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Abstract
A transformation mapping a labelled Markov chain to a simple stochastic game is presented.
In the resulting simple stochastic game, each vertex corresponds to a pair of states of the la-
belled Markov chain. The value of a vertex of the simple stochastic game is shown to be equal
to the probabilistic bisimilarity distance, a notion due to Desharnais, Gupta, Jagadeesan and
Panangaden, of the corresponding pair of states of the labelled Markov chain. Bacci, Bacci,
Larsen and Mardare introduced an algorithm to compute the probabilistic bisimilarity distances
for a labelled Markov chain. A modification of a basic version of their algorithm for a labelled
Markov chain is shown to be the policy iteration algorithm applied to the corresponding simple
stochastic game. Furthermore, it is shown that this algorithm takes exponential time in the worst
case.
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1 Introduction

A behavioural equivalence answers the fundamental question “when are two states of a
model considered behaviourally the same?” The most prominent behavioural equivalence
is bisimilarity, due to Milner [21] and Park [24]. We refer the reader to, for example, [25,
page 1–4], for an extensive discussion of the importance of behavioural equivalences such as
bisimilarity.

A behavioural pseudometric is a quantitative generalization of a behavioural equivalence.
Such a pseudometric assigns to each pair of states a number in the unit interval [0, 1]. The
smaller this number, the more alike the states behave. Those states that have distance zero
are considered behaviourally equivalent. As first observed by Giacalone, Jou and Smolka
[14], behavioural equivalences are not robust for models that include quantitative information
such as time and probabilities. For these models, behavioural pseudometrics are an essential
complement to behavioural equivalences. For a more detailed discussion of the merits of
behavioural pseudometrics, we refer the reader to, for example, [23, Chapter 8].
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Systems with probabilistic behaviour are often modelled as labelled Markov chains. An
example of such a Markov chain is depicted below. In a labelled Markov chain, each state
has a label. In the example, the label is represented by the colour of the state. These labels
are used to capture that particular properties of interest hold in some states and do not hold
in other states. In diagrams, like the one below, only if the probabilities of the outgoing
transitions of a state are not all the same, as is the case for state u1, we denote the actual
probabilities.
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The most prominent behavioural equivalence for labelled Markov chains is probabilistic
bisimilarity, due to Larsen and Skou [19]. Numerous quantititative generalizations of this
behavioural equivalence have been proposed, the probabilistic bisimilarity pseudometric due to
Desharnais et al. [12] being the most notable one. In this paper, we focus on this probabilistic
bisimilarity pseudometric.

In order to exploit behavioural pseudometrics such as the probabilistic bisimilarity
pseudometric, it is essential to be able to approximate or compute these behavioural distances.
The first algorithm to approximate these distances was presented by Van Breugel, Sharma
and Worrell in [5]. In their algorithm, the distance between states s and t, denoted δ(s, t), is
computed as follows. Since δ(s, t)<q, for some rational q, can be expressed in the existential
fragment of the first order theory over the reals as shown by Van Breugel et al., and this
theory is decidable as shown by Tarski [28], one can use binary search to approximate δ(s, t).
The satisfiability problem for the existential fragment of the first order theory over the reals
can be solved in polynomial space [7]. The algorithm of Van Breugel et al. can only handle
labelled Markov chains with a handful of states.

Subsequently, Chen, Van Breugel and Worrell [8] presented a polynomial time algorithm
to compute the distances. They showed that the distances are rational and that those
distances can be computed by means of Khachiyan’s ellipsoid method [18]. In particular,
they showed that the distance function can be expressed as the solution of a linear program.
In this case, the separation algorithm, which is an integral part of the ellipsoid method, boils
down to solving a minimum cost flow problem. The network simplex algorithm solves the
latter problem in polynomial time [22]. In practice, it is several orders of magnitude slower
than the algorithm of Bacci et al. which we will discuss next.

