, and suffix sorting.
These complex algorithms can then be run on very large inputs using a distributed computing
cluster. Among the main design goals of Thrill is to lose very little performance when
composing primitives such that small data types are well supported. Thrill thus raises the
questions of a) how to design algorithms using the scalable primitives, b) whether additional
primitives should be added, and c) if one can improve the existing ones using new ideas to
reduce communication volume and latency.

3.5 External Memory Three-Sided Range Reporting and Top-k Queries
with Sublogarithmic Updates

Gerth Stølting Brodal (Aarhus University, DK)

License Creative Commons BY 3.0 Unported license
© Gerth Stølting Brodal

Main reference G. Stølting Brodal, “External Memory Three-Sided Range Reporting and Top-k Queries with
Sublogarithmic Updates”, in Proc. of the 33rd Annual Symp. on Theoretical Aspects of Computer
Science (STACS’16), LIPIcs, Vol. 47, pp. 23:1-23:14, Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23

An external memory data structure is presented for maintaining a dynamic set of N two-
dimensional points under the insertion and deletion of points, and supporting unsorted
3-sided range reporting queries and top-k queries, where top-k queries report the k points
with highest y-value within a given x-range. For any constant 0 < ε ≤ 1

2 , a data structure
is constructed that supports updates in amortized O(1

εB1−ε logB N) IOs and queries in
amortized O(1

ε logB N +K/B) IOs, where B is the external memory block size, and K is

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23

8 16101 – Data Structures and Advanced Models of Computation on Big Data

the size of the output to the query (for top-k queries K is the minimum of k and the number
of points in the query interval). The data structure uses linear space. The update bound is
a significant factor B1−ε improvement over the previous best update bounds for these two
query problems, while staying within the same query and space bounds.

3.6 Parallel Queries
Andrej Brodnik (University of Primorska, SI)

License Creative Commons BY 3.0 Unported license
© Andrej Brodnik

Joint work of Andrej Brodnik; Tanja Štular; Matevž Jekovec
Main reference M. Jekovec, A. Brodnik, “Parallel Query in the Suffix Tree”, arXiv:1509.06167 [cs.DS], 2015.

URL http://arxiv.org/abs/1509.06167

When considering parallel queries, the researchers in past were mostly concerned with parallel
execution of several queries on the same data structure. In this contribution we ask ourselves
how p processors can be employed to jointly perform a single search under CREW PRAM
model.

The query we study is a search of pattern P in a text T , where |P | = m and |T | = n. Our
presentation starts with employing automaton based approach first and later evolve it into
an index based. For the later we show, that one can perform search in time O(m/p+ log p),
deploying O(m + m log p) work and using O(n2) space. We are also able to change the
solution to O(m/p log p) time, O(m log p) work and O(n log p) space.

The trivial lower is, of course, Ω(m/p) time, Ω(m) work and Ω(n) space. It remains
an open question whether it is achievable. Mind though, that in our solution we pay a log
factor for communication among the processors. Another interesting open question is how
the scheme can be used for an approximate searching.

3.7 Clustering time series under the Frechet distance
Anne Driemel (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Anne Driemel

Joint work of Anne Driemel; Amer Krivosija; Christian Sohler
Main reference A. Driemel, A. Krivosija, C. Sohler, “Clustering time series under the Fréchet distance”, in Proc. of

the 27th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’16), pp. 766–785, SIAM, 2016.
URL http://dx.doi.org/10.1137/1.9781611974331.ch55

The Frechet distance is a popular distance measure for curves. We study the problem of
clustering time series under the Frechet distance. In particular, we give (1+ε)-approximation
algorithms for variations of the following problem with parameters k and l. Given n univariate
time series P , each of complexity at most m, we find k time series, not necessarily from P ,
which we call cluster centers and which each have complexity at most l, such that (a) the
maximum distance of an element of P to its nearest cluster center or (b) the sum of these
distances is minimized. Our algorithms have running time near-linear in the input size. To
the best of our knowledge, our algorithms are the first clustering algorithms for the Frechet
distance which achieve an approximation factor of (1 + ε) or better.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1509.06167
http://arxiv.org/abs/1509.06167
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1137/1.9781611974331.ch55
http://dx.doi.org/10.1137/1.9781611974331.ch55
http://dx.doi.org/10.1137/1.9781611974331.ch55

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 9

3.8 Algorithm Design Paradigms in the VAT-Model
Fabian Dütsch (Universität Münster, DE)

License Creative Commons BY 3.0 Unported license
© Fabian Dütsch

Recently, Jurkiewicz and Mehlhorn [ALENEX ’13] observed that the cost of virtual address
translation affects the practical runtime behavior of several fundamental algorithms on
modern computers. In this talk, we extend their results to two dimensions and investigate the
translation cost of some algorithm design paradigms. For this purpose, we analyze closest pair
algorithms representing the divide and conquer, plane-sweep and randomized incremental
construction paradigms in the VAT-model. Furthermore, we investigate the VAT-complexities
of hashing and comparison-based searching. Finally, we verify the theoretical analyses by
experimental results.

3.9 Sublinear Random Access Generators for Preferential Attachment
Graphs

Guy Even (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
© Guy Even

Joint work of Reut Elvi; Guy Even; Moti Medina; Adi Rosen
Main reference G. Even, R. Levi, M. Medina, A. Rosen, “Sublinear Random Access Generators for Preferential

Attachment Graphs”, arXiv:1602.06159 [cs.DS], 2016.
URL http://arxiv.org/abs/1602.06159

We consider the problem of generating random graphs in evolving random graph models. In
the standard approach, the whole graph is chosen randomly according to the distribution of
the model before answering queries to the adjacency lists of the graph. Instead, we propose
to answer queries by generating the graphs on-the-fly while respecting the probability space
of the random graph model.

