A Duality Based 2-Approximation Algorithm for
Maximum Agreement Forest*

Frans Schalekamp'!, Anke van Zuylen$?, and Suzanne van der Ster?

1 School of Operations Research & Information Engineering, Cornell University,
Ithaca, NY, USA
fms9@cornell.edu

2 Department of Mathematics, College of William & Mary, Williamsburg,
VA,USA
anke@wm.edu

3 Institut fiir Informatik, Technische Universitidt Miinchen, Miinchen, Germany
ster@in.tum.de

—— Abstract

We give a 2-approximation algorithm for the Maximum Agreement Forest problem on two rooted
binary trees. This NP-hard problem has been studied extensively in the past two decades, since it

can be used to compute the Subtree Prune-and-Regraft (SPR) distance between two phylogenetic
trees. Our result improves on the very recent 2.5-approximation algorithm due to Shi, Feng, You
and Wang (2015). Our algorithm is the first approximation algorithm for this problem that uses
LP duality in its analysis.

1998 ACM Subject Classification F.2.2 Analysis of algorithms and problem complexity

Keywords and phrases Maximum agreement forest, phylogenetic tree, SPR distance, subtree
prune-and-regraft distance, computational biology

Digital Object ldentifier 10.4230/LIPIcs.ICALP.2016.70

1 Introduction

Evolutionary relationships are often modeled by a rooted tree, where the leaves are a set of
species, and internal nodes are (putative) common ancestors of the leaves below the internal
node. Such phylogenetic trees date back to Darwin [5], who used them in his notebook to
elucidate his thoughts on evolution.

The topology of phylogenetic trees can be based on different sources of data, e.g., mor-
phological data, behavioral data, genetic data, etc., which can lead to different phylogenetic
trees on the same set of species. Different measures have been proposed to measure the
similarity of (or distance between) different phylogenetic trees on the same set of species
(or individuals). Using the size of a maximum subtree common to both input trees as a
similarity measure was proposed by Gordon [8]. The problem of finding such a subtree is
now known as the Maximum Agreement Subtree Problem, and has been studied extensively.

* Full version is available at http://arxiv.org/abs/1511.06000.

T This work was initiated when the authors were visitors of Leen Stougie at the Tinbergen Institute.

¥ FS was supported in part by the Simon Prize for Excellence in the Teaching of Mathematics at William
& Mary.

§ AvZ was supported in part by a William & Mary Summer Research Award, NSF Prime Award: HRD-
1107147, Women in Scientific Education (WISE) and by a grant from the Simons Foundation (#359525,
Anke Van Zuylen).

© Frans Schalekamp, Anke van Zuylen, and Suzanne van der Ster;
37 licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).

Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;

Article No. 70; pp. 70:1-70:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.70
http://arxiv.org/abs/1511.06000
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

70:2

A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest

Steel and Warnow [14] are the first to give a polynomial-time algorithm for this problem.
Their approach is refined to an O(n!-5 logn)-time algorithm by Farach and Thorup [6], who
subsequently show their algorithm is optimal, unless unweighted bipartite matching can be
solved in near linear time [7].

There exist non-tree-like evolutionary processes that preclude the existence of a phylogen-
etic tree, so-called reticulation events (such as hybridization, recombination and horizontal
gene transfer). In this context, a particularly meaningful measure of comparing phylogenetic
trees is the SPR-distance measure (where SPR is short for Subtree Prune-and-Regraft): this
measure provides a lower bound on a certain type of these non-tree evolutionary events.
The problem of finding the exact value of this measure for a set of species motivated the
formulation of the Maximum Agreement Forest Problem (MAF) by Hein, Jian, Wang and
Zhang [9]. Since the introduction by Hein et al., MAF has been extensively studied, including
several variants, such as the problem where the input consists of more than two trees, whether
the input trees are rooted or unrooted, binary or non-binary. In our paper, we concentrate
on MAF on two rooted binary trees.

For ease of defining the solutions to MAF on two rooted binary trees, we think of the
input trees as being directed, where all edges are directed away from the root. Given two
rooted binary trees on the same leaf set £, the MAF problem asks to find a minimum set of
edges to delete from the two trees, so that the directed trees in the resulting two forests can
be paired up into pairs of “isomorphic” trees. Two trees are isomorphic if they contain the
same nodes from £ and recursively removing nodes of out-degree zero that are not in £ and
contracting two arcs incident to a node of in-degree and out-degree one, results in the same
binary tree. An alternative (but equivalent) definition will be given in Section 2.

The problem of finding a MAF on two rooted binary trees has been extensively studied,
although unfortunately some of the published results later turned out to have subtle errors.
First of all, Allen and Steel [1] point out that the claim by Hein et al. that solving MAF
on two rooted directed trees computes the SPR-distance between the trees is incorrect.
Bordewich and Semple [4] show how to redefine MAF for rooted directed trees so that it is
indeed the case that the optimal objective value of MAF is equal to the SPR~distance. In
the paper in which they introduce MAF, Hein et al. [9] proved NP-hardness and they give
an approximation algorithm for the problem, the approximation guarantee of which turned
out to be slightly higher than what was claimed. Bordewich and Semple [4] show that, for
their corrected definition of MAF, NP-hardness continues to hold. Other approximation
algorithms followed [11, 2, 3]. The current best approximation ratio for MAF is 2.5, due to
Shi, Feng, You and Wang [13], and Rodrigues [10] has shown that MAF is MAXSNP-hard.
In addition, there is a body of work on other approaches, such as Fixed-Parameter Tractable
(FPT) algorithms (e.g., [16, 15]) and Integer Programming [17, 18].

