# Simple Average-Case Lower Bounds for Approximate Near-Neighbor from Isoperimetric Inequalities

Yitong Yin\*

State Key Lab for Novel Software Technology, Nanjing University, Nanjing, China yinyt@nju.edu.cn

#### — Abstract —

We prove an  $\Omega(d/\log\frac{sw}{nd})$  lower bound for the average-case cell-probe complexity of deterministic or Las Vegas randomized algorithms solving approximate near-neighbor (ANN) problem in d-dimensional Hamming space in the cell-probe model with w-bit cells, using a table of size s. This lower bound matches the highest known worst-case cell-probe lower bounds for any static data structure problems.

This average-case cell-probe lower bound is proved in a general framework which relates the cell-probe complexity of ANN to isoperimetric inequalities in the underlying metric space. A tighter connection between ANN lower bounds and isoperimetric inequalities is established by a stronger richness lemma proved by cell-sampling techniques.

1998 ACM Subject Classification E.1 Data Structures

**Keywords and phrases** nearest neighbor search, approximate near-neighbor, cell-probe model, isoperimetric inequality

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.84

## 1 Introduction

The nearest neighbor search (NNS) problem is a fundamental problem in Computer Science. In this problem, a database  $y = (y_1, y_2, \dots, y_n)$  of n points from a metric space (X, dist) is preprocessed to a data structure, and at the query time given a query point x from the same metric space, we are asked to find the point  $y_i$  in the database which is closest to x according to the metric.

In this paper, we consider a decision and approximate version of NNS, the approximate near-neighbor (ANN) problem, where the algorithm is asked to distinguish between the two cases: (1) there is a point in the databases that is  $\lambda$ -close to the query point for some radius  $\lambda$ , or (2) all points in the database are  $\gamma\lambda$ -far away from the query point, where  $\gamma \geq 1$  is the approximation ratio.

The complexity of nearest neighbor search has been extensively studied in the cell-probe model, a classic model for data structures. In this model, the database is encoded to a table consisting of memory cells. Upon each query, a cell-probing algorithm answers the query by making adaptive cell-probes to the table. The complexity of the problem is measured by the tradeoff between the time cost (in terms of number of cell-probes to answer a query) and the space cost (in terms of sizes of the table and cells). There is a substantial body of work on the cell-probe complexity of NNS for various metric space [6, 7, 5, 11, 8, 14, 3, 2, 16, 17, 12, 20].

<sup>\*</sup> This work was done in part while the author was visiting the Simons Institute for the Theory of Computing. This work was partially supported by NSFC grants 61272081 and 61321491.



© Yitong Yin; licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi; Article No. 84; pp. 84:1–84:13





LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

It is widely believed that NNS suffers from the "curse of dimensionality" [10]: The problem may become intractable to solve when the dimension of the metric space becomes very high. Consider the most important example, d-dimensional Hamming space  $\{0,1\}^d$  with  $d \geq C \log n$  for a sufficiently large constant C. The conjecture is that NNS in this metric remains hard to solve when either approximation or randomization is allowed individually.

In a series of pioneering works [6, 5, 11, 14, 3], by a rectangle-based technique of asymmetric communication complexity known as the richness lemma [15], cell-probe lower bounds in form of  $\Omega(d/\log s)$ , where s stands for the number of cells in the table, were proved for deterministic approximate near-neighbor (due to Liu [14]) and randomized exact near-neighbor (due to Barkol and Rabani [5]). Such lower bound is the highest possible lower bound one can prove in the communication model. This fundamental barrier was overcome by an elegant self-reduction technique introduced in the seminal work of Pătraşcu and Thorup [18], in which the cell-probe lower bounds for deterministic ANN and randomized exact near-neighbor were improved to  $\Omega(d/\log\frac{sw}{n})$ , where w represents the number of bits in a cell. More recently, in a previous work of us [20], by applying the technique of Pătraşcu and Thorup to the certificates in data structures, the lower bound for deterministic ANN was further improved to  $\Omega(d/\log\frac{sw}{nd})$ . This last lower bound behaves differently for the polynomial space where sw = poly(n), near-linear space where  $sw = n \cdot \text{polylog}(n)$ , and linear space where sw = O(nd). In particular, the bound becomes  $\Omega(d)$  when the space cost is strictly linear in the entropy of the database, i.e. when sw = O(nd).

When both randomization and approximation are allowed, the complexity of NNS is substantially reduced. With polynomial-size tables, a  $\Theta(\log\log d/\log\log\log d)$  tight bound was proved for randomized approximate NNS in d-dimensional Hamming space [7, 8]. If we only consider the decision version, the randomized ANN can be solved with O(1) cell-probes on a table of polynomial size [8]. For tables of near-linear size, a technique called cell-sampling was introduced by Panigrahy  $et\ al.\ [16,\ 17]$  to prove  $\Omega(\log n/\log\frac{sw}{n})$  lower bounds for randomized ANN. This was later extended to general asymmetric metrics [1].

Among these lower bounds, the randomized ANN lower bounds of Panigrahy et al. [16, 17] were proved explicitly for average-case cell-probe complexity. The significance of average-case complexity for NNS was discussed in their papers. A recent breakthrough in upper bounds [4] also attributes to solving the problem on a random database. Retrospectively, the randomized exact near-neighbor lower bounds due to the density version of richness lemma [6, 5, 11] also hold for random inputs. All these average-case lower bounds hold for Monte Carlo randomized algorithms with fixed worst-case cell-probe complexity. This leaves open an important case: the average-case cell-probe complexity for the deterministic or Las Vegas randomized algorithms for ANN, where the number of cell-probes may vary for different inputs.

#### 1.1 Our contributions

We study the average-case cell-probe complexity of deterministic or Las Vegas randomized algorithms for the approximate near-neighbor (ANN) problem, where the number of cell-probes to answer a query may vary for different query-database pairs and the average is taken with respect to the distribution over input queries and databases.

For ANN in Hamming space  $\{0,1\}^n$ , the hard distribution over inputs is very natural: Every point  $y_i$  in the database  $y = (y_1, y_2, \dots, y_n)$  is sampled uniformly and independently from the Hamming space  $\{0,1\}^d$ , and the query point x is also a point sampled uniformly and independently from  $\{0,1\}^d$ . According to earlier average-case lower bounds [16, 17] and the recent data-dependent LSH algorithm [4], this input distribution seems to capture the

hardest case for nearest neighbor search and is also a central obstacle to overcome for efficient algorithms.

By a simple proof, we show the following lower bound for the average-case cell-probe complexity of ANN in Hamming space with this very natural input distribution.

▶ **Theorem 1.** For  $d \ge 32 \log n$  and  $d < n^{o(1)}$ , any deterministic or Las Vegas randomized algorithm solving  $(\gamma, \lambda)$ -approximate near-neighbor problem in d-dimensional Hamming space in the cell-probe model with w-bit cells for  $w < n^{o(1)}$ , using a table of size  $s < 2^d$ , must have expected cell-probe complexity  $t = \Omega\left(\frac{d}{\gamma^2 \log \frac{sw\gamma^2}{nd}}\right)$ , where the expectation is taken over both the uniform and independent input database and query and the random bits of the algorithm.

This lower bound matches the highest known worst-case cell-probe lower bounds for *any* static data structure problems. Such lower bound was only known for polynomial evaluation [19, 13] and also worst-case deterministic ANN due to our previous work [20].