We focus on two random graph models: the Barabási-Albert Preferential Attachment
model (BA-graphs) and the random recursive tree model. We present sublinear randomized
generating algorithms for both models. Per query, the running time, the increase in space,
and the number of random bits consumed are poly log(n) with probability 1 − 1/poly(n),
where n denotes the number of vertices.

This result shows that, although the BA random graph model is defined sequentially,
random access is possible without chronological evolution. In addition to a conceptual
contribution, on-the-fly generation of random graphs can serve as a tool for simulating
sublinear algorithms over large BA-graphs.

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1602.06159
http://arxiv.org/abs/1602.06159
http://arxiv.org/abs/1602.06159

10 16101 – Data Structures and Advanced Models of Computation on Big Data

3.10 On Routing in Geometric Spanners
Rolf Fagerberg (University of Southern Denmark – Odense, DK)

License Creative Commons BY 3.0 Unported license
© Rolf Fagerberg

Joint work of Rolf Fagerberg; Jit Bose; André van Renssen; Sander Verdonschot
Main reference P. Bose, R. Fagerberg, A. van Renssen, S. Verdonschot, “Optimal Local Routing on Delaunay

Triangulations Defined by Empty Equilateral Triangles”, SIAM Journal on Computing,
44(6):1626–1649, 2015.

URL http://dx.doi.org/10.1137/140988103

A geometric spanner on a point set in the Euclidean plane is a straight-line graph on the
point set in which any pair u, v of points has a path between them which is not more than
a constant factor longer than the direct distance between u and v. The constant factor is
called the spanning ratio. Such spanners have practical applications in e.g. add-hoc wireless
networks, and can be seen as static data structures for approximate route finding in geometric
graphs. Two classical constructions of geometric spanners are Yaok-graphs and θk-graphs.

Recently, bounds on the spanning ratio of these graphs have evolved substantially. We
give an overview of the current knowledge, and then focus on a result on the half-θ6-graph
which shows that while its spanning ratio is 2, actually following such a short path between
u and v using local routing is only feasible in one direction, whereas in the other direction
the factor becomes 5/

√
3 = 2.886 We do this by giving a lower bound and a routing

algorithm matching this bound.

3.11 Migrating a data structure from one system to another
Martin Farach-Colton (Rutgers University – Piscataway, US)

License Creative Commons BY 3.0 Unported license
© Martin Farach-Colton

Joint work of Michael Bender; Martin Farach-Colton; Bradley Kuszmaul; Don Porter; Rob Johnson

Data structures are typically design independent of any particular use case. Sometimes, data
structures get deployed in a system, during which they are optimized for the specific needs
of the system. In this case, I discuss the experience of migrating a data structure from one
system to another. Specifically, I discuss deploying an external-memory dictionary that has
been optimized for a data base key-value store in a file system.

3.12 Practical Compact Indexes for Top-k Document Retrieval
Simon Gog (KIT – Karlsruher Institut für Technologie, DE), Gonzalo Navarro, and Roberto
Konow

License Creative Commons BY 3.0 Unported license
© Simon Gog, Gonzalo Navarro, and Roberto Konow

Joint work of Simon Gog; Gonazlo Navarro; Roberto Konow

In this talk we present a fast and compact index for top-k document retrieval on general
string collections. For a given string pattern P , the index returns the k documents where
P occurs most often, i.e. we score by pattern frequency. We adapt a linear-space and
optimal-time theoretical solution of Navarro and Nekrich [1], whose implementation poses
various algorithm engineering challenges. While a naive implementation of the optimal

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1137/140988103
http://dx.doi.org/10.1137/140988103
http://dx.doi.org/10.1137/140988103
http://dx.doi.org/10.1137/140988103
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 11

solution is estimated to require around 80n bytes for a text collection of n symbols, we show
how this can be improved to 2.5n – 3.0n bytes (including the text). The resulting index can
still answer queries within microseconds and outperforms all previous work.

References
1 Gonzalo Navarro, Yakov Nekrich. Top-k document retrieval in optimal time and linear

space. SODA 2012: 1066-1077

3.13 Lock-free data structures
Goetz Graefe (HP Labs – Madison, US)

License Creative Commons BY 3.0 Unported license
© Goetz Graefe

I am trying to understand lock-free data structures, their rules and their limitations, and I
appreciate the other attendees’ help in grasping the fundamentals and the subtleties. This is
part of a larger effort to understand optimistic and pessimistic concurrency control as well
as transaction isolation levels as known in SQL databases.

3.14 Succinct Choice Dictionaries
Torben Hagerup (Universität Augsburg, DE) and Frank Kammer

License Creative Commons BY 3.0 Unported license
© Torben Hagerup and Frank Kammer

The choice dictionary is introduced as a data structure that can be initialized with a parameter
n in {1, 2, . . .} and subsequently maintains an initially empty subset S of {1, . . . , n} under
insertion, deletion, membership queries and an operation choice that returns an arbitrary
element of S. The choice dictionary appears to be fundamental in space-efficient computing.
We show that there is a choice dictionary that can be initialized with n and an additional
parameter t in {1, 2, . . .} and subsequently occupies n+O(n(t/w)t + logn) bits of memory
and executes each of the four operations insert, delete, contains (i.e., a membership query)
and choice in O(t) time on a word RAM with a word length of w = Ω(logn) bits. In
particular, with w = Θ(logn), we can support insert, delete, contains and choice in constant
time using n+O(n/(logn)t) bits for arbitrary fixed t. We extend our results to maintaining
several pairwise disjoint subsets of {1, . . . , n}.

