Past, Present, and Infinite Future

Thomas Wilke

Kiel University, Kiel, Germany
thomas.wilke@email.uni-kiel.de

—— Abstract

I was supposed to deliver one of the speeches at Wolfgang Thomas’s retirement ceremony.
Wolfgang had called me on the phone earlier and posed some questions about temporal logic,
but I hadn’t had good answers at the time. What I decided to do at the ceremony was to take
up the conversation again and show how it could have evolved if only I had put more effort into
answering his questions. Here is the imaginary conversation with Wolfgang.

The contributions are (1) the first direct translation from counter-free w-automata into future
temporal formulas, (2) a definition of bimachines for w-words, (3) a translation from arbitrary
temporal formulas (including both, future and past operators) into counter-free w-bimachines,
and (4) an automata-based proof of separation: every arbitrary temporal formula is equivalent
to a boolean combination of pure future, present, and pure past formulas when interpreted in
w-words.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation,
F.4.1 Mathematical Logic, F.4.3 Formal Languages

Keywords and phrases linear-time temporal logic, separation, backward deterministic w-auto-
mata, counter freeness

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.95

1 Actl

Wolfgang is sitting at his desk. Thomas is standing in his office, looking over the bay. They
are talking to each other on the phone.

WOLFGANG. I am teaching a course on applied automata theory this semester, and I
would like to explain to my students how one can translate a counter-free w-automaton into
a temporal formula. I took a look at your STACS paper from 1999 [17], but the translation
you give there is only for finite words. How does the whole story go for infinite words?

TraOMAS. I don’t know of any published translation which comes close to what I present
in the STACS paper. There is Volker and Paul’s comprehensive contribution to the volume
that celebrated your 60th birthday [4], but the construction presented therein is probably
not what you are looking for, given its algebraic nature.

WOLFGANG. I know what Volker and Paul did. Indeed, I am looking for something
which is more automata-theoretic.

THOMAS. I may have a suggestion for you.

WOLFGANG. So?

THOMAS. First of all, we need to choose the right w-automaton model. Imagine you
wanted to translate a future temporal formula over finite words into a finite-state automaton.
Which model of automaton would you use?

WOLFGANG. When I use ordinary automata, which read a word from left to right, I end
up with a nondeterministic automaton, because the automaton can only guess what will
happen in the future. When I use backward automata, which read a word from right to left,

© Thomas Wilke;
37 licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 95; pp. 95:1-95:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.95
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

95:2

Past, Present, and Infinite Future

I end up with a deterministic automaton right away, simply because what happens in the
future can easily be determined when coming back from it.

THOMAS. That’s the point. When translating counter-free w-automata into temporal
formulas, we start out best from backward deterministic w-automata, the model introduced
by Olivier and Max Michel in their 1999 paper [3]. Do you recall how these automata are
defined?

WOLFGANG. Sure, I do. I think Jean-Eric and Dominique call them “prophetic” automata
in their book [11], but backward deterministic w-automata is also a good term. Anyway, such
an automaton is given by a finite state set @), an initial recurrence condition Z, a backward
transition function p: ¥ x Q — @, and a set F' C @ of final states. It is required that for
every w-word over Y there is exactly one initial run.

THOMAS. Which recurrence conditions do you have in mind?

WoLFGANG. Nothing in particular. How about you?

THOMAS. Generalized transition Biichi conditions will come in handy. With such a
condition, 7 is a set of sets T' C ¥ x @), each of them referred to as a transition recurrence
set. A run ¢pqigs ... on a word w € 3% needs to satisfy ¢; = p(w(i), g;+1) for every i < w.
For such a run to be initial it is required that for every transition recurrence set T € Z there
are infinitely many ¢ with (w(¢),g;+1) € T. It is final if ¢o € F', and it is accepting if it is
initial and final, just as usual, only that we are going the other direction.

WOLFGANG. OK. So we agree on the automaton model to be used.

THOMAS. The next thing we need to agree on is what “counter freeness” should mean
for such automata.

WOLFCGANG. To me, there seems to be a straightforward definition. For every finite
word w € ¥* we consider the function Pw: — @ induced by w on the state space. This
is defined as usual, that is, Pw(q) = *p(w,q) for every ¢ € @, where *p is the backward
transition function extended from ¥ to X*. We say the automaton has a counter if there
exists some word w € ¥ and some nonempty subset Q' C @ such that w operates as a
non-trivial permutation on @’. More precisely, w|qg’ is a bijection and Pw|g # idgs. If
there is no counter, the automaton is counter-free.

THOMAS. You are perfectly right. There is no difference to what we know from finite
words, and the definition coincides with Volker and Paul’s definition for Biichi automata in
general.

WOLFGANG. What I don’t see right away is that the definition really captures the essence
of counter freeness in general. I would like to understand this, but, maybe, it is better to
return to this later.

THOMAS. Promised. — Let’s start to work on a translation from counter-free backward
deterministic w-automata to future temporal formulas. I suggest we work with the usual
vocabulary for temporal logic. For every symbol a in the alphabet, we have an atomic
formula a, which is true in a word if the word starts with a. We may use the temporal
operator “next”, which we write as X, and the stutter-free “until”, which we write as U.
We may also use derived operators such as “eventually” and “always”, which we write as F
and G, respectively. Finally, boolean constants and operators are allowed as well.

