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Abstract
We present and study a framework in which one can present alternation-based lower bounds on
proof length in proof systems for quantified Boolean formulas. A key notion in this framework
is that of proof system ensemble, which is (essentially) a sequence of proof systems where, for
each, proof checking can be performed in the polynomial hierarchy. We introduce a proof system
ensemble called relaxing QU-res which is based on the established proof system QU-resolution.
Our main results include an exponential separation of the tree-like and general versions of relaxing
QU-res, and an exponential lower bound for relaxing QU-res; these are analogs of classical results
in propositional proof complexity.
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1 Introduction

Background. Traditionally, the area of propositional proof complexity studies proof length
in propositional proof systems for certifying the unsatisfiability of instances of the SAT
problem, which instances are quantifier-free propositional formulas [16, 5, 26]. This line of
study is supported by multiple motivations; let us highlight a few. First, while satisfiable
formulas can be easily certified by a satisfying assignment, it is also natural to desire efficiently
verifiable proofs for unsatisfiable formulas (for instance, to check that a SAT algorithm judged
unsatisfiability correctly); understanding whether and when proof systems have succinct
proofs is a prime concern of this area. Relatedly, SAT algorithms for deciding the SAT
problem can be typically shown to implicitly generate proofs in a proof system, and thus
insight into proof length in the resulting proof system can be used to gain insight into the
running-time behavior of SAT algorithms (see for example the discussions in [4, 1]). In
addition, the question of whether or not there are proof systems admitting polynomially
bounded proofs is (when formalized) equivalent to the question of whether or not NP is equal
to coNP [16], and one can thus suggest that studying proof length in propositional proof
systems sheds light on the relationship between these two complexity classes.

Over recent years, researchers have devoted increasing attention to methods for solving
the QBF problem, a generalization of the SAT problem and a canonical PSPACE-complete
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94:2 Proof Complexity Modulo the Polynomial Hierarchy

problem; an instance of this problem is a propositional formula where each variable is either
existentially or universally quantified. (QBF is short for quantified Boolean formula.) It is
often suggested that the move to studying this more general problem is based on advances in
the efficacy of SAT algorithms (see for example [27]). As reinforces this suggestion, let us
point out that one can find QBF solution techniques which use SAT algorithms as black-box,
primitive components, and hence which arguably conceive of and treat the SAT problem
as feasibly solvable. For instance, sKizzo, a QBF solver dating back to 2005, would convert
the QBF being processed to a SAT instance and then call a SAT solver, whenever this was
affordable [8]. As another example, a different QBF solver which extensively calls a SAT
solver during a backtrack-style search was developed and studied [25].

The rise in the study of the QBF problem has resulted in the identification of a number
of core algorithmic techniques and corresponding proof systems that aim to capture these
(see for example [13, 18, 17, 23, 3, 21, 9, 10] and the references therein). We refer to these
proof systems as QBF proof systems; they can be used as a basis for certifying a decision for
a QBF instance. One can motivate the study of QBF proof systems in much the same way
that the study of propositional proof systems has been motivated; hence, these QBF proof
systems would seem to suggest a new chapter in the study of proof complexity, and a new
domain for the existing lines of inquiry thereof.

However, one is immediately confronted with a dilemma upon inspecting the very basic
question of whether or not a typical QBF proof system requires long (exponentially sized)
proofs – again, a primary type of question in traditional proof complexity. As an example,
let us discuss Q-resolution [13], a QBF proof system which is heavily studied and used,
in both theory and practice (see for example [2, 19, 18, 22, 23, 3, 9] and the references
therein). When applied to SAT instances (viewed as instances of QBF where all variables
are existentially quantified), Q-resolution behaves identically to resolution (a heavily studied
propositional proof system), and hence the known exponential lower bounds on resolution
proof length [20, 7] transfer immediately to Q-resolution. This observation leaves one with a
lingering sentiment – which is often expressed by members of the community – that there
is something left to be said. After all, Q-resolution is defined on QBF instances, which are
substantially more general than SAT instances; the observation does not yield any information
about how Q-resolution handles this extra generality, that is, how it copes with alternation
of quantifiers. Indeed, there is a sharp disconnect between observing a lower bound for a
QBF proof system via a set of SAT instances, and the mentioned treatment of the SAT
problem, by QBF algorithms, as a feasibly solvable primitive. These considerations naturally
lead to the question of whether or not one can formulate and prove a lower bound which
arises from alternation.

Contributions. In this article, we present and study a framework in which it is possible to
present such alternation-based lower bounds on proof length in QBF proof systems.

