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Abstract
In Boolean synthesis, we are given an LTL specification, and the goal is to construct a transducer
that realizes it against an adversarial environment. Often, a specification contains both Boolean
requirements that should be satisfied against an adversarial environment, and multi-valued com-
ponents that refer to the quality of the satisfaction and whose expected cost we would like to
minimize with respect to a probabilistic environment.

In this work we study, for the first time, mean-payoff games in which the system aims at
minimizing the expected cost against a probabilistic environment, while surely satisfying an
ω-regular condition against an adversarial environment. We consider the case the ω-regular
condition is given as a parity objective or by an LTL formula. We show that in general, optimal
strategies need not exist, and moreover, the limit value cannot be approximated by finite-memory
strategies. We thus focus on computing the limit-value, and give tight complexity bounds for
synthesizing ε-optimal strategies for both finite-memory and infinite-memory strategies.

We show that our game naturally arises in various contexts of synthesis with Boolean and
multi-valued objectives. Beyond direct applications, in synthesis with costs and rewards to
certain behaviors, it allows us to compute the minimal sensing cost of ω-regular specifications –
a measure of quality in which we look for a transducer that minimizes the expected number of
signals that are read from the input.
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1 Introduction

Synthesis is the automated construction of a system from its specification: given a linear
temporal logic (LTL) formula ψ over sets I and O of input and output signals, we synthesize a
system that realizes ψ [11, 17]. At each moment in time, the system reads a truth assignment,
generated by the environment, to the signals in I, and it generates a truth assignment to
the signals in O. The system realizes ψ if all the computations that are generated by the
above interaction satisfy ψ.
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9:2 Minimizing Expected Cost Under Hard Boolean Constraints

One weakness of automated synthesis in practice is that it pays no attention to the
quality of the synthesized system. Indeed, the classical setting is Boolean: a computation
satisfies a specification or does not satisfy it. Accordingly, while the synthesized system is
correct, there is no guarantee about its quality. In recent years, researchers have considered
extensions of the classical Boolean setting to a quantitative one, which takes quality into
account. Quality measures refer to the system itself, examining parameters like size or
consumption of memory, sensors, voltage, bandwidth, etc., or refer to the way the system
satisfies the specification. In the latter, we allow the designer to specify the quality of a
behavior using quantitative specification formalisms [1, 6, 13]. For example, rather than
the Boolean specification requiring all requests to be followed by a grant, a quantitative
specification formalism gives a different satisfaction value to a computation in which requests
are responded immediately and one in which requests are responded after long delays.1

Solving the synthesis problem in the Boolean setting amounts to solving a two-player
zero-sum game between the system and the environment. The goal of the system is to satisfy
the (Boolean) specification, and the environment is adversarial. Then, a winning strategy
for the system corresponds to a transducer that realizes the specification. In the quantitative
setting, the goal of the system is no longer Boolean, as every play is assigned a cost by the
specification. In the classical quantitative approach, we measure the satisfaction value in
the worst-case semantics. Thus, the value of a strategy for the system is the maximal cost
of a play induced by this strategy, and the goal of the system is to minimize this value.
Recently, there is a growing interest also in the expected cost of a play, under a probabilistic
environment. The motivation behind this approach is that the quality of satisfaction is a
“soft constraint”, and should not be measured in a worst-case semantics. Then, the game
above is replaced by a mean-payoff Markov Decision Process (MDP): a game in which each
state has a cost, inducing also costs to infinite plays (essentially, the cost of an infinite play
is the limit of the average cost of prefixes of increased lengths). The goal is to find a strategy
that minimizes the expected cost [10, 12].

While quantitative satisfaction refines the Boolean one, often a specification contains
both Boolean conditions that should be satisfied against all environments, and multi-valued
components that refer to the quality of the satisfaction and whose expectation we would
like to minimize with respect to a probabilistic environment. Accordingly, researchers have
suggested the beyond worst-case approach, where a specification has both hard and soft
constraints, and the goal is to realize the hard constraints, while maximizing the expected
satisfaction value of the soft constraints.

In this work, we consider, for the first time, mean-payoff MDPs equipped with a parity
winning condition (parity-MDPs, for short). The goal is to find a strategy that surely wins
the parity game (that is, against an adversarial environment), while minimizing the expec-
ted cost of a play against a probabilistic environment. While the starting point in earlier
related work is the MDP itself, possibly augmented by different objectives, our starting point
depends on the application, and we view the construction of the MDP as an integral part
of our contribution. We focus on two applications: synthesis with penalties to undesired
scenarios and synthesis with minimal sensing.

Let us describe the two applications. We start with penalties to scenarios. Consider

1 Note that the polarity of some quality measures is negative, as we want to minimize size, consumption,
costs, etc., whereas the polarity of other measures is positive, as we want to maximize performance
and satisfaction value. For simplicity, we assume that all measures are associated with costs, which we
want to minimize.
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an LTL specification ψ over I and O. Activating an output signal may have a cost; for
example, when the activation involves a use of a resource. Taking these costs into account,
the input to the synthesis problem includes, in addition to ψ, a cost function γ assigning
cost to some assignments to output signals. The cost of a computation is then the mean
cost of assignments in it. While the specification ψ is a hard constraint, as we only allow
correct computations, minimizing the expected cost of computations with respect to γ is a
soft constraint. More elaborated cost functions refer to on-going regular scenarios. Power
consumption, for example, is an important consideration in modern chip design. As the
chips become more complex, the cost of powering a server farm can easily outweigh the cost
of the servers themselves, thus design teams go to great lengths in order to reduce power
consumption in their designs. The most widely researched logical power saving techniques
are clock gating, in which a clock is prevented from making a “tick” if it is redundant [5],
and power gating, in which whole sections of the chip are powered off when not needed and
then powered on again [14]. The goal of these techniques is to reduce power consumption
and the number of changes in the values of signals, the main source of power consumption
in chips. The input to the problem of synthesis with penalties to scenarios includes, in
addition to ψ, a set of deterministic automata on finite words, each describing a undesired
scenario and its cost. For example, it is easy to specify the scenario of “value flip" with a
two-state deterministic automaton. We show how the setting can be translated into solving
our parity-MDPs, thus generating systems that realize ψ with minimal expected cost.

