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—— Abstract

We prove an Q(d/log 2%) lower bound for the average-case cell-probe complexity of deterministic
or Las Vegas randomized algorithms solving approximate near-neighbor (ANN) problem in d-
dimensional Hamming space in the cell-probe model with w-bit cells, using a table of size s. This
lower bound matches the highest known worst-case cell-probe lower bounds for any static data
structure problems.

This average-case cell-probe lower bound is proved in a general framework which relates the
cell-probe complexity of ANN to isoperimetric inequalities in the underlying metric space. A
tighter connection between ANN lower bounds and isoperimetric inequalities is established by a
stronger richness lemma proved by cell-sampling techniques.
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1 Introduction

The nearest neighbor search (NNS) problem is a fundamental problem in Computer Science.
In this problem, a database y = (y1,y2, - . .,Yn) of n points from a metric space (X, dist) is
preprocessed to a data structure, and at the query time given a query point x from the same
metric space, we are asked to find the point y; in the database which is closest to x according
to the metric.

In this paper, we consider a decision and approximate version of NNS, the approximate
near-neighbor (ANN) problem, where the algorithm is asked to distinguish between the two
cases: (1) there is a point in the databases that is A-close to the query point for some radius
A, or (2) all points in the database are yA-far away from the query point, where v > 1 is the
approximation ratio.

The complexity of nearest neighbor search has been extensively studied in the cell-probe
model, a classic model for data structures. In this model, the database is encoded to a table
consisting of memory cells. Upon each query, a cell-probing algorithm answers the query by
making adaptive cell-probes to the table. The complexity of the problem is measured by the
tradeoff between the time cost (in terms of number of cell-probes to answer a query) and the
space cost (in terms of sizes of the table and cells). There is a substantial body of work on the
cell-probe complexity of NNS for various metric space [6, 7, 5, 11, 8, 14, 3, 2, 16, 17, 12, 20].

* This work was done in part while the author was visiting the Simons Institute for the Theory of
Computing. This work was partially supported by NSFC grants 61272081 and 61321491.

© Yitong Yin;
37 licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 84; pp. 84:1-84:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany



http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.84
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

84:2

Average-Case Lower Bounds for Approximate Near-Neighbor

It is widely believed that NNS suffers from the “curse of dimensionality” [10]: The
problem may become intractable to solve when the dimension of the metric space becomes
very high. Consider the most important example, d-dimensional Hamming space {0, 1}% with
d > C'logn for a sufficiently large constant C. The conjecture is that NNS in this metric
remains hard to solve when either approximation or randomization is allowed individually.

In a series of pioneering works [6, 5, 11, 14, 3], by a rectangle-based technique of
asymmetric communication complexity known as the richness lemma [15], cell-probe lower
bounds in form of Q(d/logs), where s stands for the number of cells in the table, were
proved for deterministic approximate near-neighbor (due to Liu [14]) and randomized exact
near-neighbor (due to Barkol and Rabani [5]). Such lower bound is the highest possible
lower bound one can prove in the communication model. This fundamental barrier was
overcome by an elegant self-reduction technique introduced in the seminal work of Patrascu
and Thorup [18], in which the cell-probe lower bounds for deterministic ANN and randomized
exact near-neighbor were improved to ©(d/log %), where w represents the number of bits
in a cell. More recently, in a previous work of us [20], by applying the technique of Pétragcu
and Thorup to the certificates in data structures, the lower bound for deterministic ANN
was further improved to €2(d/log 2%). This last lower bound behaves differently for the
polynomial space where sw = poly(n), near-linear space where sw = n - polylog(n), and
linear space where sw = O(nd). In particular, the bound becomes 2(d) when the space cost
is strictly linear in the entropy of the database, i.e. when sw = O(nd).

When both randomization and approximation are allowed, the complexity of NNS is
substantially reduced. With polynomial-size tables, a ©(loglogd/logloglogd) tight bound
was proved for randomized approximate NNS in d-dimensional Hamming space [7, 8]. If
we only consider the decision version, the randomized ANN can be solved with O(1) cell-
probes on a table of polynomial size [8]. For tables of near-linear size, a technique called
cell-sampling was introduced by Panigrahy et al. [16, 17] to prove Q(logn/log =) lower
bounds for randomized ANN. This was later extended to general asymmetric metrics [1].