We also prove an average-case cell-probe lower bound for ANN under  $\ell_{\infty}$ -distance. The lower bound matches the highest known worst-case lower bound for the problem [2].

In fact, we prove these lower bounds in a unified framework that relates the average-case cell-probe complexity of ANN to isoperimetric inequalities regarding an expansion property of the metric space.

Inspired by the notions of metric expansion defined in [17], we define the following notion of expansion for metric space. Let  $(X, \operatorname{dist})$  be a metric space. The  $\lambda$ -neighborhood of a point  $x \in X$ , denoted as  $N_{\lambda}(x)$  is the set of all points in X within distance  $\lambda$  from x. Consider a distribution  $\mu$  over X. We say the  $\lambda$ -neighborhoods are **weakly independent** under distribution  $\mu$ , if for any point  $x \in X$ , the measure of the  $\lambda$ -neighborhood  $\mu(N_{\lambda}(x)) < \frac{\beta}{n}$  for a constant  $\beta < 1$ . We say the  $\lambda$ -neighborhoods are  $(\Phi, \Psi)$ -expanding under distribution  $\mu$ , if for any point set  $A \subseteq X$  with  $\mu(A) \geq \frac{1}{\Phi}$ , we have  $\mu(N_{\lambda}(A)) \geq 1 - \frac{1}{\Psi}$ , where  $N_{\lambda}(A)$  denotes the set of all points within distance  $\lambda$  from some point in A.

Consider the database  $y = (y_1, y_2, \dots, y_n) \in X^n$  with every point  $y_i$  sampled independently from  $\mu$ , and the query  $x \in X$  sampled independently from  $\mu$ . We denote this input distribution as  $\mu \times \mu^n$ . We prove the following lower bound.

- ▶ **Theorem 2.** For a metric space (X, dist), assume the followings:
- the  $\gamma\lambda$ -neighborhoods are weakly independent under distribution  $\mu$ ;
- the  $\lambda$ -neighborhoods are  $(\Phi, \Psi)$ -expanding under distribution  $\mu$ .

Then any deterministic or Las Vegas randomized algorithm solving  $(\gamma, \lambda)$ -approximate near-neighbor problem in (X, dist) in the cell-probe model with w-bit cells, using a table of size s, must have expected cell-probe complexity

$$t = \Omega\left(\frac{\log \Phi}{\log \frac{sw}{n \log \Psi}}\right)$$
 or  $t = \Omega\left(\frac{n \log \Psi}{w + \log s}\right)$ 

under input distribution  $\mu \times \mu^n$ .

The key step to prove such a theorem is a stronger version of the richness lemma that we prove in Section 3. The proof of this stronger richness lemma uses an idea called "cell-sampling" introduced by Panigrahy *et al.* [17] and later refined by Larsen [13]. This new richness lemma as well as this connection between the rectangle-based techniques (such as the richness lemma) and information-theory-based techniques (such as cell-sampling) are of interests by themselves.

### 2 Preliminary

Let  $(X, \operatorname{dist})$  be a metric space. Let  $\gamma \geq 1$  and  $\lambda \geq 0$ . The  $(\gamma, \lambda)$ -approximate near-neighbor problem  $(\gamma, \lambda)$ -ANN $_X^n$  is defined as follows: A database  $y = (y_1, y_2, \dots, y_n) \in X^n$  of n points from X is preprocessed and stored as a data structure. Upon each query  $x \in X$ , by accessing the data structure we want to distinguish between the following two cases: (1) there is a point  $y_i$  in the database such that  $\operatorname{dist}(x, z) \leq \lambda$ ; (2) for all points  $y_i$  in the database we have  $\operatorname{dist}(x, z) > \gamma \lambda$ . For all other cases the answer can be arbitrary.

More abstractly, given a universe X of queries and a universe Y of all databases, a **data structure problem** is a function  $f: X \times Y \to Z$  that maps every pair of **query**  $x \in X$  and **database**  $y \in Y$  to an answer  $f(x,y) \in Z$ . In our example of  $(\gamma,\lambda)$ -ANN $_X^n$ , the query universe is the metric space X, the database universe is the set  $Y = X^n$  of all tuples of n points from X, and f maps each query  $x \in X$  and database  $y \in Y$  to an Boolean answer: f(x,y) = 0 if there is a  $\lambda$ -near neighbor of x in the database y; f(x,y) = 1 if no points in the database y is a  $\gamma\lambda$ -near neighbor of x; and f(x,y) can be arbitrary if otherwise. Note that due to a technical reason, we usually use 1 to indicate the "no near-neighbor" case.

Given a data structure problem  $f: X \times Y \to Z$ , a code  $T: Y \to \Sigma^s$  with alphabet  $\Sigma = \{0,1\}^w$  encodes every database  $y \in Y$  to a **table**  $T_y$  of s **cells** with each cell storing a word of w bits. We use  $[s] = \{1,2,\ldots,s\}$  to denote the set of indices of cells. For each  $i \in [s]$ , we use  $T_y[i]$  to denote the content of the i-th cell of table  $T_y$ ; and for  $S \subseteq [s]$ , we write  $T_y[S] = (T_y[i])_{i \in S}$  for the tuple of the contents of the cells in S. Upon each query  $x \in X$ , a **cell-probing algorithm** adaptive retrieves the contents of the cells in the table  $T_y$  (which is called **cell-probes**) and outputs the answer f(x,y) at last. Being adaptive means that the cell-probing algorithm is actually a decision tree: In each round of cell-probing the address of the cell to probe next is determined by the query x as well as the contents of the cells probed in previous rounds. Together, this pair of code and decision tree is called a **cell-probing scheme**.

For randomized cell-probing schemes, the cell-probing algorithm takes a sequence of random bits as its internal random coin. In this paper we consider only deterministic or Las Vegas randomized cell-probing algorithms, therefore the algorithm is guaranteed to output a correct answer when it terminates.

When a cell-probing scheme is fixed, the size s of the table as well as the length w of each cell are fixed. These two parameters together give the space complexity. And the number of cell-probes may vary for each pair of inputs (x, y) or may be a random variable if the algorithm is randomized. Given a distribution  $\mathcal{D}$  over  $X \times Y$ , the **average-case cell-probe complexity** for the cell-probing scheme is given by the expected number of cell-probes to answer f(x, y) for a (x, y) sampled from  $\mathcal{D}$ , where the expectation is taken over both the input distribution  $\mathcal{D}$  and the internal random bits of the cell-probing algorithm.

## 3 A richness lemma for average-case cell-probe complexity

The richness lemma (or the rectangle method) introduced in [15] is a classic tool for proving cell-probe lower bounds. A data structure problem  $f: X \times Y \to \{0,1\}$  is a natural communication problem, and a cell-probing scheme can be interpreted as a communication protocol between the cell-probing algorithm and the table, with cell-probes as communications.

Given a distribution  $\mathcal{D}$  over  $X \times Y$ , a data structure problem  $f: X \times Y \to \{0,1\}$  is  $\boldsymbol{\alpha}$ -dense under distribution  $\mathcal{D}$  if  $\mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x},\boldsymbol{y})] \geq \alpha$ . A combinatorial rectangle  $A \times B$  for  $A \subseteq X$  and  $B \subseteq Y$  is a monochromatic 1-rectangle in f if f(x,y) = 1 for all  $(x,y) \in A \times B$ .