We define a proof system ensemble to be an infinite collection of proof systems, where in
each proof system, whether or not a given string π constitutes a proof of a given formula
Φ can be checked in the polynomial hierarchy (Definition 2). A proof system ensemble is
considered to have polynomially bounded proofs (for a language) if it contains a proof system
which has polynomially bounded proofs in the usual sense (Definition 4). As a result, it is
straightforward to define proof system ensembles that have succinct proofs for any set of QBFs
with bounded alternation, such as a set of SAT instances (and the proof system ensembles
studied herein all have this property); this in turn forces proof length lower bounds, by
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nature, to arise from a proof system’s inability to cope with quantifier alternation.1 In terms
of complexity classes, the question of whether or not there exists a polynomially bounded
proof system ensemble for the QBF problem (or any other PSPACE-complete problem) is
equivalent to the question of whether or not PSPACE is contained in PH, the polynomial
hierarchy (Proposition 5). Indeed, the relationship that traditional proof complexity bears to
the NP equals coNP question is analogous to the relationship between the present framework
and the PSPACE equals PH question. (Let us point out that no direct implication is known
between these two open questions, and so, in a certain sense, progress in one framework may
proceed orthogonally to progress in the other!)

One of our main motivations in pursuing this work was to gain further insight into
Q-resolution; here, we focus on a slight extension, QU-resolution [18], where from existing
clauses one can derive new clauses in two ways: by a rule for eliminating literals on universally
quantified variables and by resolving two clauses on any variable (in Q-resolution, one can
only resolve on existentially quantified variables). Q-resolution, QU-resolution, and their
relatives are typically defined only for clausal QBFs – QBFs that consist of a quantifier prefix
followed by a conjunction of clauses. We show how to parameterize and lift QU-resolution to
obtain a proof system ensemble which we call relaxing QU-res which is in fact defined on
arbitrary QBFs (indeed, it is defined on what we call quantified Boolean circuits), and not
just those in clausal form; relaxing QU-res is the main proof system ensemble that we study.
Let us overview how we define it.

We define an axiom of a QBF to be a clause which is, in a certain precise sense, entailed
by the QBF (see Section 4.1).
We then show that, given a QBF Φ and a partial assignment a to some of its variables,
one can define a QBF Φras derived naturally from Φ, where the variables on which a is
defined have been instantiated (in a certain precise sense; see Section 4.2). This QBF
Φras has the key property that if it is false, then the clause corresponding to a is an
axiom of the QBF Φ (see Proposition 8 for a precise statement). We view the notion
of inferring clauses from the falsity of QBFs whose variables are partially instantiated
as highly natural; indeed, in the case of SAT, performing such inferences is a basis of
modern backtracking SAT solvers that perform clause learning.
Recall that each proof system in our proof system ensemble may use, as an oracle, a level
of the PH; in particular, the QBF problem restricted to a constant number of alternations
may be used as an oracle. In order to infer clauses from a QBF Φ using the method
just described, we need a way of detecting falsity of QBFs having the form Φras. But in
general, this is difficult; such a QBF Φras may have a high number of alternations, and
thus might not be immediately decidable using an oracle of the described form. To the
end of permitting the falsity detection of QBFs Φras using such oracles, we define the
notion of a relaxation of a QBF. A relaxation of a QBF Φ is obtained from Φ by changing
the order of the quantifier/variable pairs in the quantifier prefix; roughly speaking, such
a pair Qv may be moved to the left if Q is the universal quantifier (@), and may be
moved to the right if Q is the existential quantifier (D). (See Section 4.2 for the precise
definition.) A key property of this notion is that if a relaxation of a QBF Φ is false, then
the QBF Φ is false (Proposition 9).

1 Note that there is, a priori, a difference between allowing proof systems oracle access to the SAT problem
– which would be natural for modelling QBF solvers that treat the SAT problem as feasibly solvable
– and allowing oracle access to arbitrary levels of the PH. We focus on the latter for various reasons:
the proof length lower bounds will arise from alternation; we believe that this results in a more robust
model; and, this focus causes the proof length lower bounds, which are here of primary interest, to be
stronger.
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94:4 Proof Complexity Modulo the Polynomial Hierarchy

With this notion of relaxation in hand, we define, for each k ě 2, the set HpΦ,Πkq to
contain the axioms that arise from QBFs Φras having Πk-relaxations (relaxations with a
Πk prefix) that are false. That is, in this set we collect the axioms obtainable by detecting
falsity of QBFs Φras via the consideration of Πk-relaxations. (Hence, the detection is
sound in that it is always correct, but it is not complete). Note that it holds that

HpΦ,Π2q Ď HpΦ,Π3q Ď HpΦ,Π4q Ď ¨ ¨ ¨ .

This gives us a sequence of versions of QU-resolution: for each k, we obtain a version by
defining a proof to be a sequence of clauses derived from the axioms HpΦ,Πkq and the
two aforementioned rules of QU-resolution. This sequence is the proof system ensemble
relaxing QU-res. Let us remark that each of these versions is sound and complete, in a
precise sense (see Definition 2 and Proposition 12).

A couple of remarks are in order. First, note that the empty clause is an axiom in
HpΦ,Πkq whenever Φ is a false QBF whose quantifier prefix is Πk. Consequently, relaxing
QU-res is polynomially bounded on any set of false QBFs having bounded alternation. Let
us also note that although here we explicitly lift QU-resolution to a proof system ensemble,
the approach that we take here can be applied to analogously lift any proof system which is
based on deriving clauses from a set of axiom clauses.