Among these lower bounds, the randomized ANN lower bounds of Panigrahy et al. [16, 17]
were proved explicitly for average-case cell-probe complexity. The significance of average-case
complexity for NNS was discussed in their papers. A recent breakthrough in upper bounds [4]
also attributes to solving the problem on a random database. Retrospectively, the randomized
exact near-neighbor lower bounds due to the density version of richness lemma [6, 5, 11]
also hold for random inputs. All these average-case lower bounds hold for Monte Carlo
randomized algorithms with fixed worst-case cell-probe complexity. This leaves open an
important case: the average-case cell-probe complexity for the deterministic or Las Vegas
randomized algorithms for ANN, where the number of cell-probes may vary for different
inputs.

1.1  QOur contributions

We study the average-case cell-probe complexity of deterministic or Las Vegas randomized
algorithms for the approximate near-neighbor (ANN) problem, where the number of cell-
probes to answer a query may vary for different query-database pairs and the average is
taken with respect to the distribution over input queries and databases.

For ANN in Hamming space {0,1}", the hard distribution over inputs is very natural:
Every point y; in the database y = (y1,¥2, - - ., ¥n) is sampled uniformly and independently
from the Hamming space {0,1}¢, and the query point x is also a point sampled uniformly
and independently from {0, 1}¢. According to earlier average-case lower bounds [16, 17] and
the recent data-dependent LSH algorthm [4], this input distribution seems to capture the
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hardest case for nearest neighbor search and is also a central obstacle to overcome for efficient
algorithms.

By a simple proof, we show the following lower bound for the average-case cell-probe
complexity of ANN in Hamming space with this very natural input distribution.

» Theorem 1. For d > 32logn and d < n°Y), any deterministic or Las Vegas randomized
algorithm solving (v, \)-approzimate near-neighbor problem in d-dimensional Hamming space
in the cell-probe model with w-bit cells for w < n"(l), using a table of size s < 2%, must have
__d
72 log %
the uniform and independent input database and query and the random bits of the algorithm.

expected cell-probe complexity t = ) ( , where the expectation is taken over both

This lower bound matches the highest known worst-case cell-probe lower bounds for any static
data structure problems. Such lower bound was only known for polynomial evaluation [19, 13]
and also worst-case deterministic ANN due to our previous work [20].

We also prove an average-case cell-probe lower bound for ANN under ¢..-distance. The
lower bound matches the highest known worst-case lower bound for the problem [2].

In fact, we prove these lower bounds in a unified framework that relates the average-case
cell-probe complexity of ANN to isoperimetric inequalities regarding an expansion property
of the metric space.

Inspired by the notions of metric expansion defined in [17], we define the following notion
of expansion for metric space. Let (X, dist) be a metric space. The A-neighborhood of a point
x € X, denoted as Ny(x) is the set of all points in X within distance A from z. Consider
a distribution p over X. We say the A-neighborhoods are weakly independent under
distribution , if for any point « € X, the measure of the A-neighborhood pu(Ny(x)) < g for
a constant § < 1. We say the A-neighborhoods are (@, ¥)-expanding under distribution
1, if for any point set A C X with p(A) > 1, we have u(Ny(A)) > 1 — 1, where N, (A)
denotes the set of all points within distance A from some point in A.

Consider the database y = (y1, 92, ..,yn) € X™ with every point y; sampled independ-
ently from g, and the query z € X sampled independently from p. We denote this input
distribution as pu x p™. We prove the following lower bound.

» Theorem 2. For a metric space (X,dist), assume the followings:

the yA-neighborhoods are weakly independent under distribution p;

the A\-neighborhoods are (¥, V)-expanding under distribution p.
Then any deterministic or Las Vegas randomized algorithm solving (v, \)-approzimate near-
neighbor problem in (X, dist) in the cell-probe model with w-bit cells, using a table of size s,
must have expected cell-probe complexity

log ® log &
PO LS R t:Q(nog>
log - log T w + log s

under input distribution p x p™.

The key step to prove such a theorem is a stronger version of the richness lemma that
we prove in Section 3. The proof of this stronger richness lemma uses an idea called “cell-
sampling” introduced by Panigrahy et al. [17] and later refined by Larsen [13]. This new
richness lemma as well as this connection between the rectangle-based techniques (such as
the richness lemma) and information-theory-based techniques (such as cell-sampling) are of
interests by themselves.
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2  Preliminary

Let (X, dist) be a metric space. Let v > 1 and A > 0. The (v, A)-approximate near-
neighbor problem (v, A)-ANNY is defined as follows: A database y = (y1,¥2,...,yn) € X"
of n points from X is preprocessed and stored as a data structure. Upon each query = € X,
by accessing the data structure we want to distinguish between the following two cases:
(1) there is a point y; in the database such that dist(z,z) < A; (2) for all points y; in the
database we have dist(x, z) > vA. For all other cases the answer can be arbitrary.