The richness lemma states that if a problem f is dense enough (i.e. being rich in 1's) and is easy to solve by communication, then f contains large monochromatic 1-rectangles. Specifically, if an  $\alpha$ -dense problem f can be solved by Alice sending a bits and Bob sending b bits in total, then f contains a monochromatic 1-rectangle of size  $\alpha \cdot 2^{-O(a)} \times \alpha \cdot 2^{-O(a+b)}$  in the uniform measure. In the cell-probe model with w-bit cells, tables of size s and cell-probe complexity s, it means the monochromatic 1-rectangle is of size s0 size s1 section s2. The cell-probe lower bounds can then be proved by refuting such large 1-rectangles for specific data structure problems s4.

We prove the following richness lemma for average-case cell-probe complexity.

▶ Lemma 3. Let  $\mu, \nu$  be distributions over X and Y respectively, and let  $f: X \times Y \to \{0,1\}$  be  $\alpha$ -dense under the product distribution  $\mu \times \nu$ . If there is a deterministic or randomized Las Vegas cell-probing scheme solving f on a table of s cells, each cell containing w bits, with expected t cell-probes under input distribution  $\mu \times \nu$ , then for any  $\Delta \in \left[32t/\alpha^2, s\right]$ , there is a monochromatic 1-rectangle  $A \times B \subseteq X \times Y$  in f such that  $\mu(A) \geq \alpha \cdot \left(\frac{\Delta}{s}\right)^{O(t/\alpha^2)}$  and  $\nu(B) \geq \alpha \cdot 2^{-O(\Delta \ln \frac{s}{\Delta} + \Delta w)}$ .

Compared to the classic richness lemma, this new lemma has the following advantages:

- It holds for average-case cell-probe complexity.
- It gives stronger result even restricted to worst-case complexity. The newly introduced parameter  $\Delta$  should not be confused as an overhead caused by the average-case complexity argument, rather, it strengthens the result even for the worst-case lower bounds. When  $\Delta = t$  it gives the bound in the classic richness lemma.
- The lemma claims the existence of a *family* of rectangles parameterized by  $\Delta$ , therefore to prove a cell-probe lower bound it is enough to refute any one rectangle from this family. As we will see, this gives us a power to prove the highest lower bounds (even for the worst case) known to any static data structure problems.

The proof of this lemma uses an argument called "cell-sampling" introduced by Panigrahy et al. [16, 17] for approximate nearest neighbor search and later refined by Larsen [13] for polynomial evaluation. Our proof is greatly influenced by Larsen's approach.

The rest of this section is dedicated to the proof of this lemma.

## 3.1 Proof of the average-case richness lemma (Lemma 3)

By fixing random bits, it is sufficient to consider only deterministic cell-probing algorithms. The high level idea of the proof is simple. Fix a table  $T_y$ . A procedure called the "cell-sampling procedure" chooses the subset  $\Gamma$  of  $\Delta$  many cells that resolve the maximum amount of positive queries. This associates each database y to a string  $\omega = (\Gamma, T_y[\Gamma])$ , which we call a **certificate**, where  $T_y[\Gamma] = (T_y[i])_{i \in \Gamma}$  represent the contents of the cells in  $\Gamma$ . Due to the nature of the cell-probing algorithm, once the certificate is fixed, the set of queries it can resolve is fixed. We also observe that if the density of 1's in the problem f is  $\Omega(1)$ , then there is a  $\Omega(1)$ -fraction of good databases y such that amount of positive queries resolved by the certificate  $\omega$  constructed by the cell-sampling procedure is at least an  $(\frac{\Delta}{s})^{O(t)}$ -fraction of all queries. On the other hand, since  $\omega \in \binom{[s]}{\Delta} \times \{0,1\}^{\Delta w}$  there are at most  $\binom{s}{\Delta} 2^{\Delta w} = 2^{O(\Delta \ln \frac{s}{\Delta} + \Delta w)}$  many certificates  $\omega$ . Therefore, at least  $2^{-O(\Delta \ln \frac{s}{\Delta} + \Delta w)}$ -fraction of good databases (which is at least  $2^{-O(\Delta \ln \frac{s}{\Delta} + \Delta w)}$ -fraction of all databases) are associated with the same  $\omega$ . Pick this popular certificate  $\omega$ , the positive queries that  $\omega$  resolves together with the good databases that  $\omega$  is associated with form the large monochromatic 1-rectangle.

Now we proceed to the formal parts of the proof. Given a database  $y \in Y$ , let  $X_y^+ = \{x \in X \mid f(x,y) = 1\}$  denote the set of positive queries on y. We use  $\mu_y^+ = \mu_{X_y^+}$  to denote the distribution induced by  $\mu$  on  $X_y^+$ .

Let  $P_{xy} \subseteq [s]$  denote the set of cells probed by the algorithm to resolve query x on database y. Fix a database  $y \in Y$ . Let  $\Gamma \subseteq [s]$  be a subset of cells. We say a query  $x \in X$  is resolved by  $\Gamma$  if x can be resolved by probing only cells in  $\Gamma$  on the table storing database y, i.e. if  $P_{xy} \subseteq \Gamma$ . We denote by

$$X_y^+(\Gamma) = \{ x \in X_y^+ \mid P_{xy} \subseteq \Gamma \}$$

the set of positive queries resolved by  $\Gamma$  on database y. Assume two databases y and y' are indistinguishable over  $\Gamma$ : meaning that for the tables  $T_y$  and  $T_{y'}$  storing y and y' respectively, the cell contents  $T_y[i] = T_{y'}[i]$  for all  $i \in \Gamma$ . Then due to the determinism of the cell-probing algorithm, we have  $X_y^+(\Gamma) = X_{y'}^+(\Gamma)$ , i.e.  $\Gamma$  resolve the same set of positive queries on both databases.

#### The cell-sampling procedure

Fix a database  $y \in Y$  and any  $\Delta \in \left[32t/\alpha^2, s\right]$ . Suppose we have a cell-sampling procedure which does the following: The procedure deterministically chooses a unique  $\Gamma \subseteq [s]$  such that  $|\Gamma| = \Delta$  and the measure  $\mu(X_y^+(\Gamma))$  of positive queries resolved by  $\Gamma$  is maximized (and if there are more than one such  $\Gamma$ , the procedure chooses an arbitrary one of them). We use  $\Gamma_y^*$  to denote this set of cells chosen by the cell-sampling procedure. We also denote by  $X_y^* = X_y^+(\Gamma_y^*)$  the set of positive queries resolved by this chosen set of cells.

On each database y, the cell-sampling procedure chooses for us the most informative set  $\Gamma$  of cells of size  $|\Gamma| = \Delta$  that resolve the maximum amount of positive queries. We use  $\omega_y = (\Gamma_y^*, T_y[\Gamma_y^*])$  to denote the contents (along with addresses) of the cells chosen by the cell-sampling procedure for database y. We call such  $\omega_y$  a **certificate** chosen by the cell-sampling procedure for y.

Let y and y' be two databases. A simple observation is that if two databases y and y' have the same certificate  $\omega_y = \omega_{y'}$  chosen by the cell-sampling procedure, then the respective sets  $X_y^*, X_{y'}^*$  of positive queries resolved on the certificate are going to be the same as well.

