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Abstract
For any n > 1, 0 < ε < 1/2, and N > nC for some constant C > 0, we show the existence
of an N -point subset X of `n2 such that any linear map from X to `m2 with distortion at most
1 + ε must have m = Ω(min{n, ε−2 lgN}). This improves a lower bound of Alon [Alon, Discre.
Mathem., 1999], in the linear setting, by a lg(1/ε) factor. Our lower bound matches the upper
bounds provided by the identity matrix and the Johnson-Lindenstrauss lemma [Johnson and
Lindenstrauss, Contem. Mathem., 1984].
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1 Introduction

The Johnson-Lindenstrauss lemma [15] states the following.

I Theorem 1 (JL lemma [15, Lemma 1]). For any N -point subset X of Euclidean space and
any 0 < ε < 1/2, there exists a map f : X → `m2 with m = O(ε−2 lgN) such that

∀x, y ∈ X, (1− ε)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + ε)‖x− y‖22. (1)

We henceforth refer to f satisfying (1) as having the ε-JL guarantee for X (often we
drop mention of ε when understood from context). The JL lemma has found applications in
computer science, signal processing (e.g. compressed sensing), statistics, and mathematics.
The main idea in algorithmic applications is that one can transform a high-dimensional
problem into a low-dimensional one such that an optimal solution to the lower dimensional
problem can be lifted to a nearly optimal solution to the original problem. Due to the
decreased dimension, the lower dimensional problem requires fewer resources (time, memory,
etc.) to solve. We refer the reader to [12, 28, 21] for a list of further applications.

All known proofs of the JL lemma with target dimension as stated above in fact provide
such a map f which is linear. This linearity property is important in several applications.
For example in the turnstile model of streaming [22], a vector x ∈ Rn receives a stream
of coordinate-wise updates each of the form xi ← xi + ∆, where ∆ ∈ R. The goal is to
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process x using m� n memory. Thus if one wants to perform dimensionality reduction in
a stream, which occurs for example in streaming linear algebra applications [7], this can
be achieved with linear f since f(x + ∆ · ei) = f(x) + ∆ · f(ei). In compressed sensing,
another application where linearity of f is inherent, one wishes to (approximately) recover
(approximately) sparse signals using few linear measurements [8, 6]. The map f sending a
signal to the vector containing some fixed set of linear measurements of it is known to allow
for good signal recovery as long as f satisfies the JL guarantee for the set of all k-sparse
vectors [6]. Linear f is also inherent in model-based compressed sensing, which is similar but
where one assumes the sparsity pattern cannot be an arbitrary one of

(
n
k

)
sparsity patterns,

but rather comes from a smaller, structured set [5].
Given the widespread use of dimensionality reduction across several domains, it is a natural

and often-asked question whether the JL lemma is tight: does there exist some X of size N
such that any such map f must have m = Ω(min{n, ε−2 lgN})? The paper [15] introducing
the JL lemma provided the first lower bound of m = Ω(lgN) when ε is smaller than some
constant. This was improved by Alon [3], who showed that if X = {0, e1, . . . , en} ⊂ Rn is the
simplex (thus N = n+ 1) and 0 < ε < 1/2, then any JL map f must embed into dimension
m = Ω(min{n, ε−2 lgn/ lg(1/ε)}). Note the first term in the min is achieved by the identity
map. Furthermore, the lg(1/ε) term cannot be removed for this particular X since one can
use Reed-Solomon codes to obtain embeddings with m = O(1/ε2) (superior to the JL lemma)
once ε ≤ n−Ω(1) [3] (see [23] for details). Specifically, for this X it is possible to achieve
m = O(ε−2 min{lgN, ((lgN)/ lg(1/ε))2}). Note also for this choice of X we can assume that
any f is in fact linear. This is because first we can assume f(0) = 0 by translation. Then
we can form a matrix A ∈ Rm×n such that the ith column of A is f(ei). Then trivially
Aei = f(ei) and A0 = 0 = f(0).

The fact that the JL lemma is not optimal for the simplex for small ε begs the question:
is the JL lemma suboptimal for all point sets? This is a major open question in the area of
dimensionality reduction, and it has been open since the paper of Johnson and Lindenstrauss
30 years ago.

Our Main Contribution: For any n > 1, 0 < ε < 1/2, and N > nC for some constant
C > 0, there is an N -point subset X of `n2 such that any embedding f : X → `m2 providing
the JL guarantee, and where f is linear, must have m = Ω(min{n, ε−2 lgN}). In other
words, the JL lemma is optimal in the case where f must be linear.