Bacci, Bacci, Larsen and Mardare [2] put forward yet another algorithm to compute the
bisimilarity distances. In their paper, they showed that their algorithm, in contrast to the
two algorithms mentioned above, can handle labelled Markov chains of 50 states. Their
algorithm can be viewed as a basic algorithm, enhanced with an optimization. The key
idea behind this optimization is to compute the distances “on-the-fly.” Roughly speaking,
to compute δ(s, t) we only need to compute δ(u, v) where s and t can reach u and v in n
transitions for some n > 0. In this paper, we will not consider this optimization, but focus
on the basic algorithm only.
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Stochastic games were introduced by Shapley [26]. A simplified version of these games,
called simple stochastic games, were studied by Condon [9]. A simple stochastic game is
played with a single token by two players, called min and max, on a finite directed graph.
The graph has five types of vertices: min, max and average vertices, 0-sinks and 1-sinks. The
min, max and average vertices have two outgoing edges, whereas the 0-sinks and 1-sinks
have no outgoing edges. Whenever the token is in a min (max) vertex, the token is moved to
one of the two successors of the vertex, chosen by the min (max) player. If the token is in
an average vertex, the successor is chosen randomly. The min (max) player’s objective is to
minimize (maximize) the probability of reaching a 1-sink.

In its strategy, the min player chooses for each min vertex one of its two successors.
Similarly, a strategy for the max player assigns to each max vertex one of its successors.
Strategies are also known as policies. Given a strategy for the min player and a strategy
for the max player, we can define a function that maps the vertices to the interval [0, 1].
This function maps each vertex v to the probability that the max player wins the game,
provided that the game starts in vertex v and the min and max player play according to
their strategies. When the strategy of both players is optimal, this function is called the
value function.

A variety of algorithms has been developed to compute the value function of a simple
stochastic game. Several of these algorithms use policy iteration. As long as there exists
a choice in the strategy of the min or max player that is not locally optimal, switch that
choice for one that is locally optimal. Hoffman and Karp [15] introduced a policy iteration
algorithm for stochastic games in which all non-optimal choices are switched in each iteration.
Condon [10] presented a similar algorithm, known as simple policy iteration, that switches
only one non-optimal choice per iteration.

Most of the main results of this paper rely on a transformation mapping each labelled
Markov chain to a simple stochastic game. The resulting simple stochastic game does not
have any max vertices. Each min vertex v of the simple stochastic game corresponds to a pair
(s, t) of states of the labelled Markov chain. In Section 4, we will show that the value of v is
the distance of s and t. In [6], Van Breugel and Worrell present a similar transformation.
They map a probabilistic automaton, which is a more general model as it includes not only
probabilistic choices but also nondeterminstic choices, to a simple stochastic game. They
also show that values and distances correspond, and use this correspondence to prove a
complexity result for computing behavioural distances for probabilistic automata, but they
do not present any algorithm.

Below we present (part of) the simple stochastic game corresponding to the labelled
Markov chain presented earlier in this introduction. The min vertices vi correspond to the
state pairs (si, ti) and the min vertices wi correspond to the state pairs (si−1, ui−1). The
average vertices are denoted by bullets. The 0- and 1-sinks are labelled with zeroes and ones.

CONCUR 2016
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In Section 5, we will prove that a small modification of the basic algorithm of Bacci et al.
corresponds to Condon’s simple policy iteration. That is, the modified basic algorithm for
computing the distances of all state pairs of a labelled Markov chain can be viewed as simple
policy iteration applied to the corresponding simple stochastic game. As a consequence, the
proof by Condon [9, Lemma 4] that simple policy iteration computes the value function of a
simple stochastic game also shows that the modified basic algorithm computes the distances.

