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Abstract
We present a sound, complete, and optimal single-pass tableau algorithm for the alternation-free
µ-calculus. The algorithm supports global caching with intermediate propagation and runs in
time 2O(n). In game-theoretic terms, our algorithm integrates the steps for constructing and
solving the Büchi game arising from the input tableau into a single procedure; this is done on-
the-fly, i.e. may terminate before the game has been fully constructed. This suggests a slogan to
the effect that global caching = game solving on-the-fly. A prototypical implementation shows
promising initial results.
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1 Introduction

The modal µ-calculus [25, 3] serves as an expressive temporal logic for the specification
of sequential and concurrent systems containing many standard formalisms such as linear
time temporal logic LTL [28, 33], CTL [7], and PDL [34]. Satisfiability checking in the
modal µ-calculus is ExpTime-complete [31, 10]. There appears to be, to date, no readily
implementable reasoning algorithm for the µ-calculus, and in fact (prior to [23]) even for its
fragment CTL, that is simultaneously optimal, i.e. runs in ExpTime, and single-pass, i.e.
avoids building an exponential-sized data structure in a first pass. Typical data structures
used in worst-case-optimal algorithms are automata [10], games [13], and, for sublogics such
as CTL, first-pass tableaux [9].

The term global caching describes a family of single-pass tableau algorithms [18, 21] that
build graph-shaped tableaux bottom-up in so-called expansion steps, with no label ever
generated twice, and attempt to terminate before the tableau is completely expanded by
means of judicious intermediate propagation of satisfiability and/or unsatisfiability through
partially expanded tableaux. Global caching offers wide room for heuristic optimization,
regarding standard tableau optimizations as well as the order in which expansion and
propagation steps are triggered, and has been shown to perform competitively in practice;
see [21] for an evaluation of heuristics in global caching for the description logic ALCI.
One major challenge with global caching algorithms is typically to prove soundness and
completeness, which becomes harder in the presence of fixpoint operators. A global caching
algorithm for PDL has been described by Goré and Widmann [20]; finding an optimal global
caching algorithm even for CTL has been named as an open problem as late as 2014 [15] (a
non-optimal, doubly exponential algorithm is known [15]).

The contribution of the present work is an optimal global-caching algorithm for satisfiab-
ility in the alternation-free µ-calculus, extending our earlier work on the single-variable (flat)
fragment of the µ-calculus [23]. The algorithm actually works at the level of generality of the
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34:2 Global Caching for the Alternation-free µ-Calculus

alternation-free fragment of the coalgebraic µ-calculus [6], and thus covers also logics beyond
the realm of standard Kripke semantics such as alternating-time temporal logic ATL [1],
neighbourhood-based logics such as the monotone µ-calculus that underlies Parikh’s game
logic [32], or probabilistic fixpoint logic. To aid readability, we phrase our results in terms
of the relational µ-calculus, and discuss the coalgebraic generalization only at the end of
Section 4. The model construction in the completeness proof yields models of size 2O(n).

We have implemented of our algorithm as an extension of the Coalgebraic Ontology Logic
Reasoner COOL, a generic reasoner for coalgebraic modal logics [22]; given the current state
of the implementation of instance logics in COOL, this means that we effectively support
alternation-free fragments of relational, monotone, and alternating-time [1] µ-calculi, thus in
particular covering CTL and ATL. We have evaluated the tool in comparison with existing
reasoners on benchmark formulas for CTL [19] (which appears to be the only candidate
logic for which well-developed benchmarks are currently available) and on random formulas
for ATL and the alternation-free relational µ-calculus, with promising results; details are
discussed in Section 5.

Related Work. The theoretical upper bound ExpTime has been established for the full
coalgebraic µ-calculus [6] (and earlier for instances such as the alternating-time µ-calculus
AMC [36]), using a multi-pass algorithm that combines games and automata in a similar
way as for the standard relational case, in particular involving the Safra construction. Global
caching has been employed successfully for a variety of description logics [18, 21], and lifted
to the level of generality of coalgebraic logics with global assumptions [16] and nominals [17].

A tableaux-based non-optimal (NExpTime) decision procedure for the full µ-calculus has
been proposed in [24]. Friedmann and Lange [13] describe an optimal tableau method for the
full µ-calculus that, unlike most other methods including the one we present here, makes do
without requiring guardedness. Like earlier algorithms for the full µ-calculus, the algorithm
constructs and solves a parity game, and in principle allows for an on-the-fly implementation.
The models constructed in the completeness proof are asymptotically larger than ours, but
presumably the proof can be adapted for the alternation-free case by using determinization
of co-Büchi automata [29] instead of Safra’s determinization of Büchi automata [35] to yield
models of size 2O(n), like ours. For non-relational instances of the coalgebraic µ-calculus,
including the alternation-free fragment of the alternating-time µ-calculus AMC, the 2O(n)

bound on model size appears to be new, with the best known bound for the alternation-free
AMC being 2O(n logn) [36].

In comparison to our own recent work [23], we move from the flat to the alternation-free
fragment, which means essentially that fixpoints may now be defined by mutual recursion,
and thus can express properties such as ‘all paths reach states satisfying p and q, respectively,
in strict alternation until they eventually reach a state satisfying r’. Technically, the main
additional challenge is the more involved structure of eventualities and deferrals, which now
need to be represented using cascaded sequences of unfoldings in the focusing approach; this
affects mainly the soundness proof, which now needs to organize termination counters in a
tree structure. While the alternation-free algorithm instantiates to the algorithm from [23]
for flat input formulas, its completeness proof includes a new model construction which
yields a bound of 3n ∈ 2O(n) on model size, slightly improving upon the bound n · 4n
from [23]. We present the new algorithm in terms that are amenable to a game-theoretic
perspective, emphasizing the correspondence between global caching and game-solving. In
fact, it turns out that global caching algorithms effectively consist in an integration of the
separate steps of typical game-based methods for the µ-calculus [13, 14, 31] into a single
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on-the-fly procedure that talks only about partially expanded tableau graphs, implicitly
combining on-the-fly determinization of co-Büchi automata with on-the-fly solving of the
resulting Büchi games [11]. This motivates the mentioned slogan that

global caching is on-the-fly determinization and game solving.