Our primary application considers activation of sensors. The quality measure of sensing
was introduced in [2, 3], as a measure for the detail with which a random input word
needs to be read in order to realize the specification. In the context of synthesis, our
goal is to construct a transducer that realizes the specification and minimizes the expected
average number of sensors (of input signals) that are used along the interaction. Thus,
the hard constraint is the LTL specification, and the soft one is the expected number of
active sensors. Giving up sensing has a flavor of synthesis with incomplete information [15]:
the transducer has to realize the specification no matter what the incomplete information is.
Thus, as opposed to the examples above, the modeling of cost involves a careful construction
of the MDP to be analyzed, and also involves an exponential blow-up, which we show to
be unavoidable. In [3], the problem was solved for safety specifications. Our solution to the
parity-MDP problem enables a solution for full LTL. We also study the complexity of the
problem when the input is an LTL formula, rather than a deterministic automaton.

Back to parity-MDPs, we show that in general, optimal strategies need not exist. That
is, there are parity-MDPs in which an infinite-state strategy can get arbitrarily close to some
limit optimal value, but cannot attain it. Moreover, the limit value cannot be approxim-
ated by finite-memory strategies. Accordingly, our solution to parity-MDPs suggests two
algorithms. The first, described in Section 3.1, finds the limit value of all possible strategies,
which corresponds to infinite-state transducers. The second, described in Section 3.2, com-
putes the limit value over all finite-memory strategies. The complexity of both algorithms
is NP∩coNP. Moreover, they are computable in polynomial time when an oracle to a two-
player parity game is given. Hence, our complexity upper bounds match the trivial lower
bounds that arise from the fact that every solution to a parity-MDP is also a solution to a
parity game. For our applications, we show that the complexity of the synthesis problem
for LTL specifications stays doubly-exponential, as in the Boolean setting, even when we
minimize penalties to undesired scenarios or minimize sensing.
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9:4 Minimizing Expected Cost Under Hard Boolean Constraints

Related Work. The combination of worst-case synthesis with expected-cost synthesis,
dubbed beyond worst-case synthesis, was studied in [7, 12] for models that are closely related
to ours. In [7] the authors study mean-payoff MDPs, where both the hard constraints and
the soft constraints are quantitative. Thus, a system needs to ensure a strict upper bound
on the mean-payoff cost, while minimizing the expected cost. In [12], multidimensional
mean-payoff MDPs are considered. Thus, the MDP is equipped with several mean-payoff
costs, and the goal is to find a system that ensures the mean-payoff in some of the mean-
payoffs is below an upper bound, while minimizing the expected mean-payoffs (or rather,
approximating their Pareto-curve).

In comparison, our work is the first to consider a hard Boolean constraint (namely the
parity condition). This poses both a conceptual and a technical difference. Conceptu-
ally, when quantitative synthesis is taken as a refinement of Boolean synthesis, it is typic-
ally meant as a ranking of different systems that satisfy a Boolean specification. Thus, it
makes sense for the hard constraint to be Boolean as well. Technically, combining Boolean
and quantitative constraints gives rise to some subtleties that do not exist in the pure-
quantitative setting. Specifically, when both the hard and the soft constraints are quantit-
ative, a strategy can intuitively “alternate” between satisfying them. Thus, if while trying
to meet the soft constraint the hard constraint is violated, we can switch to a worst-case
strategy until the hard constraint is satisfied, and go back to trying to minimize the soft con-
straint. This alternation can be done infinitely often. In the Boolean setting, however, this
alternation can violate the Boolean constraint. We note that unlike classical parity games,
where the parity winning condition can be translated to a richer mean-payoff objective, the
parity winning condition in our parity-MDPs does not admit a similar translation.

Other works on MDPs and mean-payoff objectives tackle different aspects of quantitative
analysis. In [18], a solution to the expected mean-payoff value over MDPs is presented. In [8]
and [9], the authors study a combination of mean-payoff and parity objectives over MDPs
and over stochastic two-player games. There, the goal of the system is to ensure with
probability 1 that the parity condition holds and that the mean-payoff is below a threshold.
This differs from our work in that the parity condition is not a hard constraint, as it is met
only almost-surely, and in that the expected mean-payoff is not guaranteed to be minimized.
As detailed in the paper, these differences make the technical challenges very different.

Due to lack of space, some of the proofs are omitted and can be found in the full
version [4].