Let us highlight a technical detail here. Condon’s proof that simple policy iteration
computes the value function of a simple stochastic game relies on the assumption that the
game halts with probability one. That is, no matter which strategy the min and max player
use, the game reaches a 0- or 1-sink with probability one. To be able to use Condon’s proof
in our setting, we need to show that the simple stochastic game resulting from the labelled
Markov chain halts with probability one. As we will see, this is accomplished by mapping
state pairs (s, t) of the labelled Markov chain, for which s and t are probabilistic bisimilar, to
a 0-sink in the simple stochastic game. Hence, before running the basic algorithm of Bacci
et al., we first need to decide which states are probabilistic bisimilar, which can be done
in polynomial time [3]. This is the small, yet essential, modification of their algorithm, to
which we alluded earlier.

In Section 6, we will show that in the worst case, our algorithm takes exponential time.
Many similar lower bounds have been proved for closely related algorithms by showing that
the algorithms can be viewed as binary counters. We refer the reader to, for example, the
thesis of Friedmann [13] for several such proofs. For simple stochastic games, Melekopoglou
and Condon [20] showed that simple policy iteration takes exponential time in the worst
case. We cannot directly use their result since no labelled Markov chain maps to the simple
stochastic games they use in their proof. As we mentioned before, the labelled Markov chain
depicted earlier gives rise to the simple stochastic game (of which a part is) depicted above.
That simple stochastic game implements a 3-bit counter, as we will discuss next.

For the above simple stochastic game, a strategy of the min player consists of either going
to the right (represented by 0) or down (represented by 1) in the vertices v2, v1 and v0. In
the table below, we present for each strategy the values of the vertices v2, v1 and v0. Going
from one column to the next, the strategy for either v2, v1 or v0 is switched. As a result,
none of the values increase and one of the values decreases. The table contains all eight 3-bit
combinations and, hence, the simple stochastic game can be viewed as a 3-bit counter. As we
will show in Section 6, for each n ∈ N we can construct a labelled Markov chain of size O(n)
that gives rise to a simple stochastic game that implements an n-bit counter. Hence, from a
theoretical point of view, the algorithm of Bacci et al. is inferior to the algorithm of Chen et
al.
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strategy

v2 0 1 1 0 0 1 1 0

v1 0 0 1 1 1 1 0 0

v0 0 0 0 0 1 1 1 1

value

v2 1 15
16

15
16

7
8

7
8

13
16

13
16

3
4

v1 1 1 3
4

3
4

3
4

3
4

1
2

1
2

v0 1 1 1 1 0 0 0 0

As Bacci et al. already showed in [2], in practice their algorithm outperforms the other
algorithms to compute bisimilarity distances. Recall that we only consider their basic
algorithm. We have shown that our modification of this algorithm also performs very well
in practice. We ran the algorithm on a variety of labelled Markov chains obtained from
examples of probabilistic model checkers such as PRISM1 and MRMC2. The performance of
our modified algorithm, which has to decide probabilistic bisimilarity first, is comparable to
the performance of their basic algorithm. We expect the same results by adapting our basic
algorithm to the on-the-fly setting.

2 The Probabilistic Bisimilarity Pseudometric

In this section, we review the model of interest, labelled Markov chains, and the probabilistic
bisimilarity pseudometric due to Desharnais et al. [12]. We denote the set of probability
distributions on a set S by Dist(S).

I Definition 1. A labelled Markov chain is a tuple 〈S,L, τ, `〉 consisting of
a set S of states,
a set L of labels,
a transition function τ : S → Dist(S),
a labelling function ` : S → L.

We restrict our attention to labelled Markov chains with finitely many states and the
transition probabilities of which are rationals. For the remainder of this section, we fix such
a labelled Markov chain 〈S,L, τ, `〉.

I Definition 2. Let µ, ν ∈ Dist(S). The set Ω(µ, ν) of couplings of µ and ν is defined by

Ω(µ, ν) =
{
ω ∈ Dist(S × S)

∣∣∣∣∣ ∑
t∈S

ω(s, t) = µ(s) ∧
∑
s∈S

ω(s, t) = ν(t)
}
.