WOLFGANG. I recall that your translation from counter-free automata to temporal logic
is defined by induction, on the number of states of the given automaton in the first place
and the size of the alphabet in the second place. Do we proceed in the same fashion for
w-words?

THOMAS. Yes, exactly. Recall that for every w-word there is exactly one initial run of
a given backward deterministic w-automaton on this word. Let’s call the first state of this

Th. Wilke

run the halting state of the word. The inductive claim is that for every ¢ € @, there exists
a temporal formula defining the set of words with halting state q. — Wolfgang, things are
getting more technical now. Let’s use a desktop sharing software.

Thomas walks to his laptop. Wolfgang, already sitting in front of his screen, initiates a
session between the two of them.

THoOMAS. I was saying that for every ¢ € @), we construct a temporal formula a[q, p, Z],
which defines the set of w-words with halting state ¢g. For convenience, let’s write Ly, (q, p, Z)
for this language.

WOLFGANG. I also recall you proceed by a simple case distinction. The almost trivial
case is that all symbols induce the identity, which would mean ?a = idg for every a € X.

THOMAS. We proceed by the same case distinction here. If all symbols induce the identity
function, the translation is simple and does not need the inductive assumption, but it is
slightly more complicated than for finite words, because we are using generalized transition
Biichi conditions.

WoLFGANG. What exactly do you mean?

THOMAS. When every symbol induces the identity, then every run is of the form ¢* for
some ¢ € (. Whether or not such a run is initial for a given word depends on the symbols
occurring infinitely often in the word.

WoLFGANG. That’s funny. My first thought was that this case is really trivial.

THOMAS. It is almost trivial, because for every set ¥’ C 3 the formula

/\ GFa A /\ FG—a

aesy’ a€\3’

specifies exactly the w-words where X’ is the set of symbols occurring infinitely often.

WOLFGANG. That’s indeed almost trivial. (Smiling.) Let me understand what is going
on in the more complicated case, when there is some symbol ¢ € 3 such that Pc is not the
identity, that is, the image of Pc is a strict subset of Q.

THOMAS. Let’s say this image is Q’, and let’s refer to X\ {¢} by I.

WOLFGANG. In the proof for finite words, you split up each word in the positions where ¢
occurs. If we do this here as well, there are three cases to distinguish: 4. words which belong
to I'Y, 4¢. words which belong to ¥*cI[', and #i. words which belong to (I'*¢)¥.

THOMAS. That’s exactly right. We can deal with these three cases separately, because if

we have a formula for each of these cases, their disjunction is the formula we are looking for.

Case 7 is almost straightforward. We restrict the given backward transition function p to the
smaller alphabet I', say the result is p’, and the induction hypothesis applies right away. We
obtain a formula alg, p’,Z] for L, (q,p’,Z), and we can set

alg, p,I] = G-c Nalg, p',I] .

In other words, we take what we get from the induction hypothesis and rule out the symbol c.

WoLFGANG. Why do we need to rule out ¢?

THOMAS. Here is a simple example. Assume our alphabet was {a, b, c} and the formula
we obtained by induction was the formula a. Then ac* would be a model of the formula a,
but this word does not belong to I'“.

WOLFGANG. Interesting, but I also have another question. Isn’t it true that when we
restrict p to p’ as above we also need to restrict Z appropriately, because in Z there might
be sets T with elements (¢, ¢), but ¢ does not belong to the underlying alphabet?

95:3

ICALP 2016

95:4

Past, Present, and Infinite Future

THOMAS. Strictly speaking, you are right. That’s why we should agree, once and for all,
that we implicitly restrict recurrence conditions to the symbols occurring in the respective
transition function.

WorLrcANG. OK. — I think I know how to proceed in Case ii. Every word in X*cI' can
be broken up in a unique fashion. It can be written as ucv where v € I'“. For the first part,
u, we use what we know from finite words, and for the second part, v, we use the induction
hypothesis.

THOMAS. That’s exactly right, but let’s make it more precise. Let’s write L. (g, p,q)
for the language recognized by the backward deterministic automaton on finite words with
initial state ¢/, backward transition function p, and final state q. Then the language we are
interested in, L (q, p,Z) N X*cI'¥, is the finite union of all languages

L.(q,p; p(e,q")) ¢ Lu(d', 0", T) (1)

for ¢’ ranging over Q).

WOLFGANG. Because of what we know about finite words, we have a temporal for-
mula S[q, p, ¢'] for each language L.(q, p,q’). And because of the induction hypothesis, we
have a temporal formulas «a[¢’, p’, Z] for each language L, (¢, p’,T).

THOMAS. Right! — A formula for a language as above, as given in (1), is therefore given
by

xt(Blg, p, ple, ¢)]) NF(c AXG=e AXald', ', T])

where xt(8) extends 8 to w-words.

WOLFGANG. I think I know what you mean by “extending” § to w-words. You mean
that for each u € ¥* and v € T, the word ucv is a model of xt(3) if, and only if, u is a
model of 3.