A static representation of a subset S of {1, . . . , n} that consists of n+ s bits b1, . . . , bn+s
is called systematic if bl = 1 ⇐⇒ l is in S for l = 1, . . . , n and is said to have redund-
ancy s. We extend the former definition to dynamic data structures and prove that the
minimum redundancy of a systematic choice dictionary with parameter n that executes
every operation in O(t) time on a w-bit word RAM is Θ(n/(tw)). Allowing a redundancy of
Θ(n log(t logn)/(t logn) + nε) for arbitrary fixed ε > 0, we can support additional O(t)-time
operations p-rank and p-select that realize a bijection from S to {1, . . . , |S|} and its inverse.
The bijection may be chosen arbitrarily by the data structure, but must remain fixed as long
as S is not changed. In particular, an element of S can be drawn uniformly at random in
constant time with a redundancy of O(n log logn/ logn).

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

12 16101 – Data Structures and Advanced Models of Computation on Big Data

We study additional space-efficient data structures for subsets S of {1, . . . , n}, including
one that supports only insertion and an operation extract-choice that returns and deletes an
arbitrary element of S. All our main data structures can be initialized in constant time and
support efficient iteration over the set S, and we can allow changes to S while an iteration
over S is in progress. We use these abilities crucially in designing the most space-efficient
algorithms known for solving a number of graph and other combinatorial problems in linear
time. In particular, given an undirected graph G with n vertices and m edges, we can output
a spanning forest of G in O(n + m) time with at most (1 + ε)n bits for arbitrary fixed
ε > 0, and if G is connected, we can output a shortest-path spanning tree of G rooted at a
designated vertex in O(n+m) time with n log2 3 +O(n/(logn)t) bits for arbitrary fixed t in
{1, 2, . . .}.

3.15 Weighted dynamic finger in binary search trees
John Iacono (New York University, US)

License Creative Commons BY 3.0 Unported license
© John Iacono

Joint work of John Iacono; Stefan Langerman
Main reference J. Iacono, S. Langerman, “Weighted dynamic finger in binary search trees”, in Proc. of the 27th

Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’16), pp. 672–691, SIAM, 2016.
URL http://dx.doi.org/10.1137/1.9781611974331.ch49

It is shown that the online binary search tree data structure GreedyASS performs asymp-
totically as well on a sufficiently long sequence of searches as any static binary search tree
where each search begins from the previous search (rather than the root). This bound is
known to be equivalent to assigning each item i in the search tree a positive weight wi and
bounding the search cost of an item in the search sequence s1, . . . , sm by

O

1 + log

∑
min(si−1,si)≤x≤max(si−1,si)

wx

min(wsi , wsi−1)


amortized. This result is the strongest finger-type bound to be proven for binary search trees.
By setting the weights to be equal, one observes that our bound implies the dynamic finger
bound. Compared to the previous proof of the dynamic finger bound for Splay trees, our
result is significantly shorter, stronger, simpler, and has reasonable constants.

3.16 Fast Output-Sensitive Matrix Multiplication
Riko Jacob (IT University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Riko Jacob

Joint work of Riko Jacob; Mortten Stöckel
Main reference R. Jacob, M. Stöckel, “Fast Output-sensitive Matrix Multiplication”, in Proc. of the 23rd Annual

European Symp. on Algorithms (ESA’15), LNCS, Vol. 9294, pp. 766–778, Springer, 2015.
URL http://dx.doi.org/10.1007/978-3-662-48350-3_64

We consider the problem of multiplying two U × U matrices A and C of elements from a
field F. We present a new randomized algorithm that can use the known fast square matrix

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1137/1.9781611974331.ch49
http://dx.doi.org/10.1137/1.9781611974331.ch49
http://dx.doi.org/10.1137/1.9781611974331.ch49
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-48350-3_64
http://dx.doi.org/10.1007/978-3-662-48350-3_64
http://dx.doi.org/10.1007/978-3-662-48350-3_64

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 13

multiplication algorithms to perform fewer arithmetic operations than the current state of
the art for output matrices that are sparse.

In particular, let ω be the best known constant such that two dense U×U matrices can be
multiplied with O (Uω) arithmetic operations. Further denote by N the number of nonzero
entries in the input matrices while Z is the number of nonzero entries of matrix product
AC. We present a new Monte Carlo algorithm that uses Õ

(
U2 (Z

U

)ω−2 +N
)
arithmetic

operations and outputs the nonzero entries of AC with high probability. For dense input, i.e.,
N = U2, if Z is asymptotically larger than U , this improves over state of the art methods,
and it is always at most O (Uω). For general input density we improve upon state of the art
when N is asymptotically larger than U4−ωZω−5/2.

The algorithm is based on dividing the input into “balanced” subproblems which are
then compressed and computed. The new subroutine that computes a matrix product with
balanced rows and columns in its output uses time Õ

(
UZ(ω−1)/2 +N

)
which is better than

the current state of the art for balanced matrices when N is asymptotically larger than
UZω/2−1, which always holds when N = U2.

In the I/O model – where M is the memory size and B is the block size – our algorithm
is the first nontrivial result that exploits cancellations and sparsity of the output. The
I/O complexity of our algorithm is Õ

(
U2(Z/U)ω−2/(Mω/2−1B) + Z/B +N/B

)
, which is

asymptotically faster than the state of the art unless M is large.

3.17 File Maintenance: When in Doubt, Change the Layout!
Tsvi Kopelowitz (University of Michigan – Ann Arbor, US)

License Creative Commons BY 3.0 Unported license
© Tsvi Kopelowitz

Joint work of Michael Bender; Jeremy Fineman; Seth Gilbert; Tsvi Kopelowitz; Pablo Montas

In this talk I will describe a new deamortized solution to the sequential-file-maintenance
problem. The data structure uses several new tools, for solving this historically complicated
problem. These tools include an unbalanced ternary-tree layout embedded in the sparse
table, a level-based approach for triggering, and one-way rebalancing.

