
Topological Self-Stabilization with Name-Passing
Process Calculi
Christina Rickmann1, Christoph Wagner2, Uwe Nestmann3, and
Stefan Schmid4

1 Technische Universität Berlin, Germany
c.rickmann@tu-berlin.de

2 Technische Universität Berlin, Germany
christoph.wagner@tu-berlin.de

3 Technische Universität Berlin, Germany
uwe.nestmann@tu-berlin.de

4 Aalborg University, Denmark
schmiste@cs.aau.dk

Abstract
Topological self-stabilization is the ability of a distributed system to have its nodes themselves es-
tablish a meaningful overlay network. Independent from the initial network topology, it converges
to the desired topology via forwarding, inserting, and deleting links to neighboring nodes.

We adapt a linearization algorithm, originally designed for a shared memory model, to asyn-
chronous message-passing. We use an extended localized π-calculus to model the algorithm and
to formally prove its essential self-stabilization properties: closure and weak convergence for every
arbitrary initial configuration, and strong convergence for restricted cases.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.3.1 Specify-
ing and Verifying and Reasoning about Programs

Keywords and phrases Distributed Algorithms, Fault Tolerance, Topological Self-Stabilization,
Linearization, Process Calculi

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.19

1 Introduction and Technical Preliminaries

Distributed algorithms are designed to be executed on networked hardware consisting of
several connected processes like computers, processors or threads [7]. With the importance
of distributed algorithms and the increasing complexity, the need for robust, error-prone
solutions rises. The field of self-stabilization [5] offers such fault tolerance. We adapt the
algorithm of [4] to a more realistic setting, i.e., we are using a local memory model with
asynchronous message-passing opposed to the shared memory model of [4]. Based on an
adapted version of the localized π-calculus [8], we formalize the algorithm and use methods
similar to [3, 12] to prove it correct.

The approach of self-stabilizing systems was first introduced by [2]. According to [3],
the idea of a self-stabilizing system is simply as follows: when started in an arbitrary state
it always converges to a desired state. This leads to the ability to tolerate any transient
fault, including process crash with recovery, transmission errors like loss or corruption, and
corrupted random-access memory. A transient fault is any event that may changes the state
of the system, but not its behavior i.e., the program code. The state after the end of the
last fault can be considered as a new initial state and the system must recover if no new

© Christina Rickmann, Christoph Wagner, Uwe Nestmann, and Stefan Schmid;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 19; pp. 19:1–19:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Topological Self-Stabilization with Name-Passing Process Calculi

faults occur for a sufficiently long period of time. Another characteristic of self-stabilizing
algorithms is that they must not terminate [3] and processes must continuously communicate
with neighboring nodes. As a consequence, the participating processes can not know whether
the system is stabilized (i.e., is in a correct configuration). Dolev defines a self-stabilizing
system in [3] as follows:

I Definition 1 (Self-Stabilizing System). A self-stabilizing system can be started in any
arbitrary configuration and will eventually exhibit a desired “legal” behavior. We define the
desired legal behavior by a set of legal executions denoted LE . A set of legal executions
is defined for a particular system and a particular task. Every system execution of a self-
stabilizing system should have a suffix that appears in LE. A configuration c is safe with
respect to a task LE and an algorithm if every fair execution of the algorithm that starts from
c belongs to LE (closure). An algorithm is self-stabilizing for a task LE if every fair execution
of the algorithm reaches a safe configuration with respect to LE ([strong] convergence).

According to [3], so-called potential functions are a classic approach to prove convergence.
The idea is to define a function over the configuration set and to prove that this function
monotonically decreases (or increases) with every executed step. Additionally, it has to be
shown that after the function reaches a certain threshold, the system is in a safe configuration.
Since the closure property states that every step from a safe or correct configuration leads
again to a correct configuration, closure is usually proven through invariants. An easier to
achieve and easier to prove property is weak stabilization. According to [6], a system is
weakly stabilizing if for every initial configuration there is an execution that reaches a safe
or correct configuration. This property is called weak convergence.

Topological self-stabilization describes a particular class of self-stabilizing systems. The
goal is that the nodes themselves establish a meaningful overlay network, independent from
the initial network topology, via forwarding, inserting, and deleting links to neighboring
nodes. One of such desired network topologies is a chain. Given a fixed set of nodes V with
unique identifiers (ids) and a total order (≤), the goal is to build an ordered list of the nodes
according to their ids. Hence, the (undirected) linear/chain graph GL = (V,EL) is defined as
{u, v} ∈ EL iff u = succ(v)∨ v = succ(u) (where succ(v) defines the ≤-next id after v). Since
the successor of any node is (if existent) uniquely defined, the linear graph is also unique for
a given node set V . According to [4], a linearization algorithm is defined as follows:

I Definition 2 (Linearization). A linearization algorithm is a distributed self-stabilizing
algorithm where an initial configuration forms any (undirected) connected graph G0 = (V,E0),
the only legal configuration is the linear topology GL = (V,EL) on the nodes V , and actions
only update the neighborhoods of the nodes.

Gall et al. introduce in [4] two variants of a self-stabilizing algorithm for graph linearization,
named LINall and LINmax . Both are based on the idea that whenever a node has two
neighbors, both of which have a smaller (or both a greater) id, it establishes a link between
them and deletes its link to the smaller (respectively greater) one. These steps are called
left and right linearization and are depicted in Figure 1. The variants of the algorithm only
differ in which linearization steps are enabled.