2 Parity-MDPs

A parity Markov decision process (Parity-MDP, for short) combines a parity game with
a mean-payoff MDP. The game is played between Player 1, who models a system, and
Player 2, who models the environment. The environment is adversarial with respect to the
parity winning condition and is stochastic with respect to the mean-payoff objective. Form-
ally, a parity-MDP is a tuple M = 〈S1, S2, s0, A1, A2, δ1, δ2,P, cost, α〉, with the following
components. The sets S1 and S2 are finite set of states, for Players 1 and 2, respectively.
Let S = S1 ∪ S2. Then, s0 ∈ S is an initial state, and A1 and A2 are sets of actions for
the players. Not all actions are available in all states: for every state s ∈ Si, for i ∈ {1, 2},
we use Ai(s) to denote the finite set of actions available to Player i in the state s. For
i ∈ {1, 2}, the (partial) transition function δi : Si × Ai 7→ S is such that δi(s, a) is defined
iff a ∈ Ai(s). Let δ = δ1 ∪ δ2. Note that δ2 gets an action of Player 2 as a parameter. We
distinguish between two approaches to the way an action is chosen in Player 2 states. In the
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adversarial approach, it is Player 2 who chooses the action. In the stochastic approach, the
choice depends on the (partial) function P : S2 × A2 7→ [0, 1], where for every state s ∈ S2
and a ∈ A2, we have that P(s, a) > 0 only if a ∈ A2(s). Also,

∑
a∈A2(s) P(s, a) = 1. Finally,

cost : S → N is a cost function, and α : S → {0, ..., d}, for some d ∈ N, is a parity winning
condition.

The parity-MDPM induces a parity game MP = 〈S1, S2, s0, A1, A2, δ1, δ2, α〉, obtained
by omitting P and cost. In this game, we follow the adversarial approach to the environment.
Thus, both players choose their actions. Formally, a strategy for Player i inM, for i ∈ {1, 2}
is a function fi : S∗×Si → Ai such that for s0, . . . , sn, we have f(s0, . . . , sn) ∈ Ai(sn). Thus,
a strategy suggests to Player i an available action given the history of the states traversed
so far. Note that we do not consider randomized strategies, but rather deterministic ones.
Our results in Section 3 show that this is sufficient, in the sense that the players cannot gain
by using randomization.

Given strategies f1 and f2 for Players 1 and 2, the play induced f1 and f2 is is the
infinite sequence of states s0, s1, ... such that for every j ≥ 0, if sj ∈ Si, for i ∈ {1, 2}, then
sj+1 = δi(sj , f(s0, ..., sj)). For an infinite play r, we denote by inf(r) the set of states that r
visits infinitely often. The play r = s0, s1, ... ofM is parity winning if max {α(s) : s ∈ inf(r)}
is even.

The parity-MDPM also induces an MDP MMDP = 〈S1, S2, s0, A1, A2, δ1, δ2,P, cost〉, ob-
tained by omitting α. In this game, we follow the stochastic approach to the environment
and consider the distribution of plays when only a strategy for Player 1 is given. Form-
ally, we first extend P to transitions as follows: For states s ∈ S2 and s′ ∈ S, we define
P(s, s′) =

∑
a∈A(s):δ2(s,a)=s′ P(s, a). Then, a play of M with strategy f1 for Player 1 is

an infinite sequence of states s0, s1, ... such that for every j ≥ 0, if sj ∈ S1, then sj+1 =
δ1(sj , f1(s0, ..., sj)), and if sj ∈ S2, then P(sj , sj+1) > 0. The cost of a strategy f1 is the ex-
pected average cost of a random walk inM in which Player 1 proceeds according to f1. Form-
ally, for m ∈ N and for a prefix τ = s0, s1, ...sm of a play, let I2 = {j : j < m and sj ∈ S2}.
Then, we define Pf1(τ) =

∏
j∈I P(sj , sj+1) and costm(f1, τ) = 1

m+1
∑m
j=0 cost(sj). The cost

of the strategy f1 is then cost(f1) = lim infm→∞
∑
τ :|τ |=m costm(f1 , τ) ·Pf1(τ). We denote

by inf(f1) the random variable that associates inf(ρ) with a sequence of states ρ = s0, s1, ...,
under the probability space induced byM with f1.

A finite memory strategy forM is described by a finite set M called memory, an initial
memory init ∈ M , a memory update function next : S1 ×M → M , and an action function
act : S1 ×M → A1 such that act(s,m) ∈ A1(s) for every s ∈ S1 and m ∈M .

A strategy ismemoryless if it has finite memoryM with |M | = 1. Note that a memoryless
strategy depends only on the current state. Thus, we can describe a memoryless strategy
by f1 : S1 → A1. Let cost(M) = inf{cost(f1) : f1 is a strategy forM}. That is, cost(M) is
the expected cost of a game played onM in which Player 1 uses an optimal strategy.

The following is a basic property of MDPs.

I Theorem 1. Consider an MDP M. Then, cost(M) can be attained by a memoryless
strategy, which can be computed in polynomial time.

Recall that a strategy f1 for player 1 is winning inMP if every play ofM with f1 satisfies
the parity condition α. Note that we require sure winning, in the sense that all plays must
be winning, rather than winning with probability 1 (almost-sure winning). On the other
hand, the definition of cost in MMDP considered strategies for Player 1 and ignore the parity
winning condition. We now define the sure cost of the parity-MDP, which does take them
into account. For a strategy f1 for Player 1, the sure cost of f1, denoted costsure(f1), is
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9:6 Minimizing Expected Cost Under Hard Boolean Constraints

cost(f1), if f1 is winning, and is ∞ otherwise. The sure cost of M is then costsure(M) =
inf {costsure(f1) : f1 is a strategy forM}.

Consider a parity-MDP M = 〈S1, S2, s0, A1, A2, δ1, δ2,P, cost, α〉. An end component
(EC, for short) is a set U ⊆ S such that for every state s ∈ U , the following hold.

1. If s ∈ S1, then there exists an action a ∈ As such that δ1(s, a) ∈ U .
2. If s ∈ S2, then for every a ∈ A2(s) such that P(s, a) > 0, it holds that δ2(s, a) ∈ U .
3. For every t, t′ ∈ U , there exist a path t = t0, t1, ..., tk = t′ and actions a1, ..., at such

that for every 0 ≤ i < t, it holds that ti ∈ U , and there exists an action a such that
δ(ti, a) = ti+1.