3.18 Self-Organizing Binary Search Trees: Recent Results
Kurt Mehlhorn

License Creative Commons BY 3.0 Unported license
© Kurt Mehlhorn

Joint work of Parinya Chalermsook; Mayank Goswami; Lazlo Kosma; Kurt Mehlhorn; Thatchaphol Saranurak
Main reference P. Chalermsook, M. Goswami, L. Kozma, K. Mehlhorn, T. Saranurak, “Pattern-Avoiding Access in

Binary Search Trees”, in Proc. of the IEEE 56th Annual Symp. on Foundations of Computer
Science (FOCS’15), pp. 410–423, IEEE CS, 2015.

URL http://dx.doi.org/10.1109/FOCS.2015.32

The dynamic optimality conjecture is perhaps the most fundamental open question about
binary search trees (BST). It postulates the existence of an asymptotically optimal online
BST, i.e. one that is constant factor competitive with any BST on any input access sequence.
The two main candidates for dynamic optimality in the literature are splay trees [Sleator and
Tarjan, 1985], and Greedy [Lucas, 1988; Munro, 2000; Demaine et al. 2009]. Despite BSTs

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/FOCS.2015.32
http://dx.doi.org/10.1109/FOCS.2015.32
http://dx.doi.org/10.1109/FOCS.2015.32
http://dx.doi.org/10.1109/FOCS.2015.32

14 16101 – Data Structures and Advanced Models of Computation on Big Data

being among the simplest data structures in computer science, and despite extensive effort
over the past three decades, the conjecture remains elusive. Dynamic optimality is trivial
for almost all sequences: the optimum access cost of most length-n sequences is Θ(n logn),
achievable by any balanced BST.

Thus, the obvious missing step towards the conjecture is an understanding of the “easy”
access sequences. Preorder sequences (the access sequence arises from a preorder traversal of
a tree) can easily be served in linear time by an off-line algorithms. No online BST is known
to serve them in linear time.

We prove (FOCS 2015) two different relaxations of the traversal conjecture for Greedy:
(i) Greedy with an arbitrary initial tree is almost linear for preorder sequences. (ii) Greedy
with a fixed initial tree is in fact linear. These statements are corollaries of our more general
results that express the complexity of access sequences in terms of a pattern avoidance.

Splay trees satisfy the so-called access lemma. Many of the nice properties of splay
trees follow from it. What makes self-adjusting binary search trees (BSTs) satisfy the access
lemma? In our ESA 2015 paper, we give sufficient conditions for the access lemma to hold
and give strong hints of their necessity.

3.19 Generating Massive Scale-Free Networks under Resource
Constraints

Ulrich Carsten Meyer (Goethe-Universität – Frankfurt a.M., DE) and Manuel Penschuck
(Goethe-Universität – Frankfurt a.M., DE)

License Creative Commons BY 3.0 Unported license
© Ulrich Carsten Meyer and Manuel Penschuck

Main reference U. Meyer, M. Penschuck, “Generating Massive Scale-Free Networks under Resource Constraints”,
in Proc. of the 18th Workshop on Algorithm Engineering and Experiments (ALENEX’16),
pp. 39–52, SIAM, 2016.

URL http://dx.doi.org/10.1137/1.9781611974317.4

Random graphs as mathematical models of massive scale-free networks have recently become
very popular. For experimental evaluation and in order to provide artificial data sets, huge
instances of such networks actually need to be generated. We consider generation methods for
random graph models based on linear preferential attachment under limited computational
resources and investigate our techniques using the well-known Barabási-Albert (BA) graph
model. We present the two I/O-efficient BA generators, MP-BA and TFP-BA, for the
external-memory (EM) model and then extend MP-BA to massive parallelism based on but
not limited to GPGPU.

3.20 Online Resource Leasing
Friedhelm Meyer auf der Heide (Universität Paderborn, DE)

License Creative Commons BY 3.0 Unported license
© Friedhelm Meyer auf der Heide

Main reference S. Abshoff , P. Kling, C. Markarian, F. Meyer auf der Heide, P. Pietrzyk, “Towards the price of
leasing online”, Journal of Combinatorial Optimisation, pp. 1–20, 2015.

URL http://dx.doi.org/10.1007/s10878-015-9915-5

We consider online leasing problems in which demands arrive over time and need to be
served by leased resources. Each resource can be leased for K different durations, each

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1137/1.9781611974317.4
http://dx.doi.org/10.1137/1.9781611974317.4
http://dx.doi.org/10.1137/1.9781611974317.4
http://dx.doi.org/10.1137/1.9781611974317.4
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10878-015-9915-5
http://dx.doi.org/10.1007/s10878-015-9915-5
http://dx.doi.org/10.1007/s10878-015-9915-5

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 15

incurring a different cost (longer leases cost less per time unit). This model is a natural
generalization of Meyerson’s Parking Permit Problem (FOCS 2005). In the talk, I review
Meyerson’s result and present it using the primal-dual approach. In addition, I present new
online leasing variants of classical problems like facility location and set cover, and present
primal-dual-based online algorithms for them together with their competitive analysis.

3.21 Optimal search trees with 2-way comparisons
Ian Munro (University of Waterloo, CA) and Mordecai Golin (HKUST – Kowloon, HK)

License Creative Commons BY 3.0 Unported license
© Ian Munro and Mordecai Golin

Joint work of Marek Chrobak; Mordecai Golin; J. Ian Munro; Neal E. Young

This talk is about finding a polynomial time algorithm that you probably thought was known
almost a half century ago, but it wasn’t. The polynomial time algorithm is still rather slow
and requires a lot of space to solve, so we also look at extremely good and fast approximate
solutions.

In 1971, Knuth gave an O(n2)-time algorithm for the now classic problem of finding an
optimal binary search tree. Knuth’s algorithm works only for search trees based on 3-way
comparisons, but most modern programming languages and computers support only 2-way
comparisons (<, = and >). Until this work, the problem of finding an optimal search tree
using 2-way comparisons remained open – polynomial time algorithms were known only for
restricted variants. We solve the general case, giving (i) an O(n4)-time algorithm and (ii) a
linear time algorithm that gives a tree with expected search cost within 2 comparisons of the
optimal.