THOMAS. You are perfectly right. — It is easy to obtain xt(/3) from 8 by an inductive
construction. The only interesting parts are the base case for a symbol and the induction
steps involving temporal operators, because then the formula may “look” beyond the last
occurrence of ¢, what is to be avoided:

xt(a) = a AXFec
<H(X1) = X(xt() A F) |
Xt(onwl) = Xt(’lﬂo)U(Xt(’(/Jl) AN FC) .

WOLFGANG. So the really interesting case is the last one, Case #ii, when we consider
words which belong to (I'*¢)“. Do you use an encoding trick like the one you use for finite
words?

THOMAS. Yes, the construction is very similar to the one in the finite-word setting, but
considerably trickier. Let w be any word in (I'*¢)*. We can write w as vgcvicvac. .. where
v; € I'* for every i < w. There is exactly one initial run for w, say qoqiqs Consider the
subsequence ¢;,¢i, ¢i, - - - which collects the states the automaton assumes just left of any c.

WOLFGANG. Because we assume the image of Pc is @)’, these states are special in the
sense that each of them belongs to Q’. So in some sense, each of the cv;’s transforms some
state from Q' to some state from Q’.

THoMAS. That'’s it! — Basically, we classify each word in c['* according to how it operates
on @', more precisely, to every such word w we assign the function w: Q" — @’ defined by
w(q) = *p(w, q) for every q € Q.

Th. Wilke

WOLFGANG. I understand that, but what I am concerned about is that we lose information
about the recurrence condition!

THOMAS. That’s why I said “basically”. We do a little bit more. We not only assign w
to w but also w, a function Q' — 27, which collects the information about the recurrence
condition we need.

WOLFGANG. I can guess how w is defined. For every state ¢ € Q' we consider the
backward run of A — viewed as a backward automaton on finite words — on w starting in ¢
and collect in w(q) all transition recurrence sets it passes through.

THOMAS. Exactly, that’s how we do it. — The code alphabet, let’s call it A, is large. For
each finite word w € ¢I'* it contains the symbol (@, w).

WOLFGANG. How do we construct the backward deterministic w-automaton, let’s call
it C, which uses this alphabet?

THOMAS. Its state space is @/, which is smaller than the state space of A. Its backward
transition function — let’s denote it 7 — is defined by 7({f, g}, ¢') = f(¢') for every ¢’ € Q’. For
each transition Biichi set T' € Z, the transition Biichi set J of C' has a Biichi set T”, which
is given by T" = {{{(f,9),¢") | T € g(¢’)}. Most importantly, C is a counter-free backward
deterministic w-automaton as defined above.

WOLFGANG. I immediately see how C' mimics A. Let’s define a function hg: cI'™* — A by
ho(w) = (0, 1w) and use this to define a function h: (cI'*)¥ — A% by setting h(cwocw; ...) =
ho(cwo)ho(cwy) ... for any choice of w; € I'*. Then, for every word w € (¢I'*)“, the image
h(w) has halting state ¢’ in C if, and only if, w has halting state ¢’ in A. Or, formally,
L,(q,p,Z) N (I"*c)¥ is the finite union of all languages

L(q,p,d) v (Lol ,7.T)) . (2)

where ¢’ ranges over all states in Q’.

THOMAS. That’s right! — Did you observe where the generalized transition Biichi
condition came in handy?

WOLFGANG. Yes, I did. If we had used some other condition, transferring it from A to C
could have easily blown up the state space of C.

THOMAS. So you see how we can use the induction hypothesis!?

WOLFGANG. Sure. We can apply it to C, because C has a smaller state space than A,
and obtain, for every ¢’ € @', a temporal formula al¢’, 7, J| for L, (¢, 7, J), the alphabet
being A.

THOMAS. And do you see where the results from the finite-word setting come into the
picture?

WOLFGANG. Sure. They are used in two different places. First, for every ¢ € @ and
every ¢’ €) there is a temporal formula S]q, p, '] that defines L.(q,p’,q’). Second, for
every symbol (f,g) € A there is a temporal formula xf , such that a word w € I'* is a model
of x¢,q if, and only if, ho(cw) = (f, g).

THOMAS. Precisely! — What is left to be done is to assemble all these formulas in the
right fashion.

WOLFGANG. I can take over the first programming task. We need to transform every
formula ¢ over I into a formula xt'(p) over 3 such that for all u € T'* and v € X¥, the
formula ¢ is a model of u if, and only if, the formula xt'() is a model of ucv. The crucial

95:5

ICALP 2016

95:6 Past, Present, and Infinite Future

definitions are:

xt'(a) =a ,
xt/(X¢p) = e A Xxt' (¥)
xt (o Ut1) = (xt'(¢) A ~c)Uxt/ (1)) .

THOMAS. Second, we need to transform every formula ¢ over A into a corresponding
formula 1Ift(y), which “lifts” the formula from the alphabet A to the alphabet X, more
precisely, for each u € (¢X*)¥, the word u is a model of 1ft(p) if, and only if, h(u) is a model
of . Here, we can set:

If6((f,9)) = xt'(xr,g)
1ft(X) = X(=cU(c A X1ft(p)))

Ift(eUy) = (¢ = X1ft(p))U(c A X1t (1)) -

WOLFGANG. We are done. The overall formula for a language as in (2) is
GFeAxt'(Blg, p',q']) A —cU(e Aft(a)lq, 7, T]) -

Thomas, I need to run. There’s a meeting I have to attend ...