▶ Proposition 4. For any databases  $y, y' \in Y$ , if  $\omega_y = \omega_{y'}$  then  $X_y^* = X_{y'}^*$ .

Let  $\tau(x,y) = |P(x,y)|$  denote the number of cell-probes to resolve query x on database y. By the assumption of the lemma,  $\mathbb{E}_{\mu \times \nu}[\tau(\boldsymbol{x},\boldsymbol{y})] \leq t$  for the inputs  $(\boldsymbol{x},\boldsymbol{y})$  sampled from the product distribution  $\mu \times \nu$ . We claim that there are many "good" columns (databases) with high density of 1's and low average cell-probe costs.

- ▶ Claim 5. There is a collection  $Y_{\mathsf{good}} \subseteq Y$  of substantial amount of good databases, such that  $\nu(Y_{\mathsf{good}}) \geq \frac{\alpha}{4}$  and for every  $y \in Y_{\mathsf{good}}$ , the followings are true:
- the amount of positive queries is large:  $\mu(X_n^+) \geq \frac{\alpha}{2}$ ;
- the average cell-probe complexity among positive queries is bounded:

$$\mathbb{E}_{\boldsymbol{x} \sim \mu_y^+}[\tau(\boldsymbol{x}, y)] \le \frac{8t}{\alpha^2}.$$

<sup>&</sup>lt;sup>1</sup> Being deterministic here means that the chosen set  $\Gamma_y^*$  is a function of y.

**Proof.** The claim is proved by a series of averaging principles. First consider  $Y_{\mathsf{dense}} = \{y \in Y \mid \mu(X_y^+) \geq \frac{\alpha}{2}\}$  the set of databases with at least  $\frac{\alpha}{2}$ -density of positive queries. By the averaging principle, we have  $\nu(Y_{\mathsf{dense}}) \geq \alpha/2$ . Since  $\mathbb{E}[\tau(\boldsymbol{x},\boldsymbol{y})] \geq \nu(Y_{\mathsf{dense}})\mathbb{E}[\tau(\boldsymbol{x},\boldsymbol{y}) \mid y \in Y_{\mathsf{dense}}]$ , we have  $\mathbb{E}_{\mu \times \nu_{\mathsf{dense}}}[\tau(\boldsymbol{x},\boldsymbol{y})] \leq \frac{2t}{\alpha}$ , where  $\nu_{\mathsf{dense}} = \nu_{Y_{\mathsf{dense}}}$  is the distribution induced by  $\nu$  on  $Y_{\mathsf{dense}}$ . We then construct  $Y_{\mathsf{good}} \subseteq Y_{\mathsf{dense}}$  as the set of  $y \in Y_{\mathsf{dense}}$  with average cell-probe complexity bounded as  $\mathbb{E}_{\boldsymbol{x} \sim \mu}[\tau(\boldsymbol{x},y)] \leq \frac{4t}{\alpha}$ . By Markov inequality  $\nu_{\mathsf{dense}}(Y_{\mathsf{good}}) \geq \frac{1}{2}$  and hence  $\nu(Y_{\mathsf{good}}) \geq \frac{\alpha}{4}$ . Note that  $\mathbb{E}_{\boldsymbol{x} \sim \mu}[\tau(\boldsymbol{x},y)] \geq \mathbb{E}_{\boldsymbol{x} \sim \mu_y^+}[\tau(\boldsymbol{x},y)]\mu(X_y^+)$ . We have  $\mathbb{E}_{\boldsymbol{x} \sim \mu_y^+}[\tau(\boldsymbol{x},y)] \leq \mathbb{E}_{\boldsymbol{x} \sim \mu_y^+}[\tau(\boldsymbol{x},y)] \neq \mathbb{E}_{\boldsymbol{x} \sim \mu_y^+}[\tau(\boldsymbol{x},y)] \neq \mathbb{E}_{\boldsymbol{x} \sim \mu_y^+}[\tau(\boldsymbol{x},y)] \leq \mathbb{E}_{\boldsymbol{x} \sim \mu_y^+}[\tau(\boldsymbol{x},y)] \leq \mathbb{E}_{\boldsymbol{x} \sim \mu_y^+}[\tau(\boldsymbol{x},y)] \leq \mathbb{E}_{\boldsymbol{x} \sim \mu_y^+}[\tau(\boldsymbol{x},y)] \leq \mathbb{E}_{\boldsymbol{x} \sim \mu_y^+}[\tau(\boldsymbol{x},y)]$ 

For the rest, we consider only these good databases. Fix any  $\Delta \in [32t/\alpha^2, s]$ . We claim that for every good database  $y \in Y_{\mathsf{good}}$ , the cell-sampling procedure always picks a subset  $\Gamma_y^* \subseteq [s]$  of  $\Delta$  many cells, which can resolve a substantial amount of positive queries:

▶ Claim 6. For every  $y \in Y_{good}$ , it holds that  $\mu(X_y^*) \ge \frac{\alpha}{4} \left(\frac{\Delta}{2s}\right)^{8t/\alpha^2}$ .

**Proof.** Fix any good database  $y \in Y_{\mathsf{good}}$ . We only need to prove there exists a  $\Gamma \subseteq [s]$  with  $|\Gamma| = \Delta$  that resolve positive queries  $\mu(X_y^+(\Gamma)) \ge \frac{\alpha}{4} \left(\frac{\Delta}{2s}\right)^{8t/\alpha^2}$ . The claims follows immediately.

We construct a hypergraph  $\mathcal{H} \subseteq 2^{[s]}$  with vertex set [s] as  $\mathcal{H} = \{P_{xy} \mid x \in X_y^+\}$ , so that each positive queries  $x \in X_y^+$  on database y is associated (many-to-one) to a hyperedge  $e \in \mathcal{H}$  such that  $e = P_{xy}$  is precisely the set of cells probed by the cell-probing algorithm to resolve query x on database y.

We also define a measure  $\tilde{\mu}$  over hyperedges  $e \in \mathcal{H}$  as the total measure (in  $\mu_y^+$ ) of the positive queries x associated to e. Formally, for every  $e \in \mathcal{H}$ ,

$$\tilde{\mu}(e) = \sum_{x \in X_y^+: P_{xy} = e} \mu_y^+(x).$$

Since  $\sum_{e \in \mathcal{H}} \tilde{\mu}(e) = \sum_{x \in X_y^+} \mu_y^+(x) = 1$ , this  $\tilde{\mu}$  is a well-defined probability distribution over hyperedges in  $\mathcal{H}$ . Moreover, recalling that  $\tau(x,y) = |P_{xy}|$ , the the average size of hyperedges

$$\mathbb{E}_{\boldsymbol{e} \sim \tilde{\mu}}[|\boldsymbol{e}|] = \mathbb{E}_{\boldsymbol{x} \sim \mu_{y}^{+}}[\tau(\boldsymbol{x}, y)] \leq \frac{8t}{\alpha^{2}}.$$

By the probabilistic method (whose proof is in the full paper [21]), there must exist a  $\Gamma \subseteq [s]$  of size  $|\Gamma| = \Delta$ , such that the sub-hypergraph  $\mathcal{H}_{\Gamma}$  induced by  $\Gamma$  has

$$\tilde{\mu}(\mathcal{H}_{\Gamma}) \geq \frac{1}{2} \left(\frac{\Delta}{2s}\right)^{8t/\alpha^2}.$$

