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Abstract
Algebraic Petri nets are a formalism for modeling distributed systems and algorithms, describing
control and data flow by combining Petri nets and algebraic specification. One way to specify
correctness of an algebraic Petri net model N is to specify a linear equation E over the places of
N based on term substitution, and coefficients from an abelian group G. Then, E is valid in N
iff E is valid in each reachable marking of N . Due to the expressive power of Algebraic Petri nets,
validity is generally undecidable. Stable linear equations form a class of linear equations for which
validity is decidable. Place invariants yield a well-understood but incomplete characterization
of all stable linear equations. In this paper, we provide a complete characterization of stability
for the subclass of homogeneous linear equations, by restricting ourselves to the interpretation of
terms over the Herbrand structure without considering further equality axioms. Based thereon,
we show that stability is decidable for homogeneous linear equations if G is a cyclic group.
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1 Introduction

The formalism of algebraic Petri nets (APNs) permits to formally model both control flow
and data flow of distributed systems and algorithms, extending Petri nets with concepts
from algebraic specification, namely a signature together with equality axioms. Thus, APNs
combine the benefits of Petri nets, such as explicit modeling of concurrency and options
for structural analysis, with the ability to describe data objects on a freely chosen level of
abstraction. The price to pay for this expressive power is that many important behavioral
properties, such as reachability of a certain marking, are undecidable. However, there are
behavioral properties that can be proven based on structural properties, such as invariants.

In this paper, we study a particular class of behavioral properties, namely linear equations.
Intuitively, a linear equation E formalizes a linear correlation between the tokens on different
places, requiring that each reachable marking satisfies E. More formally, an APN N is defined
over a signature Σ, and the tokens are ground terms over Σ. A linear equation E has the
form ∑p∈P γpκp = b1µ1+ . . .+bnµn, where P is the set of places, each γp and bi are coefficients
stemming from an abelian group, each κp is a term over Σ, and each µi is a ground term over
Σ. A marking satisfies E if substituting each variable in each κp with the tokens on p yields
an equality. Validity of E in N requires that each reachable marking of N satisfies E. Case
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14:2 Homogeneous Equations of Algebraic Petri Nets

studies have shown that this class of properties permits to formalize important behavioral
properties of distributed systems and algorithms. Unfortunately, verifying the validity of E
in N is generally infeasible. However, if E is stable then validity of E becomes decidable.
Stability requires the preservation of E along all—not necessarily reachable—steps, that is,
if a marking satisfies E, then firing a transition yields a marking satisfying E. Now, if E is
stable, validity of E coincides with the initial marking satisfying E.

Place invariants yield a subclass of stable linear equations. Intuitively, a place invariant
is a solution of a homogeneous system of linear equations given by the structure of N ,
providing the coefficients γp and terms κp—the right hand side can be chosen arbitrarily.
This characterization is known to be decidable but incomplete, that is, there are stable
linear equations, such that the left hand side is not given by a place invariant. A decidable,
complete characterization of stability—or an undecidability proof—is still an open problem.

In this paper, we contribute to this field of study as follows:
1. We show the undecidability of validity of homogeneous equations.
2. We provide a complete characterization of stability, restricting ourselves to

homogeneous linear equations, that is, n = 1 and b1 = 0, and
the interpretation of terms in the Herbrand structure, that is, assuming coincidence of
syntax and semantics of a term, without considering further equality axioms for terms.

3. We show that our characterization is decidable if the coefficients stem from a cyclic group.

Section 2 recalls required notions for equations of algebraic Petri nets. We summarize
our main theorems in Section 3, and prove these theorems in Section 4 and Section 5. We
discuss related work in Section 6, and conclude in Section 7. Due to lack of space, the reader
is referred to the companion technical report [16] for the missing proofs.

2 Formalization

2.1 Preliminaries
We write Z for the set of all integers, and N denotes the set {0,1,2, . . .} of natural numbers
including 0. Let z ∈ Z. Then, ∣z∣ denote the absolute value.

2.1.1 Polynomials over Abelian Groups
Polynomials over abelian groups serve as a common algebraic base to formalize APNs and
linear equations of APNs.

▸ Definition 1 (Abelian Group, Scalar Product). An abelian group (G,⊕) consists of a set G,
and an associative, commutative, binary operation ⊕ on G with an identity 0G, and inverses
⊖g for each g ∈ G. Let z ∈ Z and a ∈ G. We define the scalar product za ∈ G by

za ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z

⊕
i=0
a if z ≥ 0

⊖(−za) otherwise.

(G,⊕) is cyclic iff there exists a ∈ G, such that G = {za ∣ z ∈ Z}.

Whenever clear from context, we simply write G for (G,⊕). Examples for abelian groups
are the real numbers, rational numbers, integers, and the additive group Z/nZ of integers
modulo some n ∈ N. The group Z is infinite and cyclic, the group Z/nZ is finite and cyclic.
In contrast to that, the group of rational numbers is not cyclic.
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▸ Definition 2 (Series, Polynomial, Monomial, Empty Polynomial). Let M be a set, G be an
abelian group, and f ∶ M → G be a function. Then, f is a (linear) series over M and G
with support supp(f) ∶= {m ∈M ∣ f(m) /= 0G}. If supp(f) is finite, then f is a polynomial.
We write G⟨M⟩ for the set of all polynomials over M and G. If supp(f) is singleton, f is a
monomial, and we denote f by (m,a) where supp(f) = {m} and f(m) = a. If supp(f) = ∅,
then f is empty, and we denote f by 0G.