3.22 Randomized k-Jumplists
Elisabeth Neumann (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Elisabeth Neumann

Joint work of Elisabeth Neumann; Markus Nebel; Sebastian Wild

In this talk, I presented an extension of randomized jumplists, introduced by Brönnimann,
Cazals and Durand. To improve search costs, the number of jump-pointers per node have
been increased from one to k, (k > 1), to allow faster navigation through the list. Pointer
targets are chosen at random such that the pointer structure is (strongly) nested and no two
jump-pointers point to the same node. I presented algorithms for search, construction and
insertion, extending algorithms for regular jumplists, all of which run in expected logarithmic
time. Finally, I analysed the expected costs of searching and came to the conclusion that
k-jumplists (k > 1) outperform regular jumplists if binary search is used to determine which
pointer to follow during the search.

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

16 16101 – Data Structures and Advanced Models of Computation on Big Data

3.23 Dynamic Data Structures for the GPU
John D. Owens (University of California, Davis, US)

License Creative Commons BY 3.0 Unported license
© John D. Owens

Joint work of Martin Farach-Colton; John D. Owens

Today’s GPU programming environments feature few general-purpose data structures. Only
a handful of those can be constructed on the GPU, and to first order, none of them can
be updated on the GPU. We aim to develop a family of GPU data structures that permit
dynamic updates without rebuilding, and identify cross-cutting issues – e.g., modeling the
memory hierarchy, leveraging task parallelism vs. cooperative parallelism, and choosing the
right granularity of GPU parallelism for data-structure operations – that will affect their
design.

3.24 Communication efficient algorithms
Peter Sanders (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Peter Sanders

I proposed to have a closer look at algorithms that have sublinear bottleneck communication
volume. Examples were given for duplicate detection, distributed Bloom filters and various
top-k problems. The talk is based on the two papers [1, 2].

References
1 Peter Sanders and Sebastian Schlag and Ingo Müller. Communication Efficient Algorithms

for Fundamental Big Data Problems. IEEE Int. Conf. on Big Data. 2013.
2 Lorenz Hübschle-Schneider and Peter Sanders. Communication Efficient Algorithms for

Top-k Selection Problems. IPDPS 2016.

3.25 Encoding Data Structures
Rajeev Raman (University of Leicester, GB)

License Creative Commons BY 3.0 Unported license
© Rajeev Raman

Main reference R. Raman, “Encoding Data Structures,” in Proc. of the 9th Int’l Workshop on Algorithms and
Computation (WALCOM’15), LNCS, Vol. 8973, pp. 1-7, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-319-15612-5_1

Note: Survey talk based on several papers.

Driven by the increasing need to analyze and search for complex patterns in very large
data sets, the area of compressed and succinct data structures has grown rapidly in the last
10–15 years. Such data structures have very low memory requirements, allowing them to fit
into the main memory of a computer, which in turn avoids expensive computation on hard
disks.

This talk will focus on a topic that has become popular recently: encoding “the data
structure” itself. Some data structuring problems involve supporting queries on data, but
the queries that need to be supported do not allow the original data to be deduced from

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-15612-5_1
http://dx.doi.org/10.1007/978-3-319-15612-5_1
http://dx.doi.org/10.1007/978-3-319-15612-5_1

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 17

the queries. This presents opportunities to obtain space savings even when the data is
incompressible, by pre-processing the data, extracting only the information needed to answer
the queries, and then deleting the data. The minimum information needed to answer the
queries is called the effective entropy of the problem: precisely determining the effective
entropy can involve interesting combinatorics.

3.26 Towards a Web-scale Data Management Ecosystem
Demonstrated by SAP HANA

Alejandro Salinger (SAP SE – Walldorf, DE)

License Creative Commons BY 3.0 Unported license
© Alejandro Salinger

Joint work of Franz Faerber; Jonathan Dees; Martin Weidner; Stefan Baeuerle; Wolfgang Lehner
Main reference F. Faerber, J. Dees, M. Weidner, S. Bäuerle, W. Lehner, “Towards a web-scale data management

ecosystem demonstrated by SAP HANA”, in Proc. of the IEEE 31st Int’l Conf. on Data
Engineering (ICDE’15), pp. 1259–1267, 2015.

URL http://dx.doi.org/10.1109/ICDE.2015.7113374

The requirements for modern data management systems have changed in the last years
mainly due to the growth in application space with different usage patterns, changes in
underlying hardware, and growing data volumes. In this scenario, a solution must deal with a
multidimensional problem space with multiple domain-specific data types, data consumption
models, consistence notions, and query languages, among others. As no single engine can
handle all the different dimensions, it is natural to tackle and optimize each dimension
with specialized approaches. However, we argue for a deep integration of individual engines
into a single coherent and consistent data management ecosystem that provides a common
understanding of the overall business semantics.

We describe SAP HANA as an example of what such a holistic but also flexible data
management ecosystem could look like. We describe the system’s in-memory column store
engine as well as its specialized engines that allow for data processing beyond relational data
(e.g., time series, text search, graph), and we argue about the advantages of bringing data
processing closer to the data itself.

We then describe HANA’s Scale-Out Extension (SAP HANA Vora) with its low footprint,
highly scalable processing engines as well as the system’s integration with the Hadoop
ecosystem. We give an example of the techniques to store and process large amounts of time
series data such as compression based on the combination of several approximation methods
with varying accuracy in the representation for different data warmness levels.