Our lower bound is optimal: the identity map achieves the first term in the min, and the
JL lemma the second. It carries the restriction of only being against linear embeddings, but
we emphasize that since the original JL paper [15] 31 years ago, every known construction
achieving the JL guarantee has been linear. Thus, in light of our new contribution, the JL
lemma cannot be improved without developing ideas that are radically different from those
developed in the last three decades of research on the problem.

It is worth mentioning there have been important works on non-linear embeddings into
Euclidean space, such as Sammon’s mapping [14], Locally Linear Embeddings [26], ISOMAP
[27], and Hessian eigenmaps [9]. None of these methods, however, is relevant to the current
task. Sammon’s mapping minimizes the average squared relative error of the embedded
point distances, as opposed to the maximum relative error (see [14, Eqn. 1]). Locally linear
embeddings, ISOMAP, and Hessian eigenmaps all assume the data lies on a d-dimensional
manifold M in Rn, d � n, and try to recover the d-dimensional parametrization given a
few points sampled fromM. Furthermore, various other assumptions are made about the
input, e.g. the analysis of ISOMAP assumes that geodesic distance onM is isometrically
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embeddable into `d2. Also, the way error in these works is meausured is again via some form
of average squared error and not worst case relative error (e.g. [26, Eqn. 2]). The point in
all these works is then not to show the existence of a good embedding into low dimensional
Euclidean space (in fact these works study promise problems where one is promised to exist),
but rather to show that a good embedding can be recovered, in some squared loss sense, if the
input data is sampled sufficiently densely fromM. There has also been other work outside
the manifold setting on providing good worst case distortion via non-linear embeddings in
the TCS community [10], but this work (1) provides an embedding for the snowflake metric
`
1/2
2 and not `2, and (2) does not achieve 1 + ε distortion. Furthermore, differently from our
focus, [10] assumes the input has bounded doubling dimension D, and the goal is to achieve
target dimension and distortion being functions of D.
I Remark. It is worth noting that the JL lemma is different from the distributional JL (DJL)
lemma that often appears in the literature, sometimes with the same name (though the
lemmas are different!). In the DJL problem, one is given an integer n > 1 and 0 < ε, δ < 1/2,
and the goal is to provide a distribution F over maps f : `n2 → `m2 with m as small as possible
such that for any fixed x ∈ Rn

P
f←F

(‖f(x)‖2 /∈ [(1− ε)‖x‖2, (1 + ε)‖x‖2]) < δ.

The existence of such F with small m implies the JL lemma by taking δ < 1/
(
N
2
)
. Then

for any z ∈ X − X, a random f ← F fails to preserve the norm of z with probability δ.
Thus the probability that there exists z ∈ X −X which f fails to preserve the norm of is at
most δ ·

(
N
2
)
< 1, by a union bound. In other words, a random map provides the desired JL

guarantee with high probability (and in fact this map is chosen completely obliviously of the
input vectors).

The optimal m for the DJL lemma when using linear maps is understood. The original
paper [15] provided a linear solution to the DJL problem with m = O(min{n, ε−2 lg(1/δ)}),
and this was later shown to be optimal for the full range of ε, δ ∈ (0, 1/2) [13, 16]. Thus when
δ is set as above, one obtains the m = O(ε−2 lgN) guarantee of the JL lemma. However, this
does not imply that the JL lemma is tight. Indeed, it is sometimes possible to obtain smaller
m by avoiding the DJL lemma, such as the Reed-Solomon based embedding construction for
the simplex mentioned above (which involves zero randomness).