The algorithm only works in a setting where all nodes have write access to the whole
memory as the shared variables are written not only by the nodes themselves but also by their
neighbors. Such a shared memory model does not seem a good match for distributed systems
like peer-to-peer systems, which usually rely on message-passing, and where communication
links may be asymmetric. We redesigned and modelled the algorithm for an asynchronous

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:3

uvw

(a) Left Linearization.

u v w

(b) Right Linearization.

Figure 1 Linearization steps.

message-passing system. Our algorithm corresponds to the LINall variant, but it would be
equally possible—with a small adjustment—to implement LINmax .

In order to prevent a faulty design of an algorithm and to confirm the correctness of proofs
the usage of formal methods is imperative. The π-calculus is a well-known and widely-used
process calculus to model concurrent and distributed systems. According to [9] it is designed
to naturally express processes with a changing link infrastructure, as the communication
between processes carries information that leads to a change in the linkage of processes. We
model our algorithm in an extension of the localized π-calculus [8], a distributable variant [1]
of the π-calculus [11]. We extend the calculus with data (similar to [12]) in order to explicitly
keep track of the neighbors of each node and thus of the systems topology. Each node can
receive messages via a channel with the same name as its own id. To enable a neighboring
node to communicate with another neighbor it is sufficient to send it the corresponding id.
We prove the self-stabilization properties closure, weak convergence, and restricted cases of
strong convergence utilizing state-based reasoning rather than an action-based style (cf. [12]).

Related Work. Self-stabilization in the context of distributed computing was first introduced
by [2]. The fundamentals of topological self-stabilization and linearization for this work
originated in [4], which is also the foundation for the algorithm and the main idea of the
proofs. The basics in designing a self-stabilizing algorithm and main proof techniques, as well
as a general introduction and overview can be found in [3]. We used an extended localized
π-calculus to model our algorithm in an unambiguous way and as a formal basis for proofs.
Self-stabilization does not offer masking fault tolerance, i.e., it does not ensure liveness and
safety of the whole system, but it still ensures liveness, hence nonmasking fault tolerance.
Even though masking fault tolerance is strictly stronger than nonmasking, it might not always
be achievable or too costly [5], making nonmasking fault tolerance—thus self-stabilizing
algorithms—a good alternative. The basic localized π-calculus is due to [8] and extended in
a way similar to [12]. Furthermore, we introduce standard forms for reachable states—again
based on ideas from [12], and inspired by [9]—which enables us to explicitly and structurally
keep track of the global state and therefore the topology of the system.

Contributions and Overview. We adapt a self-stabilizing algorithm for graph linearization:
whereas the original algorithm works only in a very restrictive shared memory model, our
algorithm is applicable in a completely asynchronous message-passing system.

We formally prove the closure property, i.e., if the system reaches a correct configuration, it
stays in a correct configuration if no fault occurs. Furthermore, we prove strong convergence
for restricted cases. Assume an initial configuration that is connected while taking the
messages in transit into account. Strong convergence holds whenever every process knows,
first, at most its desired neighbors, and second, at least its desired neighbors. For the general
case, i.e., an arbitrary connected initial configuration, we prove weak convergence. With
strong convergence for the corner cases and weak convergence in general, we have all essentials
for proving strong convergence in general. Approaches are discussed in [10].

CONCUR 2016

19:4 Topological Self-Stabilization with Name-Passing Process Calculi

1 2 3 4 5

Figure 2 Desired network topology, whereby the nodes are ordered according to their ids.

First, we introduce our model (Section 2) and the redesigned algorithm for asynchronous
message-passing (Section 3). Then, we present selected proven properties (Section 4); the
complete proofs can be found in [10]. Finally, we summarize our approach and hint at future
work (Section 5).

2 Model for Asynchronous Message-Passing

We assume n processes in the system and every process has a unique id. To be as general as
possible, we only assume the existence of a total order on these ids.

I Assumption (Ids). Every process has a unique constant id.

I Definition 3 (Process identifiers P). Let P be the (non-empty) finite set of unique identifiers
of the processes in the system. Let ≤ be a total order on P. Let |P| = n ∈ N then there
exists an index function (bijection) i : P → {1, . . . , n} and ∀p ∈ P.i(p) = |{q ∈ P|q ≤ p}| i.e.,
i(p) describes the position of p with respect to ≤.

We define the predecessor and the successor pred, succ : P → (P ∪ ⊥) of a process as
respectively the next smaller and next greater process according to the total order (and ⊥ if
there is none). We call such a pair of processes consecutive. The overlay network that the
processes (represented as nodes) shall establish is an ordered doubly-linked list according to
the total order on the ids (example depicted in Figure 2). Every process has an unidirectional
link (represented as edge) to its predecessor and its successor (with exception of the smallest
resp. greatest process) and there are no other links. We call this topology the (directed)
linear graph. The undirected linear graph is the undirected variant. Here, for every pair of
consecutive processes at least one of them has a link to the other one.

I Definition 4 (Desired Topology Graph). The (directed) linear graph GLIN = (P, E) is
defined as E = {(p, q)|p, q ∈ P ∧ (p = succ(q) ∨ q = succ(p))} and the undirected ULIN is
defined accordingly.

The distance dist : P×P → N is the number of nodes between the two processes according
to the total order. A process has a distance of zero to itself and the distance between a pair
of consecutive processes is one. The length of a (directed or undirected) edge is defined as
the distance between the connected nodes.

Extended Localized Pi-Calculus. To model the algorithm, we introduce an extension of
the name-passing localized π-calculus, the extended localized π-calculus eLπ =

〈
PeL, 7−→

〉
.

