Report from Dagstuhl Seminar 16112
From Theory to Practice of Algebraic Effects and Handlers

Edited by

Andrej Bauer!, Martin Hofmann?, Matija Pretnar®, and
Jeremy Yallop*

University of Ljubljana, SI, andrej.bauer@fmf.uni-1j.si
LMU Miinchen, DE, hofmann@ifi.lmu.de

University of Ljubljana, SI, matija.pretnar@fmf.uni-1j.si
University of Cambridge, GB, jeremy.yallop@cl.cam.ac.uk

W N =

—— Abstract

Dagstuhl Seminar 16112 was devoted to research in algebraic effects and handlers, a chapter
in the principles of programming languages which addresses computational effects (such as I/0,
state, exceptions, nondeterminism, and many others). The speakers and the working groups
covered a range of topics, including comparisons between various control mechanisms (handlers
vs. delimited control), implementation of an effect system for OCaml, compilation techniques for
algebraic effects and handlers, and implementations of effects in Haskell.

Seminar March 13-18, 2016 — http://www.dagstuhl.de/16112

1998 ACM Subject Classification D.3 Programming Languages, D.3.3 Language Constructs
and Features: Control structures, Polymorphism, F.3 Logics and Meanings of Programs, F.3.1
Specifying and Verifying and Reasoning about Programs, F.3.2 Semantics of Programming
Languages, F.3.3 Studies of Program Constructs: Control primitives, Type structure

Keywords and phrases algebraic effects, computational effects, handlers, implementation tech-
niques, programming languages

Digital Object Identifier 10.4230/DagRep.6.3.44

Edited in cooperation with Niels F. W. Voorneveld and Philipp G. Haselwarter

1 Executive Summary

Andrej Bauer
Martin Hofmann
Matija Pretnar
Jeremy Yallop

License @ Creative Commons BY 3.0 Unported license
© Andrej Bauer, Martin Hofmann, Matija Pretnar, Jeremy Yallop

Being no strangers to the Dagstuhl seminars we were delighted to get the opportunity to
organize Seminar 16112. Our seminar was dedicated to algebraic effects and handlers, a
research topic in programming languages which has received much attention in the past
decade. There are strong theoretical and practical aspects of algebraic effects and handlers,
so we invited people from both camps. It would have been easy to run the seminar as a
series of disconnected talks that would take up most of people’s schedules — we have all been
to such seminars — and run the risk of disconnecting the camps as well. We decided to try a
different format, and would like to share our experience in this executive summary.

On the first day we set out to identify topics of interest and organize working groups
around them. This did not work, as everybody wanted to be in every group, or was at least
Except where .otherwise noted, content of this report is licensed

37 under a Creative Commons BY 3.0 Unported license
From Theory to Practice of Algebraic Effects and Handlers, Dagstuhl Reports, Vol. 6, Issue 3, pp. 44-58
Editors: Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop

\\v pagstunL Dagstuhl Reports
RePORTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/16112
http://dx.doi.org/10.4230/DagRep.6.3.44
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop

worried they would miss something important by choosing the wrong group. Nevertheless,
we did identify topics and within them ideas began to form. At first they were very general
ideas on the level of major research projects, but soon enough people started asking specific
questions that could be addressed at the seminar. Around those questions small groups
began to form. Out of initial confusion came self-organization.

We had talks each day in the morning, with the schedule planned two days ahead, except
for the first day which started by a tutorial on algebraic effects and handlers. We left the
afternoons completely free for people to work in self-organized groups, which they did. The
organizers subtly made sure that everybody had a group to talk to. In the evening, just

before dinner, we had a “show & tell” session in which groups reported on their progress.

These sessions were the most interesting part of the day, with everyone participating: some
showing what they had done so far, and others offering new ideas. Some of the sessions were
accompanied by improvised short lectures.

Work continued after dinner and late at night. One of the organizers was shocked to find,
on his way to bed, that the walls of a small seminar room were completely filled with type
theoretic formulas, from the floor to the ceiling. He was greatly relieved to hear that the
type theory was not there to stay permanently as the Dagstuhl caretakers painted the walls
with a special “whiteboard” paint. They should sell the paint by the bucket as a Dagstuhl
souvenir.

We are extremely happy with the outcome of the seminar and the way we organized it.
An open format that gives everyone ample time outside the seminar room was significantly
boosted by the unique Dagstuhl environment free of worldly distractions. We encourage
future organizers to boldly try new ways of organizing meetings. There will be confusion at
first, but as long as the participants are encouraged and allowed to group themselves, they
will do so. If a lesson is to be taken from our seminar, it is perhaps this: let people do what
they want, but also make sure they report frequently on what they are doing, preferably
when they are a bit hungry.