In particular, the propagation steps in the global caching pattern can be seen as solving
an incomplete Büchi game that is built directly by the expansion steps, avoiding explicit
determinization of co-Büchi automata analogously to [29]. One benefit of an explicit global
caching algorithm integrating the pipeline from tableaux to game solving is the implementation
freedom afforded by the global caching pattern, in which suitable heuristics can be used to
trigger expansion and propagation steps in any order that looks promising.

2 Preliminaries: The µ-Calculus

We briefly recall the definition of the (relational) µ-calculus. We fix a set P of propositions, a
set A of actions, and a set V of fixpoint variables. Formulas φ, ψ of the µ-calculus are then
defined by the grammar

ψ, φ ::= ⊥ | > | p | ¬p | X | ψ ∧ φ | ψ ∨ φ | 〈a〉ψ | [a]ψ | µX.ψ | νX.ψ

where p ∈ P , a ∈ A, and X ∈ V; we write |ψ| for the size of a formula ψ. Throughout the
paper, we use η to denote one of the fixpoint operators µ or ν. We refer to formulas of the
form ηX.ψ as fixpoint literals, to formulas of the form 〈a〉ψ or [a]ψ as modal literals, and
to p, ¬p as propositional literals. The operators µ and ν bind their variables, inducing a
standard notion of free variables in formulas. We denote the set of free variables of a formula
ψ by FV (ψ). A formula ψ is closed if FV (ψ) = ∅, and open otherwise. We write ψ ≤ φ

(ψ < φ) to indicate that ψ is a (proper) subformula of φ. We say that φ occurs free in ψ if φ
occurs as a subformula in ψ that is not in the scope of any fixpoint. Throughout, we restrict
to formulas that are guarded, i.e. have at least one modal operator between any occurrence of
a variable X and an enclosing binder ηX. (This is standard although possibly not without
loss of generality [13].) Moreover we assume w.l.o.g. that input formulas are clean, i.e. all
fixpoint variables are distinct, and irredundant, i.e. X ∈ FV (ψ) for all subformulas ηX.ψ.

Formulas are evaluated over Kripke structures K = (W, (Ra)a∈A, π), consisting of a set
W of states, a family (Ra)a∈A of relations Ra ⊆W ×W , and a valuation π : P → P(W ) of
the propositions. Given an interpretation i : V → P(W ) of the fixpoint variables, define
[[ψ]]i ⊆ W by the obvious clauses for Boolean operators and propositions, [[X]]i = i(X),
[[〈a〉ψ]]i = {v ∈ W | ∃w ∈ Ra(v).w ∈ [[ψ]]i}, [[[a]ψ]]i = {v ∈ W | ∀w ∈ Ra(v).w ∈ [[ψ]]i},
[[µX.ψ]]i = µ[[ψ]]Xi and [[νX.ψ]]i = ν[[ψ]]Xi , where Ra(v) = {w ∈W | (v, w) ∈ Ra}, [[ψ]]Xi (G) =
[[ψ]]i[X 7→G], and µ, ν take least and greatest fixpoints of monotone functions, respectively.
If ψ is closed, then [[ψ]]i does not depend on i, so we just write [[ψ]]. We write x |= ψ

for x ∈ [[ψ]]. The alternation-free fragment of the µ-calculus is obtained by prohibiting
formulas in which some subformula contains both a free ν-variable and a free µ-variable. E.g.
µX. µY. (�X ∧ ♦Y ∧ νZ.♦Z) is alternation-free but νZ. µX. (�X ∧ νY. (♦Y ∧ ♦Z)) is not.
CTL is contained in the alternation-free fragment.

We have the standard tableau rules (each consisting of one premise and a possibly empty
set of conclusions) which will be interpreted AND-OR style, i.e. to show satisfiability of a set
of formulas ∆, it will be necessary to show that every rule application that matches ∆ has
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34:4 Global Caching for the Alternation-free µ-Calculus

some conclusion that is satisfiable. Our algorithm will use these rules in the expansion step.

(⊥) Γ,⊥ ( ) Γ, p,¬p

(∧) Γ, ψ ∧ φ
Γ, ψ, φ (∨) Γ, ψ ∨ φ

Γ, ψ Γ, φ

(〈a〉) Γ, [a]ψ1, . . . , [a]ψn, 〈a〉φ
ψ1, . . . , ψn, φ

(η) Γ, ηX. ψ
Γ, ψ[X 7→ ηX.ψ]

(for a ∈ A, n ∈ N, p ∈ P ); we refer to the set of modal rules (〈a〉) by Rm and to the set of the
remaining rules by Rp and usually write rules with premise Γ and conclusion Σ = Γ1, . . . ,Γn
in sequential form, i.e. as (Γ/Σ).