By our construction of  $\mathcal{H}$ , the positive queries associated (many-to-one) to the hyperedges in the induced sub-hypergraph  $\mathcal{H}_{\Gamma} = \{P_{xy} \mid x \in X_y^+ \land P_{xy} \subseteq \Gamma\}$  are precisely those positive queries in  $X_y^+(\Gamma) = \{x \in X_y^+ \mid P_{xy} \subseteq \Gamma\}$ . Therefore,

$$\mu_y^+(X_y^+(\Gamma)) = \sum_{x \in X_y^+, P_{xy} \subseteq \Gamma} \mu_y^+(x) = \tilde{\mu}(\mathcal{H}_{\Gamma}) \ge \frac{1}{2} \left(\frac{\Delta}{2s}\right)^{8t/\alpha^2}.$$

Recall that  $\mu(X_y^+) \geq \frac{\alpha}{2}$  for every  $y \in Y_{\mathsf{good}}$ . And since  $X_y^+(\Gamma) \subseteq X_y^+$ , we have

$$\mu(X_y^+(\Gamma)) = \mu_y^+(X_y^+(\Gamma))\mu(X_y^+) \ge \frac{\alpha}{4} \left(\frac{\Delta}{2s}\right)^{8t/\alpha^2}.$$

The claim is proved.

Recall that the certificate  $\omega_y = (\Gamma_y^*, T_y[\Gamma_y^*])$  is constructed by the cell-sampling procedure for database y. For every possible assignment  $\omega \in \binom{[s]}{\Delta} \times \{0,1\}^{\Delta w}$  of certificate, let  $Y_\omega$  denote the set of good databases  $y \in Y_{\mathsf{good}}$  with this certificate  $\omega_y = \omega$ . Due to the determinism of the cell-sampling procedure, this classifies the  $Y_{\mathsf{good}}$  into at most  $\binom{s}{\Delta} 2^{\Delta w}$  many disjointed subclasses  $Y_\omega$ . Recall that  $\nu(Y_{\mathsf{good}}) \geq \frac{\alpha}{4}$ . By the averaging principle, the following proposition is natural

▶ Proposition 7. There exists a certificate  $\omega \in \binom{[s]}{\Delta} \times \{0,1\}^{\Delta w}$ , denoted as  $\omega^*$ , such that

$$\nu(Y_{\omega^*}) \ge \frac{\alpha}{4\binom{s}{\Delta} 2^{\Delta w}}.$$

On the other hand, fixed any  $\omega$ , since all databases  $y \in Y_{\omega}$  have the same  $\omega_y^*$ , by Proposition 4 they must have the same  $X_y^*$ . We can abuse the notation and write  $X_{\omega} = X_y^*$  for all  $y \in Y_{\omega}$ .

Now we let  $A = X_{\omega^*}$  and  $B = Y_{\omega^*}$ , where  $\omega^*$  satisfies Proposition 7. Due to Claim 6 and Proposition 7, we have

$$\mu(A) \ge \frac{\alpha}{4} \left(\frac{\Delta}{2s}\right)^{8t/\alpha^2} = \alpha \cdot \left(\frac{\Delta}{s}\right)^{O(t/\alpha^2)} \quad \text{and} \quad \nu(B) \ge \frac{\alpha}{4\binom{s}{\Delta}2^{\Delta w}} = \alpha \cdot 2^{-O\left(\Delta \ln \frac{s}{\Delta} + \Delta w\right)}.$$

Note for every  $y \in B = Y_{\omega^*}$ , the  $A = X_{\omega^*} = X_y^+(\Gamma_y^*)$  is a set of positive queries on database y, thus  $A \times B$  is a monochromatic 1-rectangle in f. This finishes the proof of Lemma 3.

## 4 Rectangles in conjunction problems

Many natural data structure problems can be expressed as a conjunction of point-wise relations between the query point and database points. Consider data structure problem  $f: X \times Y \to \{0,1\}$ . Let  $Y = \mathcal{Y}^n$ , so that each database  $y \in Y$  is a tuple  $y = (y_1, y_2, \dots, y_n)$  of n points from  $\mathcal{Y}$ . A **point-wise function**  $g: X \times \mathcal{Y} \to \{0,1\}$  is given. The data structure problem f is defined as the conjunction of these subproblems:

$$\forall x \in X, \forall y = (y_1, y_2, \dots, y_n) \in Y, \quad f(x, y) = \bigwedge_{i=1}^n g(x, y_i).$$

Many natural data structure problems can be defined in this way, for example:

- Membership query:  $X = \mathcal{Y}$  is a finite domain. The point-wise function  $g(\cdot, \cdot)$  is  $\neq$  that indicates whether the two points are unequal.
- $(\gamma, \lambda)$ -approximate near-neighbor  $(\gamma, \lambda)$ -ANN $_X^n$ :  $X = \mathcal{Y}$  is a metric space with distance  $\operatorname{dist}(\cdot, \cdot)$ . The point-wise function g is defined as: for  $x, z \in X$ , g(x, z) = 1 if  $\operatorname{dist}(x, z) > \gamma \lambda$ , or g(x, z) = 0 if  $\operatorname{dist}(x, z) \leq \lambda$ . The function value can arbitrary for all other cases.
- Partial match  $\mathsf{PM}^{d,n}_{\Sigma}$ :  $\Sigma$  is an alphabet,  $\mathcal{Y} = \Sigma^d$  and  $X = (\Sigma \cup \{\star\})^d$ . The point-wise function g is defined as: for  $x \in X$  and  $z \in \mathcal{Y}$ , g(x,z) = 1 if there is an  $i \in [d]$  such that  $x_i \notin \{\star, z_i\}$ , or g(x,z) = 0 if otherwise.

We show that refuting the large rectangles in the point-wise function g can give us lower bounds for the conjunction problem f.

Let  $\mu, \nu$  be distributions over X and  $\mathcal{Y}$  respectively, and let  $\nu^n$  be the product distribution on  $Y = \mathcal{Y}^n$ . Let  $g: X \times \mathcal{Y} \to \{0,1\}$  be a point-wise function and  $f: X \times Y \to \{0,1\}$  a data structure problem defined by the conjunction of g as above.

▶ **Lemma 8.** For  $f, g, \mu, \nu$  defined as above, assume that there is a deterministic or randomized Las Vegas cell-probing scheme solving f on a table of s cells, each cell containing w bits, with expected t cell-probes under input distribution  $\mu \times \nu^n$ . If the followings are true:

- the density of 0's in g is at most  $\frac{\beta}{n}$  under distribution  $\mu \times \nu$  for some constant  $\beta < 1$ ;
- g does not contain monochromatic 1-rectangle of measure at least  $\frac{1}{\Phi} \times \frac{1}{\Psi}$  under distribution  $\mu \times \nu$ ;

then

$$\left(\frac{sw}{n\log\Psi}\right)^{O(t)} \geq \Phi \quad \ or \quad \ t = \Omega\left(\frac{n\log\Psi}{w + \log s}\right).$$

**Proof.** By union bound, the density of 0's in f under distribution  $\mu \times \nu^n$  is:

$$\Pr_{\substack{x \sim \mu \\ y = (y_1, \dots, y_n) \sim \nu^n}} \left[ \bigwedge_{i=1}^n g(x, y_i) = 0 \right] \le n \cdot \Pr_{\substack{x \sim \mu \\ z \sim \nu}} [g(x, z) = 0] \le n \cdot \frac{\beta}{n} = \beta.$$

By Lemma 3, the  $\Omega(1)$ -density of 1's in f and the assumption of existing a cell-probing scheme with parameters s, w and t, altogether imply that for any  $4t \leq \Delta \leq s$ , f has a monochromatic 1-rectangle  $A \times B$  such that

$$\mu(A) \ge \left(\frac{\Delta}{s}\right)^{c_1 t} \quad \text{and} \quad \nu^n(B) \ge 2^{-c_2 \Delta(\ln \frac{s}{\Delta} + w)},$$
 (1)

for some constants  $c_1, c_2 > 0$  depending only on  $\beta$ .