Note that ω ∈ Ω(µ, ν) is a joint probability distribution with marginals µ and ν.

I Definition 3. The function T : Dist(S)×Dist(S)× [0, 1]S×S → [0, 1] is defined by

T (µ, ν, d) = min
ω∈Ω(µ,ν)

∑
u,v∈S

ω(u, v) d(u, v).

1 www.prismmodelchecker.org
2 www.mrmc-tool.org
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The function T can be viewed as the minimal cost of a transportation problem. Consider
two disjoint copies of S, one representing sources and the other representing targets. For each
s, t ∈ S, µ(s) represents the supply at source s and ν(t) represents the demand at target t.
The cost of transporting one unit from source s to target t is captured by d(s, t). The amount
transported from source s to target t is captured by ω(s, t). The distance function T (µ, ν, d)
is known as the Kantorovich metric [17].

I Definition 4. The function ∆ : [0, 1]S×S → [0, 1]S×S is defined by

∆(d)(s, t) =
{

1 if `(s) 6= `(t)
T (τ(s), τ(t), d) otherwise

To define the behavioural pseudometric, we use the Knaster-Tarski fixed point theorem
(see, for example, [11, Chapter 2]). To apply that theorem, we need to define an order on
[0, 1]S×S . For d, e ∈ [0, 1]S×S we write d v e if d(s, t) ≤ e(s, t) for all s, t ∈ S. The set
[0, 1]S×S endowed with the order v forms a complete lattice. Since ∆ is a monotone function,
we can conclude from the Knaster-Tarski fixed point theorem that ∆ has a least fixed
point. We denote this fixed point by δ. This is the probabilistic bisimilarity pseudometric of
Desharnais et al.

3 An Alternative Characterization of δ

Next, we provide an alternative characterization of the probabilistic bisimilarity pseudomet-
ric δ which can be found in the extended version of [8]. This characterization can also be
found in the work of Bacci et al. [2, Theorem 9]. It provides the basis for their algorithm.
The characterization relies on couplings, a notion from the theory of Markov chains.

I Definition 5. The set C of couplings of the labelled Markov chain 〈S,L, τ, `〉 is defined by

C = {T ∈ Dist(S × S)E | ∀(s, t) ∈ E : T (s, t) ∈ Ω(τ(s), τ(t)) }

where E = { (s, t) ∈ S × S | `(s) = `(t) }.

For the remainder of this section, we fix a labelled Markov chain 〈S,L, τ, `〉. We also fix
a coupling T ∈ C of the labelled Markov chain. Note that 〈S × S, T 〉 can be viewed as a
Markov chain, where the states (s, t) 6∈ E are absorbing.

I Definition 6. The function ΓT : [0, 1]S×S → [0, 1]S×S is defined by

ΓT (d)(s, t) =


1 if `(s) 6= `(t)∑
u,v∈S

T (s, t)(u, v) d(u, v) otherwise

Since [0, 1]S×S is a complete lattice and ΓT is a monotone function, we can conclude from
the Knaster-Tarski fixed point theorem that ΓT has a least fixed point. We denote this fixed
point by γT . Note that γT (s, t) is the probability of reaching a state (u, v) 6∈ E from the
state (s, t) in the Markov chain 〈S × S, T 〉.

For all µ, ν ∈ Dist(S), we denote the set of vertices of the convex polytope Ω(µ, ν) by
V (Ω(µ, ν)). We define

V (C) = {T ∈ Dist(S × S)E | ∀(s, t) ∈ E : T (s, t) ∈ V (Ω(τ(s), τ(t))) }.

The probabilistic bisimilarity pseudometric δ can be characterized as follows.
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I Theorem 7. δ = min
T∈V (C)

γT .

The basic algorithm of Bacci et al. relies on the fact that if a coupling T is locally optimal,
that is, ∆(γT ) = γT , then it is globally optimal as well, that is, γT = δ (see [2, Lemma 18]).
However, as we will show next, this is not the case in general.