45

16112

46 16112 — From Theory to Practice of Algebraic Effects and Handlers

2 Table of Contents

Executive Summary
Andrej Bauer, Martin Hofmann, Matija Pretnar, Jeremy Yallop. 44

Overview of Talks

Handlers considered harmful?

Andrzej Filinski oo 47
Andromeda: Type theory with Equality Reflection

Philipp G. Haselwarter e 47
No value restriction is needed for algebraic effects and handlers

Ohad Kammar, Sean Moss, and Matija Pretnar 48
Parameterized Extensible Effects and Session Types

Oleg Kiselyov e e e 48
Adequacy for Infinitary Algebraic Effects

Gordon Plotkin e e e 48
A tutorial on algebraic effects and handlers

Matija Pretnar o e e 49
Compiling Eff to OCaml

Matija Pretnar, Amr Hany Shehata Saleh, and Tom Schrijvers 50
Effect Handlers in Scope

Tom Schrijuers e 50
Compositional reasoning for algebraic effects

Alex STmpson 51
Substitution, jumps and algebraic effects

Sam Staton e e e e 51
LiquidHaskell: Refinement Types for Haskell

Niki Vazou o e 51

Working groups

Towards an effect system for OCaml
Matija Pretnar, Stephen Dolan, KC' Sivaramakrishnan, and Leo White 52

Open problems

Are all functions continuous and how to prove it?
Andrej Bauero e e e e e e 53

Capturing algebraic equations in an effect system
Matija Pretnar o . o e e 55

Participants 58

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop

3 Overview of Talks

3.1 Handlers considered harmful?
Andrzej Filinski (University of Copenhagen, DK)

License) Creative Commons BY 3.0 Unported license
© Andrzej Filinski

At a seminar about handlers for algebraic effects — often presented as an operationally oriented
alternative to more explicitly monad-based approaches for specifying and implementing
computational effects — it is important not to forget about some of the considerable theoretical
and practical strengths of monads. This talk outlines some areas in which effect handlers
— as currently conceived in languages like Eff — may show comparative weaknesses, and is
meant to inspire reflection and discussion on how those can best be addressed.

3.2 Andromeda: Type theory with Equality Reflection
Philipp G. Haselwarter (University of Ljubljana, SI)

License @@ Creative Commons BY 3.0 Unported license
© Philipp G. Haselwarter
Joint work of Andrej Bauer; Gaétan Gilbert; Philipp G. Haselwarter; Matija Pretnar; Christopher A. Stone
Main reference http://andromedans.github.io/andromeda/
URL https://github.com/Andromedans/andromeda/releases/tag/dagstuhl-2016

We present Andromeda, a proof assistant for dependent type theory with equality reflection
in the style of [1]. The design of Andromeda follows the tradition of Edinburgh LCF, in the
sense that
there is an abstract datatype of type-theoretic judgements whose values can only be
constructed by a small, trusted nucleus
the user interacts with the nucleus by writing programs in a high-level Andromeda
meta-language (AML)

The type theory of Andromeda has dependent products and equality types. The rules for
products are standard and include function extensionality. This flavour of dependent type
theory is very expressive, as it allows one to postulate new judgemental equalities through
the equality reflection rule. However, this comes at the expense of rendering type-checking
undecidable. As there is no complete type-checking algorithm that we could implement in
the nucleus, we rely on user code written in AML to prove complex equality judgements.

We demonstrate how we use effects and handlers as a mechanism for the nucleus to
communicate with the user-code by asking questions about equalities. We then showcase
how equality reflection can be used to introduce inductive types with their judgemental
computation rules and to control opaqueness of definitions. Finally, we present how a
meta-language with effects can be used to implement a memoization tactic.

References
1 Per Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

47

16112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://andromedans.github.io/andromeda/
https://github.com/Andromedans/andromeda/releases/tag/dagstuhl-2016

48

16112 — From Theory to Practice of Algebraic Effects and Handlers

3.3 No value restriction is needed for algebraic effects and handlers

Ohad Kammar (University of Cambridge, GB), Sean Moss, and Matija Pretnar (University
of Ljubljana, SI)

License) Creative Commons BY 3.0 Unported license
© Ohad Kammar, Sean Moss, and Matija Pretnar

We present a straightforward sound Hindley-Milner polymorphic type system for algebraic
effects and handlers which allows type variable generalisation of arbitrary computations, and
not just values. This result is surprising. On the one hand, the soundness of Hindley-Milner
polymorphism is known to fail when not restricted in the presence of computational effects
such as reference cells and continuations. On the other hand, many programming examples
can be recast to use effect handlers instead of these effects. We place this result in the
wider context in two ways. First, we discuss the expressive difference between reference
cells and programming with algebraic effects and handlers. Second, we present a parametric
set-theoretic denotational semantics that highlights the smooth interaction of algebraic effects
and polymorphism.