It is also worth remarking that DJL is desirable for one-pass streaming algorithms, since
no properties of X are known when the map f is chosen at the beginning of the stream, and
thus the DJL lower bounds of [13, 16] are relevant in this scenario. However when allowed
two passes or more, one could imagine estimating various properties of X in the first pass(es)
then choosing some f more efficiently based on these properties to perform dimensionality
reduction in the last pass. The approach of using the first pass(es) to estimate characteristics
of a stream to then more efficiently select a linear sketch to use in the last pass is in fact
a common technique in streaming algorithms. For example, [18] used such an approach to
design a nearly optimal two-pass algorithm for L0-estimation in turnstile streams, which
consumes nearly a logarithmic factor less memory than the one-pass lower bound for the
same problem. In fact all known turnstile streaming algorithms, even those using multiple
passes, maintain linear maps applied to the input stream (with linear maps in subsequent
passes being functions of data collected from applying linear maps in previous passes). It
is even reasonable to conjecture that the most space-efficient algorithm for any multi-pass
turnstile streaming problem for `2 dimensionality reduction must be of this form, since the
recent works [20, 2] give evidence in this direction: namely that if a multi-pass algorithm
is viewed as a sequence of finite automata (one for each pass), where the ith automaton is
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generated solely from the output of the (i− 1)st automaton, then it can be assumed that all
automata represent linear maps with at most a logarithmic factor loss in space. They give
examples where this logarithmic factor loss is necessary, but for many problems we know
that no loss is necessary when requiring linear maps [4, 17]. Our new lower bound thus gives
evidence that one cannot improve dimensionality reduction in the streaming setting even
when given multiple passes.

1.1 Proof overview
For any n > 1 and ε ∈ (0, 1/2) and N > poly(n), we prove the existence of X ⊂ Rn, |X| = N ,
s.t. if for A ∈ Rm×n

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22 for all x ∈ X, (2)

then m = Ω(min{n, ε−2 lgN}). Providing the JL guarantee on X ∪ {0} implies satisfying
(2), and therefore also requires m = Ω(min{n, ε−2 lgN}). We show such X exists via the
probabilistic method, by letting X be the union of all n standard basis vectors together
with several independent gaussian vectors. Gaussian vectors were also the hard case in
the DJL lower bound proof of [16], though the details were different. Note we can assume
N < exp(Cε2n) for any C > 0 we choose, since for larger N the n in the minimum defining
m takes effect.

We now give the idea of the lower bound proof to achieve (2). First, we include in X the
vectors e1, . . . , en. Then if A ∈ Rm×n for m ≤ n satisfies (2), this forces every column of A
to have roughly unit norm. Then by standard results in covering and packing (see Eqn. (5.7)
of [25]), there exists some family of matrices F ⊂ ∪nt=1Rt×n, |F| = eO(n2 lgn), such that

inf
Â∈F∩Rm×n

‖A− Â‖F ≤
1
nC

(3)

for C > 0 a constant as large as we like, where ‖ · ‖F denotes Frobenius norm. Also, by a
theorem of Latała [19], for any Â ∈ F and for a random gaussian vector g,

P
g
(|‖Âg‖22 − tr(ÂT Â)| ≥ Ω(

√
lg(1/δ) · ‖ÂT Â‖F )) ≥ δ/2 (4)

for any 0 < δ < 1/2, where tr(·) is trace. This is a (weaker version of the) statement that for
gaussians, the Hanson-Wright inequality [11] not only provides an upper bound on the tail
of degree-two gaussian chaos, but also is a lower bound. (The strong form of the previous
sentence, without the parenthetical qualifier, was proven in [19], but we do not need this
stronger form for our proof – essentially the difference is that in stronger form, (4) is replaced
with a stronger inequality also involving the operator norm ‖ÂT Â‖.)

It also follows by standard results that a random gaussian vector g satisfies

P
g
(|‖g‖22 − n| > C

√
n lg(1/δ)) < δ/2 (5)

Thus by a union bound, the events of (4), (5) happen simultaneously with probability
Ω(δ). Thus if we take N random gaussian vectors, the probability that the events of (4), (5)
never happen simultaneously for any of the N gaussians is at most (1− Ω(δ))N = e−Ω(δN).
By picking N sufficiently large and δ = 1/poly(n), a union bound over F shows that for every
Â ∈ F , one of the N gaussians satisfies the events of (4) and (5) simultaneously. Specifically,
for N > n3 there exist N vectors {v1, . . . , vN} = V ⊂ Rn such that

Every v ∈ V has ‖v‖22 = n±O(
√
n lgN) = (1±O(ε))n.