Apart from the formulation of the framework, our main results are as follows. We prove
an exponential separation between the tree-like and general versions of relaxing QU-res
(Section 6), by exhibiting a set of formulas which have polynomial size QU-resolution proofs,
but which require exponential size proofs in tree-like relaxing QU-res; this gives an alternation-
based analog of the known separation between tree-like and general resolution [12, 6]. Tree-
like QU-resolution proofs can be viewed as the traces of a natural backtrack-style QBF
decision procedure (this is evident from the viewpoint in Section 4.3, and is also developed
explicitly in [14, Section 4.3]), and so this separation formally differentiates the power
of such backtracking and general QU-resolution. The lower bound of this separation is
based on a prover-delayer game for tree-like QU-resolution proofs (Section 5), which can
be viewed as a generalization of a known prover-delayer game for tree-like resolution [24];
note that independently of our work [15], a game similar to ours was presented for tree-like
Q-resolution [11]. We also prove an exponential lower bound for relaxing QU-res (Section 7).

All in all, the ideas and techniques developed in this work draw upon and interface
concepts from two-player game interaction, proof complexity, and quantified propositional
logic. We believe that further progress could benefit from creative input from each of these
areas, and certainly look forward to future research on the presented framework.

2 Preliminaries

For each integer k, we use rks to denote the set that is equal to t1, . . . , ku when k ě 1, and
that is equal to the empty set H when k ă 1. We use N to denote the natural numbers
t0, 1, 2, . . .u.

We use dompfq to indicate the domain of a function. A function f is a restriction of a
function g if dompfq Ď dompgq and, for each a P dompfq, it holds that gpaq “ fpaq; when
this holds, we also say that g is an extension of f . When f is a function, we use f raÑ bs to
denote the function on domain dompfq Y tau that maps a to b, and otherwise behaves like
f . We write f æ S to denote the restriction of a function f to the set S. We say that two
functions f and g agree if for each element a P dompfq X dompgq, it holds that fpaq “ gpaq.

When A and B are sets, we use rAÑ Bs to denote the set of functions from A to B.
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Clauses. In this article, we employ the following terminology to discuss clauses. A literal
is a propositional variable v or the negation v thereof. Two literals are complementary if
one is a variable v and the other is v; each is said to be the complement of the other. A
clause is a disjunction of literals that contains, for each variable, at most one literal on
the variable. A clause is sometimes viewed as the set of the literals that it contains; two
clauses are considered equal if they are equal as sets. A clause is empty if it does not contain
any literals. The variables of a clause are simply the variables that underlie the clause’s
literals, and the set of variables of a clause α is denoted by varspαq. When α is a clause,
we use assignpαq to denote the unique propositional assignment f with dompfq “ varspαq
such that α evaluates to false under f . In the other direction, when f is a propositional
assignment, we use clausepfq to denote the unique clause α with varspαq “ dompfq that
evaluates to false under f . We will freely and tacitly interchange between a clause α and its
corresponding assignment assignpαq. A clause γ is a resolvent of two propositional clauses
α and β on variable v if there exists a literal L P α such that its complement M is in β,
γ “ pαztLuq Y pβztMuq, and v is the variable underlying L and M .

Quantified Boolean circuits and formulas. We assume basic familiarity with quantified
propositional logic. A QBC (short for quantified Boolean circuit) consists of a quantifier
prefix ~P “ Q1v1 . . . Qnvn, where each Qi is a quantifier in t@, Du and each vi is a propositional
variable; and, a Boolean circuit φ built from the constants 0 and 1, propositional variables
among tv1, . . . , vnu, and the gates AND (^), OR (_), and NOT ( ). We refer to the
computational problem of deciding whether or not a QBC is false as the QBC problem. For
brevity, we sometimes refer to existentially quantified variables as D-variables, and universally
quantified variables as @-variables. While it is typical to notate a QBC by simply specifying
the prefix ~P immediately followed by the circuit φ, we will typically separate these two
parts by a colon for the sake of readability, using for example ~P : φ. We assume that each
quantifier prefix does not contain repeated variables. When Φ “ ~P : φ is a QBC, by a partial
assignment of Φ, we refer to a propositional assignment f : S Ñ t0, 1u defined on a subset S
of the variables appearing in ~P . A QBF is a QBC ~P : φ where φ is a Boolean formula. A
clausal QBF is a QBF ~P : φ where φ is the conjunction of clauses.

Quantifier prefixes. Let i ě 1. A quantifier prefix ~P “ Q1v1 . . . Qnvn is Πi if Q1 . . . Qn,
viewed as a string over the alphabet t@, Du, is contained in the language denoted by the
regular expression @˚D˚@˚D˚ . . ., which contains i starred quantifiers, beginning with @˚ and
alternating; Σi is defined similarly, but with respect to the regular expression D˚@˚D˚@˚ . . ..