3.4 Parameterized Extensible Effects and Session Types
Oleg Kiselyov (Tohoku University — Sendai, JP)

License () Creative Commons BY 3.0 Unported license
© Oleg Kiselyov

Parameterized monad goes beyond monads in letting us represent type-state. An effect
executed by a computation may change the set of effects it may be allowed to do afterwards.
We describe how to easily ‘add’ and ‘subtract’ such type-state effects. Parameterized monad
is often used to implement session types. We point out that extensible type-state effects are
themselves a form of session types.

3.5 Adequacy for Infinitary Algebraic Effects
Gordon Plotkin (University of Edinburgh, GB)

License) Creative Commons BY 3.0 Unported license
© Gordon Plotkin

Moggi famously proposed a monadic account of computational effects which includes the
computational A-calculus, a core call-by-value functional programming language. One
naturally then seeks a correspondingly general treatment of operational semantics. In
the algebraic theory of effects, a refinement of Moggi’s theory, the effects are obtained by
appropriate operations, and the monad is generated from an equational theory over these
operations.

In a previous paper with John Power, a general adequacy theorem was given for the
case of monads generated by finitary operations. This covers examples such as probabilistic
nondeterminism and exceptions. The idea is to evaluate terms symbolically in the absolutely
free algebra with the same signature as the equational theory. Without recursion, the
evaluated terms are finite; with recursion, they may be infinitely deep.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop

In general, however, one needs infinitary operations, for example for interactive I/O. We
review the previous work and show it can be extended to include such operations by allowing
infinitely wide terms. We can also define a general contextual equivalence for any monad,
however an extensional characterisation is elusive. The work should be extended to cover
handlers.

In most cases the natural adequacy theorem for a given effect is directly obtained from
the symbolical one. An exception is state, as the symbolic operational semantics has no state
component. It remains an interesting question to give a general operational semantics with a
notion of state.

3.6 A tutorial on algebraic effects and handlers
Matija Pretnar (University of Ljubljana, SI)

License) Creative Commons BY 3.0 Unported license
© Matija Pretnar
Main reference M. Pretnar, “An Introduction to Algebraic Effects and Handlers. Invited tutorial paper”, Proc. of
the 31st Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXI),
Electr. Notes Theor. Comput. Sci., Vol. 319, pp. 19-35, 2015.
URL http://dx.doi.org/10.1016/j.entcs.2015.12.003

The seminar started with a tutorial, which had a two-fold purpose of establishing a common
terminology and of introducing algebraic effects and handlers to anyone not yet familiar with
them. Roughly half of the audience was familiar with algebraic effects, but everyone was
well versed in functional programming and computational effects.

In the tutorial, we first looked at the basic idea of algebraic effects: every computation
returns a value or performs an effect by calling an operation. Therefore, the effectful
behaviour can be captured in an algebraic theory comprising a set of basic operations and
equations between them. We have shown how this leads to an interpretation of computations
with trees that have called operations as branching points and returned values as leaves.
This furthermore results in an algebraic denotational semantics, where computations are
interpreted with free models of the aforementioned algebraic theory.

Next, we have looked at how one may generalize exception handlers to handlers of
other algebraic effects, and the subtleties involved in the generalisation. Using many simple
examples of input & output handlers, we explored the flexibility that handlers offer in
managing the control flow of programs. As a more involved example, we took a look at how
one may implement many variants of backtracking with a handler for the non-deterministic
choice operation. We have also revisited the algebraic semantics and seen how handlers
correspond exactly to the homomorphisms, induced by the universal property of the free
model.

Finally, we sketched how one may adapt a standard type system for a call-by-value
language into a type & effect system, which captures the set of potentially called operations
in addition to the type of returned values.

49

16112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.entcs.2015.12.003
http://dx.doi.org/10.1016/j.entcs.2015.12.003
http://dx.doi.org/10.1016/j.entcs.2015.12.003
http://dx.doi.org/10.1016/j.entcs.2015.12.003

50

16112 — From Theory to Practice of Algebraic Effects and Handlers

3.7 Compiling Eff to OCaml

Matija Pretnar (University of Ljubljana, SI), Amr Hany Shehata Saleh (KU Leuven, BE),
and Tom Schrijvers (KU Leuven, BE)

License) Creative Commons BY 3.0 Unported license
© Matija Pretnar, Amr Hany Shehata Saleh, and Tom Schrijvers

We introduce a compilation technique for Eff, a functional language with handlers of algebraic
effects. Our compiler converts an Eff program into an OCaml program that produces an
element of the free monad. In order to reduce the performance overhead of the generated
code, we introduce a number of optimizations.