Wolfgang grabs a pile of documents from a bookshelf and leaves his room in a hurry.

2 Actll

Wolfgang, wearing a headset, and Thomas are sitting at their desks. On Thomas’s screen,
a notification from the desktop sharing software pops up. Wolfgang is trying to connect.
Thomas puts on his headset.

THOMAS. Wolfgang?

WOLFGANG. Thomas! Can I come back to the discussion on temporal logic and counter-
free automata we has the other day?

THOMAS. Sure. What is it that you would like to talk about?

WOLFGANG. You said that your definition of “counter-free w-automaton” is a good one;
you even said it would be the right one. Can you explain that to me?

THOMAS. From finite words we know that there are many equivalent definitions of what
it means for a formal language to be star-free: recognizable by a counter-free automaton [13],
definable in first-order logic [10], definable in temporal logic (with future and past operat-
ors) [8], definable in future temporal logic [7], For w-words, the same equivalences hold,
in particular, first-order logic, the two variants of temporal logic, and star-free expressions
are equally expressive [9, 15, 8, 7]. Do you recall this? (Smiling.) Anyway, any notion of
“counter freeness” that is equivalent to one of these formalisms should be ok.

WOLFGANG. T agree! — What we already know is that every counter-free automaton
according to your definition is equivalent to a future temporal logic formula. So if you can
also prove the converse to me, I will be happy.

THOMAS. To tell you the truth, parts of this were already proved a long time ago, but
went unnoticed. What I mean is that the straightforward translation of a future temporal
formula into a generalized Biichi automaton yields a counter-free backward deterministic

Th. Wilke

w-automaton. In fact, for all I know, this observation was the motivation for defining
backward deterministic w-automata [1] and you can find the translation, for instance, in a
paper by Olivier [2]. — The problem is to show that this translation yields a counter-free
automaton.

WOLFGANG. (Indignant, but smiling.) Thomas! — That we obtain backward deterministic
Biichi automata when translating future temporal formulas into automata is something I
have known for years, in fact, I explained this to one of the anonymous referees of this paper
already 15 years ago. But I didn’t look at counter freeness at the time I have to admit.
So let’s see what happens when we follow a construction like the one Pierre and Moshe
suggested [16]7

THOMAS. A typical automaton for a temporal formula guesses, for each point in time,
which subformulas are true at that point and which are not.

WOLFGANG. So we model a state as a function f: sbf(p) — {0, 1}, where sbf(y) stands
for the set of subformulas of ¢. The functions considered are required to satisfy the following
straightforward conditions: f(T) =1; f(—¢) = 1 if, and only if, f(v)) = 0; f(¢o V ¢1) = 1 if|
and only if, f(¢9) =1 or f(¢1) = 1. Here, 9 and g V 11 stand for elements of sbf(y). The
transition relation, let’s denote it by A, is defined according to the semantics of temporal
logic, more precisely, (f,a,g) € A if, and only if, the following conditions are satisfied:

fla) =
fb) = 0 for every symbol b € ¥ with b # a,
fXy) =g(¥),

F(oUey) = 1if, and only if, f(1p1) =1 or, f(¥o) =1 and g(1hoUey) = 1.

Just as above, Xty and 1¥oU; stand for elements of sbf(y). And, of course, the transition
relation A is backward deterministic, that is, p(a,g) = f for (f,a,g) € A is well-defined.

THOMAS. What about the recurrence condition?

WOLFGANG. We need to make sure that when a U-formula is guessed to be true it
becomes true eventually. To this end, we use a generalized state Biichi recurrence condition,
which can easily be transformed into a generalized transition Biichi condition. For every
U-subformula, say ¥gUy, we have the set

{f | f(@oU¢p1) =0or f(¢1) =1}

as an element of the recurrence condition. — So how do we know this automaton is counter-
free?

THOMAS. This needs a proof indeed. — Suppose Q' C @ is a nonempty subset of the
state space and Pw restricted to Q’ is a permutation for some word w € ©T. We want to
show Pw(f) = f for every state f € Q'. One way to do this is to fix an element fy € @’ and
consider the orbit of fj.

WOLFGANG. What do you mean by “orbit”?

THOMAS. Define f;11 by fir1 = Pw(/f;) for i < w. Then, because we assume Pw restricted
to @' is a permutation, f,, = fo for some m > 0. The set {f,, | i < m} is what we call the
orbit of fy.

WOLFGANG. I see. If we can prove f; = fq, or, equivalently, f; = fi for all 7,7’ < m, we
are done, because this means Pw(fy) = fo.

THOMAS. Exactly. By induction, we show f;(¢0) = fi:(¢) for every ¢ € sbf(y) and all
1,1 < m, which is sufficient. In fact, we prove something stronger.

WOLFCGANG. I have no idea what that could be.

THOMAS. We refine the picture in an adequate fashion by introducing more states and
making it cyclic. Let n = |w|. First, we extend w in both directions by repeating it, that is,

95:7

ICALP 2016

95:8

Past, Present, and Infinite Future

we consider the sequence (a;);cz defined by a; 1, = w(i) for all i < n and k € Z with k # 0.
Second, we define, for every ¢ € Z, a state g; by

90 = Jfo ,
gi = "ai(giv1) for ¢ with —mn <i <0 ,
Gitkmn = i for ¢ with —mn <i<0and k#0 .