For any Â ∈ F there exists some v ∈ V such that |‖Âv‖22−tr(ÂT Â)| = Ω(
√

lgN ·‖ÂT Â‖F ).
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Here ±B represents a value in [−B,B]. The final definition of X is {e1, . . . , en} ∪ V . Then,
using (2) and (3), we show that the second bullet implies

tr(ÂT Â) = n±O(εn), and |‖Av‖22 − n| = Ω(
√

lgN · ‖ÂT Â‖F )−O(εn). (6)

But then by the triangle inequality, the first bullet above, and (2),∣∣‖Av‖22 − n∣∣ ≤ ∣∣‖Av‖22 − ‖v‖22∣∣+
∣∣‖v|‖22 − n∣∣ = O(εn). (7)

Combining (6) and (7) implies

tr(ÂT Â) =
n∑
i=1

λ̂i ≥ (1−O(ε))n, and ‖ÂT Â‖2F =
n∑
i=1

λ̂2
i = O

(
ε2n2

lgN

)

where (λ̂i) are the eigenvalues of ÂT Â. With bounds on
∑
i λ̂i and

∑
i λ̂i

2
in hand, a lower

bound on rank(ÂT Â) ≤ m follows by Cauchy-Schwarz (this last step is also common to the
proof of [3]).
I Remark. It is not crucial in our proof thatN be at least n3. Our techniques straightforwardly
extend to show that N can be any value which is Ω(n2+γ) for any constant γ > 0, or even
Ω(n1+γ/ε2).

2 Preliminaries

Henceforth a standard gaussian random variable g ∈ R is a gaussian with mean 0 and
variance 1. If we say g ∈ Rn is standard gaussian, then we mean that g is a multivariate
gaussian with identity covariance matrix (i.e. its entries are independent standard gaussian).
Also, the notation ±B denotes a value in [−B,B]. For a real matrix A = (ai,j), ‖A‖ is the
`2 → `2 operator norm, and ‖A‖F = (

∑
i,j a

2
i,j)1/2 is Frobenius norm.

In our proof we depend on some previous work. The first theorem is due to Latała [19]
and says that, for gaussians, the Hanson-Wright inequality is not only an upper bound but
also a lower bound.

I Theorem 2 ([19, Corollary 2]). There exists universal c > 0 such that for g ∈ Rn standard
gaussian and A = (ai,j) an n× n real symmetric matrix with zero diagonal,

∀t ≥ 1, P
g

(
|gTAg| > c(

√
t · ‖A‖F + t · ‖A‖)

)
≥ min{c, e−t} .

Theorem 2 implies the following corollary.

I Corollary 3. Let g,A be as in Theorem 2, but where A is no longer restricted to have zero
diagonal. Then

∀t ≥ 1, P
g

(
|gTAg − tr(A)| > c(

√
t · ‖A‖F + t · ‖A‖)

)
≥ min{c, e−t} .

Proof. Let N be a positive integer. Define g̃ = (g̃1,1, g̃1,2, . . . , g̃1,N , . . . , g̃n,1, g̃n,2, . . . , g̃n,N )
a standard gaussian vector. Then gi is equal in distribution to N−1/2∑N

j=1 g̃i,j . Define ÃN
as the nN × nN matrix formed by converting each entry ai,j of A into an N ×N block with
each entry being ai,j/N . Then

gTAg−tr(A) =
n∑
i=1

n∑
j=1

ai,jgigj−tr(A) d=
n∑
i=1

n∑
j=1

N∑
r=1

N∑
s=1

ai,j
N

g̃i,r g̃j,s−tr(A)def= g̃T ÃN g̃−tr(ÃN )

ICALP 2016
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where d= denotes equality in distribution (note tr(A) = tr(ÃN )). By the weak law of large
numbers

∀λ > 0, lim
N→∞

P
(
|g̃T ÃN g̃ − tr(ÃN )| > λ

)
= lim
N→∞

P
(
|g̃T (ÃN − D̃N )g̃| > λ

)
(8)

where D̃N is diagonal containing the diagonal elements of ÃN . Note ‖ÃN‖ = ‖A‖. This
follows since if we have the singular value decomposition A =

∑
i σiuiv

T
i (where the {ui}

and {vi} are each orthonormal, σi > 0, and ‖A‖ is the largest of the σi), then ÃN =∑
i σiu

(N)
i (v(N)

i )T where u(N)
i is equal to ui but where every coordinate is replicated N times

and divided by
√
N . This implies |‖ÃN − D̃N‖ − ‖A‖| ≤ ‖D̃N‖ = maxi |ai,i|/N = oN (1) by

the triangle inequality. Therefore limN→∞ ‖ÃN−D̃N‖ = ‖A‖. Also limN→∞ ‖ÃN−D̃N‖F =
‖A‖F . Our corollary follows by applying Theorem 2 to the right side of (8). J

The next lemma follows from gaussian concentration of Lipschitz functions [24, Corollary
2.3]. It also follows from the Hanson-Wright inequality [11] (which is the statement of
Corollary 3, but with the inequality reversed). Ultimately we will apply it with t ∈ Θ(lgn),
in which case the e−t term will dominate.