3.27 A 21st Century Model for Disseminating Knowledge
Robert Sedgewick (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Robert Sedgewick

In this talk, we describe a scalable model for teaching and learning based on a combination of
studio-produced video lectures, a web repository of associated materials, and an authoritative
classic textbook. The approach has already proven effective for teaching algorithms and data
structures, the analysis of algorithms, and analytic combinatorics, and will be further tested
in the coming year with a new computer science textbook and associated materials that can

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICDE.2015.7113374
http://dx.doi.org/10.1109/ICDE.2015.7113374
http://dx.doi.org/10.1109/ICDE.2015.7113374
http://dx.doi.org/10.1109/ICDE.2015.7113374
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

18 16101 – Data Structures and Advanced Models of Computation on Big Data

serve as a basis for a first course in computer science that can stand alongside traditional
first courses in physics, chemistry, economics, and other disciplines.

3.28 Connectivity Oracles
Seth Pettie (University of Michigan, Ann Arbor, MI, US)

License Creative Commons BY 3.0 Unported license
© Seth Pettie

Joint work of Ran Duan; Seth Pettie
Main reference R. Duan and S. Pettie, “Connectivity oracles for failure prone graphs”, in Proc. of the 42nd ACM

Symp. on Theory of Computing (STOC’10), pp. 465–474, 2010.
URL http://dx.doi.org/10.1145/1806689.1806754

A d-failure connectivity oracle is a data structure for undirected graphs that can answer
connectivity queries after any d vertices have been deleted. The best d-failure connectivity
oracles that have fast query time either have exorbitant preprocessing or linear deletion time.
In this talk I’ll discuss a simplified variant of the Duan-Pettie (2010) d-failure connectivity
oracle that has polynomial (in n) preprocessing, polynomial (in d) time for vertex deletion,
and O(d) time to answer a connectivity query. A new type of graph decomposition is used,
which is inspired by the Fürer-Raghavachari algorithm for approximating the minimum-degree
spanning tree.

3.29 I/O-Efficient Similarity Join
Francesco Silvestri (IT University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Francesco Silvestri

Joint work of Rasmus Pagh; Ninh Pham; Francesco Silvestri; Morten Stöckel
Main reference R. Pagh, N. Pham, F. Silvestri, M. Stöckel, “I/O-Efficient Similarity Join”, in Proc. of the 23rd

Annual European Symp. on Algorithms (ESA’15), LNCS, Vol. 9294, pp. 941–952, Springer, 2015.
URL http://dx.doi.org/10.1007/978-3-662-48350-3_78

We present an I/O-efficient algorithm for computing similarity joins based on locality-sensitive
hashing (LSH). In contrast to the filtering methods commonly suggested our method has
provable sub-quadratic dependency on the data size. Further, in contrast to straightforward
implementations of known LSH-based algorithms on external memory, our approach is able
to take significant advantage of the available internal memory: Whereas the time complexity
of classical algorithms includes a factor of Mρ , where ρ is a parameter of the LSH used, the
I/O complexity of our algorithm merely includes a factor (N/M)ρ , where N is the data
size and M is the size of internal memory. Our algorithm is randomized and outputs the
correct result with high probability. It is a simple, recursive, cache-oblivious procedure,
and we believe that it will be useful also in other computational settings such as parallel
computation.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/1806689.1806754
http://dx.doi.org/10.1145/1806689.1806754
http://dx.doi.org/10.1145/1806689.1806754
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-48350-3_78
http://dx.doi.org/10.1007/978-3-662-48350-3_78
http://dx.doi.org/10.1007/978-3-662-48350-3_78

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 19

3.30 Fast construction of graph sparsification: graphs, ellipsoids, and
balls-into-bins

He Sun (University of Bristol, GB)

License Creative Commons BY 3.0 Unported license
© He Sun

Joint work of Yin Tat Lee; He Sun
Main reference Y. Tat Lee, H. Sun, “Constructing Linear-Sized Spectral Sparsification in Almost-Linear Time”, in

Proc. of the IEEE 56th Annual Symp. on Foundations of Computer Science (FOCS’15),
pp. 250–269, IEEE CS, 2015; pre-print available as arXiv:1508.03261 [cs.DS], 2015.

URL http://dx.doi.org/10.1109/FOCS.2015.24
URL http://arxiv.org/abs/1508.03261

Spectral sparsification is the procedure of approximating a graph by a sparse graph such that
many properties between these two graphs are preserved. Over the past decade, spectral
sparsification has become a standard tool in speeding up runtimes of algorithms for various
combinatorial and learning problems.

In this talk I will present our recent work on constructing a linear-sized spectral sparsific-
ation in almost-linear time. In particular, I will discuss some interesting connections among
graphs, ellipsoids, and balls-into-bins processes.

3.31 Revisiting the Construction of SSPDs in the Presence of Memory
Hierarchies

Jan Vahrenhold (Universität Münster, DE)

License Creative Commons BY 3.0 Unported license
© Jan Vahrenhold

Joint work of Sylvie Temme; Jan Vahrenhold

We revisit the randomized internal-memory algorithm of Abam and Har-Peled [SoCG 2010]
for constructing a semi-separated pair decomposition (SSPD) for N points in Rd in the
context of the cache-oblivious model of computation. Their algorithm spends O(nε−d log2N)
time (assuming that the floor function can be evaluated in constant time, O(nε−d log2

2N)
time otherwise) in expectation and produces an SSPD of linear size in which each point
participates in only a logarithmic number of pairs with high probability.

Using a modified analysis of their algorithm and several cache-oblivious techniques for
tree construction, labeling, and traversal, we obtain a cache-oblivious algorithm that spends
an expected number of O(sort(nε−d) log2N) memory transfers.

3.32 Quicksort with Equal Keys
Sebastian Wild (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Wild

Joint work of Martin Aumüller; Martin Dietzfelbinger; Conrado Martínez; Markus Nebel; Sebastian Wild

In this talk, I present the first analysis of generalized Quicksort on inputs with equal keys,
confirming in part a conjecture of Sedgewick and Bentley.

I consider Quicksort variants which partition inputs into s segments, around s− 1 pivots
chosen as order statistics from a sample, generalizing on Quicksort variants used in practice.