We lift ⊕ and the scalar product to G⟨M⟩ by pointwise application:

▸ Definition 3 (Addition of Polynomials). Let M be a set and G be an abelian group. For
p1, p2 ∈ G⟨M⟩, m ∈M , and z ∈ Z, we define the polynomials p1 ⊕ p2 and zp1 over M and G
by

(p1 ⊕ p2)(m) ∶= p1(m) ⊕ p2(m) ,

(zp1)(m) ∶= zp1(m) .

We lift associative binary operations from M to G⟨M⟩ × Z⟨M⟩ by applying the Cauchy
product:

▸ Definition 4 (Cauchy Product). Let ⊙ be an associative binary operation on a set M , G be
an abelian group, p1 ∈ G⟨M⟩, and p2 ∈ Z⟨M⟩. We define the series p1 ⊙ p2 over M and G by

(p1 ⊙ p2)(m) ∶= ⊕
m=m1⊙m2

p2(m2)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

∈Z

p1(m1)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

∈G

.

Because p1 and p2 are polynomials, the set supp(p1 ⊙ p2) = {m1 ⊙m2 ∣m1,m2 ∈ G, p1(m1) /=
0G, p2(m2) /= 0} is finite, and thus p1 ⊙ p2 is again a polynomial over M and G.

2.1.2 Terms
For this paper, we fix a set of variables VAR, a non-empty, finite index set I, and a signature
Σ = (ḟi/ai)i∈I consisting of ∣I∣ distinct function symbols ḟi with respective arity ai.

▸ Definition 5 (Term). For a set V ⊆ VAR, the set ΘV of terms over variables V is the
smallest set satisfying the following conditions:
1. V ⊂ ΘV .
2. Let i ∈ I, and θ1, . . . , θai ∈ ΘV . Then, ḟi(θ1, . . . , θai) ∈ ΘV .
The elements of Θ∅ are called ground terms.

As usual, if ai = 0, we abbreviate ḟi() as ḟi. We abbreviate the set ΘVAR of all terms as Θ.
A substitution maps each variable to a term. A substitution is an assignment if it maps

each variable to a ground term.

▸ Definition 6 (Substitution, Assignment). Every function σ ∶ VAR → Θ is a substitution. Let
θ ∈ Θ. The term θσ is defined by:

θσ ∶=
⎧⎪⎪⎨⎪⎪⎩

σ(θ) if θ ∈ VAR
ḟi(θ1σ, . . . , θaiσ) if θ = ḟi(θ1, . . . , θai), i ∈ I.

If σ(x) ∈ Θ∅ for each x ∈ VAR, then σ is an assignment, and we also write JθKσ instead of θσ.

Obviously, if σ is an assignment, then JθKσ ∈ Θ∅ for all θ ∈ Θ.
Unification is the problem of applying a substitution to terms, such that the resulting

terms become identical.

CONCUR 2016
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▸ Definition 7 (Unification problem, unifier, solvable). A unification problem U is a finite
subset {(θ1, θ

′
1), . . . , (θn, θ′n)} of Θ×Θ, also denoted by {θ1 ≐ θ′1, . . . , θn ≐ θ′n}. A substitution

σ is a unifier for U iff for all 1 ≤ i ≤ n: θiσ = θ′iσ. If there exists a unifier for U , then U is
solvable.

It is known that every solvable unification problem has a most general unifier (up to variants)
that subsumes all other unifiers:

▸ Lemma 8. Let U be a solvable unification problem. Then, there exists a unifier σ̂ for U ,
such that: For each unifier σ for U , there exists a substitution σ′ with σ(x) = σ̂(x)σ′ for all
x ∈ VAR.

We define a product on terms by means of term substitution: The product of % and θ is
defined by substituting every occurrence of any variable in % by θ.

▸ Definition 9 (Term Product). Let %, θ ∈ Θ be terms, and σ be the substitution with σ(x) = θ
for all x ∈ VAR. Then, %⊙ θ ∶= %σ is the product of % and θ.

We observe that ⊙ is associative. If % ∈ Θ∅, then %⊙ θ = %.
We lift substitutions from terms to polynomials over terms and abelian groups by pointwise

substitution and subsequent “simplification” of the polynomial:

▸ Definition 10 (Substitutions in Polynomials over Terms). Let G be an abelian group, and
p ∈ G⟨Θ⟩. Let σ be a substitution. We define pσ ∈ G⟨Θ⟩ by

pσ(θ) ∶= ⊕
θ=Jθ′Kσ

p(θ′).

If σ is an assignment, we also write JpKσ instead of pσ.

We observe (%⊙ θ)σ = %⊙ θσ for all %, θ ∈ Θ, and (p1 ⊙ p2)σ = p1 ⊙ p2σ for all p1, p2 ∈ G⟨Θ⟩.
Moreover, if σ is an assignment then supp(JpKσ) ⊆ Θ∅.

2.1.3 Vectors
In this paper, a P -vector is a mapping from a set P into polynomials over terms and an
abelian group.

▸ Definition 11 (P -vector). Let P be a set, (G,⊕) be an abelian group, and k⃗ ∶ P → G⟨Θ⟩.
Then, k⃗ is a P -vector over G. We write G⟨Θ⟩P for the set of all P -vectors over G. If k⃗(p) is a
monomial for each p ∈ P , then k⃗ is simple. If G = Z, and k⃗ ≥ 0 (k⃗ ≤ 0), then k⃗ is semi-positive
(semi-negative).