The extension is based on ideas similar to [12], which allows us to define a kind of standard
form for a configuration of our algorithm. The local state of all processes and the messages in
transit, and therefore the global state of the system, is directly accessible via the parameters
of the corresponding process definition. This in turn allows state-based proofs, which is more
traditional for distributed algorithms [7], instead of the action-based style of process calculi.

I Notation (Multisets). Let a, b, c ∈ S be arbitrary elements of an arbitrary set S. We denote
with M = {|a, a, b, c|} a multiset and use NS as the type of such a set. Furthermore, the

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:5

union ∪ of two multisets is the multiset where all appearances of elements in both are added
and the difference \ is the multiset where all appearances of elements in the first multiset
are decreased by those in the second (but at least zero). Since sets are only special cases
with multiplicity one for all elements, we also use combinations of sets and multisets.

We assume the existence of a countably infinite set A containing all channel names,
function names, and variables. K(X) denotes a parameterized process constant, which is
defined with respect to a finite set of process equations D of the form {Kj(X) = Pj}j∈J .
Since we use parameterized process constants, we exclude replication and use instead recursion
via process definitions to model repetitive behavior.

I Definition 5 (Syntax of the extended Localized π-Calculus: PeL).

Data Values V v ::= ⊥ | 0 | 1 | c | (v, v) | {v, . . . , v} |
{|v, . . . , v|}, with c ∈ A

Variable Pattern X ::= x | (X,X) , with x ∈ A
Expressions e ::= v | X | (e, e) | f (e) , with f ∈ A
Processes P P ::= 0 | P | P | c(X) .P | c〈v〉 | (νc)P |

if e then P else P | let X = e in P | K(e)
Process Equations D ={Kj(X) = Pj}j∈J a finite set of process definitions

where in c(X) .P every variable x that appears in X may not occur free in P in input
position.

Names received as an input and restricted names are bound names. The remaining names
are free names. Accordingly, we assume three sets, the sets of names n(P) and its subsets
of free names fn(P) and bound names bn(P), with each term P . To avoid name capture or
clashes, i.e., to avoid confusion between free and bound names or different bound names,
bound names can be mapped to fresh names by α-conversion. We write P ≡α Q if P
and Q differ only by α-conversion. The substitution of value v for a variable pattern X in
expression e or process P is written {v/X}e and {v/X}P respectively. Note that only data
values can be substituted for names and that all variables of the pattern X must be free in P
(while possibly applying α-conversion to avoid capture or name clashes). Let [[e]] denote the
evaluation of expression e which allows results in a data value, defined in the standard way.

I Definition 6 (Structural Congruence for the Localized π-Calculus). The structural congruence
for the extended localized π-calculus is based on the structural congruence for the π-calculus:
P ≡ Q if P ≡α Q P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R (νn) 0 ≡ 0

P | (νn)Q ≡ (νn) (P | Q) , if n /∈ fn(P) (νn) (νm)P ≡ (νm) (νn)P
if e then P else Q ≡ P, if [[e]] = 1 if e then P else Q ≡ Q if [[e]] = 0

let X = e in P ≡ {[[e]]/X}P K(e) ≡ {[[e]]/X}P if (K(X) = P) ∈ D

We are only interested in the interaction between the processes and not with any further
environment. Therefore, we only present a reduction semantics for our extended localized
π-calculus, based on the reduction semantics of the π-calculus.

I Definition 7 (Reduction Semantics of the extended Localized π-Calculus: 7−→). Defined as:

comm:
c(X).P | c〈v〉 7−→ {v/X}P

P ≡ Q Q 7−→ Q′ Q′ ≡ P ′
struct:

P 7−→ P ′

P 7−→ P ′res:
(νc)P 7−→ (νc)P ′

P 7−→ P ′par:
P | Q 7−→ P ′ | Q

CONCUR 2016

19:6 Topological Self-Stabilization with Name-Passing Process Calculi

I Definition 8 (Steps). We call a single application of this reduction semantics, P 7−→ P ′, a
step and write p=⇒ for the reflexive and transitive closure of 7−→. We use execution to refer
to a reduction starting from a particular term.

Every structural extension like function calls, if-then-else-statements, and let-in-statements
are evaluated in the structural congruence. The evaluation of these constructs is not considered
a step on its own. Hence, internal computations are executed as parts of other steps.

The fault tolerance of self-stabilization is based on the property that the initial state
can be arbitrarily. It is sufficient to show that every arbitrary state can serve as an initial
state to ensure this form of fault tolerance since the state after every fault can be seen as
a new initial state. Thus, we assume for the proofs as usual that there are no faults. An
infinite message delay can be seen as message loss. Therefore, every message that is sent is
received after finite time. Since the message-passing model is asynchronous, there are no
further assumptions regarding the delivery time of messages.

I Assumption (No Message Loss). Every message is received after a finite but arbitrary
number of steps.

Furthermore, we need an assumption of fairness, as otherwise nodes could starve. A
process starves if it never executes a step. Furthermore, a subprocess of a node could starve,
e.g. if the process is only consuming messages, but never tries to find a linearization step
itself. Without a fairness assumption, it is not possible to show any progress in the system.

I Assumption (Fairness). Every continuously enabled subprocess will eventually (after an
arbitrary but finite number of steps) execute a step.