Intuitively, the probabilistic player cannot force the play to leave U , and Player 1 has positive
probability of reaching every state in U from every other state.

For an EC U and a state s ∈ U , we can consider the parity-MDP M|sU , in which the
states are U , the initial state is s, and all the components are naturally restricted to U . Since
U is an EC, then this is indeed a parity-MDP. An EC U is maximal if for every nonempty
U ′ ⊆ S \ U , we have that U ∪ U ′ is not an EC.

3 Solving Parity MDPs

In this section we study the problem of finding the sure cost for an MDP. Recall that for
MDPs, there always exists an optimal memoryless strategy. We start by demonstrating that
for the sure cost of parity-MDPs, the situation is much more complicated.

I Theorem 2. There is a parity-MDP M in which Player 1 does not have an optimal
strategy (in particular, not a memoryless one) for attaining the sure cost of M. Moreover,
for every ε > 0, Player 1 may need infinite memory in order to ε-approximate costsure(M).

Proof. Consider the parity-MDPM appearing in Figure 1. Player 1 can decrease the cost
of a play towards 1 by staying in the initial state s0. However, in order to ensure an even
parity rank, Player 1 must either play b and reach s3 w.p. 0.5, or play c but incur cost 10.
A finite memory strategy for Player 1 must eventually play c from s0 in almost every play,2
thus the cost of every winning finite-memory strategy is 10. On the other hand, for every
ε > 0, there exists an infinite memory strategy f that gets cost at most 1 + ε. Essentially
(see Lemma 4 for a formal proof of the general case), the strategy f plays b for a long time.
If s3 is reached, it plays b for even longer, and otherwise plays c.

s0 : 1, 1s1 : 2, 10 s2 : 1, 10 s3 : 2, 10

aa

c 0.5

1

b

0.5

Figure 1 The Parity MDP M. States of Player 1 are circles, these of Player 2 are squares, with
outgoing edges marked by their probability. Each state is labeled by its parity rank (left) and cost
(right). Player 1 has no optimal strategy and needs infinite memory for an ε approximation.

Finally, there is no optimal strategy for Player 1, as every strategy that plays c from s0
eventually (i.e., as a response to some strategy of Player 2) gets cost 10 with some positive
probability. However, a strategy that never plays c is not parity-winning. J

2 Note that this also implies that randomized strategies could not be of help here.
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Following Theorem 2, our solution to parity MDPs suggests two algorithms. The first,
described in Section 3.1, finds the limit value of all possible strategies, which corresponds
to infinite-state transducers. The second, described in Section 3.2, computes the limit value
over all finite-memory strategies. The complexity of both algorithms is NP∩coNP. Moreover,
they are computable in polynomial time when an oracle to a two-player parity game is given.
Hence, our complexity upper bounds match the trivial lower bounds that arise from the fact
that every solution to a parity-MDP is also a solution to a parity game.

3.1 Infinite-Memory Strategies
In this section we study the problem of finding the sure cost of a parity-MDP when infinite-
memory strategies are allowed. We prove the upper bound in the following theorem. As
stated above, the lower bound is trivial.

I Theorem 3. Consider a parity-MDPM. Then, costsure(M) can be computed in NP∩co-
NP, and is parity-games hard.

Consider a parity-MDPM = 〈S1, S2, s0, A1, A2, δ1, δ2,P, cost, α〉. We first remove from
M all states that are not sure-winning for Player 1 in MP. Clearly, every strategy that
attains costsure(M) cannot visit a state that is losing inMP. Thus, we henceforth assume
that all states in M are winning for Player 1 in MP. We say that an EC C of M is good
(GEC, for short) if its maximal rank is even. That is, maxs∈C {α(s)} is even.

The idea behind our algorithm is as follows. W.p. 1, each play inM eventually reaches
and visits infinitely often all states of some EC. Hence, when restricting attention to plays
that are winning for Player 1 in MP, it must be the case that this EC is good. It follows
that the sure cost ofM is affected only by the properties of its GECs. Moreover, since the
minimal expected mean-payoff value is the same in all the states of an EC, we can consider
only maximal GECs and refer to the value of an EC, namely the minimal expected value
that Player 1 can ensure while staying in the EC. Our algorithm constructs a new MDP
(without ranks)M′ in which the cost of a state is the value of the maximal GEC it belongs
to. If a state does not belong to a GEC, then we assign it a very high cost inM′, where the
intuition is that Player 1 cannot benefit from visiting this state infinitely often. We claim
that the sure cost in the parity-MDPM coincides with the cost of the MDPM′.

Formally, for an EC C, let Cmax be the set of the states of C with the maximal parity
rank in C. By definition, this rank is even when C is a GEC. Note that if C and C ′ are
GECs and C∩C ′ 6= ∅, then C∪C ′ is also a GEC. Thus, we can restrict attention to maximal
GEC. For a GEC C, there exists a memoryless strategy fC that maximizes the probability
of reaching Cmax from every state s ∈ C while staying in C. Moreover, since C is an EC, the
probability of reaching Cmax by playing fC is strictly positive from every state s ∈ C. Let
t be a state in C. Consider the MDP MMDP|tC . Since C is EC, we have that cost(MMDP|tC)
is independent of the initial state t. Thus, we can define cost(MMDP|C) as cost(MMDP|tC) for
some t ∈ C.

Recall that our algorithm starts by a preprocessing step that removes all states that
are not sure-winning for Player 1 in MP. It then finds the maximal GECs of M (using a
polynomial-time procedure that we describe in the full version [4]), and obtain an MDPM′
by assigning every state within a GEC C the cost cost(MMDP|C), and assigning every state
that is not inside a GEC cost W + 1, where W is the maximal cost that appears inM. We
claim that costsure(M) = cost(M′).