In this paper we give an improved approximation algorithm for MAF with an analysis
based on linear programming duality. Our 2-approximation algorithm differs from previous
works in two aspects. First of all, in terms of bounding the optimal value, we construct a
feasible dual solution, rather than arguing more locally about the objective of the optimal
solution. Secondly, our algorithm itself also takes a more global approach, whereas the
algorithms in previous works mainly consider local substructures of at most four leaves. In
particular, we identify a minimal subtree! of one of the two input trees for which the leaf set
is incompatible, i.e., when deleting all other leaves from both trees, the remaining two trees

1 By subtree of a rooted tree, we mean a tree containing the leaves that are descendents of some particular
node in the rooted tree (including this node itself), and all edges between them.

F. Schalekamp, A. Van Zuylen, and S. Van der Ster

are not isomorphic (such a minimal subtree can be found efficiently). We then use “local”
operations which repeatedly look at two “sibling” leaves in the minimal incompatible subtree,
and perform similar operations as those suggested by previous authors.

Preliminary tests were conducted using a proof-of-concept implementation of our algorithm
in Java. Our preliminary results indicate that our algorithm finds a dual solution that in
44% of the 1000 runs is equal to the optimal dual solution, and in 37% of the runs is 1 less
than the optimal solution. The observed average approximation ratio is about 1.92; following
our algorithm with a simple greedy search algorithm decreases this to less than 1.28.

The remainder of our paper is organized as follows. In Section 2, we formally define the
problem. In Section 3, we give a 3-approximation algorithm for MAF that introduces the
dual linear program that is used throughout the remainder of the paper and gives a flavor
of the arguments used to prove the approximation ratio of two. In Section 4, we give an
overview of the 2-approximation algorithm and the key ideas in its analysis. In Section 5 we
give more details on the randomly generated instances that we used to obtain our preliminary
experimental results, and we conclude in Section 6 with some directions for future research.

The full version of this paper [12] contains further details on the algorithm and a complete
analysis that shows that its approximation ratio is 2.

2 Preliminaries

The input to the Maximum Agreement Forest problem (MAF) consists of two rooted binary
trees T1 and T5, where the leaves in each tree are labeled with the same label set £. Each
leaf has exactly one label, and each label in £ is assigned to exactly one leaf in 77, and one
leaf in T5. For ease of exposition, we sometimes think of the edges in the trees as being
directed, so that there is a directed path from the root to each of the leaves.

We call the non-leaf nodes the internal nodes of the trees, and we let V' denote the set
of all nodes (internal nodes and leaves) in 77 U T5. Given a tree containing u and v, we let
lca(u, v) denote the lowest (closest to the leaves, furthest from the root) common ancestor
of u and v. We let lcag (u,v) and lcas(u, v) denote lea(u, v) in tree T, respectively, T5. We
extend this notation to lca(U) which will denote the lowest common ancestor of a set of
leaves U. For three leaves u,v,w and a rooted tree T, we use the notation uv|w in T to
denote that lca(u,v) is a descendent of lca({u,v,w}). A triplet {u,v,w} of labeled leaves is
consistent if uwv|w in Ty < uv|w in Ty. The triplet is called inconsistent otherwise. We call a
set of leaves L C L a compatible set, if it does not contain an inconsistent triplet.

For a compatible set L C L, define V[L] := {v € V : there exists a pair of leaves
u,u’ in L so that v is on the path between u and v’ in Ty or T»}. Then, a partitioning
Li,Lo,...,L, of L corresponds to a feasible solution to MAF with objective value p — 1, if
the sets L1, Lo, ..., L, are compatible, and the sets V[L;] for j =1,...,p are node disjoint.
Using this definition, we can write the following Integer Linear Program? for MAF: Let C be
the collection of all compatible sets of leaves, and introduce a binary variable x, for every
compatible set L € C, where the variable takes value 1 if the optimal solution to MAF has
a tree with leaf set L. The constraints ensure that each leaf v € £ is in some tree in the
optimal forest, and each internal node v € V'\ £ is in at most one tree in the optimal forest.
The objective encodes the fact that we need to delete), ..z — 1 edges from each of T}

2 This ILP was obtained in discussions with Neil Olver and Leen Stougie.

70:3

ICALP 2016

70:4

A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest

and T5 to obtain forests with ZLGC g, trees.

minimize) ; o2 — 1,

s.t. Yobwer L =1 Yv e L,
Yrwevin L =1 YweVAL,
zr € {0,1} VL € C.
Remark

The definition of MAF we use is not the definition that is now standard in the literature, but
any (approximation) algorithm for our version can be used to get the same (approximation)
result for the standard formulation: The standard formulation was introduced by Bordewich
and Semple [4] in order to ensure that the objective value of MAF is equal to the rooted
SPR distance. They note that for this to hold, we need the additional requirement that
the two forests must also agree on the tree containing the original root; in other words, the
original roots of 77 and T5 should be contained in a tree with the same (compatible) subset
of leaves. An easy reduction shows that we can solve this problem using our definition of
MAF: given two rooted binary trees for which we want to compute the SPR, distance, we can
simply add one new label p, and for each of the two input trees, we add a new root which
has an edge to the original root and an edge to a new node with label p.3 A solution to “our”
MAF problem on this modified input defines a solution to Bordewich and Semple’s problem
on the original input with the same objective value and vice versa.