More abstractly, given a universe X of queries and a universe Y of all databases, a data
structure problem is a function f : X x Y — Z that maps every pair of query = € X
and database y € Y to an answer f(z,y) € Z. In our example of (v, A\)-ANN%, the query
universe is the metric space X, the database universe is the set Y = X™ of all tuples of n
points from X, and f maps each query x € X and database y € Y to an Boolean answer:
f(z,y) = 0 if there is a A\-near neighbor of  in the database y; f(z,y) = 1 if no points in
the database y is a yA-near neighbor of z; and f(x,y) can be arbitrary if otherwise. Note
that due to a technical reason, we usually use 1 to indicate the “no near-neighbor” case.

Given a data structure problem f : X xY — Z, acode T : Y — ¥° with alphabet
Y = {0,1}" encodes every database y € Y to a table T, of s cells with each cell storing
a word of w bits. We use [s] = {1,2,...,s} to denote the set of indices of cells. For each
i € [s], we use Ty[i] to denote the content of the i-th cell of table T},; and for S C [s], we
write Ty[S] = (Ty[4])ies for the tuple of the contents of the cells in S. Upon each query
x € X, a cell-probing algorithm adaptive retrieves the contents of the cells in the table T},
(which is called cell-probes) and outputs the answer f(z,y) at last. Being adaptive means
that the cell-probing algorithm is actually a decision tree: In each round of cell-probing the
address of the cell to probe next is determined by the query z as well as the contents of
the cells probed in previous rounds. Together, this pair of code and decision tree is called a
cell-probing scheme.

For randomized cell-probing schemes, the cell-probing algorithm takes a sequence of
random bits as its internal random coin. In this paper we consider only deterministic or Las
Vegas randomized cell-probing algorithms, therefore the algorithm is guaranteed to output a
correct answer when it terminates.

When a cell-probing scheme is fixed, the size s of the table as well as the length w of each
cell are fixed. These two parameters together give the space complexity. And the number
of cell-probes may vary for each pair of inputs (z,y) or may be a random variable if the
algorithm is randomized. Given a distribution D over X x Y, the average-case cell-probe
complexity for the cell-probing scheme is given by the expected number of cell-probes to
answer f(x,y) for a (,y) sampled from D, where the expectation is taken over both the
input distribution D and the internal random bits of the cell-probing algorithm.

3 A richness lemma for average-case cell-probe complexity

The richness lemma (or the rectangle method) introduced in [15] is a classic tool for proving
cell-probe lower bounds. A data structure problem f : X x Y — {0,1} is a natural
communication problem, and a cell-probing scheme can be interpreted as a communication
protocol between the cell-probing algorithm and the table, with cell-probes as communications.

Given a distribution D over X x Y, a data structure problem f : X xY — {0,1} is
a-dense under distribution D if Ep[f(x,y)] > a. A combinatorial rectangle A x B for
A C X and B CY is a monochromatic 1-rectangle in f if f(x,y) =1 for all (z,y) € A x B.
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The richness lemma states that if a problem f is dense enough (i.e. being rich in 1’s)
and is easy to solve by communication, then f contains large monochromatic 1-rectangles.
Specifically, if an a-dense problem f can be solved by Alice sending a bits and Bob sending b
bits in total, then f contains a monochromatic l-rectangle of size o -2~ 9(®) x o . 270(@+0) jp
the uniform measure. In the cell-probe model with w-bit cells, tables of size s and cell-probe
complexity ¢, it means the monochromatic 1-rectangle is of size -2~ C(#1085) y . 2= O(tlogs+tw)
The cell-probe lower bounds can then be proved by refuting such large 1-rectangles for specific
data structure problems f.

We prove the following richness lemma for average-case cell-probe complexity.