I Lemma 4. For a universal c > 0, and g ∈ Rn standard gaussian, ∀t > 0 P(|‖g‖22 − n| >
c
√
nt) < e−t + e−

√
nt.

The following corollary summarizes the above in a form that will be useful later.

I Corollary 5. For A ∈ Rm×n let λ1 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of ATA. Let
g(1), . . . , g(N) ∈ Rn be independent standard gaussian vectors. For some universal constants
c1, c2, δ0 > 0 and any 0 < δ < δ0

P

(
6 ∃j ∈ [N ] :

{∣∣∣∣∣‖Ag(j)‖22 −
n∑
i=1

λi

∣∣∣∣∣ ≥ c1√lg(1/δ)
(

n∑
i=1

λ2
i

)1/2}
∧{

|‖g(j)‖22 − n| ≤ c2
√
n lg(1/δ)

})
≤ e−Nδ. (9)

Proof. We will show that for any fixed j ∈ [N ] it holds that

P (
{∣∣∣∣∣‖Ag(j)‖22 −

n∑
i=1

λi

∣∣∣∣∣ ≥ c1√lg(1/δ)
(

n∑
i=1

λ2
i

)1/2}
∧{

‖g(j)‖22 ≤ n+ c2
√
n lg(1/δ)

})
> δ (10)

Then, since the gj are independent, the left side of (9) is at most (1− δ)N ≤ e−δN .
Now we must show (10). It suffices to show that

P
(
|‖g(j)‖22 − n| ≤ c2

√
n lg(1/δ)

)
> 1− δ/2 (11)

and

P

∣∣∣∣∣‖Ag(j)‖22 −
n∑
i=1

λi

∣∣∣∣∣ ≥ c1√lg(1/δ)
(

n∑
i=1

λ2
i

)1/2
 > δ/2 (12)

since (10) would then follow from a union bound. Eqn. (11) follows immediately from
Lemma 4 for c2 chosen sufficiently large. For Eqn. (12), note ‖Ag(j)‖22 = gTATAg. Then∑
i λi = tr(ATA) and (

∑
i λ

2
i )1/2 = ‖ATA‖F . Then (12) frollows from Corollary 3 for δ

smaller than some sufficiently small constant δ0. J



K.G. Larsen and J. Nelson 82:7

We also need a standard estimate on entropy numbers (covering the unit `mn∞ ball by `mn2
balls).

I Lemma 6. For any parameter 0 < α < 1, there exists a family Fα ⊆
⋃n
m=1 Rm×n of

matrices with the following two properties:
1. For any matrix A ∈

⋃n
m=1 Rm×n having all entries bounded in absolute value by 2, there

is a matrix Â ∈ Fα such that A and Â have the same number of rows and B = A − Â
satisfies tr(BTB) ≤ α/100.

2. |Fα| = eO(n2 lg(n/α)).

Proof. We construct Fα as follows: For each integer 1 ≤ m ≤ n, add all m × n matrices
having entries of the form i

√
α

10n for integers i ∈ {−20n/
√
α, . . . , 20n/

√
α}. Then for any

matrix A ∈
⋃n
m=1 Rm×n there is a matrix Â ∈ Fα such that A and Â have the same number

of rows and every entry of B = A− Â is bounded in absolute value by
√
α

10n . This means that
every diagonal entry of BTB is bounded by nα/(100n2) and thus tr(BTB) ≤ α/100. The
size of Fα is bounded by n(40n/

√
α)n2 = eO(n2 lg(n/α)). J

3 Proof of main theorem

I Lemma 7. Let Fα be as in Lemma 6 with 1/ poly(n) ≤ α < 1. Then there for any N > n3

there exists a set of N vectors v1, . . . , vN in Rn such that for every matrix A ∈ Fα, there is
an index j ∈ [N ] such that
(i) |‖Avj‖22 −

∑
i λi| = Ω

(√
lgN

∑
i λ

2
i

)
.

(ii) |‖vj‖22 − n| = O(
√
n lgN).