3 Linearization Algorithm for Asynchronous Message-Passing

The utilization of a calculus enables us to model the algorithm unambiguously and allows us
to formally prove properties of the algorithm. Although in the calculus itself all channels
are bidirectional, we only use them in an unidirectional manner. Together with the output-
capability restriction of the localized π-calculus this helps us to ensure that every process
can be implemented in an asynchronous setting on a different location [1].

Each node can receive messages from other nodes via a channel with the same name as
its id. One could think of the ids as serving as the IP address of the corresponding process.
To enable a neighbor to communicate with another process, one sends it the corresponding
id. Thus, A contains the ids of all processes in the system i.e., P ⊆ A.

To model local variables, we use restricted channels for every process. Each variable
is represented through a message in transit that only can be sent and received by the
corresponding process. The value of such a local variable is modeled by the value of the
matching message in transit. Thus, receiving the message corresponds to reading the variable
and sending corresponds to writing. In our algorithm, every process p has one local variable
nbp, describing the neighborhood of the process i.e., it contains the ids of all processes that p
knows and can send messages to.

Each process can be in one of two states. In the state Alg (p, nb) the process p is able to
receive a message from another process in the system. In the state Alg′ (p, nb, x) the process
p can add a previously received process id x to its current neighborhood nb. In doing so,
a process blocks the reception of messages until the the previously received id is added to
the neighborhood. In both states, the process can additionally try to find a linearization
step in its current neighborhood nb based on internal computations. If it finds no possible
linearization step, it sends keep-alive-messages to its current neighbors.

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:7

uvw

(a) Directed Left Linearization.

u v w

(b) Directed Right Linearization.

Figure 3 Directed linearization steps.

In the algorithm, LeftN : P × 2P → 2P calculates the left neighborhood of a process
i.e., all neighbors with a smaller id and corresponding RightN : P × 2P → 2P the right
neighborhood of a process i.e., all neighbors with a greater id. findLin : P × 2P×P → 2P×P
calculates all possible linearization steps in the neighborhood of a process, based on the input
set: findLin (p, y) = {(q, r)|q, r ∈ y ∧ q < r ∧ (q, r ∈ LeftN (p, y) ∨ RightN (p, y))}.
The function select : 2P×P → (P × P) returns one arbitrary of these linearization steps.

I Definition 9 (Subprocesses). For every process p ∈ P we denote Algmatch (p) ,Algrec (p),
and Algadd (p, ·) as subprocesses of p. Note that all subprocess are input guarded.

Alg (p, initNb) = (νnbp)
(
nbp〈initNb〉 | Algrec (p) | Algmatch (p)

)
Alg′ (p, initNb, x) = (νnbp)

(
nbp〈initNb〉 | Algadd (p, x) | Algmatch (p)

)
Algrec (p) = p(x) .Algadd (p, x) Algadd (p, x) = nbp(y) .

(
nbp〈y ∪ {x}〉 | Algrec (p)

)
Algmatch (p) = nbp(y) .

(
let x = select (findLin (p, y)) in

if x = ⊥ then
∏
j∈y

j〈p〉 | nbp〈y〉

else if x = (j, k) then
if j < k ∧ k < p then j〈k〉 | nbp〈y \ {j}〉
else if j < k ∧ p < j then k〈j〉 | nbp〈y \ {k}〉

else nbp〈y〉
else nbp〈y〉

| Algmatch (p)
)

The subprocess Algrec (p) models the ability of a process to receive a message. When it
receives a message with content x, it continues as subprocess Algadd (p, x), thus the process
changes its state. Algadd (p, x) reads the current value of the neighborhood of p and adds the
previous received process id x. Afterwards, the process is again able to receive any message.

The subprocess Algmatch (p) defines the behavior, based on the internal computations
of findLin (p, nb), in case process p tries to find a linearization step in its neighborhood
nb. If there is no possible linearization step, select returns ⊥ and the process sends keep-
-alive-messages to its current neighbors. In case select returns a tuple, it defines a left or
right linearization step respectively and p sends the further away process the id of the other
process and deletes the receiver from its neighborhood (as depicted in Figure 3). The other
two else cases are only implemented to obtain a complete case distinction. It is ensured by
the definitions that these branches are never explored. The sending of the message nbp〈y〉
ensures that, if there would be a possibility to explore these branches, nothing changes. The
same value that was read in the previous step (i.e., received by the nbp(y) message) is written
(i.e., sent) again and therefore the neighborhood remains unchanged. In all cases, the process
is directly able to try to find another linearization step.

CONCUR 2016

19:8 Topological Self-Stabilization with Name-Passing Process Calculi

The system is composed of n such processes. The global states that serve as starting
points for the executions of our algorithm are called initial configurations. Later we show
that every global state can serve as such a starting point as required for self-stabilization.

I Definition 10 (Initial Configuration). Let
P be the set of unique identifiers and P, P ′ ⊆ P with P ∪ P ′ = P and P ∩ P ′ = ∅,
init : P → 2P a function that defines for every process p ∈ P the neighborhood i.e.,
which process ids are known by p,
Msgs ∈ NP×P a multiset that describes the messages in transit and
add : P ⇀ P a partial function with ∀p ∈ P ′.∃q ∈ P.(p, q) ∈ add and ∀p ∈ P.∀q ∈
P.(p, q) /∈ add that describes the adding in progress i.e., where add(p) = q describes that
p wants to add q to its neighborhood.