3 Duality Based 3-Approximation Algorithm
3.1 Algorithm

The algorithm we describe in this section is a variant of the algorithm of Rodrigues et al. [11]
(see also Whidden and Zeh [16]). The algorithm maintains two forests, 7 and T3 on the
same leaf set £’, and iteratively deletes edges from these forests. At the start, Ty is set equal
to Ty, T4 to Ty and £’ to L. The leaves in £’ are called the active leaves. The algorithm will
ensure that the leaves that are not active, will have been resolved in one of the two following
ways: (1) they are part of a tree that contains only inactive leaves in both 7] and T4; these
two trees then have the same leaf set, which is compatible, and they will be part of the final
solution; or (2) an inactive leaf is merged with another leaf which is active, and in the final
solution this inactive leaf will be in the same tree as the leaf it was merged with.

A tree is called active if it contains a leaf in £/, and the tree is called inactive otherwise.
An invariant of the algorithm is that there is a single active tree in 7.

We define the parent of a set of active leaves W in a tree of a forest, denoted by p(W),
as the lowest node in the tree that is a common ancestor of W and at least one other active
node. (That is, p(W) is undefined if there are no other active leaves in the tree that contains
the leaves in W.) Note that the parent of a node is defined with respect to the current state
of the algorithm, and not with respect to the initial input tree. If W = {u} is a singleton,
we will also use the notation p(u) = p({u}). For a given tree or forest 77, for i € {1,2}, we
use the notation p;(W) to denote p(W) in T7.

3 This is essentially the formulation that is common in the literature, except that in order to ensure that
only leaves have labels, we give the label p to a new leaf that is an immediate descendent of the new
root in both trees, rather than to the new root itself.

F. Schalekamp, A. Van Zuylen, and S. Van der Ster

The operation in the algorithm that deletes edges from forest T} is cut off a subset of
leaves W in T]. The edge that is deleted by this operation is the edge directly below p; (W)
towards W (provided p;(W) is defined). Note that this means that the algorithm maintains
the property that each internal node has a path to at least one leaf in £. This ensures that
the number of trees with leaves in £ in 77 is equal to the number of edges cut in 77 plus 1.
It also ensures that the only leaves (nodes with outdegree 0) are the nodes in L.

We will call two leaves u and v a sibling pair or siblings in a forest, if they belong to the
same tree in the forest, and they are the only two leaves in the subtree rooted at the lowest
common ancestor lca(u,v). Similarly, u and v are an active sibling pair in a forest, if they
belong to the same tree in the forest, and are the only two active leaves in the subtree rooted
at the lowest common ancestor lca(u,v) (an equivalent definition is that p(u) = p(v) in the
forest).

If leaves u and v are an active sibling pair in both 7] and T4, we merge one of the leaves
(say w) with the other (v). This means that from that point on v represents the subtree
containing both u and v, instead of just the leaf v itself. This is accomplished by just making
u inactive. Note that this merge operation can be performed recursively, where one or both
of the leaves involved in the operation can already be leaves that represent subtrees. It is not
hard to see that the subtree that is represented by an active leaf v is one of the two subtrees
rooted at the child of p(v), namely the subtree that contains v.

If leaves u and v are not active siblings in T4 (and they are active siblings in T7), we can
choose to cut off an active subtree between leaves u and v. To describe this operation, let
W1, Wa, ..., Wy be the active leaves of the active trees that would be created by deleting the
path between u and v (both the nodes and the edges) in T3. Note that pa(Wp) is on the path
between w and v for all £ € {1,2,...,k}, because u and v are not active siblings. Cutting off
an active subtree between leaves u and v now means cutting off any such a set W,.

The algorithm is given in Algorithm 1. The boxed expressions refer to updates of the
dual solution which will be discussed in Section 3.2.2. These expressions are only necessary
for the analysis of the algorithm.

» Theorem 1. Algorithm 1 is a 3-approzimation algorithm for the Mazimum Agreement
Forest problem.

The proof of this theorem is given in the next subsection. It is clear the algorithm can be
implemented to run in polynomial time. In Section 3.2.1, we show that the algorithm returns
an agreement forest and we show that the number of edges deleted from T5 by the algorithm
can be upper bounded by three times the objective value of a feasible solution to the dual of
a linear programming (LP) relaxation of MAF.

3.2 Analysis of the 3-Approximation Algorithm
3.2.1 Correctness

We need to show that the algorithm outputs an agreement forest. The trees of 77 and T
each give a partitioning of £, and clearly any internal node v belongs to V[L] for at most one
set in the partitioning. It remains to show that the two forests give the same partitioning of
L and that each set in the partitioning is compatible.

The algorithm ends with all trees in 77 and T4 being inactive, and the algorithm maintains
that the set of leaves represented by an active leaf u (i.e., the leaves that were merged with
u (recursively), and w itself) form the leaf set of a subtree in both 7] and T4. To be precise,
it is the subtree rooted at one of the children of p(u), namely the subtree that contains w.

70:5

ICALP 2016

70:6

A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest

1 yv<—0forallv€V.‘
2 while there exist at least 2 active leaves do
3 Find an active sibling pair u, v in the active tree in T7.
4 if w or v is the only active leaf in its tree in Ty then
5 ‘ Cut off this node (say) in T as well and make it inactive.
6 else
7 if u and v are active siblings in Th then
8 ‘ Merge u and v (i.e., make u inactive to “merge” it with v).
9 else
10 if w and v are in the same tree in Ty, and this tree contains an active leaf w such
that uv|w in T> then
11 ‘ Cut off an active subtree W between u and v in T4. | Decrease Ypo(w) by 1.
12 end if
13 Cut off w and cut off v in 7] and T4 and make them inactive.
‘yu < 1, yu < 1, decrease Yica; (u,v) by 1. ‘
14 end if
15 end if
16 end while
17 Make the remaining leaf (say v) inactive.