Let  $C \subset \mathcal{Y}$  be the largest set of columns in g to form a 1-rectangle with A. Formally,

$$C = \{ z \in \mathcal{Y} \mid \forall x \in A, g(x, z) = 1 \}.$$

Clearly, for any monochromatic 1-rectangle  $A \times D$  in g, we must have  $D \subseteq C$ . By definition of f as a conjunction of g, it must hold that for all  $y = (y_1, y_2, \dots, y_n) \in B$ , none of  $y_i \in y$  has  $g(x, y_i) = 0$  for any  $x \in A$ , which means  $B \subseteq C^n$ , and hence

$$\nu^n(B) < \nu^n(C^n) = \nu(C)^n.$$

Recall that  $A \times C$  is monochromatic 1-rectangle in g. Due to the assumption of the lemma, either  $\mu(A) < \frac{1}{\Phi}$  or  $\nu(C) < \frac{1}{\Psi}$ . Therefore, either  $\mu(A) < \frac{1}{\Phi}$  or  $\nu^n(B) < \frac{1}{\Psi^n}$ .

We can always choose a  $\Delta$  such that  $\Delta = O\left(\frac{n\log\Psi}{w}\right)$  and  $\Delta = \Omega\left(\frac{n\log\Psi}{w+\log s}\right)$  to satisfy

$$2^{-c_2\Delta(\ln\frac{s}{\Delta}+w)} > \frac{1}{\Psi^n}.$$

If such  $\Delta$  is less than  $32t/(1-\beta)^2$ , then we immediately have a lower bound

$$t = \Omega\left(\frac{n\log\Psi}{w + \log s}\right).$$

Otherwise, due to (1),  $A \times B$  is monochromatic 1-rectangle in f with  $\nu^n(B) > \frac{1}{\Psi^n}$ , therefore it must hold that  $\mu(A) < \frac{1}{\Phi}$ , which by (1) gives us

$$\frac{1}{\Phi} > \mu(A) \ge \left(\frac{\Delta}{s}\right)^{O(t)} = \left(\frac{n\log\Psi}{sw}\right)^{O(t)},$$

which gives the lower bound

$$\left(\frac{sw}{n\log\Psi}\right)^{O(t)} \ge \Phi.$$

## 5 Isoperimetry and ANN lower bounds

Given a metric space X with distance  $\operatorname{dist}(\cdot,\cdot)$  and  $\lambda \geq 0$ , we say that two points  $x, x' \in X$  are  $\lambda$ -close if  $\operatorname{dist}(x,x') \leq \lambda$ , and  $\lambda$ -far if otherwise. The  $\lambda$ -neighborhood of a point  $x \in X$ , denoted by  $N_{\lambda}(x)$ , is the set of all points from X which are  $\lambda$ -close to x. Given a point set  $A \subseteq X$ , we define  $N_{\lambda}(A) = \bigcup_{x \in A} N_{\lambda}(x)$  to be the set of all points which are  $\lambda$ -close to some point in A.

In [17], a natural notion of metric expansion was introduced.

▶ **Definition 9** (metric expansion [17]). Let X be a metric space and  $\mu$  a probability distribution over X. Fix any radius  $\lambda > 0$ . Define

$$\Phi(\delta) \triangleq \min_{A \subset X, \mu(A) \leq \delta} \frac{\mu(N_{\lambda}(A))}{\mu(A)}.$$

The expansion  $\Phi$  of the  $\lambda$ -neighborhoods in X under distribution  $\mu$  is defined as the largest k such that for all  $\delta \leq \frac{1}{2k}$ ,  $\Phi(\delta) \geq k$ .

We now introduce a more refined definition of metric expansion using two parameters  $\Phi$  and  $\Psi$ .

▶ **Definition 10** ( $(\Phi, \Psi)$ -expanding). Let X be a metric space and  $\mu$  a probability distribution over X. The  $\lambda$ -neighborhoods in X are ( $\Phi, \Psi$ )-expanding under distributions  $\mu$  if we have  $\mu(N_{\lambda}(A)) \geq 1 - 1/\Psi$  for any  $A \subseteq X$  that  $\mu(A) \geq 1/\Phi$ .

The metric expansion defined in [17] is actually a special case of  $(\Phi, \Psi)$ -expanding: The expansion of  $\lambda$ -neighborhoods in a metric space X is  $\Phi$  means the  $\lambda$ -neighborhoods are  $(\Phi, 2)$ -expanding. The notion of  $(\Phi, \Psi)$ -expanding allows us to describe a more extremal expanding situation in metric space: The expanding of  $\lambda$ -neighborhoods does not stop at measure 1/2, rather, it can go all the way to be very close to measure 1. This generality may support higher lower bounds for approximate near-neighbor.

Given a radius  $\lambda > 0$  and an approximation ratio  $\gamma > 1$ , recall that the  $(\gamma, \lambda)$ -approximate near neighbor problem  $(\gamma, \lambda)$ -ANN $_X^n$  can be defined as a conjunction  $f(x,y) = \bigwedge_i g(x,y_i)$  of point-wise function  $g: X \times X \to \{0,1\}$  where g(x,z) = 0 if x is  $\lambda$ -close to z; g(x,z) = 1 if x is  $\gamma\lambda$ -far from z; and g(x,z) is arbitrary for all other cases. Observe that g is actually  $(\gamma, \lambda)$ -ANN $_X^1$ , the point-to-point version of the  $(\gamma, \lambda)$ -approximate near neighbor.

The following proposition gives an intrinsic connection between the expansion of metric space and size of monochromatic rectangle in the point-wise near-neighbor relation.

▶ Proposition 11. If the  $\lambda$ -neighborhoods in X are  $(\Phi, \Psi)$ -expanding under distribution  $\mu$ , then the function g defined as above does not contain a monochromatic 1-rectangle of measure  $\geq \frac{1}{\Phi} \times \frac{1.01}{\Psi}$  under distribution  $\mu \times \mu$ .

**Proof.** Since the  $\lambda$ -neighborhoods in X are  $(\Phi, \Psi)$ -expanding, for any  $A \subseteq X$  with  $\mu(A) \geq \frac{1}{\Phi}$ , we have  $\mu(N_{\lambda}(A)) \geq 1 - \frac{1}{\Psi}$ . And by definition of g, for any monochromatic  $A \times B$ , it must hold that  $B \cap N_{\lambda}(A) = \emptyset$ , i.e.  $B \subseteq X \setminus N_{\lambda}(A)$ . Therefore, either  $\mu(A) < \frac{1}{\Phi}$ , or  $\mu(B) = 1 - \mu(N_{\lambda}(A)) \leq \frac{1}{\Psi} < \frac{1.01}{\Psi}$ .