Then g_,; = f; for every ¢ € N and g; = Pa;(g;+1) for all i € Z. Furthermore, ¢;(¢) = g (¥)
for all 4,7’ € N with i = ¢/ (mn) and ¢ € sbf(p). I write i =i’ (I) to denote the fact that ¢
and ¢’ are identical after reduction modulo I. The stronger claim is that g;(¥) = gi+(¢) holds
for all i,i € Z with i =i’ (n) and 9 € sbf(p).

WOLFGANG. I see, this contains the original claim as a special case. — I am curious to
see how the inductive proof goes.

THOMAS. For ¢ = T, the claim is trivial. For the other base case, assume a € ¥ and
1 = a. We have g;(a) = 1 if, and only if, a = a;, which proves the claim, because if i = i’ (n),
then a; = a;s, by definition of (a;);cz.

WOLFGANG. Now it’s my turn. First, the claim is trivial for the boolean connectives
— and V. Assume Xt € sbf(¢). Then g;(X¢)) = ¢;41(¢) for every i € Z, because of the
definition of A. By induction hypothesis, we have ¢;1+1(¢0) = gi+1(¢) for all ¢ and ¢’ with
i =1 (n), which then implies the claim.

THOMAS. Let me conclude the proof by looking at the case where 1)gUw; € sbf(p). It is
good to proceed by a case distinction.

WOLFGANG. I can imagine what the cases are.

THOMAS. The first case is when g;(¢9) = 1 holds for all i € Z. If g;, (vpoUt1) = 1 for
some 1ig, then, by definition of A, g;(1oUw1) =1 for all i < ig. Since g, (o Ut1) = 1 means
Gio+kmn (PoUr1) =1 for all k € N, we even have g;(voUt1) =1 for all i € Z.

The second case is when g;, (109) = 0 holds for some ig € Z. In this case, giy+rmn (o) =0
for all k € Z. So if g;(voUtn) =1 for some i € Z, then, because of the definition of A, there
exists some [€ N with g;1;(v1) = 1 and g;44(v00) = 1 for all k with k <[— a simple proof
by induction shows that. Let ¢’ be such that i =4’ (n). Then i + j =i’ + j (n) for every
j € Z. So from the induction hypothesis, we can conclude g;1;(11) =1 and gy 41 (t0o) = 1
for all k with k < [. Hence, gy (¢oUt) = 1.

WOLFGANG. We are done. Perfect!

THOMAS. Wolfgang, my theory lecture starts in a few minutes. I hope you don’t mind
me hanging up now. I am calling back later.

WOLFGANG. I am sorry. Please, go ahead.

Thomas grabs his tablet, a copy of Sipser’s book [14], and leaves his room; Wolfgang takes
a notebook and starts scribbling.

3 Actll

Wolfgang is still sitting at his desk, contemplating. Thomas just entered his office, carrying
his tablet and Sipser’s book, and went straight to his laptop. He is initiating another session
with Wolfgang.

WOLFCGANG. Thomas, thanks for calling back. I hope your lecture went well. Here is
what I thought about in the meantime. Now that we know how to deal with counter-free
w-automata and future temporal logic, can we also say something about temporal logic in
general? When future and past operators are allowed?

Th. Wilke

THOMAS. Why are you asking? — We somehow know what happens because of the result
by Gabbay, Pnueli, Shelah, and Stavi [7].

WOLFGANG. I know this result settles the question in the sense that every arbitrary
temporal formula is equivalent to a future temporal formula when interpreted in the first
position of w-words. T also know that by a result by Gabbay [6] every arbitrary temporal

formula is equivalent to a boolean combination of pure past, present, and pure future formulas.

But proofs of these results are technically involved and I am missing automata theory in this
picture!
THOMAS. Oh, that’s an interesting thought.

Thomas thinking . ..

THOMAS. I think we can say something really nice here. Again, we need to agree on the
right automaton model.

WOLFGANG. What are you thinking of?

THOMAS. Well, arbitrary temporal logic formulas are interpreted in some position in
an w-word. In some sense, the semantics of such a formula is a function [p] which maps
w-words over ¥ to w-words over {0, 1}, where the bit at position ¢ of the image of a given
word is the truth value of the formula when interpreted at position ¢ in the given word. So
what I think we should do is to come up with a slick automaton model for describing such
functions.

WOLFGANG. There are many ways to define functions from w-words to w-words and even
more ways to define functions from finite words to finite words. A very general notion is that
of a rational function and it has been studied in detail. For instance, there is a result by
Elgot and Mezei which states that a rational function of finite words is the composition of a
left-sequential and a right-sequential function [5], and I believe I have come across a similar
result for w-words.

THOMAS. That is true. Elgot and Mezei’s result was generalized to w-words by Olivier [2].

I am thinking of extending Schiitzenberger’s bimachines [12] to w-words in a way adequate
for dealing with temporal logic.

WOLFGANG. I remember Schiitzenberger’s bimachines. How do we extend them to
w-words?