The following notation is relative to a quantifier prefix ~P “ Q1v1 . . . Qnvn; when we
use it, the prefix will be clear from context. We write vi ĺ vj if i ď j or if j ă i and
Qj “ Qj`1 “ ¨ ¨ ¨ “ Qi. We extend this binary relation (and others) to sets in the following
natural way: when U and V are sets of variables, we write U ĺ V if for each u P U and
each v P V , it holds that u ĺ v. We also write, for example, that U ĺ v for a single variable
v when U ĺ tvu. We write vi ” vj if vi ĺ vj and vj ĺ vi. It is straightforward to verify
that ” is an equivalence relation; we refer to each equivalence class of ” as a quantifier
block. We write vi ň vj if vi ĺ vj and vi ı vj . When S is a set of variables, we use lastpSq
to denote the variable of S appearing last in the quantifier prefix, that is, the variable vm,
where m “ maxti | vi P Su. Typically, when we use the function lastpSq, it is in conjunction
with the just-defined binary relations, and hence what is most relevant will be the relative
location of the quantifier block of lastpSq.

ICALP 2016



94:6 Proof Complexity Modulo the Polynomial Hierarchy

Strategies. Let Φ “ ~P : φ be a QBC; let X denote the D-variables of Φ, and let Y denote
the @-variables of Φ. When x P X, define Yăx to be the set of variables ty P Y | y ň xu;
dually, when y P Y , define Xăy to be the set of variables tx P X | x ň yu.

An D-strategy is a sequence of mappings σ “ pσxqxPX where each σx is a mapping from
rYăx Ñ t0, 1us to t0, 1u. When τ : Y Ñ t0, 1u is an assignment to the universally quantified
variables, we use xσ, τy to denote the assignment f defined by fpyq “ τpyq for each y P Y
and fpxq “ σxpτ æ Yăxq for each x P X. We say that pσxqxPX is a winning D-strategy if for
every assignment τ : Y Ñ t0, 1u, it holds that the assignment xσ, τy satisfies φ. A model of
Φ is defined to be a winning D-strategy of Φ.

Dually, we define a @-strategy to be a sequence of mappings τ “ pτyqyPY where each
τy is a mapping from rXăy Ñ t0, 1us to t0, 1u. When σ : X Ñ t0, 1u is an assignment to
the existentially quantified variables, we use xτ, σy to denote the assignment f defined by
fpxq “ σpxq for each x P X and fpyq “ τypσ æ Xăyq for each y P Y . We say that pσyqyPY
is a winning @-strategy if for every assignment σ : X Ñ t0, 1u, it holds that the assignment
xτ, σy falsifies φ.

The following are well-known facts that we will treat as basic.

I Proposition 1. Let Φ be a QBC.
There exists a winning D-strategy for Φ (that is, a model of Φ) if and only if Φ is true.
There exists a winning @-strategy for Φ if and only if Φ is false.

3 Proof system ensembles

In this section, we formalize the notion of proof system ensemble and present some basic
associated notions.

For each m ě 1, fix Spmq to be the QBC problem restricted to QBCs having a Σm prefix,
which is a Σp

m-complete problem; for m “ 0, fix Spmq to be a polynomial-time decidable
problem.

Let O be a language; when discussing an algorithm A that makes oracle calls, we use AO
to denote the instantiation of A where oracle calls are answered according to O.

I Definition 2. A proof system ensemble pA, rq for a language L consists of an algorithm A

which may make oracle calls and receives inputs of the form pk, px, πqq where k P N and x
and π are strings; and, a computable function r : NÑ N such that:

For each k P N, there exists a polynomial pk such that (for each pair px, πq) the algorithm
ASprpkqq halts on an input pk, px, πqq within time pkp|px, πq|q.
For each k P N, when Lk is set to tpx, πq | pk, px, πqq is accepted by ASprpkqqu, it holds
that the language tx | Dπ such that px, πq P Lku is equal to L.

Let us provide an intuitive explanation of Definition 2. For each fixed value of k, the
algorithm A provides a proof system for the language L; on inputs of the form pk, px, πqq,
the algorithm is provided oracle access to Sprpkqq, and needs to accept or reject within
polynomial time (in |px, πq|). Acceptance indicates that π is judged to be a proof that x P L.
The second condition in the definition states that each such proof system is sound and
complete, that is, for each fixed k, an arbitrary string x is in L iff there exists a string π
such that pk, px, πqq is accepted by A.

We use the following terminology to present lower bounds on proof size in proof system
ensembles.
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I Definition 3. Let Z be a set of functions from N to N. A proof system ensemble pA, rq
requires proofs of size Z on a sequence tΦ1,Φ2, . . .u of instances if for each k, there exists
z P Z where (for all n ě 1 and all strings π) it holds that pΦn, πq P Lk implies |π| ě zpnq.
Here, |π| denotes the size of π. We also apply this terminology to other measures defined on
proofs.

We say that a function f mapping strings to strings is a polynomial-length function if
there exists a polynomial q such that, for each string x, it holds that |fpxq| ď qp|x|q.