Algorithm 1: A 3-Approximation for Maximum Agreement Forest. The boxed text
refers to updates of the dual solution as discussed in Section 3.2.2.

Furthermore note that this leaf set is compatible. This is easily verified by induction on the
number of merges.

When u is the only active leaf in its tree in both forests, then the trees containing u in
the two forests are thus guaranteed to have the same, compatible, set of leaves. Now, an
inactive tree is created exactly when both 77 and Ty have an active tree in which some w is
the only active leaf (lines 5, 13 and 17), and thus the two forests indeed induce the same
partition of £ into compatible sets.

3.2.2 Approximation Ratio

In order to prove the claimed approximation ratio, we will construct a feasible dual solution
to the dual of the relaxation of the ILP given in Section 2. The dual LP is given in Figure 1(a).
The dual LP has an optimal solution in which 0 <y, <1 for all v € £. The fact that {v}
is a compatible set implies that g, < 1 must hold for every v € £. Furthermore, note that
changing the equality constraints of the primal LP to >-inequalities does not change the
optimal value, and hence we may assume y, > 0 for v € L.

It will be convenient for our analysis to rewrite this dual by introducing additional
variables for every (not necessarily compatible) set of labeled leaves. We will adopt the
convention to use the letter A to denote a set of leaves that is not necessarily compatible,
and the letter L to denote a set of leaves that is compatible (i.e., L € C). The dual LP can
then be written as in Figure 1(b). Any solution to this new LP can be transformed into a
solution to the original dual LP by, for each A such that z4 > 0, taking some leaf v € A
and setting y, = y» + 24 and z4 = 0. This is feasible because the left-hand side of the first
family of inequalities will not increase for any compatible set L, and it will decrease for L
such that AN L # () and v ¢ L. Conversely, a solution to the original dual LP is feasible for
this new LP by setting z4 = 0, for every set of labeled leaves A.

F. Schalekamp, A. Van Zuylen, and S. Van der Ster

max .y, — 1, max ZvvarZAgLZA*L
s.t. ZUGV[L] Yy <1 VLeC, s.t. ZUEV[L] Yo + ZA:AQL;% za <1 VLeC,
Yo <0 Yo e V\ L. Yo <0 Vo eV\ L,
Yo Z 0 Yv € [«,
za >0 VACL.
(a) Dual LP (b) Reformulated dual LP

Figure 1 The dual of the LP relaxation for the ILP given in Section 2. The reformulated dual
LP will be referred to as (D).

We will refer to the left-hand side of the first family of constraints, i.e., ZUEV[L] Yo +
> A.AnLzp #4; as the load on set L.

» Definition 2. The dual solution associated with a forest T3, obtained from T, by edge
deletions, active leaf set L', and variables y = {y, }yev is defined as (y,z) where z4 = 1
exactly when A is the active leaf set of a tree in T4, and 0 otherwise.

We will sometimes use “the dual solution” to refer to the dual solution associated with T4, £’
and y when the forest, active leaf set and y-values are clear from the context.

» Lemma 3. After every execution of the while-loop of Algorithm 1, the dual solution
associated with Ty, L', and y is a feasible solution to (D) and the objective value of this
solution is at least §|E(Ty) \ E(T3)].

Proof. We prove the lemma by induction on the number of iterations. Initially, z, = 1, and
all other variables are equal to 0. Clearly, this is a feasible solution with objective value 0.

Observe that the dual solution maintained by the algorithm satisfies that y,, = 0 while u
is active. Therefore, if there is a single active leaf u in a tree in T4, then making this leaf
u inactive and setting vy, = 1 does not affect dual feasibility and the dual objective value,
since making u inactive decreases z(,) from 1 to 0. Also note that merging two active leaves
(and thus making one of the two leaves inactive), replaces the set of active leaves A in an
active tree in T4 by a smaller set A’ C A, with A’ # (). Hence, the dual solution changes
from having z4 = 1 to having z4. = 1, which clearly does not affect dual feasibility or the
dual objective value. Hence, we only need to verify that the dual solution remains feasible
and its objective increases sufficiently for operations of the algorithm that cut edges from T3,
i.e., lines 11 and 13.

In line 11, one edge is cut in T3, y,,w) decreases by 1. Let A be the set of active leaves
in the tree containing W in T3 before cutting off W. 24 decreases by 1, z\w increases by 1,
zw increases by 1. The only sets L for which the left-hand side potentially increases are sets
L so that WNL# @ and (A\ W) N L # (). However, po(W) € V[L] for such sets L, and
since y,,(w) is decreased by 1, the load is not increased for any compatible set L. The dual
objective is unchanged, but will change in line 13 of the algorithm, as we will show next.

In line 13, let A, be the set of active leaves in the tree in T4 containing u at the start of
line 13 in the algorithm, and A, be the set of active leaves in the tree in T} containing v.
Note that A, \ {u,v} # 0: if v ¢ A, then this holds because otherwise we would execute
line 5, and if v € A,, then this holds because u,v are not active siblings at the start of
line 11, and if u,v became active siblings after executing line 11, then the condition for
line 11 implies that there exists w € A,, such that wv|w in Ts.