» Lemma 3. Let p,v be distributions over X and Y respectively, and let f: X xY — {0,1}
be a-dense under the product distribution p x v. If there is a deterministic or randomized
Las Vegas cell-probing scheme solving f on a table of s cells, each cell containing w bits,
with expected t cell-probes under input distribution p X v, then for any A € [32t/a2, s] , there

2
is a monochromatic 1-rectangle A x B C X x Y in f such that u(A) > « - (%)O(t/a ) and
I/(B) > - 270(Aln §+Aw)'

Compared to the classic richness lemma, this new lemma has the following advantages:
It holds for average-case cell-probe complexity.
It gives stronger result even restricted to worst-case complexity. The newly introduced
parameter A should not be confused as an overhead caused by the average-case complexity
argument, rather, it strengthens the result even for the worst-case lower bounds. When
A =t it gives the bound in the classic richness lemma.
The lemma claims the existence of a family of rectangles parameterized by A, therefore
to prove a cell-probe lower bound it is enough to refute any one rectangle from this family.
As we will see, this gives us a power to prove the highest lower bounds (even for the worst
case) known to any static data structure problems.

The proof of this lemma uses an argument called “cell-sampling” introduced by Pan-
igrahy et al. [16, 17] for approximate nearest neighbor search and later refined by Larsen [13]
for polynomial evaluation. Our proof is greatly influenced by Larsen’s approach.

The rest of this section is dedicated to the proof of this lemma.

3.1 Proof of the average-case richness lemma (Lemma 3)

By fixing random bits, it is sufficient to consider only deterministic cell-probing algorithms.

The high level idea of the proof is simple. Fix a table T,,. A procedure called the
“cell-sampling procedure” chooses the subset I' of A many cells that resolve the maximum
amount of positive queries. This associates each database y to a string w = (I, T, [I']),
which we call a certificate, where T, [I'| = (T} [4]);er represent the contents of the cells in
T". Due to the nature of the cell-probing algorithm, once the certificate is fixed, the set of
queries it can resolve is fixed. We also observe that if the density of 1’s in the problem
fis (1), then there is a Q(1)-fraction of good databases y such that amount of positive
queries resolved by the certificate w constructed by the cell-sampling procedure is at least an
(%)O(t)—fraction of all queries. On the other hand, since w € (i]) x {0, 1}A% there are at most
(Z) 28w — 90(Aln X+AW) many certificates w. Therefore, at least 2~ (A X+AW)_fraction of
good databases (which is at least 2-C(AIn x+Aw)
with the same w. Pick this popular certificate w, the positive queries that w resolves together
with the good databases that w is associated with form the large monochromatic 1-rectangle.

-fraction of all databases) are associated
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Now we proceed to the formal parts of the proof. Given a database y € Y, let X?j‘ =
{z € X| f(x,y) = 1} denote the set of positive queries on y. We use ) = fix s to denote
the distribution induced by w on XJ .

Let P, C [s] denote the set of cells probed by the algorithm to resolve query z on
database y. Fix a database y € Y. Let I" C [s] be a subset of cells. We say a query = € X is
resolved by T' if & can be resolved by probing only cells in I" on the table storing database vy,
ie. if Py, CI'. We denote by

XF (D) ={z € X; | Py C T}
the set of positive queries resolved by I' on database y. Assume two databases y and vy’ are
indistinguishable over I': meaning that for the tables T}, and T} storing y and 3’ respectively,
the cell contents T),[i] = T,[i] for all i € I". Then due to the determinism of the cell-probing
algorithm, we have X(T') = X;?(F), i.e. T resolve the same set of positive queries on both
databases.

The cell-sampling procedure

Fix a database y € Y and any A € [32t/a2, s]. Suppose we have a cell-sampling procedure
which does the following: The procedure deterministically! chooses a unique I' C [s] such
that || = A and the measure p(X,(T')) of positive queries resolved by I is maximized (and
if there are more than one such I', the procedure chooses an arbitrary one of them). We
use [') to denote this set of cells chosen by the cell-sampling procedure. We also denote by
Xy = X.F(I'}) the set of positive queries resolved by this chosen set of cells.

On each database y, the cell-sampling procedure chooses for us the most informative
set T of cells of size [I'| = A that resolve the maximum amount of positive queries. We
use wy = (I'y,T,[[";]) to denote the contents (along with addresses) of the cells chosen by
the cell-sampling procedure for database y. We call such w, a certificate chosen by the
cell-sampling procedure for y.

Let y and 3’ be two databases. A simple observation is that if two databases y and 1/
have the same certificate w, = w,s chosen by the cell-sampling procedure, then the respective
sets X7, X/, of positive queries resolved on the certificate are going to be the same as well.

» Proposition 4. For any databases y,y' € Y, if w, = w, then X; = X

Let 7(z,y) = |P(z,y)| denote the number of cell-probes to resolve query x on database y.
By the assumption of the lemma, E,,[7(x,y)] <t for the inputs (x,y) sampled from the
product distribution p x v. We claim that there are many “good” columns (databases) with
high density of 1’s and low average cell-probe costs.