In order to simplify notation, we lift the basis notions from polynomials to P -vectors:

▸ Definition 12 (P -vectors: Support, emptiness, addition, Cauchy product, and assignments).
Let P be a set, (G,⊕) be an abelian group, k⃗, k⃗1, k⃗2 ∈ G⟨Θ⟩P , and k⃗′ ∈ Z⟨Θ⟩P .

supp(k⃗) ∶= ⋃p∈P supp(k⃗(p)) is the support of k⃗.
If k⃗(p) = 0G for all p ∈ P , then k⃗ is the empty P -vector, also denoted by 0G.
We define (k⃗1 ⊕ k⃗2)(p) ∶= k⃗1(p) ⊕ k⃗2(p) for all p ∈ P ,
We extend ⊙ from G⟨Θ⟩ × Z⟨Θ⟩ → G⟨Θ⟩ to G⟨Θ⟩P × Z⟨Θ⟩P → G⟨Θ⟩ by defining (k⃗ ⊙
k⃗′)(θ) ∶= ⊕p∈P k⃗(p) ⊙ k⃗′(p) for all θ ∈ Θ,
If σ is an assignment, we define Jk⃗Kσ ∈ G⟨Θ⟩P by Jk⃗Kσ(p) ∶= Jk⃗(p)Kσ for all p ∈ P .

Let k⃗1 ∈ G⟨Θ⟩P , k⃗2 ∈ Z⟨Θ⟩P and δ be a substitution. We observe: k⃗1⊙(k⃗2δ) = ∑p∈P k⃗1(p)⊙
(k⃗2δ)(p) = ∑p∈P k⃗1(p) ⊙ (k⃗2(p)δ) = ∑p∈P (k⃗1(p) ⊙ k⃗2(p))δ = (k⃗1 ⊙ k⃗2)δ.
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B C

t

A D

ġ(W )

ḟ(Y )
W

2Z
E

ḟ(W )

(a) An APNS S1.

Σ = {ḟ/1, ġ/1, ċ/0}
(b) The Signature of S1.

A B C D E G
E1 4ḟ(A) 3ġ(B) −5ḟ(ġ(C)) −D 0 Z
E2 3ċ 0 0 2D 0 Z/7Z

(c) Homogeneous equations over Z and Z/7Z.

Figure 1 An APNS S1 with equations E1 and E2.

2.1.4 Algebraic Petri Nets
An algebraic Petri net structure consists of places P and transitions T . A place p ∈ P
describes a token store, and a transition t is given by two semi-positive P -vectors t⃗− and t⃗+,
describing token consumption and production, respectively.

▸ Definition 13 (Transition, algebraic Petri net structure). Let P /= ∅ be a set. A transition
t = (t⃗−, t⃗+) over P consists of two semi-positive simple P -vectors t⃗−, t⃗+ over Z. We define the
effect t⃗∆ ∈ Z⟨Θ⟩P of t by t⃗∆ ∶= −t⃗− + t⃗+. Let T be a set of transitions over P . Then, (P,T ) is
an algebraic Petri net structure (APNS). We write pre(t) for {p ∈ P ∣ t⃗−(p) > 0}.

Figure 1 shows an example of an APNS S1 with transition t, places A, B, C, D and E
and signature Σ using two unary function symbols ḟ and ġ and the constant ċ. Transition t
consists of t− = (ġ(W ) ḟ(Y ) W 2Z 0) and t+ = (0 0 0 0 ḟ(W )).

A token is a ground term, a marking maps each place to a multiset of tokens:

▸ Definition 14 (Marking). Let (P,T ) be an APNS. Let m⃗ ∈ Z⟨Θ⟩P be a semi-positive
P -vector over Z with supp(m⃗) ⊆ Θ∅. Then, m⃗ is a marking of (P,T ). We write Z⟨Θ∅⟩P≥0 for
the set of all markings of (P,T ).

Algebraic Petri net semantics are defined by the notion of a step based on the effect of a
transition, and the notion of a firing mode:

▸ Definition 15 (Step). Let (P,T ) be an APNS, m⃗, m⃗′ ∈ Z⟨Θ∅⟩P≥0, t ∈ T , and σ be an
assignment, such that m⃗ ≥ Jt⃗−Kσ and m⃗′ = m⃗ + Jt⃗∆Kσ. Then, m⃗ enables transition t in firing
mode σ, denoted by m⃗ [tσ⟩ , and (m⃗, t, σ, m⃗′) is a step of (P,T ), denoted by m⃗ [tσ⟩ m⃗′.

We remark that our definition of enabling does not consider additional equality axioms;
permitting such axioms is left for future work.

An algebraic Petri net APN is an APNS together with an initial marking. Subsequent
steps from the initial marking are runs, the resulting markings are reachable:

▸ Definition 16 (Algebraic Petri net, run, reachable). Let (P,T ) be an APNS, and m⃗0 ∈
Z⟨Θ∅⟩P≥0. Then, (P,T, m⃗0) is an algebraic Petri net (APN). Let m⃗0 [t1σ1⟩ m⃗1 . . . m⃗n−1 [tnσn⟩
m⃗n be a sequence of steps. Then, (t1, σ1) . . . (tn, σn) is a run of (P,T, m⃗0) and m⃗n is reachable
in (P,T, m⃗0).

2.2 Homogeneous Linear Equations of APNs
A homogeneous (linear) P -equation over a set P of places has the form ∑p∈P γpκp = 0G,
where γp ∈ G (p ∈ P ) are elements of an abelian group G with 0G as neutral element and each
κp (p ∈ P ) is a term. Formally, a homogeneous P -equation is given by a simple P -vector.

CONCUR 2016
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▸ Definition 17 (Homogeneous P -equation). Let P be a set, G be an abelian group and
k⃗ ∈ G⟨Θ⟩P be simple. Then, k⃗ induces a homogeneous P -equation over G.

Figure 1 shows two equations E1 and E2. E1 is over the group of integer Z and E2 is over
the group of integers modulo 7, Z/7Z. The table shows the simple P -vectors. For instance,
k⃗1(A) ⊙ XA is the monomial (ḟ(A),4).

A marking m⃗ satisfies E if replacing P by m⃗ yields an identity. A homogeneous P -equation
is valid in an APN if it is satisfied by each reachable marking.