I Definition 4. A proof system ensemble pA, rq is polynomially bounded on a language L
if there exists k P N and there exists a polynomial-length function f (mapping strings to
strings) such that the following holds: if x P L, then it holds that px, fpxqq P Lk, where Lk is
defined as in Definition 2.

I Proposition 5. There exists a polynomially bounded proof system ensemble for a language
L if and only if L is in the polynomial hierarchy.

4 Relaxing QU-resolution

4.1 QU-resolution

Let Φ “ ~P : φ be a QBC. We define an axiom set of Φ to be a set H of clauses on variables
of ~P such that, for each C P H, C is an axiom of Φ in the following sense: each model of
~P : φ is a model of ~P : C. Let us give examples. First, if the QBC Φ is false, then the empty
clause is an axiom of Φ. Second, if C is any clause which is entailed by φ, then C is an axiom
of Φ. A case of this is when a is an assignment to all variables of Φ that falsifies φ; then,
clausepaq is entailed by φ and is an axiom of Φ.

Relative to a QBC Φ “ ~P : φ, we say that a clause C is obtainable from a second clause
D by @-elimination if there exists a literal L P D such that C “ DztLu and the variable y
underlying L is a @-variable and has varspCq ĺ y.

With these notions, we define QU-resolution for quantified Boolean circuits in the following
way.

I Definition 6. A QU-resolution proof of a QBC Φ “ ~P : φ from an axiom set H (of Φ) is
a finite sequence of clauses where each clause is either in H, is obtainable from a previous
clause by @-elimination, or is obtainable from two previous clauses as a resolvent; in the last
two cases, we assume that the clause is annotated with the previous clause(s) from which it
is derived (this is to provide a clean correspondence between proofs and certain graphs to be
defined, see Section 4.3). The size of such a proof is defined as the number of clauses. Such
a proof is said to be a falsity proof if it ends with the empty clause.

It is a folklore and readily verified fact that when one has a clausal QBF Φ “ ~P : φ with
clause set H, and C appears in a QU-resolution proof of Φ from H, then any model of Φ is a
model of ~P : C. From this fact and the definition of axiom set, we immediately obtain the
following proposition.

I Proposition 7. Let C be a clause appearing in a QU-resolution proof of a QBC Φ “ ~P : φ
from axiom set H. Each model of ~P : φ is a model of ~P : C. Consequently, if C is the empty
clause, then the QBC Φ is false.

ICALP 2016
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4.2 Relaxing
In order to define a proof system ensemble based on QU-resolution proofs, we now describe
how to obtain a sequence of axiom sets for a given QBC. We start by exhibiting a way to
infer that a partial assignment is an axiom of a QBC.

Let a be a partial assignment of a QBC Φ “ ~P : φ. Define ~P ras to be the quantifier prefix
which is equal to ~P but where the variables in dompaq and their corresponding quantifiers are
removed, and where each quantifier of a variable v with v ň lastpaq is changed (if necessary)
to an existential quantifier. Define φras to be the circuit obtained from φ by replacing each
variable v P dompaq with the constant apvq. Define Φras to be ~P ras : φras.

I Proposition 8. Assume that a is a partial assignment of a QBC Φ “ ~P : φ such that
Φras is false. Then clausepaq is an axiom of Φ, that is, each model of ~P : φ is a model of
~P : clausepaq.

We believe that Proposition 8 provides a natural way to derive axioms from a QBC.
Consider the case where Φ is a SAT instance, that is, ~P is purely existential. In this case, if
a is a partial assignment such that Φras is false, then clausepaq is an axiom of Φ. Indeed, in
this case Φras is simply the QBC instance obtained by instantiating variables according to a,
and then removing the instantiated variables from the quantifier prefix. Note that, in the
context of backtrack search for SAT, it is typical that, when some variables have been set
according to a partial assignment a, a solver attempts to detect falsity of Φras by heuristics
such as unit propagation and generalizations thereof.

In the case of general QBCs, it is natural to ask, when one has a partial assignment a
and then instantiates its variables in φ to obtain φras, under what conditions clausepaq can
be inferred as an axiom. Proposition 8 provides an answer to this question; let us explain
intuitively why the quantifier prefix is adjusted to ~P ras. Consider the case where the first
quantifier block of ~P is existential and a is a partial assignment to variables from this first
block; then ~P ras is simply ~P but with the variables of a removed, and so this case of the
proposition generalizes the purely existential case just discussed. In the case where a is
arbitrary, ~P ras can be viewed as the prefix where the lowest number of quantifiers have been
changed from universal to existential such that the first quantifier block is existential, and
all variables of a fall into this first block.

Prima facie, Proposition 8 may appear to be of limited utility; even if one has oracle
access to a level of the polynomial hierarchy, it may be that many partial assignments a
give rise to a quantifier prefix ~P ras which has too many alternations to be resolved by the
oracle. In order to expand the class of axioms derivable by this proposition (relative to such
an oracle), we introduce now the notion of a relaxation of a QBC.