Proof. Let g(1), . . . , g(N) ∈ Rn be independent standard gaussian. Let A ∈ Fα and apply
Corollary 5 with δ = N−1/12 ≤ n−1/4. With probability 1− e−Ω(n3−1/4), one of the g(j) for
j ∈ [N ] satisfies (i) and (ii) for A. Since |Fα| = eO(n2 lg(n/α)), the claim follows by a union
bound over all matrices in Fα. J

I Theorem 8. For any 0 < ε < 1/2, n > 1, and n′ > n3, there exists a set X ⊂ Rn,
|X| = N = n′ + n, such that if A is a matrix in Rm×n satisfying ‖Avi‖22 ∈ (1± ε)‖vi‖22 for
all vi ∈ X, then m = Ω(min{n, ε−2 lgN}).

Proof. We can assume ε > 1/
√
n since otherwise an m = Ω(n) lower bound already follows

from [3]. We also can assume N < exp(Cε2n), since otherwise min{n, ε−2 lgN} = n. To
construct X, we first invoke Lemma 7 with α = ε2/n2 to find n′ vectors w1, . . . , wn′ such
that for all matrices Ã ∈ Fε2/n2 , there exists an index j ∈ [n′] for which:

1. |‖Ãwj‖22 −
∑
i λ̃i| ≥ Ω

(√
(lgN)

∑
i λ̃

2
i

)
.

2. |‖wj‖22 − n| = O(
√
n lgN) = O(εn).

where λ̃1 ≥ · · · ≥ λ̃n ≥ 0 denote the eigenvalues of ÃT Ã. We letX = {e1, . . . , en, w1, . . . , wn′}
and claim this set of N = n′ + n vectors satisfies the theorem. Here ei denotes the i’th
standard unit vector.

To prove this, let A ∈ Rm×n be a matrix with m ≤ n satisfying ‖Av‖22 ∈ (1± ε)‖v‖22 for
all v ∈ X. Now observe that since e1, . . . , en ∈ X, A satisfies ‖Aei‖22 ∈ (1± ε)‖ei‖22 = (1± ε)
for all ei. Hence all entries ai,j of A must have a2

i,j ≤ (1 + ε) < 2 (and in fact, all columns of
A have `2 norm at most

√
2). This implies that there is an m× n matrix Â ∈ Fε2/n2 such

ICALP 2016
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that B = A− Â = (bi,j) satisfies tr(BTB) ≤ ε2/(100n2). Since tr(BTB) = ‖B‖2F , this also
implies ‖B‖F ≤ ε/(10n). Then by Cauchy-Schwarz,

n∑
i=1

λ̂i = tr(ÂT Â)

= tr((A−B)T (A−B))
= tr(ATA) + tr(BTB)− tr(ATB)− tr(BTA)

=
n∑
i=1
‖Aei‖22 + tr(BTB)− tr(ATB)− tr(BTA)

= n± (O(εn) + 2n ·max
j

(
∑
i

b2i,j)1/2 ·max
k

(
∑
i

a2
i,k)1/2)

= n± (O(εn) + 2n · ‖B‖F ·
√

2)
= n±O(εn).

Thus from our choice of X there exists a vector v∗ ∈ X such that
(i) |‖Âv∗‖22 − n| ≥ Ω

(√
(lgN)

∑
i λ̂

2
i

)
−O(εn).

(ii) |‖v∗‖22 − n| = O(
√
n lgN) = O(εn).

Note ‖B‖2 ≤ ‖B‖2F = tr(BTB) ≤ ε2/(100n2) and ‖Â‖2 ≤ ‖Â‖2F ≤ (‖A‖F +‖B‖F )2 = O(n2).
Then by (i)
(iii)

|‖Av∗‖22 − n| = |‖Âv∗‖22 + ‖Bv∗‖22 + 2〈Âv∗, Bv∗〉 − n|

≥ Ω

√(lgN)
∑
i

λ̂2
i

− ‖Bv∗‖22 − 2|〈Âv∗, Bv∗〉| −O(εn)

≥ Ω

√(lgN)
∑
i

λ̂2
i

− ‖B‖2 · ‖v∗‖22 − 2‖B‖ · ‖A‖ · ‖v∗‖22 −O(εn)

= Ω

√(lgN)
∑
i

λ̂2
i

−O(εn).