THOMAS. Suppose we want to realize a function v: ¥ — I'Y. Suppose we are given a
word w € £¥. And suppose we want to know the symbol at position ¢ in v(w), that is, we
want to know v(w)(i). What we could do first is to split w at position 4, that is, write w
as uav where the length of u is i. Then we could run a forward deterministic automaton
on u, a backward deterministic w-automaton on v, and output v(w)(¢) depending on the two
halting states and the symbol a. — Here is a picture. (Drawing on the screen.)

| v | ¢ | v

IQI Qals T

WOLFGANG. That is very close to what Schiitzenberger suggested for finite words, only
that he allowed an arbitrary word to be output, rather than a single symbol. — Let me try to
make your picture formal and define what we may call w-bimachines. Such a machine, let’s
call it A, consists of

95:9

ICALP 2016

95:10

Past, Present, and Infinite Future

a forward deterministic automaton without final condition, say with finite state set @,
initial state ¢y, and transition function : @ x ¥ — @,

a backward deterministic w-automaton without final condition, say with finite state set .S,
initial recurrence condition Z, and a backward transition function p: ¥ x § — S, and
an output function 0: @ x X x S — I

THOMAS. That’s it. The semantics is a function ¥¥ — I'“, which we denote by v.
Assume w € ¥¥ and we want to define v(w)(i) for some ¢ € w. We take the halting state
of the forward automaton for the word w(0)...w(i — 1), say this is g. We take the halting
state of the backward automaton for the word w(i + 1)w(i + 2)..., say this is s. Then
v(w)(i) = olq, w(i), 5).

WOLFGANG. That is indeed a very simple and intuitive definition. It also connects
nicely with rational functions, because from Olivier’s results it should follow that the class of
functions computed by w-bimachines is the same as the class of total letter-to-letter rational
functions. — What we want to do is to transform every temporal formula into an equivalent
w-bimachine.

THOMAS. We should even strive for a counter-free w-bimachine, where this simply means
that the forward and the backward automaton are counter-free. Because if we manage to
achieve that, we also have a proof of the result by Gabbay, saying that every arbitrary
temporal formula is equivalent to a boolean combination of pure future, present, and pure
past formulas — completely in automata-theoretic terms.

WOLFGANG. That sounds like an interesting plan and I would like to give it a shot. In
the future-only setting, it was easy to describe the state space in one go — it was a function
sbf(p) — {0,1}. I believe it is going to be more complicated here, which is the reason I
suggest we try an inductive definition.

THOMAS. I will be happy with an inductive definition!

WOLFCGANG. There are two base cases: ¢ = T and ¢ = a for some a € ¥. In both
cases, we can choose the forward and the backward automaton to be a 1-state automaton.
In the first case, we can set o(q,a,s) = 1 for every a € ¥; in the second case, we can set
o(gq,a,s) =1 and o(gq,b,s) =0 for all b € ¥\ {a}. — Easy!

THOMAS. Clearly, these automata are counter-free.

WOLFGANG. In the inductive step, we have to take care of boolean operators and
temporal operators.

THOMAS. Boolean operators can be dealt with easily, only the temporal operators are
interesting.

WOLFGANG. We have four temporal operators when we admit future as well as past
operators and follow standard syntax and semantics: X — next, P — previously, U — until,
and S — since. I suggest we consider “previously” and “until”, the two other can be dealt
with in a similar fashion.

THOMAS. What we need for each of the two operators are two things. First, we need a
construction. Second, we need a proof that it preserves counter freeness.

WOLFCGANG. So let’s turn to “previously” and assume we are given a counter-free
w-bimachine which computes a function p: 3% — {0,1}*. We want to construct a new
counter-free w-bimachine which computes the function v defined by v(w)(i+1) = p(w)(i) and
v(w)(0) = 0 for every i < w. Apparently, we don’t have to change the backward automaton;
we only need to adapt the forward automaton and the output function.

THoOMAS. I agree. This seems to be a simple construction.

WOLFGANG. We make the forward automaton lag behind in the sense that it keeps track
of its previous state and the symbol just read. In the beginning, we start from a new state. So

Th. Wilke

the state space is @ x XU {L} and the transition function is given by ¢’({(g,a),b) = (6(q, a), b)
and §'(L, a) = (qr,a). The output function, o', is given by o’({(g,a), b, s) = o(q, a, p(b, s)) and
o'(L,a,s)=0.

THOMAS. This is quite convincing. In fact, the construction does not only seem to be
correct to me. It also preserves counter freeness, as far as I can see.

WOLFGANG. So let’s turn to “until”.

THOMAS. We assume we are given two counter-free w-bimachines computing functions
po: ¥ — {0,1}* and pq: 3% — {0,1}¥, respectively, and we want to construct a counter-
free w-bimachine computing the function v: 3¢ — {0,1}* given by v(w)(i) = 1 if, and only
if, there exists some k > 4 such that u; (w)(k) =1 and po(w)(j) =1 for all j with i < j < k.
— By taking a product of the two forward automata and the two backward automata, we can
simplify the situation in the sense that we can think of only one counter-free w-bimachine
but with two output functions, oy and o1, where the first one is for pg and the second one is
for p1. — Do you see what we need to do?

WOLFGANG. Yes, right away. Let’s call the given automaton A and the one to be
constructed A’. It is important that the backward automaton of A’ knows, at any point,
those states from the forward automaton of A from which the U-formula can be satisfied. —
I am aware of the fact that this is a vague description, but it should become clear when we
work out the details.