We denote the Dirac distribution concentrated at the pair of states (s, t) by δ(s,t), that is,
δ(s,t)(u, v) = 1 if s = u, t = v and δ(s,t)(u, v) = 0 otherwise.

I Theorem 8. There exists a labelled Markov chain and T ∈ V (C) such that ∆(γT ) = γT

and γT 6= δ.

Proof. Consider the following labelled Markov chain.

s1s1 s2s2

s0

t1t1 t2t2

t0

Note that

V (Ω(τ(s0), τ(t0)) = { 1
2δ(s1,t1) + 1

2δ(s2,t2),
1
2δ(s1,t2) + 1

2δ(s2,t1)}
V (Ω(τ(s1), τ(t1)) = {δ(s0,t0)} and V (Ω(τ(s2), τ(t2)) = {δ(s0,t0)}

Now take T , U ∈ V (C) such that

T (s0, t0) = 1
2δ(s1,t2) + 1

2δ(s2,t1) and U(s0, t0) = 1
2δ(s1,t1) + 1

2δ(s2,t2)

Then we have

γT (s0, t0) = γT (s1, t1) = γT (s2, t2) = γT (s1, t2) = γT (s2, t1) = 1
γU (s0, t0) = 0

Furthermore,

∆(γT )(s0, t0) = min{ 1
2γ

T (s1, t2) + 1
2γ

T (s2, t1), 1
2γ

T (s1, t1) + 1
2γ

T (s2, t2)} = 1
∆(γT )(s1, t1) = γT (s0, t0) = 1
∆(γT )(s2, t2) = γT (s0, t0) = 1

J

4 Simple Stochastic Games

In this section, we present the transformation that maps each labelled Markov chain to a
simple stochastic game such that distances correspond to values. Let us first formally define
simple stochastic games.

I Definition 9. A simple stochastic game is a tuple (V,E, π) consisting of
a finite directed graph (V,E) such that
V is partitioned into the sets
∗ Vmin of min vertices,
∗ Vmax of max vertices,
∗ Vrnd of random vertices,
∗ V0 of 0-sinks, and
∗ V1 of 1-sinks,

CONCUR 2016
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the vertices in V0 and V1 have outdegree zero and all other vertices have outdegree at
least one,

a function π : Vrnd → Dist(V ) such that for each vertex v ∈ Vrnd, π(v)(w) > 0 iff
(v, w) ∈ E.

In this paper, we consider a slightly more general definition than the one given by Condon
in [9]. In particular, the outdegree of min, max and random vertices is at least one (instead
of exactly two), there may be multiple 0-sinks and 1-sinks (rather than exactly one), and the
outgoing edges of a random vertex are labelled with rationals (rather than 1

2 ). However, a
simple stochastic game as defined above can be transformed in polynomial time into a simple
stochastic game as defined in [9], as shown by Zwick and Paterson [29, page 355].

In the construction below, we need the notion of probabilistic bisimilarity. This notion
can be captured as follows.

I Definition 10. An equivalence relation R ⊆ S × S is a probabilistic bisimulation if for all
(s, t) ∈ R, `(s) = `(t) and there exists ω ∈ Ω(τ(s), τ(t)) such that support(ω) ⊆ R, where
support(ω) = { (u, v) ∈ S × S | ω(u, v)> 0 }. Probabilistic bisimilarity, denoted ∼, is defined
as the largest probabilistic bisimulation.

In [16, Theorem 4.6] it is shown that the above characterization of probabilistic bisimilarity
is equivalent to the standard definition given in [19]. Now, we are ready to introduce the
transformation that maps each labelled Markov chain to a simple stochastic game.