The most crucial technique, when feasible, is to translate pure computations into direct
OCaml code. For example, an Eff computation 1 + 3, is first translated into

(fun x -> Return (fun y -> Return (x + y))) 1 >>= fun f ->
f3

where Return and >>= are the unit and binding operation of the free monad, and + is native
addition in OCaml. However, monadic binds are costly, so our desire is to optimize the
generated code to just Return (1 + 3), which we do through a series of rewriting rules.

According to our benchmarks, the optimized generated code performs at about half the
speed of hand-written OCaml code. We plan to use the information provided by an effect
system to further optimize the output code.

3.8 Effect Handlers in Scope
Tom Schrijvers (KU Leuven, BE)

License) Creative Commons BY 3.0 Unported license
© Tom Schrijvers
Joint work of Nicolas Wu; Tom Schrijvers; Ralf Hinze
Main reference N. Wu, T. Schrijvers, R. Hinze, “Effect handlers in scope”, in Proc. of the 2014 ACM SIGPLAN
Symp. on Haskell (Haskell’14), pp. 1-12, ACM, 2014.
URL http://dx.doi.org/10.1145/2775050.2633358

Algebraic effect handlers are a powerful means for describing effectful computations. They
provide a lightweight and orthogonal technique to define and compose the syntax and
semantics of different effects. The semantics is captured by handlers, which are functions that
transform syntax trees. Unfortunately, the approach does not support syntax for scoping
constructs, which arise in a number of scenarios. While handlers can be used to provide a
limited form of scope, we demonstrate that this approach constrains the possible interactions
of effects and rules out some desired semantics. This paper presents two different ways
to capture scoped constructs in syntax, and shows how to achieve different semantics by
reordering handlers. The first approach expresses scopes using the existing algebraic handlers
framework, but has some limitations. The problem is fully solved in the second approach
where we introduce higher-order syntax.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2775050.2633358
http://dx.doi.org/10.1145/2775050.2633358
http://dx.doi.org/10.1145/2775050.2633358

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop

3.9 Compositional reasoning for algebraic effects
Alex Simpson (University of Ljubljana, SI)

License) Creative Commons BY 3.0 Unported license
© Alex Simpson

We obtain compositional proof systems for program verification by combining a set of generic
rules, common to all language instantiations, with composition principles that must be
supplied on an effect-specific basis. The proposed framework considers effects as generated
by a signature of algebraic operations. The effect-specific composition principles then replace
the customary equations (which are derivable from them).

3.10 Substitution, jumps and algebraic effects
Sam Staton (University of Ozford, GB)

License) Creative Commons BY 3.0 Unported license
© Sam Staton
Joint work of Marcelo Fiore; Sam Staton
Main reference M. Fiore and S. Staton, “Substitution, jumps, and algebraic effects”, in Proc. of the Joint Meeting

of the 23rd EACSL Annual Conf. on Computer Science Logic and the 29th Annual ACM/IEEE
Symp. on Logic in Computer Science (CSL-LICS’14), 2014; pre-print available from author’s
webpage.

URL http://dx.doi.org/10.1145/2603088.2603163

URL http://www.cs.ox.ac.uk/people/samuel.staton/papers/lics2014-substitution.pdf

I spoke about the relationship between jumps and the theory of substitution. To give an
algebra for the theory of substitution is to give a first-order algebraic theory. I discussed
how this explains the implementation of algebraic effects using control effects.

3.11 LiquidHaskell: Refinement Types for Haskell
Niki Vazou (University of California — San Diego, US)

License @@ Creative Commons BY 3.0 Unported license
© Niki Vazou
Joint work of Alexander Bakst; Eric Seidel; Ranjit Jhala; Niki Vazou
Main reference N. Vazou, A. Bakst, R. Jhala, “Bounded refinement types”, in Proc. of the 20th ACM SIGPLAN

Int’l Conf. on Functional Programming (ICFP’15), pp. 48-61, ACM, 2015; pre-print available from
author’s webpage.

URL http://dx.doi.org/10.1145/2784731.2784745

URL http://goto.ucsd.edu/~nvazou/icfpl5/main.pdf

We saw LiquidHaskell, a decidable and highly automated verifier that uses refinement types
for Haskell source code. I presented some examples (including safety of division and list
sorting) that can be found in the online demo [1].

Also we saw how refinement types can be extended with bounds [2] leading to more
expressive specifications that can be used to specify and verify effectual computations.