A relaxation of a quantifier prefix ~P “ Q1v1 . . . Qnvn is a quantifier prefix which has the
form ~P 1 “ Qπp1qvπp1q . . . Qπpnqvπpnq where π : rns Ñ rns is a permutation and where, for each
@-variable y and for each D-variable x, it holds that y ĺ x implies y ĺ1 x; here, ĺ and ĺ1

denote the binary relations of ~P and ~P 1, respectively. As an example, consider the quantifier
prefix ~P “ Dx1Dx2@y@y

1Dx3; relaxations thereof include @y@y1Dx1Dx2Dx3, Dx1@y
1Dx2@yDx3,

and @y1Dx2@yDx1Dx3. A relaxation of a QBC ~P : φ is a QBC of the form ~P 1 : φ where ~P 1 is
a relaxation of ~P ; such a QBC is said to be a Πi-relaxation if ~P 1 is Πi.

The following is straightforward to verify.

I Proposition 9. If a relaxation of a QBC Φ is false, then the QBC Φ is false.

Note that for any quantifier prefix, a relaxation may be obtained by simply placing the
universal quantifiers and their variables first, followed by the existential quantifiers and their
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variables. Hence, in this sense, each QBC has a canonical Π2-relaxation, and in the sequel,
we focus the discussion on relaxations that are Πk-relaxations for values of k greater than or
equal to 2.

Let Φ be a QBC; for k ě 2, we define HpΦ,Πkq to be the set that contains a clause
C if there exists a Πk-relaxation of ΦrassignpCqs that is false. The following fact follows
immediately from Propositions 8 and 9.

I Proposition 10. When Φ is a QBC and k ě 2, it holds that HpΦ,Πkq is an axiom set of
Φ.

I Definition 11. Relaxing QU-res is defined as the pair pA, rq where r is defined by rpkq “
k ` 3 and A is an algorithm defined to accept an input pk, pΦ, πqq if Φ is a QBC and π is a
QU-resolution falsity proof of Φ from axioms in HpΦ,Πk`2q. In particular, the algorithm
A examines each clause in π in order; when a clause C is not derived from previous ones
by resolution or by @-elimination, membership of C in HpΦ,Πk`2q is checked by the Σk`3
oracle. (Such an oracle can nondeterministically guess a Πk`2-relaxation and then check this
relaxation for falsity.)

I Proposition 12. Relaxing QU-res is a proof system ensemble for the language of false
QBCs.

Let us now introduce some notions which will be used in our study of tree-like relaxing
QU-res (defined below). Let f and g be partial assignments of a QBC Φ. We say that g
is a semicompletion of f if g is an extension of f such that for each universally quantified
variable y with dompfq ĺ y and y R dompfq, it holds that dompgq ĺ y and y R dompgq. A
set H of partial assignments of Φ is semicompletion-closed if, whenever f P H and g is a
semicompletion of f , it holds that g P H.

4.3 A graph-based view
When π “ C1, . . . , Cn is a QU-resolution proof of a QBC ~P : φ from axioms H, define Gpπq
to be the directed acyclic graph where there is a vertex for each clause occurrence Ci, which
vertex has label assignpCiq; and, where (for all pairs of clauses Ci, Cj) there is a directed
edge from the vertex of Cj to the vertex of Ci if Cj is derived from Ci.

I Proposition 13. Let π be a QU-resolution proof of a QBC ~P : φ from axioms H. The
directed acyclic graph Gpπq has the following properties:
pαq If a node with label a has no out-edges, then clausepaq is an element of H.
pβq If a node with label a has 1 out-edge to a node with label a1, then a1 is an extension of a

with dompa1q “ dompaqYtyu where y is a universally quantified variable with dompaq ĺ y.
pγq If a node with label a has 2 out-edges to nodes with labels a1 and a2, then there exists

a variable v such that a1 and a2 are defined on v and a1pvq ‰ a2pvq; pdompa1q Y

dompa2qqztvu “ dompaq; a and a1 are equal on the variables where they are both defined;
and, a and a2 are equal on the variables where they are both defined.

Moreover, a labelled graph with these three properties naturally induces a QU-resolution
proof: for each node, let a be its label, and associate to it clausepaq. l

I Definition 14. We say that a QU-resolution proof π is tree-like if the graph Gpπq is a
tree. We define tree-like relaxing QU-res to be the proof system ensemble pA1, rq described
as follows. Let pA, rq denote relaxing QU-res. Then, the algorithm A1 accepts an input
pk, px, πqq if A accepts it and π is tree-like.

ICALP 2016



94:10 Proof Complexity Modulo the Polynomial Hierarchy

5 A prover-delayer game for tree-like relaxing QU-res

In this section, we present a game that can be used to exhibit lower bounds on the size of
tree-like QU-resolution proofs; this game can be viewed as a generalization of a game for
studying tree-like resolution, which game was presented by Pudlák and Impagliazzo [24].