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/FOCS.2015.24
http://dx.doi.org/10.1109/FOCS.2015.24
http://dx.doi.org/10.1109/FOCS.2015.24
http://dx.doi.org/10.1109/FOCS.2015.24
http://arxiv.org/abs/1508.03261
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

20 16101 – Data Structures and Advanced Models of Computation on Big Data

The input model is random u-ary words, i. e., n elements chosen i. i. d. uniformly from
{1, . . . , u}. Generalized Quicksort needs on average ā

Hn ln(u) +O(n) ternary comparisons
to sort a random u-ary word of length n, provided that u = ω(1) and u = O(n1/3−ε). The
corresponding number for the classic model of random permutations is ā

Hn ln(n) + O(n),
so the same relative speedup from sampling and multi-way partitioning is attained in both
input models. Here, ā

H is a (known) constant that depends only on the used partitioning
algorithm and the pivot-sampling scheme.

The analysis relies on the connection of Quicksort and search trees: I reduce the analysis
of Quicksort to determining the path length in search trees built from inserting elements
drawn i.i.d. from {1, . . . , u}.

4 Open problems

The seminar included an open problem session during which the following problems were
discussed.

4.1 Open Problem 1
Deepak Ajwani (Bell Labs – Dublin, IE)

License Creative Commons BY 3.0 Unported license
© Deepak Ajwani

The problem that I posed was the following: Given a directed graph G, find an acyclic
subgraph D, such that TransitiveClosure(D) is as close to TransitiveClosure(G) as possible.

Since the transitive closure of D can only be a subset of transitive closure of G and it
is a 0-1 matrix, the problem can also be formulated as “Given a directed graph G, find an
acyclic subgraph D, such that TransitiveClosure(D) has as many ones as possible.”

This is an interesting theoretical problem (particularly as the related problem of minimum
feedback arc set is APX-hard). But my motivation for this problem came from a practical
consideration, namely cleaning up crowd-sourced taxonomies. These taxonomies capture
the specificity or generality of semantic concepts/categories and should logically not have
directed cycles. Unfortunately, because they are created in a crowd-sourced way, they usually
have thousands of cycles. So, the question is “can we remove the cycles while preserving the
logical structure of the taxonomy as much as possible?”

The discussion in the session revolved around the correct formulation of this problem,
particularly in going from “preserving the logical structure” to “maximising the transitive
closure.” In addition, I was asked if additional input related to number of different users
creating an edge is available and I replied in negative. Also, I clarified that I am interested
in good approximation solutions as well as heuristics that can deal with taxonomies that
have hundreds of millions of edges.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 21

4.2 Open Problem 2
Alejandro Lopez-Ortiz (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Alejandro Lopez-Ortiz

My meta-problem is as follows:
Nowadays large data sets live in distributed NoSQL databases, often in main memory. A

typical computation locks a view of the data (but not necessarily the data itself) that is at
most a handful of operations old, until the transaction completes and the lock on the view is
released.

This means that our current data structures and algorithms need to (1) be adapted to
run in a distributed fashion (2) with as low as possible amounts of communication between
nodes and (3) supporting limited, bounded persistence in the most efficient manner.

For some data structures and algorithms this can be achieved in a straightforward manner
(e.g. BSTs, embarrassingly parallelizable algorithms), some others an efficient implementation
requires new tools and last but not least, in some cases this might not be achievable. In this
case a lower bound for the data structure/algorithm would be desirable, e.g. how expensive
it is to recompute Dijkstra in a distributed, persistent setting with a small number of
communication rounds.

4.3 Open Problem 3
Sebastian Wild (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Wild

I posed the problem to compute or approximate the expected costs of the optimal alphabetic
search tree for random weights on the leaves.

More precisely, assume that we draw U1, . . . , Un−1 i. i. d. uniformly in (0, 1) and denote
by D1, . . . , Dn the spacings between the sorted numbers, i. e., Dj is the difference of the jth
smallest and the (j− 1)st smallest of the Ui, where we add U0 = 0 and Un = 1. The resulting
vector (D1, . . . , Dn) is a stochastic vector, drawn uniformly from the closed n−1 dimensional
simplex; it thus represents a uniformly chosen random probability distribution over the
numbers {1, . . . , n}. The vector (D1, . . . , Dn−1) is also said to have a Dirichlet-distribution
with parameter (1, . . . , 1). We now construct the optimal binary search tree with leaf weights
D1, . . . , Dn, and consider as cost of the tree C =

∑
iDi · depth(ith leaf), i. e., the average

leaf depth.
This problem is related to the analysis of comparison-optimal partitioning methods in

Quicksort, which have been proposed by Aumüller and Dietzfelbinger [1]: The expected costs
of the optimal alphabetic search tree are the leading-term coefficient of the expected number
of comparisons of comparison-optimal partitioning.

The problem is also a natural information-theoretic question: How much can an alphabet
with random letter access probabilities be compressed on average using an alphabetic prefix
code (i. e., one that retains the order of symbols among code words; such codes are also
known as Hu-Tucker codes). If we subtract from the average code word length C the (binary)
entropy of (D1, . . . , Dn), we obtain the redundancy of the code, R = C −H(D1, . . . , Dn) ≥ 0.

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

22 16101 – Data Structures and Advanced Models of Computation on Big Data

The problem is thus to determine the expected redundancy E[R], where the expectation is
taken over the weights D1, . . . , Dn.

From the information-theoretic perspective, one could also ask for other coding schemes,
such as Huffman codes or Shannon codes; results for Huffman codes yield an upper bound
on Hu-Tucker codes. For Huffman codes, worst-case bounds on the redundancy are known
for given symbol weights (see, e. g., [2] and the references therein). The bound depends only
on the probability of the most probable symbol, but a precise computation of the expected
value is still challenging.