I Example 1. As our running example, we pick a non-flat formula, i.e. one that requires
two recursion variables. Consider the alternation-free formulas

ψ1 = µX. ((p ∧ (r ∨�ψ2)) ∨ (¬q ∧�X)) ψ2 = µY. ((q ∧ (r ∨�X)) ∨ (¬p ∧�Y ))

(where A = {∗} and we write � = [∗], ♦ = 〈∗〉). The formulas ψ1 and ψ2[X 7→ ψ1] state that
all paths will visit p and q in strict alternation until r is eventually reached, starting with p
and with q, respectively. Using the measure of entanglement [2], one can show that these
properties cannot be expressed using only one variable.

3 The Global Caching Algorithm

We proceed to describe our global caching algorithm for the alternation-free µ-calculus. First
off, we need some syntactic notions regarding decomposition of fixpoint literals.

I Definition 2 (Deferrals). Given fixpoint literals χi = ηXi. ψi, i = 1, . . . , n, we say that
a substitution σ = [X1 7→ χ1]; . . . ; [Xn 7→ χn] sequentially unfolds χn if χi <f χi+1 for all
1 ≤ i < n, where we write ψ <f ηX. φ if ψ ≤ φ and ψ is open and occurs free in φ (i.e. σ
unfolds a nested sequence of fixpoints in χn innermost-first). We say that a formula χ is
irreducible if for every substitution [X1 7→ χ1]; . . . ; [Xn 7→ χn] that sequentially unfolds χn,
we have that χ = χ1([X2 7→ χ2]; . . . ; [Xn 7→ χn]) implies n = 1 (i.e. χ = χ1). An eventuality
is an irreducible closed least fixpoint literal. A formula ψ belongs to an eventuality θn, or is a
θn-deferral, if ψ = ασ for some substitution σ = [X1 7→ θ1]; . . . ; [Xn 7→ θn] that sequentially
unfolds θn and some α <f θ1. We denote the set of θn-deferrals by dfr(θn).

E.g. the substitution σ = [Y 7→ µY. (�X∧♦♦Y )]; [X 7→ θ] sequentially unfolds the eventuality
θ = µX. µY. (�X ∧ ♦♦Y ), and (♦Y )σ = ♦µY. (�θ ∧ ♦♦Y ) is a θ-deferral. A fixpoint literal
is irreducible if it is not an unfolding ψ[X 7→ ηX.ψ] of a fixpoint literal ηX.ψ; in particular,
every clean irredundant fixpoint literal is irreducible.

I Lemma 3. Each formula ψ belongs to at most one eventuality θ, and then θ ≤ ψ.
I Example 4. Applying the tableau rules Rm and Rp to the formula ψ1 ∧EG¬r, where ψ1
is defined as in Example 1 and EGφ abbreviates νX. (φ ∧ ♦X), results in a cyclic graph,
with relevant parts depicted as follows:

ψ1 ∧ EG¬r
(∧)

ψ1, EG¬r =: Γ1(∨,∧, ν, µ)∗
Γ, p,�ψ2[X 7→ ψ1]

(♦)
ψ2[X 7→ ψ1], EG¬r =: Γ2

(∨,∧, ν, µ)∗
Γ, q,�ψ1(♦)

Γ1

Γ,¬p,�ψ2[X 7→ ψ1]
(♦)

Γ2

Γ,¬q,�ψ1 (♦)
Γ1
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where Γ = {¬r,♦EG¬r}. The graph contains three cycles, all of which contain but never
finish a formula that belongs to ψ1 (where a formula belonging to an eventuality ψ1 is
said to be finished if it evolves to a formula that does not belong to ψ1): In the rightmost
cycle, the deferral δ1 := ψ1 evolves to the deferral δ2 := �ψ1 which then evolves back to
δ1. For the cycle in the middle, δ1 evolves to δ3 := �ψ2[X 7→ ψ1] which in turn evolves to
δ4 := ψ2[X 7→ ψ1] before looping back to δ3. In the leftmost cycle, δ1 evolves via δ3 and δ4
to δ2 before cycling back to δ1. The satisfaction of ψ1 is thus being postponed indefinitely,
since EG¬r enforces the existence of a path on which r never holds. As a successful example,
consider the graph that is obtained when attempting to show the satisfiability of ψ1 ∧EG¬q,
(where Γ′ := {¬q,♦EG¬q}):

ψ2 ∧ EG¬q
(∧)

ψ2, EG¬q =: Γ3(∨,∧, µ, ν)∗
Γ′, p, r ∨�ψ2[X 7→ ψ1]

(∨)
Γ′, p, r

(♦)
EG¬q =: Γ5(∧, ν)

Γ′
(♦)

Γ5

Γ′, p,�ψ2[X 7→ ψ1]
(♦)

ψ2[X 7→ ψ1], EG¬q =: Γ4
(∨,∧, µ)∗

Γ′, q, r ∨�ψ1( )
Γ′,¬p,�ψ2[X 7→ ψ1]

(♦)
Γ4

Γ′,�ψ1 (♦)
Γ3

The two loops through Γ3 and Γ4 are unsuccessful as they indefinitely postpone the satisfaction
of the deferrals δ2 and δ3, respectively; also there is the unsuccessful clashing node Γ′, q, r∨�ψ1,
containing both q and ¬q. However, the loop through Γ5 is successful since it contains no
deferral that is never finished; as all branching in this example is disjunctive, the single
successful loop suffices to show that the initial node is successful. Our algorithm implements
this check for ‘good’ and ‘bad’ loops by simultaneously tracking all deferrals that occur
through the proof graph, checking whether each deferral is eventually finished.