Before proving the claim, note that all the steps of the algorithm except for the prepro-
cessing step that involves a solution of parity game require polynomial time. In particular,
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9:8 Minimizing Expected Cost Under Hard Boolean Constraints

the strategies fC above are computable in polynomial time by solving a reachability MDP,
and, by Theorem 1, so does the final step of finding cost(M ′).

Proving that costsure(M) = cost(M′) involves the following steps (see the full version [4]
for the full proof). First, proving costsure(M) ≥ cost(M′) is not hard, as a play with a
winning strategy f for Player 1 inM reaches and stays in some GEC C w.p. 1, and within
C, the best expected cost one can hope for is cost(MMDP|C), which is exactly what the
strategy f attains when played inM′.

Next, proving costsure(M) ≤ cost(M′), we show how an optimal strategy f ′ in M′
induces an ε-optimal strategy f in M. We start with Lemma 4, which justifies the costs
within a GEC.

I Lemma 4. Consider a GEC C in M, and s ∈ C. Let v(s) = cost(MMDP|sC), then for
every ε > 0 there exists a strategy f ofMs with costsure(f) ≤ v(s) + ε.

Intuitively, in a good EC, f minimizes the expected mean-payoff and once in a while it
plays reachability, aiming to visit to a state with the maximal rank in the EC. Since the EC
is good, this rank is even. If reachability is not obtained after N rounds, for a parameter N ,
then f gives up and aims at only surely satisfying the parity objective (our preprocessing
step ensures that this is possible). Otherwise, after reaching the maximal rank, f switches
again to minimizing mean-payoff. This process is repeated forever, increasing N in each
iteration. Hence, the probability that Player 1 eventually gives up can be bounded from
above by an arbitrarily small ε > 0. Accordingly, Player 1 can achieve a value that is
arbitrarily close to cost(MMDP|C).

Finally, we construct the ε-optimal strategy f in M as follows. The strategy f first
mimics f ′ for a large number of steps k, or until an EC (in which f ′ stays forever) is
reached. If a good EC is not reached, then f aims at only surely satisfying the parity
objective. If a good EC is reached, then f behaves as prescribed above, per Lemma 4. Since
the probability of f ′ reaching a good EC within k steps tends to 1, then Player 1 can achieve
a value within ε of cost(M′).
I Example 5. Recall the parity-MDPM in Figure 1. The GECs are C1 = {s0, s2, s3} and
C2 = {s1}, and their costs as MDPs are 1 and 10, respectively. Since Player 1 can force
the play to stay in C1, then costsure(M) = 1, and an ε approximation is obtained as per
Lemma 4, and as described in the proof of Theorem 2. J

3.2 Finite-Memory Strategies
In this section we study the problem of finding the sure cost of a parity-MDP, when re-
stricted to finite memory strategies. For a parity-MDP M, we define costsure,<∞(M) =
inf{costsure(f) : f is a finite memory strategy for M}. We prove the upper bound in the
following theorem. As stated above, the lower bound is trivial.

I Theorem 6. Consider a parity-MDP M. Then, costsure,<∞(M) can be computed in
NP∩co-NP, and is parity-games hard.

The general approach is similar to the one we took in Section 3.1. That is, we remove from
M all states that are not sure-winning for Player 1 inMP, and proceed by reasoning about
a certain type of ECs. However, for finite-memory strategies, we need a more restricted
class of ECs than the GECs that were used in Section 3.1. Indeed, a finite-memory strategy
might not suffice to win the sure-parity condition in a GEC.

For a GEC C, let k be the maximal odd priority in C, with k = −1 if there are no odd
priorities. We define Cmax

even = {q ∈ C : α(q) > k and α(q) is even}. We say that a GEC C in
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M is super good (SGEC, for short) if from every state s ∈ C, there exists a finite-memory
strategy f forM|sC such that the play ofM under f reaches Cmax

even w.p. 1, and if the play
does not reach C

max
even, then it is parity winning. We refer to f as a witness to C being a

SGEC. If C is not a SGEC, we call its states that do satisfy the above super-good states.
We argue that SGECs are the proper notion for reasoning about finite-memory strategies.

Specifically, we show that in a SGEC, Player 1 can achieve ε-optimal expected cost with
a finite-memory strategy, and that every finite-memory winning strategy reaches a SGEC
w.p. 1.

Our algorithm finds the maximal SGECs of M and obtain an MDP M′ in the same
manner we did in Section 3.1, namely by assigning high weights to states not in SGECs,
and the optimal mean-payoff MDP value to states in SGECs. As there, we claim that
cost(M′) = costsure,<∞(M). The analysis of the algorithm as well as its concrete details,
are, however, more intricate.
I Example 7. Recall again the parity-MDP M in Figure 1. The only SGEC is {s1}, and
thus we have that costsure,<∞(M) = 10 (see the proof of Theorem 2). J

We start by proving that the notion of maximal SGECs is well defined. To this end, we
present the following lemma, whose proof appears in the full version [4]. Note that in the
case of GECs, the lemma was trivial.

I Lemma 8. Consider SGEC C and D, such that C ∩D 6= ∅, then C ∪D is also a SGEC.

Intuitively, we prove this by considering witnesses f, g for C and D being SGECs. We then
modify f such that from every state in C, it tries to reach D for N steps, for some parameter
N . Once D is reached, g takes over. If D is not reached, f attempts to reach Cmax

even. Thus,
w.p. 1, the strategy reaches Dmax

even, and if it does not, it either reaches Cmax
even infinitely often,

or wins the parity condition.
Next, we note that unlike the syntactic definition of GECs, the definition of SGECs

is semantic, as it involves a strategy. Thus, finding the maximal SGECs adds another
complication to the algorithm. In fact, it is not hard to see that even checking whether an
EC is a SGEC is parity-games hard. Using techniques from [8], we show in the full version [4]
that we can reduce the latter to the problem of solving a parity-Büchi game. We thus have
the following lemma.