References
1 Online demo: http://goto.ucsd.edu/~nvazou/composel6/_site/01-index.html

2 Niki Vazou, Alexander Bakst, Ranjit Jhala. Bounded refinement types. ICFP 2015. http:

//goto.ucsd.edu/~nvazou/icfp1l5/main.pdf

51

16112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2603088.2603163
http://dx.doi.org/10.1145/2603088.2603163
http://dx.doi.org/10.1145/2603088.2603163
http://dx.doi.org/10.1145/2603088.2603163
http://dx.doi.org/10.1145/2603088.2603163
http://www.cs.ox.ac.uk/people/samuel.staton/papers/lics2014-substitution.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784745
http://goto.ucsd.edu/~nvazou/icfp15/main.pdf
http://goto.ucsd.edu/~nvazou/compose16/_site/01-index.html
http://goto.ucsd.edu/~nvazou/icfp15/main.pdf
http://goto.ucsd.edu/~nvazou/icfp15/main.pdf

52

16112 — From Theory to Practice of Algebraic Effects and Handlers

4 Working groups

4.1 Towards an effect system for OCaml

Matija Pretnar (University of Ljubljana, SI), Stephen Dolan (University of Cambridge, GB),
KC Siwaramakrishnan (University of Cambridge, GB), and Leo White (Jane Street — London,
GB)

License) Creative Commons BY 3.0 Unported license
© Matija Pretnar, Stephen Dolan, KC Sivaramakrishnan, and Leo White

With the introduction of algebraic effects to OCaml', extending OCaml’s type system into a

type & effect system is a natural next step. In such a system, programs receive a type A!E,

where A is the type of returned values, and £ is the effect annotation, whose exact form is

yet to be determined. Even though there is already an existing polymorphic effect system
for handlers with an inference algorithm [3], it is not obvious how to include it in OCaml
due to backwards compatibility.

There are a number of properties that a feasible effect system should satisfy:

Soundness If a program e receives a type A!E, every potential effect E should be captured
in &.

Usefulness An effect system that annotates each program with every possible effect there is,
is obviously sound, but not very useful. Thus, an effect information should not mention
an effect that is guaranteed not to happen.

Backwards compatibility We want each program that was typable before introducing effect
annotations, to remain typable. Furthermore, the effect system should play along nicely
with OCaml’s module system, thus whole-program analysis is out of the question.

To see what the above properties imply, take a program
if X then perform El1 else perform E2

The effect information of perform E1 must mention E1 for the sake of soundness, but omit E2

for the sake of usefulness. Conversely, the effect information of perform E2 should mention

E2 but not E1. But the whole program must remain typable due to backwards compatibility,

and its type should mention both E1 and E2 due to soundness. From this, it follows that

the effect system needs to provide a way of enlarging effect information. There are two
established ways of providing this flexibility: subtyping [4] or row polymorphism [1]. Both
are difficult to apply directly to OCaml, due to already-existing language features:

Monomorphic types The ML type system makes a distinction between monomorphic and
polymorphic types, and in certain contexts only monomorphic types are permitted. Many
existing programs are typeable only because, say, int — int is monomorphic, and would
break if it became a polymorphic type.

Signature matching Comparing a module implementation against its interface requires not
only inferring polymorphic types, but checking whether a given polymorphic type is more
polymorphic than another.

Invariant contexts While OCaml supports (explicit) subtyping, not all type parameters are
either co- or contra-variant. For instance, the type parameters to ref, the indices of
GADTs, and unannotated abstract types are neither co- nor contra-variant.

Subtyping makes type inference difficult by breaking unification, so the usual approach
is to infer constrained types of the form A|C, where C is the set of constraints between

L https://github.com/ocamllabs/ocaml-effects

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://github.com/ocamllabs/ocaml-effects

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop

type (and later also effect) parameters in A [2]. However, there are a number of practical
problems. First, it is hard to determine when a constrained type A|C is an instance of A’|C’,
causing problems for compatibility with the module system. Next, constraint generation
in the inference algorithm needs to be directed in order to keep track of covariance and
contravariance. This causes problems with the current inference algorithm of OCaml, which
mostly works with equations and is undirected. Finally, constraints are cumbersome to write
and difficult to read, decreasing chances of adoption in the programming community.

A possible solution for subtyping is to encode constraints in types, potentially dropping
some of them, which results in types that satisfy a weak form of principality: the inferred
type is unique and captures most of possible typings of the given program, but not all of
them.