We fix an input formula ψ0 and denote the Fischer-Ladner closure [26] of ψ0 by F; notice
that |F| ≤ |ψ0|. Let N = P(F) be the set of all nodes and S ⊆ N the set of all state nodes,
i.e. nodes that contain only >, non-clashing propositional literals (where p clashes with ¬p)
and modal literals; so |S| ≤ |N| ≤ 2|ψ0|. Put

C = {(Γ, d) ∈ N× P(F) | d ⊆ Γ}, and CG = {(Γ, d) ∈ C | Γ ∈ G} for G ⊆ N,

recalling that nodes are just sets of formulas; note |C| ≤ 3|ψ0|. Elements v = (Γ, d) ∈ C are
called focused nodes, with label l(v) = Γ and focus d. The idea of focusing single eventualities
comes from work on LTL and CTL [27, 4]. In the alternation-free µ-calculus, eventualities
may give rise to multiple deferrals so that one needs to focus sets of deferrals instead of
single eventualities. Our algorithm incrementally builds a set of nodes but performs fixpoint
computations on P(C), essentially computing winning regions of the corresponding Büchi
game (with the target set of player 0 being the nodes with empty focus) on-the-fly.

I Definition 5 (Conclusions). For a node Γ ∈ N and a set S of tableau rules, the set of
conclusions of Γ under S is

Cn(S,Γ) = {{Γ1, . . . ,Γn} ∈ P(N) | (Γ/Γ1 . . .Γn) ∈ S}.

We define Cn(Γ) as Cn(Rm,Γ) if Γ is a state node and as Cn(Rp,Γ) otherwise. A set N ⊆ N
of nodes is fully expanded if for each Γ ∈ N ,

⋃
Cn(Γ) ⊆ N .

I Definition 6 (Deferral tracking). Given a node Γ = ψ1, . . . , ψn, φ and a state node ∆ ∈ S
that contains [a]ψ1, . . . , [a]ψn, 〈a〉φ as a subset, we say that Γ inherits φ from (〈a〉φ,∆) and
ψi from ([a]ψi,∆). For a non-state node ∆ ∈ N, a node Γ ∈ N with φ ∈ Γ, and ψ ∈ ∆,
Γ inherits φ from (ψ,∆) if Γ = Γi is conclusion of a non-modal rule (Γ0/Γ1 . . .Γn) with
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Γ0 = ∆ and either ψ has one of the forms φ, φ ∨ χ, χ ∨ φ, φ ∧ χ, χ ∧ φ, or ψ = ηX. χ and
φ = χ[X 7→ ψ]. We put

Inhm(φ, 〈a〉φ,∆) = {Γ ∈ N | Γ inherits φ from (〈a〉φ,∆)}
Inhm(φ, [a]φ,∆) = {Γ ∈ N | Γ inherits φ from ([a]φ,∆)}

Inhp(φ, ψ,∆) = {Γ ∈ N | Γ inherits φ from (ψ,∆)},

where ∆ is a state node in the first two clauses and a non-state node in the third clause. We
write evs for the set of eventualities in F. For a node Γ ∈ N, the set of deferrals of Γ is

d(Γ) = {δ ∈ Γ | ∃θ ∈ evs. δ ∈ dfr(θ)}.

For a set d 6= ∅ of deferrals and nodes Γ,∆ ∈ N, we put

d∆ Γ = {δ ∈ d(Γ) | ∃θ ∈ evs.∃〈a〉δ ∈ d. Γ ∈ Inhm(δ, 〈a〉δ,∆) and δ, 〈a〉δ ∈ dfr(θ) or
∃[a]δ ∈ d. Γ ∈ Inhm(δ, [a]δ,∆) and δ, 〈a〉δ ∈ dfr(θ)}

if ∆ is a state node, and

d∆ Γ = {δ1 ∈ d(Γ) | ∃θ ∈ evs.∃δ2 ∈ d. Γ ∈ Inhp(δ1, δ2,∆) and δ1, δ2 ∈ dfr(θ)}

if ∆ is a non-state node. I.e. d∆ Γ is the set of deferrals that is obtained by tracking d from
∆ to Γ, where Γ is the conclusion of a rule application to ∆. We put ∅∆ Γ = d(Γ), with the
intuition that if the focus d is empty at (∆, d), then we refocus, i.e. choose as new focus for
the conclusion Γ the set d(Γ) of all deferrals in Γ.

I Example 7. Revisiting the proof graphs from Example 4, we fix additional abbreviations
Γ6 := Γ,¬p,�ψ2[X 7→ ψ1], Γ7 := Γ′, p, r∨�ψ2[X 7→ ψ1] and Γ8 := Γ′, p, r. In the first graph,
e.g. d(Γ6) = {δ3} and d(Γ2) = {δ4}; in the second graph, e.g. d(Γ7) = {r ∨�ψ2[X 7→ ψ1]}
and d(Γ8) = ∅. In the first graph, the node Γ6 inherits the deferral δ3 from δ4 at Γ2,
i.e. d(Γ2)Γ2 Γ6 = {δ4}Γ2 Γ6 = {δ3} since Γ6 ∈ Inhm(ψ2[X 7→ ψ1],�ψ2[X 7→ ψ1],Γ2).
Regarding the second graph, Γ8 does not inherit any deferral from Γ7, i.e. d(Γ7)Γ8 Γ7 =
{r ∨ �ψ2[X 7→ ψ1]}Γ8 Γ7 = ∅ since Γ8 ∈ Inhp(r, r ∨ �ψ2[X 7→ ψ1],Γ7) but r ∨ �ψ2[X 7→
ψ1] ∈ dfr(ψ1) while r /∈ dfr(ψ1), i.e. r ∨�ψ2[X 7→ ψ1] belongs to ψ1 but r does not. This
corresponds to the intuition that Γ8 represents a branch originating from Γ7 that actually
finishes the deferral r ∨�ψ2[X 7→ ψ1].

We next introduce the functionals underlying the fixpoint computations for propagation of
satisfiability and unsatisfiability.