I Lemma 9. Consider an EC C in a parity-MDPM. We can decide whether C is a SGEC
in NP∩ co-NP, as well as compute a witness strategy and, if C is not a SGEC, find the set
of super-good states.

Next, we show how to find the maximal SGECs of M. Essentially, for every odd rank
k, we can find the SGECs whose maximal odd rank is k by removing all states with higher
odd ranks, and recursively refining ECs by keeping only super-good states, using Lemma 9.
Thus, we have the following (see the full version [4] for complete details).

I Theorem 10. Consider a parity-MDP M. We can find the maximal SGECs of M in
NP∩co-NP.

Theorem 10 shows that our algorithm for computing costsure,<∞(M) solves the problem
in NP∩co-NP. It remains to prove its correctness. First, Lemma 11 justifies the assignment
of costs within a SGEC.

I Lemma 11. Consider a SGEC C in M and a state s in C. Let v(s) = cost(MMDP|sC).
Then, for every ε > 0, there exists a finite-memory strategy f of M|sC with costsure(f) ≤
v(s) + ε.
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9:10 Minimizing Expected Cost Under Hard Boolean Constraints

Proof. Let g be a memoryless strategy such that cost(g) = cost(MMDP|sC). By Theorem 1
such a strategy exists. Let h be a finite-memory strategy that witnesses C being a SGEC.
For every k ∈ N, consider the strategy fk that repeatedly plays g for k steps and then
plays h until Cmax

even is reached. Since g and h are finite-memory, then fk is finite memory.
In addition, observe that h reaches Cmax

even w.p. 1, and if Cmax
even is not reached, then h is

parity-winning. Thus fk is parity-winning, and it reaches Step 1 infinitely often w.p. 1.
Moreover, since h has finite memory, then for every n ∈ N, there is a bounded probability
0 < p(n) ≤ 1 that f reaches Cmax

even within n steps, with limn→∞ p(n) = 1. Thus, we get that
limk→∞ costsure(fk) = costsure(g) = cost(MMDP|sC), which concludes the proof. J

Lemma 11 implies that we can approximate the optimal value of SGECs with finite-
memory strategies. It remains to show that it is indeed enough to consider SGECs. Con-
sider a finite-memory strategy f . Then, w.p. 1, f reaches an EC. Let C be an EC with
PrM(inf(f) = C) > 0. The following lemma characterizes an assumption we can make on
the behavior of f in such an EC.

I Lemma 12. Consider a parity-MDPM and an EC C. For every finite-memory strategy
f , if PrM(inf(f) = C) > 0, then there exists a finite-memory strategy g such that for every
s ∈ C, we have that PrMs(inf(g) = C) = 1 and every play of g from s stays in C. Moreover,
if f is parity winning, then so is g.

Intuitively, we show that there exists some finite history h such that the strategy fh, which
is f played after seeing the history h, has the following property: fh reaches and stays in C,
and w.p. 1 visits infinitely often all the states in C, and in particular Cmax

even. For the proof,
we consider the set F = {fh : h is a finite history}. Since f has finite memory, it follows
that this set is finite. Using this, we show that if PrM(inf(g) = C) < 1 for every g ∈ F ,
then PrM(inf(f) = C) = 0, which is a contradiction. Finally, since f is also parity winning,
it follows that fh above is also parity-winning, and is thus a witness for C being a SGEC.
The full proof appears in the full version [4].

Finally, by Lemma 13, we can assume that once f reaches an EC C, it stays in C and
visits all its states infinitely often w.p. 1. Since f is parity-winning, it follows that C has a
maximal even rank, and that f reaches Cmax

even w.p. 1. Moreover, in every play that does not
reach Cmax

even, f wins the parity condition. We can thus conclude with the following Lemma,
which completes the correctness proof of our algorithm for computing costsure,<∞(M). See
the full version [4] for the proof.

I Lemma 13. Consider a parity-MDPM and an EC C. For every finite-memory strategy
f , if f is parity winning and PrM(inf(f) = C) > 0, then C is a SGEC.

3.3 Comparison with Related Work

Both our work and [7, 12] analyze ECs and reduce the problem to reasoning about an MDP
that ignores the hard constraints. The main difference with [7] is that there, the hard and
soft constraints have the same objective (i.e., worst-case mean-payoff value and expected-
case mean-payoff value). In [7], the strategy played for N rounds to satisfy the soft objective
and then at most M rounds to satisfy the hard objective, for some constants N and M . In
our setting, we cannot bound M , and in fact it might be the case that Player 1 would play
to satisfy the parity objective for the rest of the game (i.e., forever) even after reaching a
super-good end component.
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The difference with [12] is twofold. First, technically, the type of hard constraints in [12]
is worst-case mean-payoff, whereas our setting uses the Boolean parity condition. In clas-
sical parity games, the parity condition can be reduced to a mean-payoff objective. Similar
reductions, however, do not work in order to reduce our setting to the setting of [12]. Thus,
our contribution is orthogonal to [12]. Secondly, Boolean constraints are conceptually differ-
ent than quantitative constraints, and as we demonstrate in Section 4, they arise naturally
in quantitative extensions of Boolean paradigms.

We note that [12] also study a relaxation in which almost-sure winning is allowed for the
hard constraints. An analogue in our setting is to consider an almost-sure parity condition.
We note that in such a setting, GECs are sufficient for reasoning both about finite-memory
and infinite-memory strategies. Moreover, the preprocessing involves solving an almost-
sure parity MDP (without mean-payoff constraints), which can be done in polynomial time.
Thus, as is the case in [12], we can compute the cost of an MDP with almost-sure hard
constraints in polynomial time.