For row polymorphism, typability of existing programs poses a problem. These programs,
which may cause any effect provided by OCaml (input/output, references, ...), should receive
an annotation, say I0, that distinguishes them from pure programs. Furthermore, existing
monomorphic types should remain monomorphic. For example, a function old_fun that
used to have a type unit — unit should get a type unit — (unit!I0). However, one then
cannot type the program if X then old_fun () else perform E, as the type of the left
branch does not contain a row variable and cannot be expanded to mention E.

A possible solution for this issue is to give monomorphic types to existing monomorphic
programs, but allow a limited form of subeffecting, which weakens the effect annotation
during application. Then, for example, o1d_fun would have a type unit — (unit!I0), but
its application old_fun () would get the type unit![I0|p].

References

1 Daan Leijen. Koka: Programming with row polymorphic effect types. In MSFP, volume
153 of EPTCS, pages 100-126, 2014.

2 Francois Pottier. Type inference in the presence of subtyping: from theory to practice.
Technical Report RR-3483, INRIA, 1998.

3 Matija Pretnar. Inferring algebraic effects. Logical Methods in Computer Science, 10(3),
2014.

4 Keith Wansbrough and Simon L. Peyton Jones. Once upon a polymorphic type. In POPL,
pages 15-28. ACM, 1999.

5 Open problems

5.1 Are all functions continuous and how to prove it?
Andrej Bauer (University of Ljubljana, SI)

License) Creative Commons BY 3.0 Unported license
© Andrej Bauer

5.1.1 Mathematical background

Brouwer’s statement “all functions are continuous” can be formulated without reference to
topology as follows. A functional f: (N — N) — N is continuous at a : N — N when there
exists m : N such that, for all b: N — N, if Yk < m,ak = bk then fa = fb. This says that
the value of fa depends only on the initial segment a0, a1, ..., a(m — 1).

The statement “all functionals are continuous everywhere” is valid in various models
of intuitionistic mathematics, such as Kleene’s number realizability and Kleene’s function

53

16112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

54

16112 — From Theory to Practice of Algebraic Effects and Handlers

realizability. We can ask whether the statement is realized in any given functional pro-
gramming language. Such a realizer is called a modulus of continuity and is a functional
t:((N—=N)—=N)— (N— N) - N such that, for all f:(N—N) - Nand a,b: N — N, if
Vk < pfa.ak = bk then fa = fb. Essentially, ufa computes how much of a is needed to
compute fa.

5.1.2 Implementing the modulus of continuity

It is impossible to implement y in PCF and Haskell. Briefly, every hereditarily total functional
definable in PCF is extensional (one can use Ulrich Berger’s theory of totality [2] to establish
this), while a result by Troelstra [3, §9.6.10-9.6.11] shows that an extensional modulus of
continuity violates choice principles that are realized by PCF.

Therefore, we necessarily need additional computational features that let u inspect the
workings of f. Here are a few attempts, where we pretend that the type of integers is the
type of natural numbers (we ignore negative values).

ML with references

Consider ML with references (and no other features). Then a possible p is

let mu_ref f a =
let k = ref 0 in
let a> n = (k :=max 'k n; a n) in
f a’> ; 'k

However:

1. Can f use its own local references? If it can use them in an unrestricted way then it can
break mu_ref. How do we reasonably restrict the use of local references by f7

2. More generally, how do we formulate the exact preconditions on f and a?

3. What is the theorem that needs to be proved, and how is it proved?

ML with exceptions

With exceptions (and no other features) we can do it as follows:

exception Abort

let mu_exc f a =
let rec search k =

try
let a’ n = (if n < k then a n else raise Abort) in
f a’ ; k
with Abort -> search (k+1)
in
search 0
However:

1. What if f catches Abort? May it do so? What is the exact precondition on f7
2. Would local exceptions help? If so, can f use its own local exceptions?

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop 55

Other setups

1. In Haskell we could do everything inside a fixed monad. This is still not entirely easy,
even if we figure out what it means for f to be “pure”.

2. Moving to a total language is probably helpful. However, keep in mind that p does not
exist in pure A-calculus, so straight Agda or some such system is out of the question.

3. Other effects can be used to implement a candidate u, but it seems like they should be
local (local references, local exceptions, delimited control) or else f has access to them.

5.1.3 Open problem

At first sight it seems that the above implementations of u work, but as soon as we try to
formulate exactly what it is that we want to prove, it becomes clear that not everything is
clear, so the first problem is:

Explain what it means to realize “all functions are continuous” in a realizability model
based on a programming language with computational effects.

One has to find a good notion of a realizer that uses effects in a “benign way”. For instance,
asking for purity in the sense of [1] seems too restrictive. Once it is clear what problem we
are trying to solve, we may attempt to prove that the modulus is really there:

Identify computational effects which allow realization of the modulus of continuity,
and prove rigorously that the realizer works.