THOMAS. Let me see if I understand what you mean. The state space of the backward
automaton of A’ is S x 2¢. Its backward transition function is defined by

p'(a, <57P>) = <p(a75)’Pl>)

where P stands for a subset of Q) and P’ is defined by

P'={q€Qloilg,a,s) =1} U{q€ Q| d(q,a) € P and oo(q,a,5) =1} .

The forward automaton of A’ is the same as the one of A. The output function of A’, let’s
denote it o', is given by 0/(gq, a, (s, P)) = 1 if, and only if, 01(g,a,s) = 1, or op(q,a,s) =1
and d(q,a) € P.

WOLFGANG. This is what I was thinking of. The transition function p’ reflects the
semantics of the until operator in a particular sense, which I would like to make precise. For
every state ¢ € @, let A, denote the w-bimachine which is obtained from A by changing the
initial state of the forward automaton to ¢. Further, let v and v{ denote the corresponding
functions. Now suppose w € 3¢ and (sq, Py)(s1, P1) ... is a run of the backward automaton
of A’ on w such that sps; ... is an initial run of the backward automaton of A and write P
for Py. Then the following is true for every state ¢ € () and can be proved by a straightforward
induction:

1. If there is some j such that v{(j) = 1 and v{ (i) = 1 for every i < j, then ¢ € P.
2. If g € P, then either

a. there is some j such that v{(j) =1 and (i) = 1 for every i < j, or

b. (i) =1 for all i < w.

The problem I see is that we really want 2.a for each ¢ € P. For a U-formula to be true, it is
not enough to have 2.b only.

THOMAS. Your concern is completely valid. Without any further measure, the construc-
tion may “overapproximate”. The problem is similar to the fairness problem we had when
we looked at the backward deterministic w-automaton for a given future temporal formula
and introduced a recurrence set for every U-subformula.

WoLrGaNG. What do you suggest? Are we going to do the same here?

95:11

ICALP 2016

95:12

Past, Present, and Infinite Future

THOMAS. The situation is more complicated. Here is the basic idea. For every ¢ satisfying
2.a there is a smallest j with the specified property. Let’s denote this by j,. We assign a
natural number p(q) to every state ¢ € P such that p(q) reflects the order of the j,’s, that is,
p(q) < p(¢’) if, and only if, j, < j,. We then make sure by appropriate recurrence conditions
that the numbers that are assigned to the successors of ¢ decrease over time until j, is finally
reached.

WOLFGANG. That sounds interesting. Can you make this precise?

THOMAS. Let m = |Q| and set M = {0,...,m—1,00}. A state of the backward automaton
of A’ is then a pair (s,p: Q@ — M) where P from above is now given by {q € Q | p(q) # oo}.

WOLFGANG. Given this, I think I can describe how the correct backward deterministic
transition function works. In a first step, we set

po(q) = —1 for every ¢ with 01(q,a,s) =1,

po(q) = p(d(g,a)) for every g with og(q,a,s) = 1 and 01(q, a, s) = 0, and

po(q) = oo for all other ¢ € Q.
This is consistent with the definition of P’ from above in the sense that P’ = {q € Q |
p(q) # oo}, but there are values out of range — we may have —1 as a value. We adjust po
to obtain p’ by increasing some of its values as follows, where ¢ is defined by ¢t = min{j €
{(~1,eom—1} | 53 (G) = 0}.

P’ (q) = po(q) + 1 for all ¢ with p(q) < t.

p'(q) = po(q) for all other ¢ € Q.
In some sense, we are adjusting as little as is necessary.

THOMAS. This is absolutely correct. What we still have to define is an appropriate
recurrence condition. This will be the union of two recurrence sets Zo and Z;, where
7Ty simply extends Z to the new state space in a straightforward way. More precisely,
To={S" x M® | S €T}

The set Z; contains a transition recurrence set T; for every ¢ € {0,...,m — 1}. This
set contains a pair (a,(s,p)) if, and only if, ¢ = ¢ for the value ¢ as defined above or
p'(q) € {0,...,i— 1,00} for every q € Q and p’ as defined above.

WOLFGANG. Thomas, I understand what you are saying, but I think a rigorous correctness
proof is needed here.

THOMAS. I agree. As the construction is inspired by Oliver and Max Michel’s work, we
can also borrow some of their ideas for the correctness proof.

WOLFGANG. Anyway, we also need to prove that our construction really yields a counter-
free automaton.

THOMAS. I agree again. The proof of this is tedious, but doable. One can use what
we know from the proof that the backward deterministic w-automaton for a given future
temporal formula is counter-free.

WOLFGANG. OK. There is still some work to be done before I can present the material
to the students. I am calling it a day. Thanks a lot, and see you soon, Thomas!

THOMAS. Bye, bye. And, please, say “hello” to Renate.

Wolfgang and Thomas close their desktop sharing applications.

Th. Wilke

4

Epilogue

A few weeks later, Thomas receives the following email.

—— References

1

Hi, Thomas!

You probably want to know how it went with my lectures. First of all, it didn’t take me
much time to work out all the details of what we talked about. Then everything went fine,
only the students came up with a fair number of questions I couldn’t answer right away.
Here are the most interesting ones, maybe:

What is the complexity of the translation from counter-free backward deterministic
w-automata to future temporal formulas?