» Claim 5. There is a collection Ygooda C Y of substantial amount of good databases, such
that v(Ygeod) > § and for every y € Ygood, the followings are true:

the amount of positive queries is large: ,u(X;) > 5

the average cell-probe complerity among positive queries is bounded:

8t
Emwu;r [T(H}, y)] < "o

! Being deterministic here means that the chosen set T, is a function of y.
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Proof. The claim is proved by a series of averaging principles. First consider Yyense = {y € YV |
M(X;‘ ) > 5} the set of databases with at least §-density of positive queries. By the averaging
principle, we have v(Ygense) > «/2. Since E[r(x,y)] > v(Yiense)E[T(2,Y) | ¥ € Yienses
we have E,xp..[T(x,y)] < %, where Vgense = Vy,,. is the distribution induced by v
on Ygense. We then construct Ygood € Ydense as the set of ¥y € Ygense with average cell-
probe complexity bounded as Eq,[7(x,y)] < %. By Markov inequality Vdense(Ygood) = %
and hence v(Ygood) > §. Note that Eg.,[7(z,y)] > Byt [7(x, y)]u(X,5). We have
Byt [7(@, )] < Eomlr(@,y))/1(X;) < 2 for all y € Yyoou «

_a2

For the rest, we consider only these good databases. Fix any A € [32t/a?, s]. We claim
that for every good database y € Ygood, the cell-sampling procedure always picks a subset
Iy C [s] of A many cells, which can resolve a substantial amount of positive queries:

)Bt/a2

» Claim 6. For every y € Ygood, it holds that u(X;) > ¢ (%

Proof. Fix any good database y € Ygo0d. We only need to prove there exists a I' C [s]
with |T| = A that resolve positive queries u(X, (")) > ¢ (%)8”&2
immediately.

We construct a hypergraph H C 21! with vertex set [s] as H = {P,, | = € X,F}, so that
each positive queries x € X;‘ on database y is associated (many-to-one) to a hyperedge
e € H such that e = P, is precisely the set of cells probed by the cell-probing algorithm to
resolve query x on database y.

We also define a measure [i over hyperedges e € H as the total measure (in u;j) of the
positive queries x associated to e. Formally, for every e € H,

i)=Y ).

mGX;r:PT,y:e

. The claims follows

Since ), 4 fi(e) = EzeX;r py (x) = 1, this i is a well-defined probability distribution over
hyperedges in H. Moreover, recalling that 7(x,y) = |Py,|, the the average size of hyperedges

8t
Eewﬂ“@” = Ewwu; [T(:Ij,y)] S ﬁ

By the probabilistic method (whose proof is in the full paper [21]), there must exist a T" C [s]
of size |I'| = A, such that the sub-hypergraph Hr induced by I has

1/A 8t/ 0
N N .
i(Hr) 2 5 <25>

By our construction of H, the positive queries associated (many-to-one) to the hyperedges in
the induced sub-hypergraph Hr = {P,, | x € X;r A Pp,y C T'} are precisely those positive
queries in X,F (') = {z € X,\ | P,y C T'}. Therefore,

3 A 8t/a?
WO = Y ==y (5)

Recall that pu(X,;5) > § for every y € Ygood- And since X,F(I') € X,F, we have

a 8t/ 0>
HOEHO) = O ) = 5 (5)

The claim is proved. <

ICALP 2016
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Recall that the certificate w, = (I'y, T,,[I';]) is constructed by the cell-sampling procedure
for database y. For every possible assignment w € ([Z]) x {0, 1}Av of certificate, let Y,, denote
the set of good databases y € Y004 With this certificate w, = w. Due to the determinism of
the cell-sampling procedure, this classifies the Y004 into at most (Z) 28% many disjointed
subclasses Y,,. Recall that v/(Yge0d) > §. By the averaging principle, the following proposition
is natural.

» Proposition 7. There exists a certificate w € (i]) x {0,1}A% denoted as w*, such that

(6%
) > ——
) 2 s

On the other hand, fixed any w, since all databases y € Y, have the same wy, by
Proposition 4 they must have the same XJ. We can abuse the notation and write X, = X
forall y € Y.

Now we let A = X+ and B = Y,,«, where w* satisfies Proposition 7. Due to Claim 6 and

Proposition 7, we have

8t/ O(t/a?)
N(A)>Z<2A> :a.<A) and V(B)274(S;Y2A = @.270(Amx+Aw),
S S w
A

Note for every y € B =Y,,«, the A = X« = X;‘(I‘Z) is a set of positive queries on database
y, thus A X B is a monochromatic 1-rectangle in f. This finishes the proof of Lemma 3.