I Definition 11. Let 〈S,L, τ, `〉 be a labelled Markov chain. The simple stochastic game
〈V,E, π〉 is defined by

Vmin = { (s, t) ∈ S × S | s 6∼ t ∧ `(s) = `(t) },
Vmax = ∅,
Vrnd =

⋃
{V (Ω(τ(s), τ(t))) | s, t ∈ S ∧ s 6∼ t ∧ `(s) = `(t) },

V0 = { (s, t) ∈ S × S | s ∼ t },
V1 = { (s, t) ∈ S × S | `(s) 6= `(t) },
E = { 〈(s, t), ω〉 | (s, t) ∈ Vmin ∧ ω ∈ V (Ω(τ(s), τ(t))) } ∪ { 〈ω, (u, v)〉 | ω(u, v)> 0 }, and
π(ω)(u, v) = ω(u, v).

Note that the resulting simple stochastic game does not have any max vertices.3 As a
result, the max player never gets to move the token. Therefore, there is no need for a strategy
of the max player and, hence, we only need to consider the strategy of the min player. Recall
that a strategy of the min player maps each min vertex to one of its successors. That is, such
a strategy maps (s, t), with s 6∼ t and `(s) = `(t), to ω ∈ V (Ω(τ(s), τ(t))). Hence, we can
view T ∈ V (C) as such a strategy by ignoring its values for (s, t) with s ∼ t.

For the remainder of this section, we fix a labelled Markov chain 〈S,L, τ, `〉 and a coupling
T ∈ V (C). The following definition of ΘT is very similar to the definition of ΓT given in
Definition 6.

3 The simple stochastic game of Definition 11 is a special type of simple stochastic game since it does not
have any max vertices. It can also be viewed as a Markov decision process. Note, though, that it is also
a special type of the Markov decision process since the reward function maps all transitions to zero
apart from those that reach a 1-sink which it maps to one.
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I Definition 12. The function ΘT : [0, 1]S×S → [0, 1]S×S is defined by

ΘT (d)(s, t) =


0 if s ∼ t
1 if `(s) 6= `(t)∑
u,v∈S

T (s, t)(u, v) d(u, v) otherwise

Since [0, 1]S×S is a complete lattice and ΘT is a monotone function, we can conclude
from the Knaster-Tarski fixed point theorem that ΘT has a least fixed point. We denote this
fixed point by θT .

Note that θT (s, t) is the value of the min vertex (s, t) with respect to the strategy T . As we
will show next, the optimal strategy gives rise to the probabilistic bisimilarity pseudometric δ,
that is, the probabilistic bisimilarity distances of the states s and t of the labelled Markov
chain are the values of the vertices (s, t) of the corresponding simple stochastic game.

I Theorem 13. δ = min
T∈V (C)

θT .

5 Simple Policy Iteration

As we already mentioned in the introduction, Condon’s simple policy iteration algorithm
computes the values of a simple stochastic game, provided that the simple stochastic game
halts with probability one. As we have shown in the previous section, the probabilistic
bisimilarity distances of a labelled Markov chain are the values of the corresponding simple
stochastic game defined in Definition 11. Hence, if that simple stochastic game halts
with probability one, then we can use simple policy iteration to compute the probabilistic
bisimilarity distances.

A simple stochastic game and a pair of strategies for the min and max player give naturally
rise to a Markov chain, where the vertices of the simple stochastic game are the states of the
Markov chain (see, for example, [9, Section 2.1] for details). We will call this the coupled
Markov chain. For example, the coupled Markov chain induced by the simple stochastic
game presented in the introduction, where the strategy for the min player (the values of the
vertices v2, v1 and v0) is 001, is given below.

v2 v1 v0 0

1 1 0

A simple stochastic game halts with probability one if for each pair of strategies, in the
coupled Markov chain each state reaches a 0-sink or 1-sink with probability one.

I Theorem 14. The simple stochastic game defined in Definition 11 halts with probability
one.