Then, an initial configuration of the algorithm is defined as the process term:

Algall (P, P ′, init,Msgs, add) =
∏
j∈P

Alg (j, init(j)) |
∏
j∈P ′

Alg′ (j, init(j), add(j)) |
∏

(j,k)∈Msgs

j〈k〉

In an initial configuration there is for every process p ∈ P exactly one nbp〈·〉-message.
This message can not be lost or duplicated through a previous fault as it models a variable.
A transient fault can lead to an arbitrary value of a variable but not to its disappearance or
duplication. This does not restrict the fault tolerance of the algorithm. Self-stabilization
tolerates transient faults but no permanent ones. The disappearance or duplication of a
variable could only be caused by corruption of the program code itself which would be a
permanent fault. The value of this message can be an arbitrary set of P (without p itself),
reflecting the arbitrary initial neighborhood of p. These messages of all processes describe the
initial network topology. A configuration describes the global state of the system, consisting
of the states of all processes and messages in transit.

I Definition 11 (Configuration). Let I be the set of all initial configurations. We call
every process term C that can be reached from any arbitrary initial configuration, i.e.,
∃I ∈ I.I p=⇒ C, configuration. We denote the set of all such configurations with T .

I Definition 12 (Reachability). We call a configuration C ′ reachable from a configuration C
iff C p=⇒ C ′. Further, we say a configuration with a predicate P is reached from configuration
C iff in every execution there is a configuration C ′ with C p=⇒ C ′ and P holds for C ′.

For every configuration C there are parameters with the same properties as in Definition 10
so that C is structurally equivalent to Algall (·, ·, ·, ·, ·). We call Algall (·, ·, ·, ·, ·) the standard
form of a configuration and use it as representative of all structurally equivalent configurations.
Therefore, every configuration is structurally equivalent to an initial configuration.

I Lemma 13 (Standard form). Starting from an arbitrary initial configuration every reachable
configuration is structurally equivalent to a term Algall (P, P ′,nb,Msgs, add) whereby P, P ′ ⊆
P with P ∪ P ′ = P and P ∩ P ′ = ∅, nb : P → 2P is a function that defines for every process
p ∈ P the neighborhood, Msgs ∈ NP×P is the multiset of messages in transit, add : P ⇀ P
is a partial function with ∀p ∈ P ′.∃q ∈ P.(p, q) ∈ add and ∀p ∈ P.∀q ∈ P.(p, q) /∈ add.

I Notation (Configuration Components). Let A be an arbitrary configuration then there are
parameters P, P ′, nb, Msgs, add with A ≡ Algall (P, P ′,nb,Msgs, add) and we denote in
the following : PA = P, P ′A = P ′, nbA = nb, MsgsA = Msgs and addA = add.

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:9

u v w

(a) Topology without Messages.

u v w

(b) Topology with Messages.

Figure 4 Topology with and without messages whereby solid lines represent the edges.

I Corollary 14 (Steps). For every configuration A there are always exactly the following
steps (up to structural congruence) possible:
∀p ∈ P.select (findLin (p, nbA(p))) = ⊥ =⇒

A 7−→ Algall (PA, P ′A,nbA,MsgsA ∪ {(j, p)|j ∈ nbA(p)}, addA)
∀p ∈ P.select (findLin (p, nbA(p))) = (j, k) ∧ (j < k ∧ k < p) =⇒ A 7−→ A′ with

A′ ≡ Algall (PA, P ′A,nb,MsgsA ∪ {(j, k)}, addA) and nb(x) =
{
nbA(x), if x 6= p

nbA(p) \ {j}, if x = p

∀p ∈ P.select (findLin (p, nbA(p))) = (j, k) ∧ (j < k ∧ p < j) =⇒ A 7−→ A′ with

A′ ≡ Algall (PA, P ′A,nb,MsgsA ∪ {(k, j)}, addA) and nb(x) =
{
nbA(x), if x 6= p

nbA(p) \ {k}, if x = p

∀p ∈ P.if select (findLin (p, nbA(p))) does not match any previous case =⇒ A 7−→ A

∀p ∈ PA.∃q ∈ P.(p, q) ∈ MsgsA =⇒
A 7−→ Algall (PA \ {p}, P ′A ∪ {p},nbA,MsgsA \ {(p, q)}, addA ∪ {(p, q)})

∀p ∈ P ′A.∃q ∈ P.(p, q) ∈ addA∧ A 7−→ A′ with nb(x) =
{
nbA(x), if x 6= p

nbA(p) ∪ {q}, if x = p
and

A′ ≡ Algall (PA ∪ {p}, P ′A \ {p},nb,MsgsA, addA \ {(p, q)})

Topology of Configuration. The system is in a legal state i.e., correct configuration, if the
network topology of the system is the desired one, i.e., the linear graph. Thus, we need to
define the network topology of a configuration. The network topology graph of a configuration
describes to whom each process can send messages directly and therefore corresponds to the
neighborhood sets of all processes. To define the several cases in which strong convergence
holds and lower the preconditions as much as possible, we introduce variants of the network
topology of a configuration. They differ in whether we regard the direction of edges, and if
we take messages in transit into account or not. The network topology graphs with messages
describe the neighborhoods if all current messages in transit were received and processed
(depicted in Figure 4). This variant of the topology is, for example, also needed to define a
correct configuration. It is not enough that the current topology corresponds to the linear
graph, it also has to be ensured that no undesired connection will be established through a
message in transit.

I Notation (Topology (without messages)). In figures of the topology graph without messages
a solid line represents a process in the neighborhood, a dotted line a message in transit, and
a dashed line an adding in progress, i.e., an id that is already received but not yet added to
the neighborhood. In the topology graph with messages these are all defined as edges and
represented through a solid line.