4 Applications

In this section we study two applications of parity-MDPs. Both extend the Boolean synthesis
problem. Due to lack of space, our description is only an overview. Full definitions and
details can be found in the full version [4]. We start with some basic definitions.

For finite sets I and O of input and output signals, respectively, an I/O transducer is
T = 〈I,O,Q, q0, δ, ρ〉, where Q is a set of states, q0 ∈ Q is an initial state, δ : Q × 2I → Q

is a total (deterministic) transition function, and ρ : Q → 2O is a labeling function on the
states. The run of T on a word w = i0 · i1 · · · ∈ (2I)ω is the sequence of states q0, q1, . . .

such that qk+1 = δ(qk, ik) for all k ≥ 0. The output of T on w is then o1, o2, . . . ∈ (2O)ω

where ok = ρ(qk) for all k ≥ 1. Note that the first output assignment is that of q1, and we
do not consider ρ(q0). This reflects the fact that the environment initiates the interaction.
The computation of T on w is then T (w) = i0 ∪ o1, i1 ∪ o2, . . . ∈ (2I∪O)ω. When Q is a
finite set, we say that the transducer is finite.

The synthesis problem gets as input a specification L ⊆ (2I∪O)ω and generates a trans-
ducer T that realizes L; namely, all the computations of T are in L. The language L is
typically given by an LTL formula [16] or by means of an automaton of infinite words.

4.1 Penalties on Undesired Scenarios
Recall that in Boolean synthesis, the goal is to generate a transducer that associates with
each infinite sequence of inputs an infinite sequence of outputs so that the result computation
satisfies a given specification. Typically, some behaviors generated by the transducers may
be less desired than others. For example, as discussed in Section 1, designs that use fewer
resources or minimize expensive activities are preferable. The input to the synthesis with
penalties problem includes, in addition to the Boolean specification, languages of finite words
that describe undesired behaviors, and their costs. The goal is to generate a transducer that
realizes the specification and minimizes cost due to undesired behaviors.

Formally, the input to the problem includes languages L1, . . . , Lm of finite words over the
alphabet 2I∪O and a penalty function γ : {1, . . . ,m} → N specifying for each 1 ≤ i ≤ m the
penalty that should be applied for generating a behavior in Li. As described in Section 1,
the language Li may be local (that is, include only words of length 1) and thus refer only
to activation of output signals, may specify short scenarios like flips of output signals, and
may also specify rich regular scenarios. Note that we allow penalties also for behaviors that
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9:12 Minimizing Expected Cost Under Hard Boolean Constraints

depend on the input signals. Intuitively, whenever a computation π includes a behavior in
Li, a penalty of γ(i) is applied. Formally, if π = σ1, σ2, . . ., then for every position j ≥ 1, we
define penalty(j) = {i : there is k ≤ i such that σk · σk+1 · · ·σj ∈ Li}. That is, penalty(j)
points to the subset of languages Li such that a word in Li ends in position j. Then, the
cost of position j, denoted cost(j), is

∑
i∈penalty(j) γ(i). Finally, for a finite computation

π = σ1, σ2, . . ., we define its cost, denoted cost(π), as lim supm→∞ 1
m

∑m
j=1 cost(j).

Let A be a deterministic parity automaton (DPW, for short) over the alphabet 2I∪O that
specifies the specification ψ. We describe a parity-MDP whose solution is a transducer that
realizes A with the minimal cost for penalties. The idea is simple: on top of the parity game
G described above, we compose monitors that detect undesired scenarios. We assume that
the languages L1, . . . , Lm and are given by means of deterministic automata on finite words
(DFWs) U1, . . . ,Um where for every 1 ≤ i ≤ m, we have that L(Ui) = (2I∪O)∗ · Li. That is,
Ui accepts σ1 · · ·σn iff there exists k ≤ n such that σk · · ·σn ∈ Li. Essentially, we turn A into
a parity-MDP by composing it with the DFWs U1, . . . ,Um. Then, Ui reaching an accepting
state indicates that the penalty for Li should be applied, which induces the costs in the
parity-MDP. The probabilities in the parity-MDP are induced form the distribution of the
assignments to input signals. The full construction can be found in the full version [4]. We
note that an alternative definition can replace the DFWs U1, . . . ,Um and the cost function
γ by a single weighted automaton that can be composed with A.

4.2 Sensing
Consider a transducer T = 〈I,O,Q, q0, δ, ρ〉. For a state q ∈ Q and a signal p ∈ I, we say
that p is sensed in q if there exists a set S ⊆ I such that δ(q, S \ {p}) 6= δ(q, S ∪ {p}).
Intuitively, a signal is sensed in q if knowing its value may affect the destination of at least
one transition from q. We use sensed(q) to denote the set of signals sensed in q. The sensing
cost of a state q ∈ Q is scost(q) = |sensed(q)|. For a finite run r = q1, . . . , qm of T , we define
the sensing cost of r, denoted scost(r), as 1

m

∑m−1
i=0 scost(qi). That is, scost(r) is the average

number of sensors that T uses during r. For a finite input sequence w ∈ (2I)∗, we define the
sensing cost of w in T , denoted scostT (w), as the sensing cost of the run of T on w. Finally,
the sensing cost of T is the expected sensing cost of input sequences of length that tends to
infinity, which is parameterized by a distribution on (2I)ω given by a sequence of distributions
D1, D2, ... such that Dt : 2I → [0, 1] describes the distribution over 2I at time t ∈ N. For
simplicity, we assume that the distribution is uniform. Thus, Dt(i) = 2−|I| for every t ∈ N.
For the uniform distribution we have scost(T ) = limm→∞ |(2I)|−m

∑
w∈(2I )m scostT (w).