Attacking the problem ought to improve our ability to argue about higher-type computation
in the presence of computational effects.

References

1 Andrej Bauer, Martin Hofmann and Aleksandr Karbyshev. On Monadic Parametricity of
Second-Order Functionals. Foundations of Software Science and Computation Structures —
16th International Conference, FOSSACS 2013, 225-240, 2013.

2 Ulrich Berger. Computability and Totality in Domains. Mathematical Structures in Com-
puter Science 12(3), 281-294, 2002.

3 Anne Troelstra and Dirk van Dalen. Constructivism in mathematics, volume 2. Elsevier,
1988.

5.2 Capturing algebraic equations in an effect system
Matija Pretnar (University of Ljubljana, SI)

License) Creative Commons BY 3.0 Unported license
© Matija Pretnar

Equational theories

The main premise of algebraic effects is that effects can be described with an equational
theory consisting of a set of operations and equations between them [7]. For example,
non-determinism can be described by an operation choose and three equations stating its
idempotency, commutativity and associativity. Computations returning values from X are
then interpreted as elements of the free model of such a theory.

16112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

56

16112 — From Theory to Practice of Algebraic Effects and Handlers

Issues with interpreting handlers

Handlers of algebraic effects, which assign a handling term for each operation, can be
interpreted as homomorphisms from the free model to some other (not necessary free) model
of the same theory [8]. However, there are computationally interesting handlers that do
not respect all of the expected equations. One is a handler that collects all possible results
of a non-deterministic computation in a list. This respects the associativity, but not the
idempotency or commutativity of choose. Similarly, a state handler that logs all memory
updates handles a computation that sequentially writes two values differently than one
that writes only the second one, even though these two computations are often considered
equivalent [6].

Since handlers that do not respect the equations cannot receive an algebraic interpreta-
tion [8], some recent work [1, 4] assumes no non-trivial equations to hold, giving up most of
the existing results on combining algebraic theories [3] and optimizations [5].

Extending types with equations

A possible way of resolving this issue is to capture the subset of valid equations in types.
An algebraic approach already has a natural effect system, in which computations receive a
type A!O, where A is the type of returned values, and O is the set of operations that may
get called [1, 4]. For example, a non-deterministic computation returning integers would be
given the type int!{choose}, while a pure computation would have the type int!().

This description can be extended to one of the form A!Q&E, where £ is a now the
subset of equations we assume to hold between operations 0. This type may be interpreted
as the free model of the theory with the same operations, but with equations only from
E. For example, if choose () then 1 else 2 and if choose () then 2 else 1 can
be considered as equivalent computations of type int!{choose}&{comm}, but not of type
int!{choose}&{assoc}. This generalizes both the traditional approach to algebraic effects,
if one considers £ to be the set of all equations in the theory, or the approach with no
equations, if £ = (.

Similar interpretation applies to handlers of type A1!01&E& = A3!02&E,, where & is
now the set of equations the handler must respect. For example, the handler

let choose_left = handler
| choose () k -> k true

which makes choose constantly yield true in the handled computation, can be given the
type Al{choose}&{assoc,idem} = Al(&(). Next, the handler

let choose_all = handler
| choose () k -> (k true) @ (k false)
| val x —> [x]

which returns the list of all possible results of the handled computation, can be given the
type A!l{choose}&{assoc} = Alist!(). Finally, the handler

let choose_sum = handler
| choose () k -> (k true) + (k false)

which returns the sum of all possible results of the handled computation, can be given the
type int!{choose}&{assoc, comm, idem} = int!{).

The equations expected for the domain of the handler can also depend on the ones holding
for the codomain. For example, one expects the handler

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop

let choose_opposite = handler
| choose () k -> if choose () then (k false) else (k true)

to have the type Al{choose}&E& = Al{choose}&E
for any set of equations £ C {assoc, comm, idem}.

Open questions

Exact typing rules. When a computation may receive an enriched type remains to be
determined. One may expect rules such as
I'kc: AlO&E EcCe
T'Fc: AlO&E!

as we may always consider additional equivalences between programs to hold. The most
involved rule seems to be one for assigning a type A1!01&E1 = A3!02&Es to a handler. Here,
we must check that the given handler respects all the equations &1, probably in a similar
way as checking whether a handler is correct [8]. Since the equations describe the properties
of effects on the level of algebraic theories, we can expect the resulting type system to be
simpler than one involving dependent types or refinement types, however one must bear in
mind that determining whether a handler respects a given set of equations is undecidable [8].