The above proposition together with Lemma 8 immediately gives us the following corollary which reduces lower bounds for near-neighbor problems to the isoperimetric inequalities.

▶ Corollary 12. Let  $\mu$  be a distribution over a metric space X. Let  $\lambda > 0$  and  $\gamma \geq 1$ . Assume that there is a deterministic or randomized Las Vegas cell-probing scheme solving  $(\gamma, \lambda)$ -ANN $_X^n$  on a table of s cells, each cell containing w bits, with expected t cell-probes under input distribution  $\mu \times \mu^n$ . If the followings are true:

- $= \mathbb{E}_{x \sim \mu} \left[ \mu(N_{\gamma \lambda}(x)) \right] \leq \frac{\beta}{n} \text{ for a constant } \beta < 1;$
- $\blacksquare$  the  $\lambda$ -neighborhoods in X are  $(\Phi, \Psi)$ -expanding under distribution  $\mu$ ;

$$\left(\frac{sw}{n\log\Psi}\right)^{O(t)} \geq \Phi \quad \ or \quad \ t = \Omega\left(\frac{n\log\Psi}{w + \log s}\right).$$

▶ Remark. In [17], a lower bound for  $(\gamma, \lambda)$ -ANN<sup>n</sup><sub>X</sub> was proved with the following form:

$$\left(\frac{swt}{n}\right)^t \ge \Phi.$$

In our Corollary 12, unless the cell-size w is unrealistically large to be comparable to n, the corollary always gives the first lower bound

$$\left(\frac{sw}{n\log\Psi}\right)^{O(t)} \geq \Phi.$$

This strictly improves the lower bound in [17]. For example, when the metric space is  $(2^{\Theta(d)}, 2^{\Theta(d)})$ -expanding, this would give us a lower bound  $t = \Omega\left(\frac{d}{\log \frac{sw}{nd}}\right)$ , which in particular, when the space is linear (sw = O(nd)), becomes  $t = \Omega(d)$ .

## 5.1 Lower bound for ANN in Hamming space

Let  $X = \{0, 1\}^d$  be the Hamming space with Hamming distance  $\operatorname{dist}(\cdot, \cdot)$ . Recall that  $N_{\lambda}(x)$  represents the  $\lambda$ -neighborhood around x, in this case, the Hamming ball of radius  $\lambda$  centered at x; and for a set  $A \subset X$ , the  $N_{\lambda}(A)$  is the set of all points within distance  $\lambda$  to any point in A. For any  $0 \le r \le d |B(r)| = |N_r(\bar{0})|$  denote the volume of Hamming ball of radius r, where  $\bar{0} \in \{0, 1\}^d$  is the zero vector. Obviously  $B(r) = \sum_{k \le r} {d \choose k}$ .

The following isoperimetric inequality of Harper is well known.

▶ **Lemma 13** (Harper's theorem [9]). Let  $X = \{0,1\}^d$  be the d-dimensional Hamming space. For  $A \subset X$ , let r be such that  $|A| \geq B(r)$ . Then for every  $\lambda > 0$ ,  $|N_{\lambda}(A)| \geq B(r + \lambda)$ .

In words, Hamming balls have the worst vertex expansion.

For  $0 < r < \frac{d}{2}$ , the following upper bound for the volume of Hamming ball is well known:

$$2^{(1-o(1))dH(r/d)} \le \binom{d}{r} \le B(r) \le 2^{dH(r/d)},$$

where  $H(x) = -x \log_2 x - (1-x) \log_2 (1-x)$  is the Boolean entropy function.

Consider the Hamming  $(\gamma, \lambda)$ -approximate near-neighbor problem  $(\gamma, \lambda)$ -ANN $_X^n$ . The hard distribution for this problem is just the uniform and independent distribution: For the database  $y = (y_1, y_2, \dots, y_n) \in X^n$ , each database point  $y_i$  is sampled uniformly and independently from  $X = \{0, 1\}^n$ ; and the query point x is sampled uniformly and independently from X.

▶ Theorem 14. Let  $d \geq 32 \log n$ . For any  $\gamma \geq 1$ , there is a  $\lambda > 0$  such that if  $(\gamma, \lambda)$ -ANN $_{X}^{n}$  can be solved by a deterministic or Las Vegas randomized cell-probing scheme on a table of s cells, each cell containing w bits, with expected t cell-probes for uniform and independent database and query, then  $t = \Omega\left(\frac{d}{\gamma^2 \log \frac{sw\gamma^2}{nd}}\right)$  or  $t = \Omega\left(\frac{nd}{\gamma^2(w+\log s)}\right)$ .

**Proof.** Choose  $\lambda$  to satisfy  $\gamma \lambda = \frac{d}{2} - \sqrt{2d \ln(2n)}$ . Let  $\mu$  be uniform distribution over X. We are going to show:

- $\blacksquare \mathbb{E}_{x \sim \mu}[\mu(N_{\gamma\lambda}(x))] \leq \frac{1}{2n};$
- the  $\lambda$ -neighborhoods in X are  $(\Phi, \Psi)$ -expanding under distribution  $\mu$  for some  $\Phi = 2^{\Omega(d/\gamma^2)}$ and  $\Psi = 2^{\Omega(d/\gamma^2)}$ .

Then the cell-probe lower bounds follows directly from Corollary 12.

First, by the Chernoff bound,  $\mu(N_{\gamma\lambda}(x)) \leq \frac{1}{2n}$  for any point  $x \in X$ . Thus trivially  $\mathbb{E}_{x \sim \mu}[\mu(N_{\gamma \lambda}(x))] \le \frac{1}{2n}.$ 

On the other hand, for  $d \geq 32 \log n$  and n being sufficiently large, it holds that  $\lambda \geq \frac{d}{4\gamma}$ . Let  $r = \frac{d}{2} - \frac{d}{8\gamma}$ . And consider any  $A \subseteq X$  with  $\mu(A) \ge 2^{-(1-H(r/d))d}$ . We have  $|A| \ge 1$  $2^{dH(r/d)} \ge B(r)$ . Then by Harper's theorem,

$$|N_{\lambda}(A)| \ge B\left(r+\lambda\right) \ge B\left(\frac{d}{2} + \frac{d}{8\gamma}\right) \ge 2^d - B\left(\frac{d}{2} - \frac{d}{8\gamma}\right) = 2^d - B(r) \ge 2^d - 2^{dH(r/d)},$$

which means  $\mu(N_{\lambda}(A)) \geq 1 - 2^{-(1-H(r/d))d}$ . In other words, the  $\lambda$ -neighborhoods in X are  $(\Phi, \Psi)$ -expanding under distribution  $\mu$  for  $\Phi = \Psi = 2^{(1-H(r/d))d}$ , where  $r/d = \frac{1}{2} - \frac{1}{8\gamma}$ . Apparently  $1 - H(\frac{1}{2} - x) = \Theta(x^2)$  for small enough x > 0. Hence,  $\Phi = \Psi = 2^{\Theta(d/\gamma^2)}$ .

#### Lower bound for ANN under L-infinity norm

Let  $\Sigma = \{0, 1, \dots, m\}$  and the metric space is  $X = \Sigma^d$  with  $\ell_{\infty}$  distance dist $(x, y) = \|x - y\|_{\infty}$ for any  $x, y \in X$ .