I Definition 8. Let C ⊆ C be a set of focused nodes. We define the functions f : P(C)→
P(C) and g : P(C)→ P(C) by

f(Y ) = {(∆, d) ∈ C | ∀Σ ∈ Cn(∆).∃Γ ∈ Σ. (Γ, d∆ Γ) ∈ Y }
g(Y ) = {(∆, d) ∈ C | ∃Σ ∈ Cn(∆).∀Γ ∈ Σ. (Γ, d∆ Γ) ∈ Y }

for Y ⊆ C. We refer to C as the base set of f and g.

That is, a focused node (∆, d) is in f(Y ) if each rule matching ∆ has a conclusion Γ such
that (Γ, d′) ∈ Y , where the focus d′ is the set of deferrals obtained by tracking d from ∆ to Γ.
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I Definition 9 (Proof transitionals). For X ⊆ C ⊆ C, we define the proof transitionals
f̂X : P(C)→ P(C), ĝX : P(C)→ P(C) by

f̂X(Y ) := (f(Y ) ∩ F ) ∪ (f(X) ∩ F ) = f(Y ) ∪ (f(X) ∩ F )
ĝX(Y ) := (g(Y ) ∪ F ) ∩ (g(X) ∪ F ) = g(X) ∪ (g(Y ) ∩ F ),

for Y ⊆ C, where F = {(Γ, d) ∈ C | d = ∅} and F = {(Γ, d) ∈ C | d 6= ∅} are the sets of
focused nodes with empty and non-empty focus, respectively, and where C is the base set of
f and g.

That is, f̂X(Y ) contains nodes with non-empty focus that have for each matching rule a
successor node in Y as well as nodes with empty focus that have for each matching rule a
successor node in X. The least fixpoint of f̂X thus consists of those nodes that finish their
focus – by eventually reaching nodes from F with empty focus – and loop to X afterwards.

I Lemma 10. The proof transitionals are monotone w.r.t. set inclusion, i.e. if X ′ ⊆ X,
Y ′ ⊆ Y , then f̂X′(Y ′) ⊆ f̂X(Y ) and ĝX′(Y ′) ⊆ ĝX(Y ).

I Definition 11 (Propagation). For G ⊆ N, we define EG, AG ⊆ CG as

EG = νX.µY. f̂X(Y ) and AG = µX.νY. ĝX(Y ),

where CG is the base set of f and g.

Notice that in terms of games, the computation of EG and AG corresponds to solving an
incomplete Büchi game. The set EG contains nodes (Γ, d) for which player 0 has a strategy
to enforce – for each infinite play starting at (Γ, d) – the Büchi condition that nodes in F ,
i.e. with empty focus, are visited infinitely often; similarly AG is the winning region of player
1 in the corresponding game, i.e. contains the nodes for which player 1 has a strategy to
enforce an infinite play that passes F only finitely often or a finite play that gets stuck in a
winning position for player 1.

I Example 12. Returning to Example 4, we have (Γ1, d(Γ1)) = (Γ1, {ψ1}) ∈ AG1 and
(Γ3, d(Γ3)) = (Γ3, {ψ1}) ∈ EG2 where G1 and G2 denote the set of all nodes of the first
and the second proof graph, respectively; the global caching algorithm described later will
therefore answer ‘unsatisfiable’ to Γ1, and ‘satisfiable’ to Γ3. To see (Γ1, {ψ1}) ∈ AG1

note that AG1 = νY. ĝAG1
(Y ) by definition, so AG1 = (ĝAG1

)n(CG1) for some n. For each
focused node (∆, d) ∈ CG1 there is a rule matching ∆ all whose conclusions Γ satisfy
(Γ, d∆ Γ) ∈ CG1 , i.e. g(CG1) = CG1 . Moreover, since all loops in G1 indefinitely postpone
some eventuality, no node with non-empty focus ever reaches one with empty focus, so
ĝ∅(CG1) = F . Since ĝ is monotone and (Γ1, {ψ1}) ∈ F , we obtain by induction over n that
(Γ1, {ψ1}) ∈ (ĝAG1

)n(CG1). To see (Γ3, d(Γ3)) = (Γ3, {ψ1}) ∈ EG2 , note that that starting
from Γ3, the single deferral ψ1 can be finished in finite time while staying in EG2 . This holds
because we can reach (Γ8, ∅) by branching to the left twice and (Γ8, ∅) ∈ EG2 , since the loop
through Γ5 does not contain any deferrals whose satisfaction is postponed indefinitely and
hence is contained in EG2 .

I Lemma 13. If G′ ⊆ G, then EG′ ⊆ EG and AG′ ⊆ AG.

I Lemma 14. Let G ⊆ N be fully expanded. Then EG = AG.

Our algorithm constructs a partial tableau, maintaining sets G,U ⊆ N of expanded and
unexpanded nodes, respectively. It computes EG, AG ⊆ CG in the propagation steps; as these
sets grow monotonically, they can be computed incrementally.
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Algorithm (Global caching). Decide satisfiability of a closed formula φ0.
1. (Initialization) Let G := ∅, Γ0 := {φ0}, U := {Γ0}.
2. (Expansion) Pick t ∈ U and let G := G ∪ {t}, U := (U − {t}) ∪ (

⋃
Cn(t)−G).

3. (Intermediate propagation) Optional: Compute EG and/or AG. If (Γ0, d(Γ0)) ∈ EG,
return ‘Yes’. If (Γ0, d(Γ0)) ∈ AG, return ‘No’.