References
1 M. Aumüller and M. Dietzfelbinger. “Optimal Partitioning for Dual-Pivot Quicksort”, ACM

Transactions on Algorithms 12:2 article 18, 2016. http://dx.doi.org/10.1145/2743020
2 Chunxuan Ye and R. W. Yeung. “A simple upper bound on the redundancy of

Huffman codes”, IEEE Transactions on Information Theory 48:7, 2132–2138, 2002.
http://dx.doi.org/10.1109/TIT.2002.1013158

http://dx.doi.org/10.1145/2743020
http://dx.doi.org/10.1109/TIT.2002.1013158

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 23

Participants

Deepak Ajwani
Bell Labs – Dublin, IE

Helmut Alt
FU Berlin, DE

Alexandr Andoni
Columbia Univ. – New York, US

Martin Aumüller
IT Univ. of Copenhagen, DK

Timo Bingmann
KIT – Karlsruher Institut für
Technologie, DE

Gerth Stølting Brodal
Aarhus University, DK

Andrej Brodnik
University of Primorska, SI

Martin Dietzfelbinger
TU Ilmenau, DE

Anne Driemel
TU Eindhoven, NL

Fabian Dütsch
Universität Münster, DE

Guy Even
Tel Aviv University, IL

Rolf Fagerberg
University of Southern Denmark –
Odense, DK

Martin Farach-Colton
Rutgers Univ. – Piscataway, US

Simon Gog
KIT – Karlsruher Institut für
Technologie, DE

Mordecai Golin
HKUST – Kowloon, HK

Goetz Graefe
HP Labs – Madison, US

Torben Hagerup
Universität Augsburg, DE

Herman J. Haverkort
TU Eindhoven, NL

John Iacono
New York University, US

Riko Jacob
IT Univ. of Copenhagen, DK

Tsvi Kopelowitz
University of Michigan –
Ann Arbor, US

Moshe Lewenstein
Bar-Ilan University – Ramat
Gan, IL

Alejandro Lopez-Ortiz
University of Waterloo, CA

Jérémie Lumbroso
Princeton University, US

Conrado Martinez
UPC – Barcelona, ES

Kurt Mehlhorn
MPI für Informatik –
Saarbrücken, DE

Ulrich Carsten Meyer
Goethe-Universität – Frankfurt
a.M., DE

Friedhelm Meyer auf der Heide
Universität Paderborn, DE

Ian Munro
University of Waterloo, CA

Markus E. Nebel
TU Kaiserslautern, DE

Elisabeth Neumann
TU Kaiserslautern, DE

John D. Owens
Univ. of California, Davis, US

Manuel Penschuck
Goethe-Universität – Frankfurt
a.M., DE

Seth Pettie
University of Michigan –
Ann Arbor, US

Rajeev Raman
University of Leicester, GB

Alejandro Salinger
SAP SE – Walldorf, DE

Peter Sanders
KIT – Karlsruher Institut für
Technologie, DE

Robert Sedgewick
Princeton University, US

Francesco Silvestri
IT Univ. of Copenhagen, DK

He Sun
University of Bristol, GB

Jan Vahrenhold
Universität Münster, DE

Sebastian Wild
TU Kaiserslautern, DE

16101

	Executive Summary Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick
	Table of Contents
	Overview of Talks
	Towards fully-informed communication Deepak Ajwani
	Parallel Algorithms for Geometric Graph Problems Alex Andoni, Grisha Yaroslavtsev, Krzysiek Onak, and Sasho Nikolov
	News on Multi-Pivot Quicksort Martin Aumüller
	Thrill: Distributed Big Data Batch Processing in C++ Timo Bingmann
	External Memory Three-Sided Range Reporting and Top-k Queries with Sublogarithmic Updates Gerth Stølting Brodal
	Parallel Queries Andrej Brodnik
	Clustering time series under the Frechet distance Anne Driemel
	Algorithm Design Paradigms in the VAT-Model Fabian Dütsch
	Sublinear Random Access Generators for Preferential Attachment Graphs Guy Even
	On Routing in Geometric Spanners Rolf Fagerberg
	Migrating a data structure from one system to another Martin Farach-Colton
	Practical Compact Indexes for Top-k Document Retrieval Simon Gog, Gonzalo Navarro, and Roberto Konow
	Lock-free data structures Goetz Graefe
	Succinct Choice Dictionaries Torben Hagerup and Frank Kammer
	Weighted dynamic finger in binary search trees John Iacono
	Fast Output-Sensitive Matrix Multiplication Riko Jacob
	File Maintenance: When in Doubt, Change the Layout! Tsvi Kopelowitz
	Self-Organizing Binary Search Trees: Recent Results Kurt Mehlhorn
	Generating Massive Scale-Free Networks under Resource Constraints Ulrich Carsten Meyer and Manuel Penschuck
	Online Resource Leasing Friedhelm Meyer auf der Heide
	Optimal search trees with 2-way comparisons Ian Munro and Mordecai Golin
	Randomized k-Jumplists Elisabeth Neumann
	Dynamic Data Structures for the GPU John D. Owens
	Communication efficient algorithms Peter Sanders
	Encoding Data Structures Rajeev Raman
	Towards a Web-scale Data Management Ecosystem Demonstrated by SAP HANA Alejandro Salinger
	A 21st Century Model for Disseminating Knowledge Robert Sedgewick
	Connectivity Oracles Seth Pettie
	I/O-Efficient Similarity Join Francesco Silvestri
	Fast construction of graph sparsification: graphs, ellipsoids, and balls-into-bins He Sun
	Revisiting the Construction of SSPDs in the Presence of Memory Hierarchies Jan Vahrenhold
	Quicksort with Equal Keys Sebastian Wild

	Open problems
	Open Problem 1 Deepak Ajwani
	Open Problem 2 Alejandro Lopez-Ortiz
	Open Problem 3 Sebastian Wild

	Participants