▸ Definition 18 (Satisfaction, validity). Let (P,T ) be an APNS, m⃗ be a marking, G be an
abelian group, and E be a homogeneous P -equation over G given by the simple P -vector
k⃗ ∈ G⟨Θ⟩P . If k⃗⊙ m⃗ = 0G, then m⃗ satisfies E. If each reachable marking of (P,T, m⃗) satisfies
E, then E is valid in (P,T, m⃗).

A homogeneous P -equation is stable if satisfaction is preserved by all steps:

▸ Definition 19 (Stability). Let (P,T ) be an APNS, t ∈ T , G be an abelian group, and E be
a homogeneous P -equation over G. Then, E is t-stable in (P,T ) iff for each step m⃗ [tσ⟩ m⃗′

of (P,T ): If m⃗ satisfies E, then m⃗′ satisfies E.

Stability together with satisfaction in the initial marking yields validity:

▸ Lemma 20. Let (P,T, m⃗) be an APN, G be an abelian group, and E be a homogeneous
P -equation over G given by a simple P -vector k⃗ ∈ G⟨Θ⟩P . If E is t-stable for each t ∈ T , and
m⃗ satisfies E, then E is valid in (P,T, m⃗).

A place invariant k⃗ is a simple P -vector such that for each t ∈ T , we have k⃗ ⊙ t⃗∆ = 0G. Then,
the homogeneous equation induced by k⃗ is stable:

▸ Lemma 21. Let (P,T ) be an APN, G be an abelian group, and E be a homogeneous
P -equation over G given by a simple P -vector k⃗ ∈ G⟨Θ⟩P . Let t ∈ T and k⃗ ⊙ t⃗∆ = 0G. Then,
E is t-stable in (P,T ).

3 Contributions

We summarize our contributions in the form of two main theorems which we prove in the
subsequent sections. Our first contribution is a proof that validity of a given P -equation in
an APN is undecidable. The proof can be found in Section 4 and bases on a reduction of the
halting problem of Minsky machines.

▸ Theorem 22. Let (P,T, m⃗) be an APN and E a homogeneous P -equation. Then, validity
of E in (P,T, m⃗) is undecidable.

Proof. Follows from Lemma 25 and Lemma 29. ◂

Our second contribution is a decidability proof for the stability of a homogeneous P -
equation in an APNS under the assumption that the coefficients stem from a cyclic group.
Here, we develop a decidable, necessary and sufficient criterion, generalizing the invariant
theorem (cf. Lemma 21), in Section 5.

▸ Theorem 23. Let (P,T ) be an APNS and E be a homogeneous P -equation over a cyclic
group, then stability of E in (P,T ) is decidable.

Proof. Follows from Lemma 44 and Lemma 46. ◂
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qi qz

pr

ti
ċċ

ḟ(X)X

(a) Encoding an instruction Ii = INC(r, z). t′i

qi

qz1

pr

ti
ċ

ċ

ċ
ċ

ċċ

Xḟ(X)

qz2

(b) Encoding an instruction Ii = JZ(r, z1, z2).

Figure 2 Encoding Minsky Machines into APNs.

4 Undecidability of Validity of Homogeneous Equations

In this section, we give short description how to encode a Minsky Machine [10] M into an
APN NM using the Herbrand structure. Then, the halting problem in the Minsky Machine
reduces to validity of an equation. This proof technique has been used before for Petri Nets,
for example in [12]. First, we recall the required notions of a Minsky machine, its states and
its steps:

▸ Definition 24 (Minsky machine). A Minsky Machine M = (I,R) consists of number
of registers R ∈ N and a sequence I = I1, . . . , In of instructions, where each instruction
Ii ∈ {INC(r, z) ∣ 1 ≤ r ≤ R, 1 ≤ z ≤ n} ∪ {JZ(r, z1, z2) ∣ 1 ≤ r ≤ R, 1 ≤ z1 ≤ n − 1, 1 ≤ z2 ≤ n − 1}
and In =HALT .

Every tuple (ρ, `) ∈ NR×{1, . . . , n} is a state of M . If I` = INC(r, z), then (ρ, `) → (ρ′, z)
is a step in M with ρ′(r) = ρ(r) + 1 and ρ′(q) = ρ(q) for all q /= r. If I` = JZ(r, z1, z2) and
ρ(r) > 0, then (ρ, `) → (ρ′, z1) is a step in M with ρ′(r) = ρ(r) − 1 and ρ′(q) = ρ(q) for all
q /= r. If I` = JZ(r, z1, z2) ρ(r) = 0, then (ρ, `) → (ρ, z2) is a step. We denote the reflexive
transitive closure of → with →∗.

We recall that the halting problem for Minsky machines is undecidable:

▸ Lemma 25 ([10]). Let M be a Minsky Machine. It is undecidable, whether M halts, i.e.
the following problem is undecidable: ∃ρ ∈ NR such that (0,1) →∗ (ρ,n).

To reduce the halting problem, we encode a Minsky Machine into an APNS.

▸ Definition 26 (Encoding of Minsky Machine). Let M be a Minsky Machine M , then the
APNS NM encodes M , if:

The signature is ΣM = {ḟ/1, ċ/0},
the set of places is P = {pr ∣ 1 ≤ r ≤ R} ∪ {qi ∣ 1 ≤ i ≤ n},
for every INC-instruction Ii, let ti be the transition with the pattern shown in Figure 2a,
and for every JZ-instruction Ii let ti and t′i be the transitions following the pattern shown
in Figure 2b.

▸ Definition 27. Let (ρ, `) ∈ NR be a state of M . For x ∈ N, we define θx ∈ Θ by

θx ∶=
⎧⎪⎪⎨⎪⎪⎩

ċ if x = 0
ḟ(θx−1) otherwise.