We assumed |‖Av∗‖22 − ‖v∗‖22| = O(ε‖v∗‖22) = O(εn). Therefore by (ii),∣∣‖Av∗‖22 − n∣∣ ≤ ∣∣‖Av∗‖22 − ‖v∗‖22∣∣+
∣∣‖v∗‖22 − n∣∣ = O(εn)

which when combined with (iii) implies
n∑
i=1

λ̂2
i = O

(
ε2n2

lgN

)
.

To complete the proof, by Cauchy-Schwarz since exactly rank(ÂT Â) of the λ̂i are non-zero,

n2

2 ≤
(

n∑
i=1

λ̂i

)2

≤ rank(ÂT Â) ·
(

n∑
i=1

λ̂i
2
)
≤ m ·O

(
ε2n2

lgN

)
.

Rearranging gives m = Ω(ε−2 lgN). Note we assumed N < exp(Cε2n). Thus considering N
larger, we obtain the lower bound m = Ω(min{n, ε−2 lgN}) as desired. J
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4 Discussion

One obvious future goal is to obtain an m = Ω(min{n, ε−2 lgN}) lower bound that also
applies to non-linear maps. Unfortunately, such a lower bound cannot be obtained by using
the hard set X from Theorem 8. If X is the union of {e1, . . . , en} with nO(1) independent
gaussian vectors normalized to each have squared unit norm in expectation, then it is not hard
to show (e.g. via a decoupled Hanson-Wright inequality) that X will be ε-incoherent with high
probability for any ε ∈ Ω(

√
lgn/n), where we say a set X is ε-incoherent if (1) for all x ∈ X,

‖x‖2 = 1± ε, and (2) for all x 6= y ∈ X, |〈x, y〉| ≤ ε. It is known that any ε-incoherent set of
N vectors can be non-linearly embedded into dimension O(ε−2(lgN/(lg lgN + lg(1/ε)))2)
by putting each vector in correspondence with a Reed-Solomon codeword (see [23] for
details). This upper bound is o(ε−2 lgN) for any ε ∈ 2−ω(

√
lgN). Thus, one cannot prove an

Ω(ε−2 lgN) lower bound against non-linear maps for our hard set X for the full range of
ε ∈ [

√
(lgn)/n, 1/2].

One potential avenue for generalizing our lower bound to the non-linear setting is to
shrink |X|. Our hard set X contains N = O(n3) points in Rn (though as remarked earlier,
our techniques easily imply N = O(n1+γ/ε2) points suffice). Any embedding f could be
assumed linear without loss of generality if the elements of X were linearly independent, at
which point one would only need to prove a lower bound against linear embeddings. However,
clearly X ⊂ Rn cannot be linearly independent if N > n, as is the case for our X. Thus a
first step toward a lower bound against non-linear embeddings is to obtain a hard X with N
as small as possible. Alternatively, one could hope to extend the aforementioned non-linear
embedding upper bound for incoherent sets of vectors to arbitrary sets of vectors, though
such a result if true seems to require ideas very different from all known constructions of JL
transforms to date.

Finally, we mention an alternative but similar proof strategy that leads to the same result
as proved above. In [16], the authors proved the following theorem (see their Theorem 9):

I Theorem 9 ([16]). If A : Rn → Rm is a linear transformation with n ≥ 2m and ε > 0
is sufficiently small, then for g a randomly chosen vector in Sn−1, P(|‖Ag‖22 − 1| > ε) ≥
exp(−O(mε2 + 1)).

With this theorem in mind, we can redo our proof steps, first showing that for a matrix
A ∈ Rm×n and N randomly chosen vectors g(1), . . . , g(N), at least one of them will have
|‖Ag(j)‖22 − 1| > ε with probability 1− exp(−N exp(O(mε2 + 1))). If m = o(ε−2 lgN), we
can prove an analog of our Lemma 7, showing that there exists a set X ⊂ Sn−1 of N > n3

vectors v1, . . . , vN , such that for every matrix A ∈ Fα, there is an index j ∈ [N ] with
|‖Avj‖22 − 1| > ε. Finally, we could redo the steps in the proof of Theorem 8, showing that
any JL-matrix for X ∪ {e1, . . . , en} must be sufficiently “close” to a matrix in Fα and hence
there is a vector vj in X whose norm is distorted by too much. In summary, their theorem
would replace our Corollary 3. The proof of their theorem is slightly more involved than the
proof of Corollary 3 (once one assumes Theorem 2), albeit not by much. We believe there
is value in knowing both proofs and we hope the underlying ideas may be useful in other
applications.
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