70:7

ICALP 2016

70:8

A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest

The fact that A, \ {u,v} # 0 (and, by symmetry A, \ {u,v} # () implies that the total
value of }7 4 24 + yu + ¥ increases by 2. Since we also decrease ¥ica,(u,0) by 1 the total
increase in the objective of the dual solution by line 13 is 1. Also, in lines 11 and 13, a total
of at most three edges are cut in T3.

It remains to show that executing line 13 does not make the dual solution (y, z) infeasible.
Note that for each active set A’ with z4, = 1 before cutting off u and v, there is exactly one
unique active subset A C A’ with z4 = 1 after cutting off u and v. Therefore the total value
of ZA:AQL#) z4 does not increase after cutting off v and v for any L C L.

For any L that includes one of u,v, and at least one other active leaf, it must be the
case that lca;(u,v) € V[L], because all active leaves are in one tree in T, and u and v were
active siblings in 7] at the start. Hence the only compatible sets L for which the load on L
potentially increases by 1 because of an increase in), v, are sets L that include both u
and v. We discern two cases.

Case 1: An active subtree W was cut off in line 11. In this case, the load on L was decreased
by 1 in line 11, compensating for the increase in line 13: V[L] contains all nodes on the
path between u and v in Ts, and hence also po(W). It cannot contain a leaf x € W, because
{u,v,z} form an inconsistent triplet (because wv|z in T7).

Case 2: No active subtree W was cut off in line 11. In this case, the value of } 4. 47 24
is decreased by at least 1: If u and v are in the same tree in Tj before cutting off u and v,
then this tree contains no leaves z such that wv|z in T5 since otherwise an active subtree W
would have been cut off. Hence, L does not contain any active leaf x in the active tree that
remains after cutting off « and v in Ty, since any such leaf & does not have uv|z in Ty and
therefore forms an inconsistent triplet with v and v. Since L does contain active leaves in
the tree containing « and v in Ty before cutting off © and v (namely, u and v themselves),
the value of } 4 479 24 indeed decreases by 1.

If uw and v are not in the same tree in T4 before cutting off v and v, then a similar
argument holds. Since T4 is obtained from T by deleting edges, at least one of the two
active trees containing u and v contains no leaves x such that uv|z in Tp. Without loss of
generality, suppose that this holds for the tree containing u. Then, L does not contain any
active leaves in the active tree remaining after u is cut off, and hence } 4. 4~/ 20 24 decreases
by at least 1. |

By weak duality, we have that the objective value of any feasible solution to (D) provides a
lower bound on the objective value of any feasible solution to the LP relaxation of our ILP
for MAF, and hence also on the optimal value of the ILP itself. Theorem 1 thus follows from
Lemma 3 and the correctness shown in Section 3.2.1.

4 Overview of the 2-Approximation Algorithm

In this section, we begin by giving an outline of the key ideas of our 2-approximation
algorithm. We then give an overview of the complete algorithm that we call the “Red-Blue
Algorithm”.

One of the main ideas behind our 2-approximation is the consideration of the following
two “essential” cases. The first “essential” case is the case where we have an active sibling
pair u,v in T that are (i) active siblings in Ty, or (ii) in different trees in T4, or (iii) the
tree in T4 containing u, v does not contain an active leaf w such that uv|w in Tp. Then, it is
easy to verify, using the arguments in the proof of Lemma 3, that Algorithm 1 “works”: it

F. Schalekamp, A. Van Zuylen, and S. Van der Ster

©

v
Q ® 9
U w u W v
wvow ©) ®© ®)
(a) Subtree in T} (b) Case (I)(a): Subtree in T (c) Case (I)(b): Subtree in T3

Figure 2 Dealing with an inconsistent triplet: Circled values denote the y-variables that are set
by the algorithm, and bold diagonal lines denote edges that are cut (deleted from T%). Triangles
denote subtrees with active leaves (that may be empty). Note that there is a distinction between
edges that are incident to the root of a subtree represented by a triangle, and edges that are incident
to some internal node of the subtree. The latter edges are connected to a dot on the triangle.

increases the dual objective value by at least half of the increase in |E(Ts) \ E(T3)|. We will
say such a sibling pair u, v is a “success”.

The second “essential” case is the case where, in our current forest 77, there is a subtree
containing exactly three active leaves, say w,v,w, where uv|w in T, and {u,v,w} is an
inconsistent triplet; assume without loss of generality that ww|v in Ts, and that the first
“essential” case does not apply; in particular, this implies that u, v are in the same tree in
T5. Tt turns out that such an inconsistent triplet can be “processed” in a way that allows
us to increase the objective value of the dual solution in such a way that it “pays for” half
the increase in the number of edges cut from T4. There are a number of different cases to
consider depending on whether all three leaves u, v, w are in the same tree in Tj (case I) or
not (case IT), and whether the tree in T4 containing w has an active leaf x such that zw|u in
T4 (case (a)) or not (case (b)).

Figure 2 gives an illustration of 7] and some possible configurations for T4. Consider for
example case (I)(b). Since {u,v,w} is an inconsistent triplet, it is not hard to see that any
solution to MAF either has v as a singleton component, or either u or w must be a singleton
component. Indeed, we can increase the dual objective by 1, by updating the y-values as
indicated by the circled values in Figure 2 (a) and (b). The bold diagonal lines denote two
edges that are cut (deleted from T3). Similar arguments can be made for the other cases.