4 Rectangles in conjunction problems

Many natural data structure problems can be expressed as a conjunction of point-wise
relations between the query point and database points. Consider data structure problem
f: X xY —{0,1}. Let Y = Y™, so that each database y € Y is a tuple y = (y1,y2,---,Yn)
of n points from ). A point-wise function g: X xY — {0,1} is given. The data structure
problem f is defined as the conjunction of these subproblems:

Vx€X7Vy:(yl7y2>uyn)€K f($7y>: g(xuyz)

~.

=1

Many natural data structure problems can be defined in this way, for example:

Membership query: X =) is a finite domain. The point-wise function g(-,-) is # that
indicates whether the two points are unequal.
(v, A)-approximate near-neighbor (v, A\)-ANN%: X = ) is a metric space with distance
dist(-,-). The point-wise function g is defined as: for z, z € X, g(x,2) = 1 if dist(z, z) >
YA, or g(x, z) = 0 if dist(z, z) < A. The function value can arbitrary for all other cases.
Partial match PM%’”: ¥ is an alphabet, Y = %4 and X = (X U {x})?. The point-wise
function g is defined as: for x € X and z € Y, g(z, 2) = 1 if there is an i € [d] such that
x; & {*,zi}, or g(x,z) =0 if otherwise.

We show that refuting the large rectangles in the point-wise function g can give us lower
bounds for the conjunction problem f.

Let u, v be distributions over X and ) respectively, and let ™ be the product distribution
onY =YY" Let g: X x Y — {0,1} be a point-wise function and f: X xY — {0,1} a data
structure problem defined by the conjunction of g as above.
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» Lemma 8. For f, g, u, v defined as above, assume that there is a deterministic or randomized
Las Vegas cell-probing scheme solving f on a table of s cells, each cell containing w bits,
with expected t cell-probes under input distribution p x v™. If the followings are true:
the density of 0’s in g is at most g under distribution p X v for some constant 5 < 1;
g does not contain monochromatic 1-rectangle of measure at least é X é under distribution
XV
then

o)
ik >® or t=Q nlog¥ .
nlog ¥ w + log s

Proof. By union bound, the density of 0’s in f under distribution p x v™ is:

Pr [/\9(%%)201Sn~zfiru[g(z,z):0]§n.ﬂzﬁ_

y=(y1,---» yn)~v™ | =1 n

z~v

By Lemma 3, the Q(1)-density of 1’s in f and the assumption of existing a cell-probing
scheme with parameters s, w and ¢, altogether imply that for any 4t < A < s, f has a
monochromatic 1-rectangle A x B such that

AN .

pu(A) > () and  V"(B) > 2780 EHw), (1)
for some constants c;, cz > 0 depending only on 5.

Let C' C Y be the largest set of columns in g to form a 1-rectangle with A. Formally,

C={ze€)Y|VoreAgxz) =1}

Clearly, for any monochromatic 1-rectangle A x D in g, we must have D C C'. By definition
of f as a conjunction of g, it must hold that for all y = (y1,92,...,yn) € B, none of y; €y
has g(z,y;) = 0 for any « € A, which means B C C™, and hence

v (B) <v"(C") =v(C)".
Recall that A x C' is monochromatic 1-rectangle in g. Due to the assumption of the lemma,
either (A) < £ or v(C) < 3. Therefore, either pu(A) < % or v"(B) < g=.

We can always choose a A such that A = O (M) and A = ( nlog ¥ ) to satisfy

w w+log s

1

—c2A(In £ +w) =
27 A > o

If such A is less than 32¢/(1 — )2, then we immediately have a lower bound

t:Q(”log‘I’)_
w + log s

Otherwise, due to (1), A x B is monochromatic 1-rectangle in f with v"(B) > &, therefore
it must hold that p(A) < £, which by (1) gives us

1 AN°W nlog ¥ o

— A > — =

(I>>'u()_<s) ( sw ) ’
which gives the lower bound

o(t)
sw
> d.
<n log \Il> - b
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5 Isoperimetry and ANN lower bounds

Given a metric space X with distance dist(-,-) and A\ > 0, we say that two points x,2’ € X
are \-close if dist(x,2") < A, and A-far if otherwise. The A-neighborhood of a point z € X,
denoted by N (), is the set of all points from X which are A-close to z. Given a point set
A C X, we define Nx(A) = J,c4 Na(z) to be the set of all points which are A-close to some
point in A.