I Definition 15 (Network Topology Graph (without Messages)). Let A be an arbitrary
configuration. The (directed) topology graph (without messages) T(A) = (P, E) is defined as:
E = {(p, q)|p, q ∈ P ∧ q ∈ nbA(p)}

CONCUR 2016

19:10 Topological Self-Stabilization with Name-Passing Process Calculi

1 2 3 4 5

Figure 5 Topology of an undirected correct configuration.

I Definition 16 (Network Topology Graph with Messages). Let A be an arbitrary configuration.
The (directed) topology graph with messages TM (A) = (P, E) is defined as: E = {(p, q)|p, q ∈
P ∧ (q ∈ nbA(p) ∨ (p, q) ∈ MsgsA ∨ addA(p) = q)}.

The undirected variants, i.e., the undirected topology graph U(A) and the undirected
topology graph with messages UM (A), are defined correspondingly.
I Notation (Topology Graph Components). Let A be an arbitrary configuration, we introduce
ET(A),ETM (A),EU(A) and EUM (A) to denote the edges of the different topology graphs
T(A) = (P, E), TM (A) = (P, E′), U(A) = (P, E′′) and UM (A) = (P, E′′′), i.e., we denote
in the following: ET(A) = E, ETM (A) = E′, EU(A) = E′′ and EUM (A) = E′′′.

If the topology graph with messages of the initial configuration is weakly connected, the
topology graph with messages of all reachable configurations is weakly connected. The only
steps that remove edges are linearization steps. If a process executes a linearization step, the
removed edge can be simulated by the introduced edge and the edge to the other neighbor of
the executing process. Thus, linearization can not result in partitioning the network.

I Lemma 17 (Connectivity). Let A0 be an initial configuration and A an arbitrary reachable
configuration. Then, it holds that if UM (A0) is connected, also UM (A) is connected.

Correct Configuration. A configuration is correct if every process knows only its consecutive
processes. To ensure that no other connections will be established, it must also hold that every
message in transit contains the id of a consecutive process of the receiver. Thus, the network
topology with and without messages must be the desired linear graph. With exception of the
number of these messages and the state of the processes, the correct configuration is unique.

I Definition 18 (Correct Configuration). Let A be an arbitrary configuration. A is a correct
configuration iff TM (A) = GLIN ∧ T(A) = GLIN

I Lemma 19 (Uniqueness, Directed Case). The correct configuration is unique up to structural
congruence, the number of messages in the system and the state of the processes.

A weaker property is described by an undirected correct configuration. Here, we only
demand that the undirected topology with message must be the undirected linear graph (as
depicted in Figure 5). Hence, the neighborhood of each process is a subset of its consecutive
processes and the messages in transit must satisfy the same requirement as before. To ensure
connectivity, between each pair of consecutive processes there must be at least one connection
while taking the messages in transit into account. Similarly to a correct configuration, an
undirected configuration is uniquely defined with exception of the number of messages, the
state of a process, and the type of the connection between a consecutive pair of processes.

I Definition 20 (Undirected Correct Configuration). Let A be an arbitrary configuration. A
is an undirected correct configuration iff UM (A) = ULIN

I Lemma 21 (Uniqueness, Undirected Case). The undirected correct configuration is unique
up to structural congruence, the number of messages in the system, the state of the processes,
and the type of connections.

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:11

4 Results

We want to prove the algorithm correct. In order to show that the algorithm is self-stabilizing,
we have to prove convergence and closure (Definition 1). To be a linearization algorithm
according to Definition 2, the system is in a legal state if and only if the topology is the
linear graph. The complete proofs together with all omitted results can be found in [10].

Closure. Several closure properties are based on two facts: every process may only remove
processes from its own neighborhood and a process never removes the id of a desired neighbor
i.e., its predecessor and successor. Further, if every process knows only (a subset of) desired
neighbors, there are no more possible linearization steps in the system. All processes only
send and receive keep-alive-messages to and from desired neighbors respectively.

The only steps that remove edges i.e., ids from the neighborhood, are linearization
steps. Whenever a process does not execute any linearization steps, its neighborhood can be
expanded by reception of messages but not shrink.

If a process executes a linearization step it never removes a correct neighbor as it always
removes the process that is further away. Thus, if a process knows a correct neighbor, it
remains in the neighborhood for every reachable configuration. It follows directly that in the
directed and undirected topology without messages edges between consecutive neighbors are
preserved.

I Corollary 22 (Preservation of Correct Edges). Let A be an arbitrary configuration. For every
reachable configuration R i.e., A p=⇒ R, it holds: ∀p ∈ P.∀p′ ∈ {succ(p),pred(p)}.(p, p′) ∈
ET(A) =⇒ (p, p′) ∈ ET(R) and ∀p ∈ P.{p, succ(p)} ∈ EU(A) =⇒ {p, succ(p)} ∈ EU(R)

This preservation holds further for correct edges in the topologies with messages. Every
id carried by a messages cannot get lost and is received and processed eventually. Therefore,
also edges between desired neighbors that represent adding or messages are preserved.

I Lemma 23 (Preservation of Correct Edges with Messages). Let A be an arbitrary configu-
ration. For every reachable configuration R holds: ∀p ∈ P.∀p′ ∈ {succ(p),pred(p)}.(p, p′) ∈
ETM (A) =⇒ (p, p′) ∈ ETM (R) and ∀p ∈ P.{p, succ(p)} ∈ EUM (A) =⇒ {p, succ(p)} ∈ EUM (R).