Unfortunately, neither of the essential cases may be present in the forests 77,74, and
therefore the ideas given above may not be applicable. However, they do work if we generalize
our notions. First, we generalize the notion of “active sibling pair in 77"

» Definition 4. A set of active leaves U is an active sibling set in T} if the leaves in U are
the only active leaves in the subtree of T rooted at lca; (U). U is a compatible active sibling
set in T] if U is an active sibling set in 7] that contains no inconsistent triplets.

Note that we will only use the term compatible active sibling set for Ty, and never for T5.

We will therefore sometimes omit the reference to 77, and simply talk about a “compatible
active sibling set”.

We similarly generalize the notion of a subtree in T} containing exactly three active leaves
that form an inconsistent triplet.

» Definition 5. A set of active leaves RU B is a minimal incompatible active sibling set in T

if RUB is incompatible, R and B are compatible active sibling sets in 77, and p1 (R) = p1(B).

70:9

ICALP 2016

70:10

A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest

The Red-Blue Algorithm now proceeds as follows: it begins by identifying a minimal
incompatible active sibling set RU B in Ty. Such a set can be found by checking if the active
leaf sets of the left and right subtrees of the root are compatible sets. If yes, then either all
active leaves are compatible, or we have found a minimal incompatible active set. If not,
then the active leaf set of one of the subtrees is incompatible, and we recurse on this subtree
until we find a node in 77 for which the active leaf sets of the left and right subtrees form a
minimal incompatible set R U B. Note that we can assume lcas(R) = lcag(R U B).

The algorithm will then “distill” R by repeatedly considering sibling pairs u,v in R,
and executing operations similar to those in Algorithm 1, except that only one of v and v
becomes inactive (and a bit more care has to be taken in certain cases). Procedure 1 gives
the procedure RESOLVEPAIR the algorithm uses for handling a sibling pair w, v.

1 if w and v are in different trees in Ty then

2 Relabel u and v if necessary so that lcas(u,v) is not in the tree containing w in T5.
3 if the tree containing u in Ts has other active leaves not in U then

a ‘ FinalCut: Cut off v in T{ and T4 and make it inactive.

5 else

6 ‘ Cut off in 7] and make it inactive.

7 end if

8 else

9 if w and v are active siblings in Ty then
10 ‘ Merge u and v (i.e., make u inactive to “merge” it with v).
11 else
12 Relabel v and v if necessary so that p2(u) # lcaz(u, v).
13 Cut off an active subtree W between u and v by cutting the edge below p2(u) that is

not on the path from u to v. ‘ Decrease yp,(u) by 1. ‘

14 if u and v are now active siblings in Ty then
15 Merge-After-Cut: Merge u and v (i.e., make u inactive to “merge” it with v).
16 else

17 ‘ Cut off u in T{ and T4 and make u inactive.

18 end if

19 end if
20 end if

Procedure 1: RESOLVEPAIR(u,v)

Arguments similar to those in Section 3 show that RESOLVEPAIR maintains dual feasibility,
provided that we initially reduce Yica,(r) by 1. It is also not hard to verify that RESOLVEPAIR
increases the dual objective by at least half the increase in the primal objective, and the only
thing that is therefore needed to show that the algorithm is a 2-approximation is that we
can “make up for” the initial decrease of the dual objective caused by decreasing yica, (r)-
Let us define the operation of “distilling” R as starting by reducing yica,(g) by 1, and then
repeatedly finding a pair of active leaves u,v in R which are siblings in 77 and executing
RESOLVEPAIR(u, v) until only two active leaves @, 9 in R remain. Since all other leaves in R
are inactive, @ and ¢ form an active sibling pair in T7.

If pair @, ¥ is a “success” or if line 4 or 15 was executed at least once during the distilling
of R, then there exists an operation that makes at least one of #, ¥ inactive and updates the
dual, so that the total increase in the primal objective is at most twice the total increase in
the dual objective caused by the processing of pairs in R. Procedure 2 gives the complete
description of the procedure that, if successful, “resolves” set R (and will return “SUCCESS”):

F. Schalekamp, A. Van Zuylen, and S. Van der Ster

» Lemma 6. If RESOLVESET(R) returns SUCCESS then at least one leaf in R became inactive,
and the increase in the primal objective |E(T3) \ E(Ty)| caused by the procedure is at most
twice the increase in the dual objective.

Lemma 12 of the full version [12] contains a more precise formulation of this lemma.

21 ‘ Decrease Yica, (r) by 1. ‘

22 while there exist at least three active leaves in R do

Find u,v in R that form an active sibling pair in T7.

RESOLVEPAIR(u, v).

25 end while

26 Let 4,0 be the remaining active leaves in R.

27 if @ and © are active siblings in Ty then

28 Merge @ and ¢ (i.e., make @ inactive to “merge” it with 9).

29 Return SUCCESS.

30 else if (@ and © are in different trees in Ty) or (the tree containing 4 and © does not contain

an active leaf w such that 40|w in T>) then
31 Cut off 4 in Ty (if @’s tree contains at least one other active leaf) and in 7] and make @

inactive.

32 Cut off 9 in T3 (if 9’s tree contains at least one other active leaf) and in 7] and make 9

inactive.