In [17], a natural notion of metric expansion was introduced.

» Definition 9 (metric expansion [17]). Let X be a metric space and p a probability distri-
bution over X. Fix any radius A > 0. Define

o2 i AOAA)

T acxXazs p(A)
The expansion ® of the A-neighborhoods in X under distribution u is defined as the largest

k such that for all § < 5, ®(6) > k.

We now introduce a more refined definition of metric expansion using two parameters ®
and W.

» Definition 10 ((®, U)-expanding). Let X be a metric space and p a probability distribution
over X. The A-neighborhoods in X are (®, ¥)-expanding under distributions p if we have
1(Nx(A)) >1—1/T for any A C X that pu(A4) > 1/9.

The metric expansion defined in [17] is actually a special case of (®, ¥)-expanding: The
expansion of A-neighborhoods in a metric space X is ® means the A-neighborhoods are
(®,2)-expanding. The notion of (P, ¥)-expanding allows us to describe a more extremal
expanding situation in metric space: The expanding of A-neighborhoods does not stop at
measure 1/2, rather, it can go all the way to be very close to measure 1. This generality may
support higher lower bounds for approximate near-neighbor.

Given a radius A > 0 and an approximation ratio v > 1, recall that the (v, \)-approximate
near neighbor problem (v, \)-ANN’; can be defined as a conjunction f(z,y) = A, g(z,y;) of
point-wise function g : X x X — {0,1} where g(x,z) = 0 if = is A-close to z; g(z,z) = 1 if
x is yA-far from z; and g(z, z) is arbitrary for all other cases. Observe that g is actually
(v, A\)-ANNY, the point-to-point version of the (v, \)-approximate near neighbor.

The following proposition gives an intrinsic connection between the expansion of metric
space and size of monochromatic rectangle in the point-wise near-neighbor relation.

» Proposition 11. If the A-neighborhoods in X are (®,V)-expanding under distribution u,
then the function g defined as above does not contain a monochromatic 1-rectangle of measure

> é X 1'\% under distribution p X .

Proof. Since the A-neighborhoods in X are (®, ¥)-expanding, for any A C X with u(A) > é,
we have p(Ny(A4)) > 1 — 5. And by definition of g, for any monochromatic A x B, it
must hold that B N Ny(A) = 0, ie. B C X \ Ny(A). Therefore, either u(4) < %, or

u(B) =1 — p(N(4)) < & < 101, 4

The above proposition together with Lemma 8 immediately gives us the following corollary
which reduces lower bounds for near-neighbor problems to the isoperimetric inequalities.

» Corollary 12. Let p be a distribution over a metric space X. Let A > 0 and v > 1.
Assume that there is a deterministic or randomized Las Vegas cell-probing scheme solving
(7, A)-ANNY on a table of s cells, each cell containing w bits, with expected t cell-probes
under input distribution p x p™. If the followings are true:
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Epep [0(Nya(2))] < g for a constant B < 1;
the A-neighborhoods in X are (®, U)-expanding under distribution u;
then

o)
ke >0 or t=0Q R8T log ¥ .
nlog ¥ w + log s

» Remark. In [17], a lower bound for (v, A)-ANN’ was proved with the following form:

t
<Swf> > B,
n

In our Corollary 12, unless the cell-size w is unrealistically large to be comparable to n, the

corollary always gives the first lower bound

sw \O®
> .
(nlog@) -

This strictly improves the lower bound in [17]. For example, when the metric space is

(2®(d), 2®(d))—expanding, this would give us a lower bound ¢t = Q (m%—w) which in particular,
nd
when the space is linear (sw = O(nd)), becomes t = Q(d).

5.1 Lower bound for ANN in Hamming space

Let X = {0,1}¢ be the Hamming space with Hamming distance dist(-,-). Recall that N (z)
represents the A-neighborhood around z, in this case, the Hamming ball of radius A centered
at z; and for a set A C X, the N, (A) is the set of all points within distance A\ to any point
in A. For any 0 < r < d B(r) = |[N,(0)| denote the volume of Hamming ball of radius r,
where 0 € {0,1} is the zero vector. Obviously B(r) =", ., (Z)

The following isoperimetric inequality of Harper is well known.

» Lemma 13 (Harper's theorem [9]). Let X = {0,1}? be the d-dimensional Hamming space.
For A C X, let r be such that |A| > B(r). Then for every A > 0, |[Nx(A)| > B(r + A).