CONCUR 2016



14:8 Homogeneous Equations of Algebraic Petri Nets

Implementation

Satisfying Marking

Zero (Definition 31)

Realization

Step from Satisfying Marking

Derivation

Lemma 35

Definition 34

Definition 36

Definition 37

Lemma 38

Figure 3 Overview of the proof of Theorem 23.

Then, we define the marking m⃗ρ
` ∈ Z⟨Θ∅⟩P≥0 of NM as follows for p ∈ P and θ ∈ Θ:

m⃗(p) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ċ,1) if p = q`
(θρ(r),1) if p = pr
0 otherwise

Now, we can relate the steps of a Minsky Machine M to the steps of the encoding NM .

▸ Lemma 28. Let (ρ, `), (ρ′, `′) be states of M with (ρ, `) → (ρ′, `′). Then:
1. There exists a step m⃗ρ

` [tσ⟩ m⃗
′ of NM .

2. If m⃗ρ
` [tσ⟩ m⃗

′ is a step of NM , then m⃗′ = m⃗ρ′

`′ .
Finally, we reduce the halting problem for M to the validity of the homogeneous P -equation
qn = 0 in (NM , m⃗1

0). The P -vector over Z that induces the P -equation is zero for all places
p ∈ P ∖{qn} and 1 for qn. Inductively applying Lemma 28 reduces reachability of the HALT
state in M to non-emptiness of the place qn in (NM , m⃗1

0) and thus to validity of qn = 0.

▸ Lemma 29. The equation qn = 0 is valid in (NM , m⃗1
0) if and only if the Minsky Machine

M does not halt.

5 Deciding Stability of Homogeneous Equations over Cyclic Groups

In this section, we show that stability of a homogeneous P -equation E given by a simple
P -vector k⃗ in an APNS N = (P,T ) is decidable, if G is a cyclic group. To this end, we
identify a decidable, necessary and sufficient condition for stability, which generalizes the
necessary but not sufficient condition given by the classical invariant theorem (cf. Lemma 21).
We develop our condition based on the following lemma, which directly follows from applying
additivity arguments to the definition of stability:

▸ Lemma 30. Let t ∈ T be a transition. Then, the following statements are equivalent:
1. E is t-stable.
2. For all steps m⃗ [tσ⟩ m⃗′: If k⃗ ⊙ m⃗ = 0G, then k⃗ ⊙ Jt⃗∆Kσ = 0G.

Lemma 30 generalizes Lemma 21 in the sense that we can derive Lemma 21 from Lemma 30,
but not vice versa. However, the condition stated in Lemma 30 does not directly infer a
decision procedure, because the set of steps m⃗ [tσ⟩ m⃗′ with k⃗ ⊙ Jt⃗∆Kσ = 0G is infinite, that
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A B C D Zero of E1? Zero of E2? %(νi)

ν1 0 1 0 3 yes no ġ(B)
ν2 5 0 4 0 yes no ḟ(ġ(C))
ν3 0 2 0 6 yes no ġ(B)
ν4 1 1 1 2 no yes ċ

ν5 2 0 0 4 no yes ċ

(a) Zeros ν1, . . . , ν5 ∈ NP .

A B C D impl. ν1 for E1? impl. ν2 for E1? impl. ν5 for E2?
m⃗1 0 ċ 0 3ġ(ċ) yes no no
m⃗2 0 2ḟ(ċ) 0 6ġ(ḟ(ċ)) yes no no
m⃗3 5ġ(ċ) 0 4ċ 0 no yes no
m⃗4 2ġ(ċ) 0 0 4ċ no no yes

(b) Implementations of zeros ν1 (w.r.t. E1), ν2 (w.r.t. E1) and ν5 (w.r.t. E2).

Figure 4 Examples for zeros, realizations, and implementations.

is, one has to reason about infinitely many markings m⃗ and firing modes σ. Our approach
copes with this challenge by applying symbolic techniques, that is, we finitely characterize
the infinite set of all such m⃗ and σ conveniently for computation. Figure 3 summarizes the
notions applied in our proof: We first symbolically describe the set of E-satisfying markings
by means of zeros and their implementations. Then, we derive symbolically described firing
modes from zeros, and characterize stability by means of realizability.

In order to simplify notation, we fix for this section an APNS (P,T ), an abelian group
G, and a homogeneous P -equation E given by a simple vector k⃗ ∈ G⟨Θ⟩P . Moreover, we
assume that for each p ∈ P , k⃗(p) is the monomial (κp, γp), that is, γp = k⃗(p)(κp) ∈ G is the
coefficient of the only term κp in supp(k⃗(p)).

Our first goal is to abstractly characterize infinite sets of E-satisfying markings by means
of a zero. Intuitively, an E-satisfying marking assigns “right number” of a “right kind of
tokens” to each place.

▸ Definition 31 (Zero). Let ν ∶ P → N such that ∑p∈P ν(p)γp = 0. If the unification problem
U = {κp ≐ κp′ ∣ p, p′ ∈ P, γp, γp′ , ν(p), ν(p′) /= 0} is solvable, ν is a zero of E, and we write ν
for the most general unification of U .

We observe that 0 is always a zero. Furthermore, the sum of two zeros ν1, ν2 yield again
∑p∈P (ν1(p) + ν2(p)) = 0, but the unification problem is not necessarily solvable. However, a
zero may be the sum of other zeros.