33 Return SUCCESS.

34 else if (At least one FinalCut or Merge-After-Cut was ezecuted in some call to RESOLVEPAIR
in the course of the current RESOLVESET procedure) then

35 RESOLVEPAIR (1, D).

36 Cut off the last active leaf ¢ in U in T4 and in 7} and make © inactive.

37 Return SUCCESS.

38 else

39 Return FAIL.

40 end if

23
24

Procedure 2: RESOLVESET(R)

If Lemma 6 applies, we have made progress (since we have made at least one leaf inactive),
and we will have paid for the increase in the primal objective |E(T3) \ E(T4)| caused by the
procedure by twice the increase in the dual objective.

Otherwise, the last active pair of leaves 4, ¥ in R remain active, and we will have a “deficit”
in the sense that the increase in the dual objective is at most half the increase in the primal
objective plus 1. In this case, we similarly distill B by repeatedly calling RESOLVEPAIR(u, v)
for pairs u,v in B that are active siblings in 7] until only a single active leaf in B remains.
However, we will show that in order to retain dual feasibility, we do not need to start the
distilling of B by decreasing ¥ica, (5) (Which would give a total “deficit” of 2), but that we
can “move” the initial decrease of yica, (r) to instead decrease yica, (rup)- Lemma 13 in the
full version [12] shows that this indeed preserves dual feasibility.

Once R and B have both been “distilled”, we are left with 4, 9, @ that are an inconsistent
triplet and form the active leaf set of a subtree in 7. We show how to deal with the triplet
{@,0,w} (in ways similar to those in Figure 2) and we prove that in the entire processing of
R U B, we have increased the dual objective by half of the number of edges we cut from Tj.

Algorithm 2 gives an overview of the “Red-Blue Algorithm”. It first calls a procedure
PREPROCESS, which executes simple operations that do not affect the primal or dual objective:

70:11

ICALP 2016

70:12

A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest

merging two leaves if they are active siblings in both forests, and cutting off and deactivating
a leaf in 77 if it is the only active leaf in its tree in T5. At the end of an iteration, the
Red-Blue algorithm needs to consider different cases for the final triplet. The description of
these subroutines can be found in [12].

a1 SetT{eTl,Tz'eTg,ﬁ’eﬂ.‘yUHOforalluel:.

42 PREPROCESS.
43 while £ # () do
44 Find a minimal incompatible active sibling set R U B, with lcaz(R) = lcaz(R U B).

45 if RESOLVESET(R) returns FAIL then

46 ‘ Decrease yica, (rup) by 1, and increase ¥ica, (r) by 1. ‘

a7 while there exist at least two active leaves in B do

48 Find u,v in B that form an active sibling pair in 77.

19 RESOLVEPAIR(u, v).

50 end while

51 Let 71,72 € R and b € B be the remaining active leaves.

52 Consider three different cases depending on whether 71,72 and b are in one, two or

three different trees in 75 (see Section 6.1 and 6.2 in [12] for details).
53 end if
54 PREPROCESS.

55 end while

Algorithm 2: Red-Blue Algorithm for Maximum Agreement Forest

» Theorem 7. The Red-Blue Algorithm is a 2-approrimation algorithm for the Mazimum
Agreement Forest problem.

5 Implementation Details

We implemented the Red-Blue approximation algorithm in Java, and tested it on instances
with |£| = 2000 leaves that were generated as follows: the number of leaves in the left subtree
is set equal to a number between 1 and |£| — 1 drawn uniformly at random, and a subset
of this size is chosen uniformly at random from the label set. Then this procedure recurses
until it arrives at a subtree with only 1 leaf — this will be the whole subtree.

After generating 77 as described above, the tree 75 was created by doing 50 random
Subtree Prune-and-Regraft operations (where random means that the root of the subtree that
is pruned was chosen uniformly at random, as well as the edge which is split into two edges,
so that the new node created can be the parent of the pruned subtree, under the conditions
that this is a valid SPR-operation). This construction allows us to deduce an upper bound of
50 on the optimal value. Our algorithm finds a dual solution that in 44% of the 1000 runs is
equal to the optimal dual solution, and in 37% of the runs is 1 less than the optimal solution.
The observed average approximation ratio is about 1.92. After running our algorithm, we
run a simple greedy search algorithm which repeatedly looks for two trees in the agreement
forest that can be merged (i.e., such that the resulting forest is still a feasible solution to
MAF). The solution obtained after executing the greedy algorithm decreases the observed
approximation ratio to less than 1.28. The code is available at http://frans.us/MAF.

http://frans.us/MAF

F. Schalekamp, A. Van Zuylen, and S. Van der Ster

6 Conclusion

Our algorithm and analysis raise a number of questions. First of all, although we believe
that, conceptually, our algorithm is quite natural, the actual algorithm is complicated, and
it would be interesting to find a simpler 2-approximation algorithm. Secondly, it is clear
that our algorithm can be implemented in polynomial time, but the exact order of the
running time is not clear. The bottleneck seems to be the finding of a minimal incompatible
active sibling set, although it may be possible to implement the algorithm in a way that
simultaneously processes sibling pairs as in RESOLVEPAIR, while it is looking for a minimal
incompatible active sibling set.

Acknowledgements. We thank Neil Olver and Leen Stougie for fruitful discussions.

—— References

1 Benjamin L. Allen and Mike Steel. Subtree transfer operations and their induced metrics
on evolutionary trees. Annals of Combinatorics, 5(1):1-15, 2001.

2 Maria Luisa Bonet, Katherine St John, Ruchi Mahindru, and Nina Amenta. Approximating
subtree distances between phylogenies. Journal of Computational Biology, 13(8):1419-1434,
2006.