The topology of a configuration contains the desired topology i.e., the linear graph is a
subgraph, if every correct edge is already established but possibly undesired edges are still
existent in addition. Since every correct edge is always preserved, this property is invariant.

I Corollary 24 (Closure for TM ⊆ GLIN ∧ T ⊆ GLIN). If A is a configuration with GLIN ⊆
TM (A) ∧ GLIN ⊆ T(A) it holds for every reachable configuration R i.e., A p=⇒ R, that
GLIN ⊆ TM (R) ∧ GLIN ⊆ T(R).

In the topology of an undirected correct configuration every edge is correct but there may
be correct edges missing. Through preservation of correct edges this property is invariant.
Each configuration that is reachable from an undirected correct configuration is itself an
undirected correct configuration. Further, none already established correct edge has been
removed.

I Lemma 25 (Closure for Undirected Correct Configuration). Let A be an arbitrary undirected
correct configuration. It holds for every reachable configuration C i.e., A p=⇒ C, that C is
also an undirected correct configuration.

CONCUR 2016

19:12 Topological Self-Stabilization with Name-Passing Process Calculi

The topology is the linear graph if and only if the configuration is a correct configuration
as in Definition 18. Closure states once a correct configuration is reached, provided no fault
occurs, the system stays in a correct configuration.

I Theorem 26 (Closure for Correct Configurations). Let A be a correct configuration then it
holds for every reachable configuration C i.e., A p=⇒ C, that C is also a correct configuration.

Convergence We prove strong convergence for restricted cases and weak convergence in
general. Strong convergence is proven if either there are possibly correct edges missing but no
non-correct edges existent in the topology with messages i.e., the topology is a subgraph of
the linear graph, or there are possibly still non-correct edges but at least all correct edges are
contained in the topology with messages i.e., the linear graph is a subgraph of the topology.

If there are only correct edges missing, there is at least one connection between every pair
of consecutive processes. No more possible linearization steps exist and every process sends
keep-alive-messages to the current known subset of desired neighbors. All these messages are
received and processed eventually and all missing correct edges are eventually established.

I Lemma 27 (Convergence for UM = ULIN). Let A be an arbitrary configuration. If the
undirected network topology with messages is the desired undirected topology i.e., UM (A) =
ULIN, then a correct configuration C is reached after a finite number of steps i.e., A p=⇒
C ∧ TM (C) = GLIN ∧ T(C) = GLIN.

If there are possibly still undesired edges in the topology but at least all correct edges are
established, the only processes that can send keep-alive-messages are processes that only know
their desired neighbors. Every process knows at least its desired neighbors and whenever a
process has additional neighbors, there is a linearization step. With every linearization step
the topology gets closer to the desired topology which is shown via a potential function.

I Lemma 28 (Convergence for GLIN ⊆ TM ∧ GLIN ⊆ T). Let A be an arbitrary configuration.
If GLIN ⊆ TM (A) ∧ GLIN ⊆ T(A), then a correct configuration C is reached after a finite
number of steps i.e., A p=⇒ C ∧ TM (C) = GLIN ∧ T(C) = GLIN.

Convergence also holds if the desired topology is a subgraph of the topology with messages.
Since every message that is in transit will eventually be received and processed, we always
reach a configuration with the linear graph as a subgraph of the topology without messages.

I Lemma 29 (Convergence for GLIN ⊆ TM). Let A be an arbitrary configuration. If GLIN ⊆
TM (A), then a correct configuration C is reached after a finite number of steps i.e., A p=⇒
C ∧ TM (C) = GLIN ∧ T(C) = GLIN.

The proofs use the fact that keep-alive-messages are only exchanged between desired
neighbors. Proving strong convergence in general is much more difficult as the sending
of keep-alive-messages to undesired neighbors can cause the reestablishing of undesired
connections. Therefore, we show weak convergence i.e., for every initial configuration there
are executions that converge to a correct configuration. For this, we define a perfect oracle.
It cannot be implemented and should only be seen as a restriction on the set of executions.

I Definition 30 (Perfect Oracle O). A perfect oracle is a global omniscient instance that
whenever the system is not in an (undirected) correct configuration only let the processes send
keep-alive-messages to resolve deadlocks and otherwise suppresses all keep-alive-messages.

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:13

wvu wvu u v w u v w

Figure 6 Linearization steps in the undirected topology with messages but not in the directed.

I Remark. We show in Theorem 31 that starting from an arbitrary initial configuration a
correct configuration is reached after a finite number of steps. A perfect oracle O does not
suppress the sending of keep-alive-messages in a correct configuration. Once the system is in
a correct configuration, it stays in a correct configuration according to the closure property as
shown in Theorem 26. Hence, a perfect oracle is not contradictory to the fairness assumption.

We show that every execution that is admissible under the restriction of a perfect oracle
converges to a correct configuration. Since for every configuration this set of executions is
non-empty, we prove weak convergence in general. We introduced three potential functions
and showed that whenever at least one of them is minimal, the system reaches a correct
configuration in a finite number of steps. For every configuration, exactly one of the three
cases true: there is no more linearization step in the undirected topology with messages,
there is a linearization step in the directed topology with messages, or there is a linearization
step in the undirected but not in the directed topology with messages. We show that the
system neither can stay infinite long in the second case nor can infinitely often alternate
between the second and the third case without reaching a configuration in which at least one
of the three potential functions is minimal and thus convergence ensured.