Figure 4a shows some examples for zeros using the net structure and equations shown
in Figure 1. In this section, we ignore the place E, as it is irrelevant for enabling t. ν1 is a
zero of E1 as 3 − 3 = 0, and ġ(B) ≐ D can be unified with D ↦ ġ(B). ν2 is a zero of E1 as
20− 20 = 0 and A↦ ġ(C) unifies ḟ(A) ≐ ḟ(ġ(C)). For ν4 and E1 we have 4+ 3− 5− 2 = 0, but
it is not a zero of E1 as ḟ(A) ≐ ġ(B) cannot be unified. ν5 is not a zero for E1 as 8 − 4 /= 0.
Regarding E2, ν1 and ν2 aren’t zeros as 6 /≡7 0 and 15 /≡7 0. ν4 is a zero for E2 as 3 + 4 ≡7 0
and D ↦ ċ unifies ċ ≐ D. Finally, ν5 is also a zero of E2, as 6 + 8 ≡7= 0 and as for ν4 the
unification problem is solvable as for ν4.
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14:10 Homogeneous Equations of Algebraic Petri Nets

Because ν is a unifier, applying ν to κp yields the same result for every p ∈ P satisfying
γp /= 0G and ν(p) /= 0 .

▸ Lemma 32. Let ν be a zero. The set {κpν ∣ p ∈ P, γp /= 0G, ν(p) /= 0} is singleton.

▸ Definition 33 (Result of the unification). We define %(ν) by {%(ν)} = {κpν ∣ p ∈ P, γp /=
0G, ν(p) /= 0}

Intuitively, an implementation of a zero ν is a marking which satisfies E “in the same way” as
ν. Formally, we define this based on an assignment transforming the result of the unification
to a marking.

▸ Definition 34 (Implementation of a zero). Let m⃗ ∈ Z⟨Θ∅⟩P≥0 be a marking and ν be a zero
for E. Then, m⃗ implements ν, or: m⃗ is an implementation of ν, if for all p ∈ P with ν(p) /= 0
and γp /= 0G:
1. ν(p) = ∑θ∈supp(m⃗(p)) m⃗(p)(θ), and
2. there exists an assignment σ, such that {J%(ν)Kσ} = supp(k⃗(p) ⊙ m⃗(p)).

As an example, in Figure 4b, the marking m⃗1 implements ν1 for E1 as for assignment
σ1 with σ1(B) = ċ we have JBKσ1 = ċ = D ⊙ ġ(ċ). m⃗2 implements ν1 for E1, because for
assignment σ2 with σ2(B) = ḟ(ċ), we have JBKσ2 = D⊙ ḟ(ġ(ċ)). m⃗3 implements ν2 for E1,
because for assignment σ3 with σ3(C) = ċ, we have Jḟ(ġ(C))Kσ2 = ḟ(ġ(C)) = ḟ(A) ⊙ ġ(ċ) =
ḟ(ġ(C)) ⊙ ċ. Moreover, m⃗4 implements ν5 for E2 as for assignment σ4 with σ4(D) = ċ we
have JċKσ4 = ċ⊙ ġ(ċ) = D⊙ ċ.

Next, we show that the set of all zeros exactly characterizes the set of all E-satisfying
markings: For every term ω used by an E-satisfying marking m⃗ we can identify an imple-
mentation m⃗ω of a zero. Because the set of E-satisfying markings is closed under addition,
the converse also holds.

▸ Lemma 35. Let m⃗ be a marking, the following are equivalent:
1. k⃗ ⊙ m⃗ = 0G.
2. There exist zeros ν1, . . . , νn of E, and markings m⃗1, . . . , m⃗n, such that: m⃗ = ∑1≤i≤n m⃗i

and m⃗i implements νi for all i = 1, . . . , n.

Our next goal is to abstractly describe sets of firing modes derivable from a set of
zeros. Formally, we describe such a set of derived firing modes by a substitution, abstractly
describing a way of enabling a transition.

▸ Definition 36 (Derivable). Let t ∈ T . Let S be a set of zeros. For every q ∈ pre(t) let
Xq ∈ VAR be a fresh variable, such that Xq does not occur in E or t and Xq =Xq′ implies
q = q′. Let νq ∈ S be a zero with νq(q) ≥ 1. Let U = {%(νq) ⊙Xq ≐ κq ⊙ θq,t ∣ q ∈ pre(t)},
where {θq,t} = supp(t⃗−(q)). Let U be solvable by most general unification δ. Then, δ is
derivable from S.

In the example of Figure 5, we can derive δ1 for E1 with νA = νC = ν4 and νB = νD = ν1.
For E2, we can derive δ2 with νA = νB = νC = νD = ν5.

A realization is an assignment which refines a derivable substitution:

▸ Definition 37 (Realization). Let S be a set of zeros and δ be derivable from S. Then, σ is
a realization of δ, if there exists an assignment σ′ with σ(X) = Jδ(X)Kσ′ for all X ∈ VAR.

The assignment σ1 shown in Figure 5 is a realization of δ1. The assignment σ with
σ(XC) = σ(XB) = ċ gives σ1(A) = JXAKσ = ċ, σ1(B) = JXBKσ = ċ and σ1(C) = Jġ(XB)Kσ = ġ(ċ).
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W Y Z Derivable from some Ej? k⃗j ⊙ (t⃗
∆δi)

δ1 XC XB ġ(XB) yes, for j = 1 −ḟ(ġ(XC)) + ġ(XB) (j = 1)
δ2 XC XB ċ yes, for j = 2 0 (j = 2)

W Y Z Realization of k⃗1 ⊙ Jt⃗∆Kσ1

σ1 ċ ċ ġ(ċ) δ1 −ḟ(ġ(ċ)) + ġ(ċ)

Figure 5 Derivable substitutions δ1 and δ2, and a realization σ1 of δ1.