We first give an intuitive description of the game. Note, however, that this description is
meant only to be suggestive. For a precise description, we urge the reader to consult the
formal definition, which follows (Definition 15).

Relative to a QBC Φ and a set H of axioms, the game is played between two players,
Prover and Delayer, which maintain a partial assignment. Prover’s goal is to reach a
partial assignment in H, while Delayer tries to slow down Prover, scoring points in the
process. Prover starts by announcing the empty assignment, and Delayer responds with a
semicompletion thereof. After this, the play proceeds in a sequence of rounds. In each round,
Prover may perform one of three actions to the current assignment f : select a restriction
of f ; assign a value to a @-variable y R dompfq having dompfq ĺ y; or, select a variable
v R dompfq. In the first two cases, Delayer responds with a semicompletion of the resulting
assignment. In the third case, Delayer may give a choice to the Prover. When a choice
is given, the Prover sets the value of v, and Delayer may elect to claim a point which is
then associated with v. When no choice is given, Delayer sets the value of v. After v is set,
Delayer responds (as in the first two cases) with a semicompletion of the resulting assignment.
Delayer is said to have a p-point strategy if, he has a strategy where, by the time that Prover
achieves her goal, there are p variables on which the final assignment is defined such that
Delayer has claimed points on these variables. In what follows, we assume p ě 1.

I Definition 15. Let Φ be a QBC. Relative to a set H of axioms, a p-point delayer strategy
consists of a set F of partial assignments of Φ and a function s : F Ñ N called the score
function such that the following properties hold:

(semicompletion-of-empty) There exists a semicompletion g P F of the empty assignment
such that spgq “ 0.
(all-points) If f P F XH, then spfq ě p.
(monotonicity) If g P F , then each restriction of g has a semicompletion f P F such that
spfq ď spgq.
(@-branching) If f P F and y R dompfq is a universally quantified variable with dompfq ĺ

y, then, for each b P t0, 1u, the assignment f ry Ñ bs has a semicompletion g P F with
spgq “ spfq.
(double-branching) If f P F and v R dompfq, there exists a value b P t0, 1u such that
f rv Ñ bs has a semicompletion g P F where (1) spgq ď spfq` 1 and (2) if spgq “ spfq` 1,
the assignment f rv Ñ  bs has a semicompletion g1 P F with spg1q ď spfq ` 1.

I Theorem 16. Assume that there exists a p-point delayer strategy for a QBC Φ with respect
to a semicompletion-closed axiom set H, and that π is a tree-like QU-resolution proof ending
with the empty clause, from axioms H. Then, the tree Gpπq has at least 2p leaves.

6 Separation of the tree-like and general versions of relaxing QU-res

The family of sentences to be studied in this section is defined as follows. For each i P

t0u Y rns, define Xi to be the variable set txi,j,k | j, k P t0, 1uu, and for each i P rns, define
X 1i analogously to be the variable set tx1i,j,k | j, k P t0, 1uu. Define ~Pn to be the prefix
DX0DX

1
1@y1DX1DX

1
2@y2DX2 . . . DX

1
n@ynDXn. Note that, for a set of variables X, we use the
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notation DX to represent the existential quantification of the variables in X, in any order
(our discussion will always be independent of any particular order chosen). For i P rns, we
refer to the variables in X 1i Y tyiu YXi as the level i variables.

Define B “ t x0,j,k | j, k P t0, 1uu Y txn,j,0 _ xn,j,1 | j P t0, 1uu.
For each i P rns and each j P t0, 1u defineHi,j “ t x

1
i,0,k_ x

1
i,1,l_xi´1,j,0_xi´1,j,1 | k, l P

t0, 1uu.
Observe that the clause  x1i,0,k _  x1i,1,l _ xi´1,j,0 _ xi´1,j,1 is logically equivalent to
px1i,0,k ^ x

1
i,1,lq Ñ pxi´1,j,0 _ xi´1,j,1q.

For each i P rns, define Ti “ t xi,0,k_yi_x1i,0,k | k P t0, 1uuYt xi,1,k_ yi_x1i,1,k | k P
t0, 1uu.

Define φn to be the conjunction of the clauses contained in the just-defined sets. Define
Φn as ~Pn : φn. This definition of this family of sentences was inspired partially by the
separating formulas of [12, 6].

Let us explain intuitively what the clauses mandate and why the sentences Φn are false.
By the clauses in B, all of the variables x0,j,k must be set to 0. By the clauses in the sets
H1,j , either both variables x11,0,k or both variables x11,1,k must be set to 0. Once this occurs,
the universal player can set the variable y1 to 0 or 1 to force either both variables x1,0,k or
both variables x1,1,k to 0 (respectively), via the clauses in T1. This reasoning can then be
repeated; for instance, at the next level, either both variables x12,0,k or both variables x12,1,k
must be set to 0, and then after universal player assigning y2 appropriately, either both
variables x2,0,k or both variables x2,1,k are forced to 0. In the end, the existential player
must violate one of the two clauses in B concerning level n.