I Theorem 31 (Convergence with Perfect Oracle). Let I be an arbitrary connected, i.e.,
UM (I) is connected, initial configuration and A an arbitrary reachable configuration i.e.,
I p=⇒ A. Assume there is a perfect oracle O. Then a correct configuration C is reached after
a finite number of steps i.e., A p=⇒ C ∧ TM (C) = GLIN ∧ T(C) = GLIN.

5 Conclusion

We adapted the algorithm for shared memory of [4] such that it works in an asynchronous
message-passing system. The algorithm of [4] requires a system where all processes must
have access to the whole memory, which is very restrictive. In the redesigned algorithm,
processes communicate via message-passing and we do not make any assumptions about the
time a process needs to execute a step or for message delivery. This makes it applicable in a
completely asynchronous message-passing system which is a significantly weaker requirement
and corresponds more to real life system conditions.

An algorithm is self-stabilizing, if it satisfies the properties of closure and convergence.
We formally proved the closure property, i.e., if the system reaches a correct configuration,
it stays in a correct configuration if no fault occurs. There are two forms of convergence.
Starting with an arbitrary initial configuration, strong convergence requires that in every
execution a correct configuration is reached, whereas weak convergence only claims the
existence of such an execution. We proved strong convergence for restricted cases. First,
whenever the topology with messages of a connected initial configuration only lacks desired
edges but no undesired ones exist, i.e., every process knows at most its desired neighbors,
strong convergence holds. Second, strong convergence also holds, whenever in the topology
with messages of an initial configuration there are just too many edges, but no desired ones
are missing. For the general case, i.e., an arbitrary connected initial configuration, we proved
weak convergence. For this proof, we introduced a global omniscient entity, called a perfect
oracle. We showed that every execution that is admissible under the assumption of a perfect

CONCUR 2016

19:14 Topological Self-Stabilization with Name-Passing Process Calculi

oracle ensures strong convergence. Since for every initial configuration this is a non-empty
set of executions, weak convergence holds in general.

We extended the localized π-calculus, which provides us through its clearly defined syntax
and semantics with the possibility to model the algorithm in a precise and unambiguous
manner. It is also the basis for formally proving properties about the algorithm. The usage
of standard forms [12] of configurations helps us to simplify the proof by identifying every
possible reachable process term with a structurally equivalent representative and significantly
reduces the number of cases to be analyzed. Further, this enables us to explicitly and
conveniently keep track of the global state of the system. This allows us to execute our proofs
in a state-based fashion, which is more traditional for distributed algorithms [7], rather than
in an action-based style, which would be more typical when using process calculi [11].

Future Work. As we strongly conjecture strong convergence to hold in general, the primary
goal is a convergence proof for the general case that works without any oracle at all. The
problem is that keep-alive-messages can reestablish edges that were already removed through
linearization steps. Nevertheless, if a process executes a linearization step, it prevents
the further away process eventually from ever sending keep-alive-messages to it again.
Neither keep-alive-messages nor linearization steps establishing edges that are longer as the
current longest edge in the topology with messages. The edge that is established through a
linearization step is even strictly shorter than the at least temporarily removed one.

The main difficulty is: a potential function that decreases strictly with every linearization
step cannot be monotonically decreasing with every step. Thus, potential functions alone
are not sufficient to prove strong convergence. A promising approach lies in finding good
properties for livelock freedom. With such properties, a general proof can likely be achieved
in various ways, as discussed in [10]. For example, livelock freedom properties could be used
to show that linearization steps involving the current longest edges are eventually enabled
and executed. If it can be shown that the current longest edges are eventually removed
permanently, strong convergence would hold.

In preparation for a general proof, it could be interesting to lower the restrictions on
the set of executions by an oracle and consider a weaker oracle to acquire further insight in
properties that could be helpful for a proof without any oracle.

References
1 P.-D. Brodmann. Distributability of Asynchronous Process Calculi. Master’s thesis, Tech-

nische Universität Berlin, Germany, October 2014.
2 E. W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control. Communications

of the ACM, 17(11):643–644, November 1974.
3 S. Dolev. Self-Stabilization. The MIT Press, 2000.
4 D. Gall et al. A Note on the Parallel Runtime of Self-Stabilizing Graph Linearization.

Theory of Computing Systems, 55(1):110–135, 2014.
5 F. C. Gärtner. Fundamentals of Fault-tolerant Distributed Computing in Asynchronous

Environments. ACM Comput. Surv., 31(1):1–26, March 1999.
6 M. G. Gouda. The Triumph and Tribulation of System Stabilization. In Proc. of the 9th

International WDAG, WDAG ’95, pages 1–18, 1995.
7 N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.
8 M. Merro and D. Sangiorgi. On Asynchrony in Name-Passing Calculi. In Proc. of ICALP,

volume 1443 of LNCS, pages 856–867. Springer, 1998.
9 R. Milner. communicating and mobile systems: the pi-calculus. Cambridge UP, 1999.

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:15

10 C. Rickmann. Topological Self-Stabilization with Name-Passing Process Calculi. Master’s
thesis, Technische Universität Berlin, Germany, October 2015. arxiv.org/abs/1604.04197.

11 D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge
UP, 2001.

12 C. Wagner and U. Nestmann. States in Process Calculi. In Proc. of EXPRESS/SOS,
volume 160 of EPTCS, pages 48–62, 2014.

CONCUR 2016

	Introduction and Technical Preliminaries
	Model for Asynchronous Message-Passing
	Linearization Algorithm for Asynchronous Message-Passing
	Results
	Conclusion