Applications

Handlers provide a very powerful control mechanism, which can dynamically change the
context in which programs are run. One potential application of the described approach
is to at least partially convey information about this behaviour through equations. The
equations could also be used for enforcing behaviour. Even though determining their validity
is undecidable, one could take a tool such as QuickCheck [2], which verifies properties of
pure values by generating random tests, and extend it to testing impure computations.

Another prospective application is modular reasoning about handlers. For example,
one can show that the usual monadic state handler satisfies certain properties [1], but the
exact proof works only for the particular handler and needs to be redone for a different
implementation. With equations in types, one could split the reasoning into two parts: (1)
showing that a handler respects certain equations and has a given type, and (2) showing
that any handler with that type satisfies a given property.

References

1 Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and handlers.
Logical Methods in Computer Science, 10(4), 2014.

2 Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of
Haskell programs. In ICFP, pages 268-279. ACM, 2000.

3 Martin Hyland, Gordon D. Plotkin, and John Power. Combining effects: Sum and tensor.
Theor. Comput. Sci., 357(1-3):70-99, 2006.

4 Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In ICFP, pages
145-158. ACM, 2013.

5 Ohad Kammar and Gordon D. Plotkin. Algebraic foundations for effect-dependent optim-
isations. In POPL, pages 349-360. ACM, 2012.

6 Gordon D. Plotkin and John Power. Notions of computation determine monads. In
FoSSaCS, volume 2303 of LNCS, pages 342-356. Springer, 2002.

7 Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Applied
Categorical Structures, 11(1):69-94, 2003.

8 Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Logical Methods in
Computer Science, 9(4), 2013.

57

16112

58

16112 — From Theory to Practice of Algebraic Effects and Handlers

Participants

= Sandra Alves
University of Porto, PT

- Kenichi Asai
Ochanomizu Univ. — Tokyo, JP

- Robert Atkey
University of Strathclyde —
Glasgow, GB

= Clément Aubert
Appalachian State University —
Boone, US

= Andrej Bauer

University of Ljubljana, SI

= Edwin Brady

University of St. Andrews, GB
= Xavier Clerc

Apimka — Paris, FR

= Stephen Dolan

University of Cambridge, GB
= Andrzej Filinski

University of Copenhagen, DK

= Philipp Haselwarter
University of Ljubljana, SI

= Martin Hofmann

LMU Miinchen, DE

= Patricia Johann
Appalachian State University —
Boone, US

= Yukiyoshi Kameyama
University of Tsukuba, JP

= Ohad Kammar

University of Cambridge, GB

= Oleg Kiselyov

Tohoku University — Sendai, JP

= Daan Leijen
Microsoft Res. — Redmond, US

= Sam Lindley

University of Edinburgh, GB
= Conor McBride
University of Strathclyde —
Glasgow, GB

= Gordon Plotkin
University of Edinburgh, GB

= Matija Pretnar
University of Ljubljana, SI

= Amr Hany Shehata Saleh
KU Leuven, BE

= Gabriel Scherer
Northeastern University —
Boston, US

= Tom Schrijvers

KU Leuven, BE

= Alex Simpson

University of Ljubljana, SI

= KC Sivaramakrishnan
University of Cambridge, GB
= Sam Staton

University of Oxford, GB

= Niki Vazou

University of California — San
Diego, US

= Niels Voorneveld
University of Ljubljana, SI

= Leo White

Jane Street — London, GB

= Jeremy Yallop

University of Cambridge, GB

	Executive Summary Andrej Bauer, Martin Hofmann, Matija Pretnar, Jeremy Yallop
	Table of Contents
	Overview of Talks
	Handlers considered harmful? Andrzej Filinski
	Andromeda: Type theory with Equality Reflection Philipp G. Haselwarter
	No value restriction is needed for algebraic effects and handlers Ohad Kammar, Sean Moss, and Matija Pretnar
	Parameterized Extensible Effects and Session Types Oleg Kiselyov
	Adequacy for Infinitary Algebraic Effects Gordon Plotkin
	A tutorial on algebraic effects and handlers Matija Pretnar
	Compiling Eff to OCaml Matija Pretnar, Amr Hany Shehata Saleh, and Tom Schrijvers
	Effect Handlers in Scope Tom Schrijvers
	Compositional reasoning for algebraic effects Alex Simpson
	Substitution, jumps and algebraic effects Sam Staton
	LiquidHaskell: Refinement Types for Haskell Niki Vazou

	Working groups
	Towards an effect system for OCaml Matija Pretnar, Stephen Dolan, KC Sivaramakrishnan, and Leo White

	Open problems
	Are all functions continuous and how to prove it? Andrej Bauer
	Capturing algebraic equations in an effect system Matija Pretnar

	Participants