Next, we show that the derived substitutions from the set of all zeros exactly characterize
the set of E-satisfying, t-enabling markings: If an E-satisfying marking m⃗ enables t in firing
mode σ, then σ is a realization of some derivable substitution, and vice versa:

▸ Lemma 38. Let S be the set of all zeros and σ be an assignment. Then, the following two
statements are equivalent:
1. There exists a marking m⃗ with: m⃗ ≥ Jt⃗−Kσ and k⃗ ⊙ m⃗ = 0G.
2. There exists a δ that is derivable from S and σ is a realization of δ.

A derivable substitution δ generally has infinitely many realizations. We show that the
choice of the realization does not matter for deciding stability.

▸ Lemma 39. Let S be a set of zeros and δ be derivable from S. Then, the following two
statements are equivalent:
1. k⃗ ⊙ (t⃗∆δ) = 0
2. k⃗ ⊙ Jt⃗∆Kσ = 0 for all σ that are realizations of δ.

Our proof of “2.⇒1.” utilizes the existence of a realization σ preserving the distinctness of
terms in k⃗⊙ t⃗∆, that is, if two terms θ1, θ2 occur in k⃗⊙ t⃗∆ with θ1δ ≠ θ2δ, then Jθ1Kσ /= Jθ2Kσ.

Now, we prove that t-stability can be characterized by the set of all derivable substitutions:

▸ Lemma 40. Let S be the set of all zeros. The following are equivalent:
1. E is t-stable.
2. For all δ derivable from S holds: k⃗ ⊙ (t⃗∆δ) = 0.

In the example shown in Figure 1, E1 is not stable. Consider the marking m⃗5 ∶=
m⃗1 + m⃗2 + m⃗3. There, t is enabled. But, for the firing mode σ1, we have k⃗1 ⊙ σ1 /= 0. On the
other hand, E2 is stable, although we have k⃗2 ⊙ t⃗∆ /= 0.

The following lemma proves a closure property for the derived substitutions: If one
combines zeros from a set S to a new zero ν, then for every realizable substitution derivable
from S ∪ {ν}, there exists a realizable substitution derivable from S.

▸ Lemma 41. Let S be a set of zeros and ν /∈ S with ν = ∑ni=1 νi where νi ∈ S. Let δ be
derivable from S ∪ {ν} and σ be assignments that realizes δ. Then, there exists δ′ such that:
δ′ is derivable from S and σ realizes δ′.

We observe that we can only derive finite sets of substitutions from finite sets of zeros.

▸ Lemma 42. Let S be a finite set of zeros. The set {δ ∶ VAR → Θ ∣ δ is derivable from S}
is finite and computable.

Our next goal is to combine Lemma 41 and Lemma 42. To this end, we first define the
notion of a spanning set of zeros: A set capable of generating all zeros by means of addition.
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14:12 Homogeneous Equations of Algebraic Petri Nets

▸ Definition 43 (Spanning Set). Let S be a set of zeros of E, such that for each zero ν of E,
there exist ν1, . . . , νn ∈ S, with ν(p) = ∑ni=1 νi(p) for all p ∈ P . Then, S is a spanning set (of
zeros) of E.

Now, we show that given a finite spanning set of zeros, we can decide t-stability.

▸ Lemma 44. Given a finite spanning set S of zeros, t-stability of E is decidable.

Proof. By Lemma 41, for every δ that is derivable from the set of zeros, there exists a
δ′ derivable from S. By Lemma 42, the set of all these δ′ is finite and computable. By
Lemma 40, E is stable if and only if for every δ′ we have k⃗⊙ t⃗∆δ′ = 0, which is computable. ◂

The last step in our proof of Theorem 23 is showing that a finite spanning set of zeros
can be computed if G is cyclic. For infinite cyclic groups, we apply that there exists a
computable isomorphism into the integers. As a prerequisite, we observe that every spanning
set contains every indecomposable zero, i.e., a zero which cannot be written as a sum of
other zeros. For example, consider the zeros ν1, ν2 and ν3 from Figure 4a: ν1 and ν2 are
indecomposable, but ν3 = ν1 + ν1 is not. Thus, we show that there exists an upper bound
for the coefficients of indecomposable zeros. To this end, we first show an auxiliary lemma,
based on the maximum coefficient γ, and the absolute value γ of the minimal coefficient in
γ. In the example equation E1 from Figure 1, we have γ = 4 and γ = 5. Intuitively, if the
maximum constituent in a zero ν over places with negative (resp. positive) coefficients is less
than γ (resp. γ), then the sum of the constituents in ν is bounded by 2∣P ∣γγ. For E1, the
upper bound is 2 ⋅ 5 ⋅ 4 ⋅ 5 = 200.

▸ Lemma 45. Let ν ∈ NP . Let η ∈ ZP be mixed with ∑p∈P ν(p) ⋅η(p) = 0. Let η ∶= max{η(p) ∣
p ∈ P} and η ∶= max{∣η(p)∣ ∣ η(p) < 0, p ∈ P} with:
1. max{ν(p) ∣ η(p) < 0, p ∈ P} < η
2. or max{ν(p) ∣ η(p) > 0, p ∈ P} < η.
Then, ∑p∈P ν(p) < 2∣P ∣ηη

Finally, we show the computability of a finite spanning set of zeros. To this end, we utilize
Lemma 45 to show that the sum of constituents of each indecomposable zero is bounded
by 2∣P ∣γγ: We assume a zero ν with ∑p∈P ν(p) ≥ 2∣P ∣γγ, and show that ν decomposes into
two zeros ν̂ and ν − ν̂. Thus, extracting all zeros from the finite set of all ν ∈ NP with
∑p∈P ν(p) < 2∣P ∣γγ yields a set of zeros containing all indecomposable zeros, and hence a
finite spanning set.

▸ Lemma 46. If G is cyclic, a finite spanning set S of zeros is computable.