Proof. Towards a contradiction, assume that the simple stochastic game does not halt
with probability one. Then there exists a strategy for the min player, that is, an element
T ∈ V (C), and a vertex (s, t) which does not reach a 0- or 1-sink with probability one in
the coupled Markov chain. Each state in a Markov chain reaches with probability one a
closed communication class, also known as a bottom strongly connected component (see,
for example, [4, Theorem 10.27]). Note that a 0-sink and a 1-sink each forms a closed

CONCUR 2016
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communication class. Since (s, t) does not reach a 0- or 1-sink with probability one, (s, t)
reaches a closed communication class C not consisting of a 0- or 1-sink. We can also show
that for each (s, t) ∈ C, we have s ∼ t. However, in that case, (s, t) is a 0-sink, which
contradicts the fact that C does not consist of a 0- or 1-sink.

J

Simple policy iteration starts with an arbitrary strategy, that is, an arbitrary T ∈ V (C)
(see line 1). As long as there is a min vertex which is not locally optimal with respect to the
current strategy, the strategy at that vertex is improved to the locally optimal choice. Note
that a min vertex (s, t) is not locally optimal if there exists a different choice for that vertex,
that is, ω ∈ V (Ω(τ(s), τ(t)), so that the value of the vertex decreases. This is captured in
line 2. In line 3, we compute a locally optimal choice and update the strategy.

1 T ← an element of V (C)
2 while ∃(s, t) ∈ Vmin : θT (s, t)>∆(θT )(s, t)
3 T (s, t)← arg min

ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) θT (u, v)

This is our modification of the basic algorithm of Bacci et al.
In line 1, an initial strategy T ∈ V (C) can be computed by the North-West corner

method in polynomial time (see, for example, [27, page 180]). In line 2, rather than choosing
an arbitrary min vertex that is not locally optimal, in the simple policy iteration a select
procedure can be defined as follows: we number all the vertices in Vmin and select the one
with the highest number [20, Section 2]. Note that θT can be computed in polynomial time
[4, Section 10.1.1]. In line 3, the computation can be viewed as a minimum-cost flow problem,
where s is the source vertex and t is the sink vertex. Below we present the flow network,
the sets {u1, · · · , un} and {v1, · · · , vn} are copies of S. For the edge (s, ui) and (vj , t), the
capacity is τ(s)(ui) and τ(t)(vj) respectively. There is no cost transporting along these edges.
Each edge (ui, vj) ∈ S × S has a capacity of min (τ(s)(ui), τ(t)(vj)) and θT (ui, vj) is the
cost of edge (ui, vj). The minimum cost of transporting one unit from s to t is captured
by ∆(θT )(s, t), which can be solved using the network simplex algorithm and is strongly
polynomial time [1, Section 11.8]. Note that each piece is polynomial so that the complexity
of the algorithm is determined by the number of iterations, as we will see in the next section.

s

u1

u2

un

t

v1

v2

vn

...

...

6 An Exponential Lower Bound

Below, we will prove an exponential lower bound for the algorithm we presented in the
previous section. In particular, for each n ∈ N we will construct a labelled Markov chain of
size O(n). Furthermore, we will show that our simple policy iteration algorithm takes Ω(2n)
iterations for the resulting simple stochastic game.
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I Definition 15. For n ∈ N, the labelled Markov chainMn is defined as follows by induction
on n. The labelled Markov chainM0 is defined as

s0

s1

t0

t1

u0

If n > 0 then the labelled Markov chainMn is defined as

sn

sn−1

tn−2

tn−1

un−2

tn

un−1

1
4

3
4

where the two dashed triangles together represent the labelled Markov chainMn−1.

In the introductory section, we presented M1. Note that Mn has 4n + 10 states and
7n+ 14 transitions and, hence, is of size O(n). Next, we give the simple stochastic games
corresponding to the above defined labelled Markov chains according to transformation
presented in Definition 11.