3 Magnus Bordewich, Catherine McCartin, and Charles Semple. A 3-approximation al-
gorithm for the subtree distance between phylogenies. Journal of Discrete Algorithms,
6(3):458-471, 2008. doi:10.1016/3.jda.2007.10.002.

4 Magnus Bordewich and Charles Semple. On the computational complexity of the rooted
subtree prune and regraft distance. Ann. Comb., 8(4):409-423, 2004. doi:10.1007/
s00026-004-0229-z.

5 Charles Darwin. Notebook B: Transmutation of species (1837-1838). In: John van Wyhe:

The Complete Work of Charles Darwin Online, 2002. URL: http://darwin-online.org.

uk/.

6 Martin Farach and Mikkel Thorup. Optimal evolutionary tree comparison by sparse dy-
namic programming. In FOCS’94: Proceedings of 35th Annual Symposium on Foundations
of Computer Science, pages 770-779. IEEE, 1994.

7 Martin Farach and Mikkel Thorup. Sparse dynamic programming for evolutionary-tree
comparison. SIAM Journal on Computing, 26(1):210-230, 1997.

8 A.D. Gordon. A measure of the agreement between rankings. Biometrika, 66(1):7-15,
1979.

9 Jotun Hein, Tao Jiang, Lusheng Wang, and Kaizhong Zhang. On the complexity of com-
paring evolutionary trees. Discrete Applied Mathematics, 71(1-3):153-169, 1996. doi:
10.1016/50166-218X(96) 00062-5.

10 Estela M. Rodrigues. Algoritmos para Comparagio de Arvores Filogenéticas e o Problema
dos Pontos de Recombinagdo. PhD thesis, University of Sao Paulo, Brazil, 2003. Chapter
7, available at http://www.ime.usp.br/~estela/studies/tese-traducao-cp7.ps.gz.

11 Estela M. Rodrigues, Marie-France Sagot, and Yoshiko Wakabayashi. The maximum agree-
ment forest problem: approximation algorithms and computational experiments. Theoret-
ical Computer Science, 374(1-3):91-110, 2007. doi:10.1016/j.tcs.2006.12.011.

12 Frans Schalekamp, Anke van Zuylen, and Suzanne van der Ster. A duality based 2-

approximation algorithm for maximum agreement forest. CoRR, abs/1511.06000, 2015.
URL: http://arxiv.org/abs/1511.06000.

70:13

ICALP 2016

http://dx.doi.org/10.1016/j.jda.2007.10.002
http://dx.doi.org/10.1007/s00026-004-0229-z
http://dx.doi.org/10.1007/s00026-004-0229-z
http://darwin-online.org.uk/
http://darwin-online.org.uk/
http://dx.doi.org/10.1016/S0166-218X(96)00062-5
http://dx.doi.org/10.1016/S0166-218X(96)00062-5
http://www.ime.usp.br/~estela/studies/tese-traducao-cp7.ps.gz
http://dx.doi.org/10.1016/j.tcs.2006.12.011
http://arxiv.org/abs/1511.06000

70:14

A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest

13

14

15

16

17

18

Feng Shi, Qilong Feng, Jie You, and Jianxin Wang. Improved approximation algorithm for
maximum agreement forest of two rooted binary phylogenetic trees. Journal of Combinat-
orial Optimization, 2015. doi:10.1007/s10878-015-9921-7.

Mike Steel and Tandy Warnow. Kaikoura tree theorems: Computing the maximum
agreement subtree. Information Processing Letters, 48(2):77-82, November 1993. doi:
10.1016/0020-0190(93)90181-8.

Chris Whidden, Robert G. Beiko, and Norbert Zeh. Fixed-parameter algorithms for max-
imum agreement forests. SIAM Journal on Computing, 42(4):1431-1466, 2013. doi:
10.1137/110845045.

Chris Whidden and Norbert Zeh. A unifying view on approximation and FPT of agreement
forests. In Algorithms in Bioinformatics, volume 5724 of Lecture Notes in Computer Science,
pages 390-402. Springer Berlin Heidelberg, 2009. doi:10.1007/978-3-642-04241-6_32.

Yufeng Wu. A practical method for exact computation of subtree prune and regraft distance.
Bioinformatics, 25(2):190-196, 2009. doi:10.1093/bioinformatics/btn606.

Yufeng Wu and Jiayin Wang. Fast computation of the exact hybridization number of two
phylogenetic trees. In Bioinformatics Research and Applications, volume 6053 of Lecture
Notes in Computer Science, pages 203-214. Springer Berlin Heidelberg, 2010. doi:10.
1007/978-3-642-13078-6_23.

http://dx.doi.org/10.1007/s10878-015-9921-7
http://dx.doi.org/10.1016/0020-0190(93)90181-8
http://dx.doi.org/10.1016/0020-0190(93)90181-8
http://dx.doi.org/10.1137/110845045
http://dx.doi.org/10.1137/110845045
http://dx.doi.org/10.1007/978-3-642-04241-6_32
http://dx.doi.org/10.1093/bioinformatics/btn606
http://dx.doi.org/10.1007/978-3-642-13078-6_23
http://dx.doi.org/10.1007/978-3-642-13078-6_23

	Introduction
	Preliminaries
	Duality Based 3-Approximation Algorithm
	Algorithm
	Analysis of the 3-Approximation Algorithm
	Correctness
	Approximation Ratio

	Overview of the 2-Approximation Algorithm
	Implementation Details
	Conclusion