4. If U 6= ∅, continue with Step 2.
5. (Final propagation) Compute EG. If (Γ0, d(Γ0)) ∈ EG, return ‘Yes’, else ‘No’.
Note that in Step 5, G is fully expanded. For purposes of the soundness proof, we note an
immediate consequence of Lemmas 13 and 14:

I Lemma 15. If some run of the algorithm without intermediate propagation steps is
successful on input φ0, then all runs on input φ0 are successful.

I Remark. For alternation-free fixpoint logics, the game-based approach (e.g. [14]) is to
(1.) define a nondeterministic co-Büchi automaton of size O(n) that recognizes unsuccessful
branches of the tableau. This automaton is then (2.) determinized to a deterministic
co-Büchi automaton of size 2O(n) (avoiding the Safra construction using instead the method
of [29]; here, alternation-freeness is crucial) and (3.) complemented to a deterministic Büchi
automaton of the same size that recognizes successful branches of the tableau. A Büchi game
is (4.) constructed as the product game of the carrier of the tableau and the carrier of the
Büchi automaton. This game is of size 2O(n) and can be (5.) solved in time 2O(n). Our global
caching algorithm integrates analogues of items (1.) to (5.) in one go: We directly construct
the Büchi game (thus replacing (1.) through (4.) by a single definition) step-by-step during
the computation of the sets E and A of (un)successful nodes as nested fixpoints of the proof
transitionals; the propagation step corresponds to (5.). Our algorithm allows for intermediate
propagation, corresponding to solving the Büchi game on-the-fly, i.e. before it has been fully
constructed.

4 Soundness, Completeness and Complexity

Soundness. Let φ0 be a satisfiable formula. By Lemma 15, it suffices to show that a run
without intermediate propagation is successful.

I Definition 16. For a formula ψ, we define ψX(φ) = ψ[X 7→ φ], ψ0
X = ⊥ and ψn+1

X =
ψX(ψnX). We say that a Kripke structure K is stabilizing if for each state x in K, each
µX.ψ, and each fixpoint-free context c(−) such that x |= c(µX.ψ), there is n ≥ 0 such that
x |= c(ψnX).

We note that finite Kripke structures are stabilizing and import the finite model property
(without requiring a bound on model size) for the µ-calculus from [26]; for the rest of the
section, we thus fix w.l.o.g. a stabilizing Kripke structure K = (W, (Ra)a∈A, π) satisfying the
target formula φ0 in some state.

I Definition 17 (Unfolding tree). Given a formula ψ, an unfolding tree t for ψ consists of
the syntax tree of ψ together with a natural number as additional label for each node that
represents a least fixpoint operator. We denote this number by t(κ, µX. φ) for an occurrence
of a fixpoint literal µX. φ at position κ ∈ {0, 1}∗ in ψ. We define the unfolding ψ(t) of ψ
according to an unfolding tree t for ψ by

X(t) = X (φ1 ∧ φ2)(t) = φ1(t1) ∧ φ2(t2) (µX. φ1)(t) = (φ1(t1))t(ε,µX. φ1)
X ,

where ti is the i-th child of the root of t, and similar clauses for 〈a〉, [a], ∨, and ν as for ∧.
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Given a formula ψ, we define the order <ψ on unfolding trees for ψ by lexically ordering the
lists of labels obtained by pre-order traversal of the syntax tree of ψ.

I Definition 18 (Unfolding). The unfolding of a formula ψ at a state x with x |= ψ is defined
as unf (ψ, x) = ψ(t), where t is the least unfolding tree for ψ (w.r.t. <ψ) such that x |= ψ(t)
(such a t exists by stabilization).

Note that in unfoldings, all least fixpoint literals µX. φ are replaced with finite iterates of φ.

I Theorem 19 (Soundness). The algorithm returns ‘Yes’ on input φ0 if φ0 is satisfiable.

Proof. (Sketch) We show that any node (Γ, d) that is constructed by the algorithm and
whose label is satisfied at some state x in K is successful, i.e. (Γ, d) ∈ EG; the proof is by
induction over the maximal modal depth of unf (δ, x) for δ ∈ d. J

Completeness. Assume that the algorithm answers ‘Yes’ on input φ0, having constructed
the set E := EG of successful nodes. Put D = {(Γ, d) ∈ E | Γ ∈ S}; note |D| ≤ |E| ≤ 3|φ0|.

I Definition 20 (Propositional entailment). For a finite set Ψ of formulas, we write
∧

Ψ for
the conjunction of the elements of Ψ. We say that Ψ propositionally entails a formula φ
(written Ψ `PL φ) if

∧
Ψ→ φ is a propositional tautology, where modal literals are treated as

propositional atoms and fixpoint literals ηX.φ are unfolded to φ(ηX.φ) (recall that fixpoint
operators are guarded).

I Definition 21. We denote the set of formulas in a node Γ that do not belong to an
eventuality θ by

N(Γ, θ) = {φ ∈ Γ | φ /∈ dfr(θ)}.

A set d of deferrals is sufficient for δ ∈ dfr(θ) at a node Γ, in symbols d `Γ δ, if d ∪N(Γ, θ) `PL
δ. We write `Γ δ to abbreviate ∅ `Γ δ.

I Definition 22 (Timed-out tableau). Let U ⊆ S× S and let L ⊆ U × U . We denote the set
of L-successors of v ∈ U by L(v) = {w | (v, w) ∈ L}. Let d be a set of deferrals. We put
to(∅, n) = U for all n (to for timeout). For d 6= ∅, we put to(d, 0) = ∅ and define to(d,m+ 1)
to be the set of of focused nodes (∆, d′) such that writing Cn(∆) = {Σ1, . . . ,Σn}, we have
L(∆, d′) = {(Γ1, d1), . . . , (Γn, dn)} where for each i there exists Γ ∈ Σi such that

Γi `PL
∧

Γ and di `Γi
d′∆ Γ, and

(Γi, di) ∈ to(d′′,m) for some d′′ ⊆ d(Γi) with d′′ `Γi d∆ Γ.
If for each focused node (Γ, d) ∈ U there is a number m such that (Γ, d) ∈ to(d(Γ),m), then
L is a timed-out tableau over U .