I Definition 16. For n ∈ N, the simple stochastic game Gn is defined as follows by induction
on n. The simple stochastic game G0 is defined as

v1

1 w1

1 0

1

v0

0 0

1

1

If n > 0 then the simple stochastic game Gn is defined as

CONCUR 2016



22:12 Computing Probabilistic Bisimilarity Distances

vn

1 wn

1

1

vn−1

1 wn−1

1

vn−2

1
4

1
4

where the dashed rectangle represents the simple stochastic game Gn−1.

In the introductory section, we presented G1. In the above definition, we use vi to denote
the min node (si, ti) and wi to denote the min node (si−1, ui−1). The transformation given
in Definition 11 applied to labelled Markov chainMn gives rise to a simple stochastic game
of which Gn is only a part. In particular, for 2 ≤ i ≤ n a random vertex and the following
edges have not been included in Gn, as they are never selected in any of the strategies we
construct in our proofs.

wi

wi−1

1

vi−2

1
4 1

2

1
4

Next, we consider the strategies for the simple stochastic game Gn. Recall that the Dirac
distribution δv is defined by δv(w) = 1 if w = v and δv(w) = 0 otherwise. In order to avoid
clutter, for 1 ≤ i ≤ n, instead of T (vi) = 1

2δ1 + 1
2δvi−1 we write T (i) = 0 and instead of

T (vi) = 1
2δ1 + 1

2δwi
we write T (i) = 1. Also, instead of T (v0) = 1

2δ1 + 1
2δ1 we write T (0) = 0

and instead of T (v0) = 1
2δ0 + 1

2δ0 we write T (0) = 1.
A vertex is switchable if it is not locally optimal.

I Definition 17. The vertex vi is switchable with respect to T if θT (vi)> θT i(vi), where

T i(j) =
{

1− T (j) if j = i

T (j) otherwise

Rather than starting from an arbirary strategy, we pick a specific initial strategy (line 1–2).
Furthermore, rather than choosing an arbitrary min vertex that is not locally optimal, we
pick the vi which is not locally optimal with the largest index (line 4).

1 for i = 0, . . . , n
2 T (i)← 0
3 while ∃0 ≤ i ≤ n : vi is switchable with respect to T

4 m← max{ i | vi is switchable with respect to T }
5 T (m)← 1− T (m)
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The above simple policy iteration algorithm applied to the simple stochastic game Gn
gives rise to exponentially many iterations.

I Theorem 18. For each n ∈ N, there exists a labelled Markov chain of size O(n) such that
simple policy iteration takes Ω(2n) iterations.

7 Conclusion

Based on a correspondence between labelled Markov chains and simple stochastic games,
we have shown that a modification of the basic algorithm of Bacci et al. for computing
probabilistic bisimilarity distances of a labelled Markov chain is simple policy iteration
applied to the corresponding simple stochastic game. The correspondence between labelled
Markov chains and simple stochastic games also allows us to use Condon’s correctness proof
of simple policy iteration to show that our modification of the basic algorithm of Bacci
et al. is correct. As we have shown in Theorem 8, that modification is essential. Such a
modification also needs to be applied to the on-the-fly algorithm of Bacci et al.

Although Bacci et al. had already shown that their algorithm performs very well in
practice, we show that in the worst case, their basic algorithm takes exponential time. Our
example can also be used to show that their on-the-fly algorithm takes exponential time in
the worst case as well. Our experimental results confirm that our modification gives rise
to very little overhead. In several cases our modified algorithm even performs better than
theirs. A detailed study of the performance of our modification of the on-the-fly algorithm is
left for future research.

As we already mentioned in the introduction, the difference between Hoffman and Karp’s
policy iteration and Condon’s simple policy iteration is that the former switches all locally non-
optimal vertices in every iteration, whereas the latter only switches one of them. The question
whether policy iteration, applied to a labelled Markov chain to compute its behavioural
distances, may also give rise to exponentially many iterations is still open and left for future
research. Note that an affirmative answer to this question would also prove an exponential
lower bound for policy iteration for simple stochastic games, a problem that has been open
for several decades.
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