Proof. Assume k⃗ is semi-positive or semi-negative, then 0 is the only zero. In the following,
we assume k⃗ to have mixed coefficients. We distinguish the cases whether G is finite or
infinite.

First case: G is infinite. As G is cyclic, there exists a computable isomorphism to Z (see
for instance [17]). Thus, we assume w.l.o.g that G = Z. Let γ ∶= max{γ(p) ∣ p ∈ P} and
γ ∶= max{∣γ(p)∣ ∣ γ(p) < 0, p ∈ P}. Let ν be a zero with ∑p∈P ν(p) > 2∣P ∣γγ (*). We show
that that then, there exist p, p ∈ P with: γp > 0 ∧ γp < 0 ∧ ν(p) ≥ ∣γp∣ ∧ ν(p) ≥ γp. Assume
the opposite: Then, max{ν(p) ∣ γp < 0, p ∈ P} < γ or max{ν(p) ∣ γp > 0, p ∈ P} < γ. By
Lemma 45, then ∑p∈P ν(p) < 2∣P ∣γγ, which contradicts (*).
Now, let ν̂ ∶ P → N with:

ν̂(p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣γp∣ if p = p
γp if p = p
0 otherwise
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By definition, we have ν̂ ≤ ν, moreover as ∑p∈P ν̂(p) ≤ γγ < ∑p∈P ν(p), we have ν̂ < ν. Let
ν′ = ν − ν̂. Then, ν′ ∶ P → N and ν′ > 0.
Now we show that ν̂ and ν′ are zeros. For ν̂ we have ∑p∈P ν(p) = ∣γp∣γp + γpγp =
−γpγp+γpγp = 0 and accordingly 0 = ∑p ∈ Pν(p) = ∑p∈P ν̂(p)+∑p∈P ν′(p) = 0+∑p∈P ν′(p).
It remains to show that the unification problems of ν̂ and ν′ are solvable. We observe
ν̂ ≤ ν (ν′ ≤ ν) implies that unification problem of ν̂ (ν′) is a subset of the unification
problem of ν. Thus, ν is a sum of the zeros ν′ and ν̂.
Now, we see that ∑p∈P ν̂(p) < 2∣P ∣γγ. Assume additionally ∑p∈P ν′(p) ≤ 2∣P ∣γγ, then we
can continue. Otherwise, if ∑p∈P ν′(p) > 2∣P ∣γγ, we can apply induction, as ν′ < ν, Hence,
ν is the sum of other zeros ν1, . . . , νn, where for each 1 ≤ i ≤ n: ∑p∈P νi(p) ≤ 2∣P ∣γγ.
Finally, {ν ∈ Np ∣ ∑p∈P ∣ν(p)∣ ≤ ∣2P ∣γγ and ν is zero} is finite, spanning and computable.
Second Case: Let G be finite with order o ∈ N ∖ {0}. As G is cyclic, there exists the
generator e ∈ G. Let g ∈ G. Then, it holds that g + oe = g. Thus, for every ν ∶ P → N,
and p ∈ P with ν(p) > o, we have ν(p)γp = (ν(p) − o)γp. Hence, for every zero ν

we can find a zero ν′ with ν′(p) ≤ o and ∑p∈P γpν(p) = ∑p ∈ Pγpν′(p). Therefore,
{ν ∈ Np ∣ ν(p) ≤ o and ν is zero} is finite, spanning and computable. ◂

6 Related Work

APNs or similar “high level net”-formalisms are an established, expressive modeling language
for distributed systems[11, 2]. Moreover, tools for Colored Petri Nets support simulation
and (partial) verification [7, 8]. The idea to prove stable properties in Petri nets that use
distinguishable tokens has been pursued at least since the early 80s [5]. Ever since, the
class of invariants became a substantial part of Petri Net analysis [9, 2, 11]. Other stable
properties for Algebraic Petri Nets have been studied in the context of Traps/Co-Traps
[15]. In elementary Petri Nets (P/T-Nets), stable properties such as traps and co-traps have
been studied [11] and been shown as useful for verification [11, 4]. Compared to this, the
number of publications regarding stable properties in APNs is comparatively small. In the
last years, Petri Net variants with distinguishable tokens gained more attention to model
data in distributed systems and applying analytic methods such as [3, 6, 13].

The concept of stability has been used in other areas of research; the most similar maybe
being abstract interpretation as a technique for verification of iterative programs [1]. In
the context of data-aware business processes, stability has been used in a similar context,
following a graph-oriented approach focusing on data modeling [14].

7 Concluding Remarks

Throughout this paper, we applied three restrictions: First, we only considered the inter-
pretation of terms in the Herbrand structure, second, we only considered homogeneous
P -equations, and third, we required for the decidability proof that the group of coefficients
is cyclic.

If one chooses another structure for the interpretation of terms than the Herbrand
structure, one can observe that validity and stability are preserved in one direction: If a
P -equation is valid (stable) w.r.t. the Herbrand structure, then it is valid (stable) w.r.t. every
generated structure. Because the Herbrand structure is a specific structure, the undecidability
result (Theorem 22) could be generalized by allowing an arbitrary, but not fixed, structure.
For the decidability result (Theorem 23), we observe that we can use our decision procedure
as a sufficient but not necessary criterion for an arbitrary fixed structure.
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The restriction to homogeneous P -equations yields that satisfying markings are closed
under addition, which is not the case if one allowed arbitrary constants on the right hand
side. Here, our approach of finding a finite spanning set symbolically describing all satisfying
markings does not work. The main challenge for generalizing our approach is that markings
have natural numbers as coefficients (in contrast to integers).

For our decidability result, we require that the coefficients stem from a cyclic group.
Here, we explicitly exploit in the proofs that there exist a distinct generator element, and an
isomorphism to the integers, or the integers modulo some natural number n.
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