Roughly, to(d,m) can be understood as the set of all focused nodes in U that finish all deferrals
in d within m modal steps, i.e. with time-out m; this is similar to Kozen’s µ-counters [25].

I Lemma 23 (Tableau existence). There exists a timed-out tableau over D.

Proof sketch. Since D ⊆ EG, we can define L ⊆ D ×D in such a way that all paths in L
visit F (the set of nodes with empty focus) infinitely often, so every deferral contained in
some node in D will be focused by the unavoidable eventual refocusing; this new focus will
in turn eventually be finished so that L is a timed-out tableau. J

For the rest of the section, we fix a timed-out tableau L over D and define a Kripke structure
K = (D, (Ra)a∈A, π) by taking Ra(v) to be the set of focused nodes in L(v) whose label is
the conclusion of an (〈a〉)-rule that matches l(v) and by putting π(p) = {v ∈ D | p ∈ l(v)}.
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I Definition 24 (Pseudo-extension). The pseudo-extension [̂[φ]] of φ in D is

[̂[φ]] = {v ∈ D | l(v) `PL φ}.

I Lemma 25 (Truth). In the Kripke structure K, [̂[ψ]] ⊆ [[ψ]] for all ψ ∈ F.

Proof sketch. Induction on ψ, with an additional induction on time-outs in the case for
least fixpoint literals, exploiting alternation-freeness. J

I Corollary 26 (Completeness). If a run of the algorithm with input φ0 returns ‘Yes’, then
φ0 is satisfiable.

Proof sketch. Combine the existence lemma and the truth lemma to obtain a model over D.
Since ({φ0}, d({φ0})) ∈ E and [̂[φ0]] ⊆ [[φ0]], there is a focused node in D that satisfies φ0. J

As a by-product, our model construction yields

I Corollary 27. Every satisfiable alternation-free fixpoint formula φ0 has a model of size at
most 3|φ0|.

Thus we recover the bound of 2O(n) for the alternation-free relational µ-calculus, which
can be obtained, e.g., by carefully adapting results from [13] to the alternation-free case; for
the alternation-free fragment of the alternating-time µ-calculus, covered by the coalgebraic
generalization discussed next, the best previous bound appears to be nO(n) = 2O(n logn) [36].

Complexity. Our algorithm has optimal complexity (given that the problem is known to be
ExpTime-hard):

I Theorem 28. The global caching algorithm decides the satisfiability problem of the
alternation-free µ-calculus in ExpTime, more precisely in time 2O(n).

The Alternation-Free Coalgebraic µ-Calculus. Coalgebraic logic [6] serves as a unifying
framework for modal logics beyond standard relational semantics, subsuming systems with,
e.g., probabilistic, weighted, game-oriented, or preference-based behaviour under the concept
of coalgebras for a set functor F . All our results lift to the level of generality of the
(alternation-free) coalgebraic µ-calculus [5]; details are in a technical report at https:
//www8.cs.fau.de/hausmann/afgc.pdf. In consequence, our results apply also to the
alternation-free fragments of the alternating-time µ-calculus [1], probabilistic fixpoint logics,
and the monotone µ-calculus (the ambient fixpoint logic of Parikh’s game logic [32]), as all
these can be cast as instances of the coalgebraic µ-calculus.

5 Implementation and Benchmarking

The global caching algorithm has been implemented as an extension of the Coalgebraic On-
tology Logic Reasoner (COOL) [22], a generic reasoner for coalgebraic modal logics, available
at https://www8.cs.fau.de/research:software:cool. COOL achieves its genericity by
instantiating an abstract core reasoner that works for all coalgebraic logics to concrete in-
stances of logics; our global caching algorithm extends this core. Instance logics implemented
in COOL currently include relational, monotone, and alternating-time logics, as well as
any logics that arise as fusions thereof. In particular, this makes COOL, to our knowledge,
the only implemented reasoner for the alternation-free fragment of the alternating-time

https://www8.cs.fau.de/hausmann/afgc.pdf
https://www8.cs.fau.de/hausmann/afgc.pdf
https://www8.cs.fau.de/research:software:cool
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(a) Montali, n = 1 (satisfiable).
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(b) Montali, n = 1 (unsatisfiable).

Figure 1 Runtimes for the Montali-formulas.

Table 1 Runtimes (in s) for the Alternating Bit Protocol formulas

Type of formula COOL TreeTab GMUL MLSolverc BDDCTLc CTL-RPc
(i) <0.01 <0.01 <0.01 0.02 <0.01 0.02
(ii) 0.12 – 0.02 0.95 <0.01 0.15
(iii) 0.12 – 0.02 0.87 <0.01 0.16

µ-calculus (a tableau calculus for the sublogic ATL is prototypically implemented in the
TATL reasoner [8]) and the star-nesting free fragment of Parikh’s game logic.