I Proposition 17. The sentences tΦnuně1 have QU-resolution proofs of size linear in n.

Let n ě 1; we will use the following terminology to discuss Φn.
We say that r is a normal realization of level i P rns if it is an assignment defined on the

level i variables such that, when b is set to rpyiq, the following hold:
0 “ rpxi,b,0q “ rpx1i,b,0q “ rpxi,b,1q “ rpx1i,b,1q

rpxi, b,0q “ rpx1i, b,0q ‰ rpxi, b,1q “ rpx1i, b,1q

We say that r is a funny realization of level i P rns if it is an assignment defined on the
level i variables such that, when b is set to rpyiq, the following hold:

rpxi,b,0q “ rpx1i,b,0q ‰ rpxi,b,1q “ rpx1i,b,1q

0 “ rpx1i, b,0q “ rpx1i, b,1q

rpxi, b,0q ‰ rpxi, b,1q

We state two key and straightforwardly verified properties of realizations in the following
proposition.

I Proposition 18. No assignment defined on the level i variables is both a normal realization
and a funny realization. Also, each normal realization and each funny realization (of level i)
satisfies all clauses in Ti.

We define the set of assignments Fn to be the set containing all normal assignments and
all funny assignments, which we now turn to define. Let f be a partial assignment of Φn.
Let ` ě 0 denote the maximum level ` such that f is defined on an D-variable in level `.

We say that f is a normal assignment if the following hold:
f is defined on the variables in tx0,j,k | j, k P t0, 1uu and equal to 0 on them.
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For each i P r`´ 1s, the restriction of f to the level i variables is a normal realization of
level i.
If ` ě 1, either the restriction of f to the level ` variables is a normal realization of level
`; or, f is half-defined on level `, by which is meant that f is not defined on any variables
in tx`,j,k | j, k P t0, 1uu, but is defined on all variables in tx1`,j,k | j, k P t0, 1uu and has
ř

j,kPt0,1u x
1
`,j,k “ 1.

For each normal assignment f , we define snpfq “ `.
We say that f is a funny assignment if there exists m P r`s such that the following hold:
f is defined on the variables in tx0,j,k | j, k P t0, 1uu and equal to 0 on them.
For each i P rm´ 1s, the restriction of f to the level i variables is a normal realization of
level i.
The restriction of f to the level m variables is a funny realization of level m.
For each i with m ă i ď ` and for each j P t0, 1u, if f is defined on one of the four
variables in txi,j,k, x1i,j,k | k P t0, 1uu, then it is defined on all of them and fpxi,j,0q “

fpx1i,j,0q ‰ fpxi,j,1q “ fpx1i,j,1q.

The following result is obtained by applying the main theorem of the previous section to
the strategies pFn, snq.

I Theorem 19. Tree-like relaxing QU-res requires proofs of size Ωp2nq on the sentences
tΦnuně1.

7 Lower bound for relaxing QU-res

We define a family of QBCs, to be studied in this section, as follows. Let n ě 1. Define
~Pn to be the quantifier prefix Dx1@y1 . . . Dxn@yn. Define φn,j to be true if and only if
j `

řn
i“1pxi ` yiq ı n pmod 3q. Define Φn to be the sentence ~Pn : φn,0; these are the

sentences that will be used to prove the lower bound. It is straightforward to verify that
φn can be represented as a circuit of size polynomial in n, and we assume that φn is so
represented.

I Proposition 20. For each n ě 1, the sentence Φn is false.

To obtain the lower bound, we show that for any proof π, the graph Gpπq must have
exponentially many sinks. We begin by showing that any assignment to an initial segment of
the D-variables can be mapped naturally to a sink.

I Lemma 21. Let π be a relaxing QU-res proof of Φn from an axiom set, and suppose t ě 1.
Let f : tx1, . . . , xn´rt{2su Ñ t0, 1u be an assignment. There exists a sink of Gpπq whose label
agrees with f .

We next show that each sink must be defined on a variable that occurs towards the end
of the quantifier prefix, made precise as follows.

I Lemma 22. Let π be a relaxing QU-res proof of Φn from axiom set HpΦ,Πtq, where
t ě 2 and n ě rt{2s. Each sink of Gpπq has a label a that is defined on one of the following
variables:

xn´prt{2s´1q, yn´prt{2s´1q, . . . , xn´1, yn´1, xn, yn .

When f is a partial assignment of Φn, we refer to the elements of tv | v ĺ lastpfquzdompfq
as holes.
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I Lemma 23. Let π be a relaxing QU-res proof of Φn from an axiom set of the form
HpΦn,Πtq. Each sink of Gpπq has a label f having at most one hole.

I Theorem 24. Suppose that t ě 2 and that n ě rt{2s. Let π be a QU resolution proof of
Φn from the axiom set HpΦn,Πtq. The graph Gpπq has at least 2n´rt{2s´1 sinks.

From the previous theorem, we immediately obtain the following.

I Theorem 25. Relaxing QU-res requires proofs of size Ωp2nq on the sentences tΦnuně1.
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