Let  $\mu$  be the distribution over X as defined in [2]: First define a distribution  $\pi$  over  $\Sigma$  as  $p(i) = 2^{-(2\rho)^i}$  for all i > 0 and  $\pi(0) = 1 - \sum_{i>0} \pi(i)$ ; and then  $\mu$  is defined as  $\mu(x_1, x_2, \dots, x_d) = \pi(x_1)\pi(x_2)\dots\pi(x_d).$ 

The following isoperimetric inequality is proved in [2].

▶ **Lemma 15** (Lemma 9 of [2]). For any  $A \subseteq X$ , it holds that  $\mu(N_1(A)) \ge (\mu(A))^{1/\rho}$ .

Consider the  $(\gamma, \lambda)$ -approximate near-neighbor problem  $(\gamma, \lambda)$ -ANN<sub> $\ell_{\infty}$ </sub> defined in the metric space X under  $\ell_{\infty}$  distance. The hard distribution for this problem is  $\mu \times \mu^n$ : For the database  $y = (y_1, y_2, \dots, y_n) \in X^n$ , each database point  $y_i$  is sampled independently according to  $\mu$ ; and the query point x is sampled independently from X according to  $\mu$ . The following lower bound has been proved in [2] and [12].

Fix any  $\epsilon > 0$  and  $0 < \delta < \frac{1}{2}$ . Assume  $\Omega\left(\log^{1+\epsilon} n\right) \le d \le o(n)$ . For  $3 < c \le O(\log\log d)$ , define  $\rho = \frac{1}{2} (\frac{\epsilon}{4} \log d)^{1/c} > 10$ . Now we choose  $\gamma = \log_{\rho} \log d$  and  $\lambda = 1$ .

▶ **Theorem 16.** With  $d, \gamma, \lambda, \rho$  and the metric space X defined as above, if  $(\gamma, \lambda)$ -ANN<sup>n</sup><sub> $\ell_{\infty}$ </sub> can be solved by a deterministic or Las Vegas randomized cell-probing scheme on a table of s cells, each cell containing  $w \leq n^{1-2\delta}$  bits, with expected  $t \leq \rho$  cell-probes under input distribution  $\mu \times \mu^n$ , then  $sw = n^{\Omega(\rho/t)}$ .

**Proof.** The followings are true

- $\mu(N_{\gamma\lambda}(x)) = \frac{e^{-\log^{1+\epsilon/3}n}}{n} \le \frac{1}{2n} \text{ for any } x \in X \text{ (Claim 6 in [2]);}$   $\bullet \text{ the $\lambda$-neighborhoods in $X$ are } (n^{\delta\rho}, \frac{n^{\delta}}{n^{\delta-1}}) \text{-expanding under distribution } \mu \text{ for } \Phi = n^{\delta\rho}$ and  $\Psi = 2^{\Omega(d/\gamma^2)}$ .

To see the expansion is true, let  $\Phi = n^{\delta\rho}$  and  $\Psi = \frac{n^{\delta}}{n^{\delta}-1}$ . By Lemma 15, for any set  $A \subset X$  with  $\mu(A) \geq \Phi$ , we have  $\mu(N_{\lambda}(A)) \geq n^{-\delta} \geq 1 - \frac{1}{\Psi}$ . This means  $\lambda$ -neighborhoods of  $\mathcal M$  are  $(n^{\delta\rho}, \frac{n^{\delta}}{n^{\delta}-1})$ -expanding.

Due to Corollary 12, either  $\left(\frac{sw}{n^{1-\delta}}\right)^{O(t)} \geq n^{\delta\rho}$  or  $= \Omega\left(\frac{n^{1-\delta}}{w+\log s}\right)$ . The second bound is always higher with our ranges for w and t. The first bound gives  $sw = n^{\Omega(\rho/t)}$ .

#### References

1 Amirali Abdullah and Suresh Venkatasubramanian. A directed isoperimetric inequality with application to bregman near neighbor lower bounds. In *STOC'15*.

- 2 Alexandr Andoni, Dorian Croitoru, and Mihai Pătrașcu. Hardness of nearest neighbor under L-infinity. In *FOCS'08*.
- 3 Alexandr Andoni, Piotr Indyk, and Mihai Pătraşcu. On the optimality of the dimensionality reduction method. In FOCS'06.
- 4 Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate near neighbors. In *STOC'15*.
- 5 Omer Barkol and Yuval Rabani. Tighter lower bounds for nearest neighbor search and related problems in the cell probe model. *Journal of Computer and System Sciences*, 64(4):873–896, 2002. Conference version in *STOC'00*.
- 6 Allan Borodin, Rafail Ostrovsky, and Yuval Rabani. Lower bounds for high dimensional nearest neighbor search and related problems. In *Discrete and Computational Geometry*, pages 253–274, 2003. Conference version in STOC'99.
- 7 Amit Chakrabarti, Bernard Chazelle, Benjamin Gum, and Alexey Lvov. A lower bound on the complexity of approximate nearest-neighbor searching on the hamming cube. In *Dis*crete and Computational Geometry, pages 313–328, 2003. Conference version in STOC'99.
- 8 Amit Chakrabarti and Oded Regev. An optimal randomised cell probe lower bound for approximate nearest neighbour searching. In SIAM Journal on Computing, 39(5):1919–1940,2010. Conference version in FOCS'04.
- **9** L.H. Harper. Optimal numberings and isoperimetric problems on graphs. *Journal of Combinatorial Theory*, 1(3):385 393, 1966.
- 10 Piotr Indyk. Nearest neighbors in high-dimensional spaces. Handbook of Discrete and Computational Geometry, pages 877–892, 2004.
- 11 T.S. Jayram, Subhash Khot, Ravi Kumar, and Yuval Rabani. Cell-probe lower bounds for the partial match problem. In *Journal of Computer and System Sciences*, 69(3):435–447, 2004. Conference version in *STOC'03*.
- 12 Michael Kapralov and Rina Panigrahy. NNS lower bounds via metric expansion for  $\ell_{\infty}$  and EMD. In *ICALP'12*.
- 13 Kasper Green Larsen. Higher cell probe lower bounds for evaluating polynomials. In *FOCS'12*.
- 14 Ding Liu. A strong lower bound for approximate nearest neighbor searching. *Information Processing Letters*, 92(1):23–29, 2004.
- Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and asymmetric communication complexity. *Journal of Computer and System Sciences*, 57(1):37–49, 1998. Conference version in STOC'95.
- 16 Rina Panigrahy, Kunal Talwar, and Udi Wieder. A geometric approach to lower bounds for approximate near-neighbor search and partial match. In FOCS'08.
- 17 Rina Panigrahy, Kunal Talwar, and Udi Wieder. Lower bounds on near neighbor search via metric expansion. In FOCS'10.
- 18 Mihai Pătrașcu and Mikkel Thorup. Higher lower bounds for near-neighbor and further rich problems. SIAM Journal on Computing, 39(2):730–741, 2010. Conference version in FOCS'06.
- 19 Alan Siegel. On universal classes of fast high performance hash functions, their time-space tradeoff, and their applications. In FOCS'89.
- 20 Yaoyu Wang and Yitong Yin. Certificates in data structures. In ICALP'14.
- Yitong Yin. Simple average-case lower bounds for approximate near-neighbor from isoperimetric inequalities. arXiv preprint arXiv:1602.05391.