In words, Hamming balls have the worst vertex expansion.
For 0 <7 < % the following upper bound for the volume of Hamming ball is well known:

o(1—o(1)dH(r/d) < (d
- A\r

where H(z) = —xlogy x — (1 — ) log,(1 — x) is the Boolean entropy function.

Consider the Hamming (v, A)-approximate near-neighbor problem (v, A\)-ANN%. The
hard distribution for this problem is just the uniform and independent distribution: For the
database y = (y1, 92, -..,Yn) € X", each database point y; is sampled uniformly and inde-
pendently from X = {0, 1}"; and the query point z is sampled uniformly and independently
from X.

» Theorem 14. Let d > 32logn. For any v > 1, there is a A > 0 such that if (v, A)-ANN';
can be solved by a deterministic or Las Vegas randomized cell-probing scheme on a table of
s cells, each cell containing w bits, with expected t cell-probes for uniform and independent

swy

’Yg 10g nd

— d _ nd
database and query, then t = ) <—f) ort=1 (W)
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Proof. Choose A to satisfy yA = g —+/2d1n(2n). Let p be uniform distribution over X. We
are going to show:
Bl (Voa ()] < 2
the A-neighborhoods in X are (®, ¥)-expanding under distribution y for some ® = 282(d/¥%)
and U = 2d/7),
Then the cell-probe lower bounds follows directly from Corollary 12.
First, by the Chernoff bound, u(N,x(z)) < 5 for any point z € X. Thus trivially
Evmpn(Nop(2))] < .
On the other hand, for d > 32logn and n being sufficiently large, it holds that A > %.
Let r = 4 — %. And consider any A C X with pu(A) > 2-0=HE/D)d We have |A| >
24H(r/d) > B(r). Then by Harper’s theorem,

NAA| = Br+0) > B($+&) 22— B(4- &) =2"— B(r) > 27 — 20/,

which means p(Ny(A)) > 1 —2-0=H/D)d Ty other words, the A\-neighborhoods in X
are (®, ¥)-expanding under distribution p for @ = ¥ = 20-H/d)d where r/d = £ — %.

Apparently 1 — H(% — 1) = O(2?) for small enough x > 0. Hence, ® = ¥ = 26(d/7*), <

5.2 Lower bound for ANN under L-infinity norm

Let ¥ = {0,1,...,m} and the metric space is X = X with £, distance dist(z,y) = ||z — y||
for any z,y € X.

Let p be the distribution over X as defined in [2]: First define a distribution m over
Y oas p(i) = 272" for all i > 0 and 7(0) = 1 — > iso7(4); and then p is defined as
w(xy, xo,y ... xq) = w(xy)w(xe) ... w(2q).

The following isoperimetric inequality is proved in [2].
» Lemma 15 (Lemma 9 of [2]). For any A C X, it holds that u(Ny(A)) > (u(A))Y/7.

Consider the (v, \)-approximate near-neighbor problem (v, A\)-ANN} _ defined in the
metric space X under /., distance. The hard distribution for this problem is p x p™: For
the database y = (y1,¥2,.-.,yn) € X", each database point y; is sampled independently
according to p; and the query point x is sampled independently from X according to pu. The
following lower bound has been proved in [2] and [12].

Fix any e >0 and 0 < § < % Assume 2 (logH'€ n) <d < o(n). For 3 < ¢ < O(loglogd),
define p = %(i logd)'/¢ > 10. Now we choose v = log,logd and A = 1.

» Theorem 16. With d,v, )\, p and the metric space X defined as above, if (v, \)-ANNj _
can be solved by a deterministic or Las Vegas randomized cell-probing scheme on a table
of s cells, each cell containing w < n'=2° bits, with expected t < p cell-probes under input
distribution 1 x p", then sw = nP/t),

Proof. The followings are true

Coulde/3
e log n

(N (z)) = &———— < 5~ for any z € X (Claim 6 in [2]);
the A-neighborhoods in X are (n%°, n?jl)—expanding under distribution p for ® = n®”
and ¥ = 290d/7),

To see the expansion is true, let & = n’? and U = n?—il By Lemma 15, for any set A C X

with p(A) > ®, we have u(Ny(A)) > n=% > 1 — . This means A-neighborhoods of M are
5

(n°?, n?—jl )-expanding.

1-46

Due to Corollary 12, either (%)O(t) >n% or =Q (JLTOg&) The second bound is

always higher with our ranges for w and t. The first bound gives sw = n(?/t), <
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