Note that this definition also applies when the transducer is infinite. However, for infinite
transducers, the limit in the definition of scost(T ) might not exist, and we therefore define
scost(T ) = lim supm→∞ |2I |−m

∑
w∈(2I )m scostT (w). Finally, for a realizable specification

L ∈ 2I∪O, we define scostI/O(L) = inf{scost(T ) : T is an I/O transducer that realizes L}.
In [3], we study the sensing cost of safety properties. We show that there, a finite,

minimally-sensing transducer, always exists (albeit of exponential size), and the problem
of computing the sensing cost is EXPTIME-complete. In our current setting, however, a
minimally-sensing transducer need not exist, and any approximation may require infinite
memory. We demonstrate this with an example.

I Example 14. Let I = {a} and O = {b}, and consider the specification ψ = (GFa ∧ Gb) ∨
G(¬b→ XG(a↔ b)). Thus, ψ states that either a holds infinitely often and b always holds,
or, if b does not holds at a certain time, then henceforth, a holds iff b holds. Observe that
once the system outputs ¬b, it has to always sense a in order to determine the output. The
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system thus has an incentive to always output b. This, however, may render ψ false, as a
need not hold infinitely often.

We start by claiming that every finite-memory transducer T that realizes ψ has sensing
cost 1. Indeed, let n be the number of states in T . A random input sequence contains the
infix (¬a)n+1 w.p. 1. Upon reading such an infix, T has to output ¬b, as otherwise it would
not realize ψ on a computation with suffix (¬a)ω. Thus, from then on, T senses a in every
state. So, scost(T ) = 1.

However, by using infinite-memory transducers, we can follow the construction in Sec-
tion 3.1 and reduce the sensing cost arbitrarily close to 0. Let M ∈ N. We construct a
transducer T ′ as follows. After initializing i to 1, the transducer T ′ senses a and outputs b
for iM steps. If a does not hold during this time, then T ′ outputs ¬b and starts sensing a
and outputting b accordingly. Otherwise, if a holds during this time, then T ′ stops sensing
a for 2i steps, while outputting b. It then increases i by 1 and repeats the process. Note
that T ′ outputs ¬b iff a does not hold for iM consecutive positions at the i-th round (which
happens w.p. 2−iM ). Thus, the probability of T ′ outputting ¬b in a random computation is
bounded from above by

∑∞
i=1 2−iM = 2−M , which tends to 0 asM tends to∞. Note that in

the i-th round, T ′ senses a for only iM steps, and then does not sense anything for 2iM steps,
so if T ′ does not output ¬b, the sensing cost is 0. Thus, we have limM→∞ scost(T ′) = 0. J

We proceed by describing the general solution to computing the sensing cost of a spe-
cification. Recall that synthesis of a DPW A is reduced to solving a parity game. When
sensing is introduced, it is not enough for the system to win this game, as it now has to
win while minimizing the sensing cost. Intuitively, not sensing some inputs introduces in-
complete information to the game: once the system gives up sensing, it may not know the
state in which the game is and knows instead only a set of states in which the game may
be. Technically (see the full version for the detailed proof), we force the system to satisfy
the specification with respect to all assignments to the un-sensed inputs by converting the
DPW A into a universal parity automaton (UPW) – an automaton in which a the transition
function maps each state and letter to a set of successor states, and a word is accepted if all
the runs on it are accepting.

I Theorem 15. Consider a DPW specification A over 2I∪O. There exists a parity-MDP
M such that costsure(M) = scostI/O(L(A)). Moreover, the number of states ofM is singly
exponential in that of A, and the number of parity ranks onM is polynomial in that of A.

I Theorem 16. Consider a DPW specification A over 2I∪O. We can compute scostI/O(
L(A)) in singly-exponential time. Moreover, the problem of deciding whether scostI/O(
L(A)) > 0 is EXPTIME-complete.

Proof. We obtain from A a parity-MDPM as per Theorem 15. Observe that the algorithm
in the proof of Theorem 3 essentially runs in polynomial time, apart from solving a parity
game, which is done in NP∩co-NP. However, deterministic algorithms for solving parity
games run in time polynomial in the number of states, and singly-exponential in the number
of parity ranks. Since the number of parity ranks inM is polynomial in that ofA, we can find
costsure(M) in time singly-exponential in the size of A. Since costsure(M) = scostI/O(L(A)),
we are done.

For the lower bound, we note that the problem of deciding whether scostI/O(L(A)) > 0
is EXPTIME-hard even for a restricted class of automata, namely looping automata [3]. J

The input to the synthesis problem is typically given as an LTL formula, rather than a
DPW. Then, the translation from LTL to a DPW involves a doubly-exponential blowup.
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Thus, a naive solution for computing the sensing cost of a specification given by an LTL
formula is in 3EXPTIME. However, by translating the formula to a UPW, rather than a
DPW, we show how we can avoid one exponent, thus matching the 2EXPTIME complexity
of standard Boolean synthesis.

I Theorem 17. Consider an LTL specification ψ over I∪O. We can compute scostI/O(L(ψ))
in doubly-exponential time.

Proof. We start by translating ψ to a UPWA of size single-exponential in the size of ψ. This
can be done, for example, by translating ¬ψ to a nondeterministic Büchi automaton [19] and
dualizing it. We then follow the proof of Theorem 15, by adding the universal transitions
described there directly to the UPW A. Thus, when we finally determinize the UPW to a
DPW, the size of the DPW is doubly-exponential, so computing the sensing cost can also
be done in doubly-exponential time. J
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