What is the complexity of the translation from arbitrary temporal formulas to
w-bimachines? Non-elementary?

Say “prop” is some interesting class of deterministic automata. What happens when we
consider “prop” w-bimachines instead of counter-free w-bimachines?

Any ideas?
All the best, Wolfgang

Olivier Carton. Personal communication.

Olivier Carton. Right-sequential functions on infinite words. In Farid M. Ablayev and
Ernst W. Mayr, editors, Computer Science — Theory and Applications, 5th International
Computer Science Symposium in Russia, CSR 2010, Kazan, Russia, June 16-20, 2010.
Proceedings, volume 6072 of Lecture Notes in Computer Science, pages 96-106. Springer,
2010. doi:10.1007/978-3-642-13182-0_9.

Olivier Carton and Max Michel. Unambiguous Biichi automata. In Gaston H. Gonnet,
Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics, 4th Latin
American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings, volume
1776 of Lecture Notes in Computer Science, pages 407-416. Springer, 2000. doi:10.1007/
10719839_40.

Volker Diekert and Paul Gastin. First-order definable languages. In Jorg Flum, Erich
Grédel, and Thomas Wilke, editors, Logic and Automata: History and Perspectives [in
Honor of Wolfgang Thomas], volume 2 of Texts in Logic and Games, pages 261-306. Ams-
terdam University Press, 2008.

Calvin C. Elgot and Jorge E. Mezei. On relations defined by generalized finite automata.

IBM Journal of Research and Development, 9(1):47-68, Jan 1965. doi:10.1147/rd.91.

0047.

Dov M. Gabbay. The declarative past and imperative future: Executable temporal logic for
interactive systems. In Behnam Banieqbal, Howard Barringer, and Amir Pnueli, editors,
Temporal Logic in Specification, Altrincham, UK, April 8-10, 1987, Proceedings, volume
398 of Lecture Notes in Computer Science, pages 409-448. Springer, 1987.

Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal basis
of fairness. In Paul W. Abrahams, Richard J. Lipton, and Stephen R. Bourne, editors,
Conference Record of the Seventh Annual ACM Symposium on Principles of Programming
Languages, Las Vegas, Nevada, USA, January 1980, pages 163-173. ACM Press, 1980.
URL: http://dl.acm.org/citation.cfm?id=567446, doi:10.1145/567446.567462.
Johan Anthony Willem Kamp. Tense logic and the theory of linear order. PhD thesis,
University of California, Los Angeles, 1968.

95:13

ICALP 2016

http://dx.doi.org/10.1007/978-3-642-13182-0_9
http://dx.doi.org/10.1007/10719839_40
http://dx.doi.org/10.1007/10719839_40
http://dx.doi.org/10.1147/rd.91.0047
http://dx.doi.org/10.1147/rd.91.0047
http://dl.acm.org/citation.cfm?id=567446
http://dx.doi.org/10.1145/567446.567462

95:14

Past, Present, and Infinite Future

10

11

12

13

14

15

16

17

Richard E. Ladner. Application of model theoretic games to discrete linear orders and finite
automata. Information and Control, 33(4):281-303, 1977. doi:10.1016/30019-9958(77)
90443-0.

Robert McNaughton and Seymour Papert. Counter-free automata. M.I.T. Press research
monographs. M.I.T. Press, 1971.

Dominique Perrin and Jean-Eric Pin. Infinite Words: Automata, Semigroups, Logic, and
Games, volume 141 of Pure and Applied Mathematics. Elsevier, Amsterdam, 2004.

Marcel Paul Schiitzenberger. A remark on finite transducers. Information and Control,
4(2-3):185-196, 1961. doi:10.1016/S0019-9958(61)80006-5.

Marcel Paul Schiitzenberger. On finite monoids having only trivial subgroups. Information
and Control, 8(2):190-194, 1965. doi:10.1016/S0019-9958(65)90108-7.

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, Boston,
Mass., 3rd edition, 2013.

Wolfgang Thomas. Star-free regular sets of omega-sequences. Information and Control,
42(2):148-156, 1979. doi:10.1016/50019-9958(79)90629-6.

Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf. Comput.,
115(1):1-37, 1994. doi:10.1006/inco.1994.1092.

Thomas Wilke. Classifying discrete temporal properties. In Christoph Meinel and Sophie
Tison, editors, STACS 99, 16th Annual Symposium on Theoretical Aspects of Computer
Science, Trier, Germany, March 4-6, 1999, Proceedings, volume 1563 of Lecture Notes in
Computer Science, pages 32—46. Springer, 1999. doi:10.1007/3-540-49116-3_3.

http://dx.doi.org/10.1016/S0019-9958(77)90443-0
http://dx.doi.org/10.1016/S0019-9958(77)90443-0
http://dx.doi.org/10.1016/S0019-9958(61)80006-5
http://dx.doi.org/10.1016/S0019-9958(65)90108-7
http://dx.doi.org/10.1016/S0019-9958(79)90629-6
http://dx.doi.org/10.1006/inco.1994.1092
http://dx.doi.org/10.1007/3-540-49116-3_3

	Act I
	Act II
	Act III
	Epilogue