Although our tool supports the full alternation-free µ-calculus, we concentrate on CTL
for experiments, as this appears to be the only candidate logic for which substantial sets of
benchmark formulas are available [19]. CTL reasoners can be broadly classified as being either
top-down, i.e. building graphs or tableaux by recursion over the formula, or bottom-up; the
two groups perform very differently [19]. We compare our implementation with the top-down
solvers TreeTab [15], GMUL [19], MLSolver [12] and the bottom-up solvers CTL-RP [37] and
BDDCTL [19]. Out of the top-down solvers, only TreeTab is single-pass like COOL; however,
TreeTab has suboptimal (doubly exponential) worst-case runtime. MLSolver supports the full
µ-calculus. For MLSolver, CTL-RP and BDDCTL, formulas have first been compacted [19].
All tests have been executed on a system with Intel Core i7 3.60GHz CPU with 16GB RAM,
and a stack limit of 512MB.

On the benchmark formulas of [19], COOL essentially performs similarly as the other
top-down tools, and closer to the better tools when substantial differences show up. As an
example, the runtimes of COOL, TreeTab, GMUL, MLSolver, CTL-RP, and BDDCTL on
the Montali-formulas [30, 19] are shown in Figure 1. To single out one more example, Table 1
shows the runtimes for the alternating bit protocol benchmark from [19]; COOL performs
closer to GMUL than to MLSolverc on these formulas.

This part of the evaluation may be summed up as saying that COOL performs well despite
being, at the moment, essentially unoptimized: the only heuristics currently implemented is
a simple-minded dependency of the frequency of intermediate propagation on the number of
unexpanded nodes.
In addition, we design two series of unsatisfiable benchmark formulas that have an exponen-
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(a) early(n, 4, 2) (unsatisfiable).
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(b) earlygc(n, 4, 2) (unsatisfiable).

Figure 2 Formulas with exponential search space and sub-exponential refutations.

tially large search space but allow for detection of unsatisfiability at an early stage. Recall
that in CTL we can express the statement ‘in the next step, the n-bit counter x represented
by the variables x1, . . . , xn will be incremented’ (with wraparound) as a formula c(x, n) of
polynomial size in n. We define unsatisfiable formulas early(n, j, k) that specify an n-bit
counter p with n bits and additionally branch after 2j steps (i.e. when pj holds) to start a
counter r with k bits which in turn forever postpones the eventuality EF p:

early(n, j, k) = startp ∧ init(p, n) ∧ init(r, k) ∧AG ((r → c(r, k)) ∧ (p→ c(p, n)))∧
AG ((

∧
0≤i≤j pi → EX(startr ∧ EF p)) ∧ ¬(p ∧ r) ∧ (r → AX r))

init(x,m) = AG ((startx → (x ∧
∧

0≤i<m ¬xi)) ∧ (x→ EX x)).

Note here that init uses x as a string argument; startx is an atom indicating the start of
counter x, and the atom x itself indicates that the counter x is running. The second series
of unsatisfiable formulas earlygc(n, j, k) is obtained by extending the formulas early(n, j, k)
with the additional requirement that a further counter q with n bits is started infinitely often,
but at most at every second step:

earlygc(n, j, k) = early(n, j, k) ∧ b ∧ init(q, n) ∧AG (¬(p ∧ q) ∧ ¬(q ∧ r) ∧ (q → c(q, n)))
∧ AG (AF b ∧ (b → (EX p ∧ EX startq ∧AX ¬b)))

Figure 2 shows the respective runtimes for these formulas. In all cases, COOL finishes before
the tableau is fully expanded, while GMUL and MLSolver will necessarily complete their
first pass before being able to decide the formulas, and hence exhibit exponential behaviour;
TreeTab seems not to benefit substantially from its capability to close tableaux early. For
the earlygc formulas, the ability to cache previously seen nodes appears to provide COOL
with additional advantages. The earlygc series can be converted into satisfiable formulas by
replacing AX with EX, with similar results.

Due to the apparent lack of benchmarking formulas for the alternation-free µ-calculus and
ATL, we compare runtimes on random formulas for these logics. For the alternation-free µ-
calculus, formulas were built from 250 random operators (where disjunction and conjunction
are twice as likely as the other operators). The experiment was conducted with formulas
over three and over ten propositional atoms, respectively. MLSolver ran out of memory on
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21% on the formulas over three atoms and on 16% of the formulas over ten atoms. COOL
answered all queries without exceeding memory restrictions, and in under one second for
all queries but one. Altogether, COOL was faster than MLSolver for more than 98% of the
random alternation-free formulas, with the median of the ratios of the runtimes being 0.0431
in favour of COOL for formulas over three atoms and 0.0833 for formulas over ten atoms
(recall however that MLSolver supports the full µ-calculus). For alternating-time temporal
logic ATL, we compared the runtimes of TATL and COOL on random formulas consisting of
50 random operators; COOL answered faster than TATL on all of the formulas, with the
median of the ratios of runtimes being 0.000668 in favour of COOL.

6 Conclusion

We have presented a tableau-based global caching algorithm of optimal (ExpTime) complexity
for satisfiability in the alternation-free coalgebraic µ-calculus; the algorithm instantiates to
the alternation-free fragments of e.g. the relational µ-calculus, the alternating-time µ-calculus
(AMC) and the serial monotone µ-calculus. Essentially, it simultaneously generates and
solves a deterministic Büchi game on-the-fly in a direct construction, in particular skipping
the determinization of co-Büchi automata; the correctness proof, however, is stand-alone.
We have generalized the 2O(n) bound on model size for alternation-free fixpoint formulas
from the relational case to the coalgebraic level of generality, in particular to the AMC.

We have implemented the algorithm as part of the generic solver COOL; the imple-
mentation shows promising performance for CTL, ATL and the alternation-free relational
µ-calculus. An extension of our global caching algorithm to the full µ-calculus would have
to integrate Safra-style determinization of Büchi automata [35] and solving of the resulting
parity game, both on-the-fly.
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