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Abstract
The outcomes of this paper are twofold.

Implicit complexity. We provide an implicit characterization of polynomial time computation
in terms of ordinary differential equations: we characterize the class P of languages computable
in polynomial time in terms of differential equations with polynomial right-hand side.

This result gives a purely continuous (time and space) elegant and simple characterization of
P. We believe it is the first time such classes are characterized using only ordinary differential
equations. Our characterization extends to functions computable in polynomial time over the
reals in the sense of computable analysis.

Our results may provide a new perspective on classical complexity, by giving a way to define
complexity classes, like P, in a very simple way, without any reference to a notion of (discrete)
machine. This may also provide ways to state classical questions about computational complexity
via ordinary differential equations.

Continuous-Time Models of Computation. Our results can also be interpreted in terms
of analog computers or analog model of computation: As a side effect, we get that the 1941
General Purpose Analog Computer (GPAC) of Claude Shannon is provably equivalent to Turing
machines both at the computability and complexity level, a fact that has never been established
before. This result provides arguments in favour of a generalised form of the Church-Turing
Hypothesis, which states that any physically realistic (macroscopic) computer is equivalent to
Turing machines both at a computability and at a computational complexity level.
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109:2 Polynomial Time Corresponds to Solutions of Polynomial ODEs of Polynomial Length

1 Introduction

The outcomes of this paper are twofold, and are concerning a priori not closely related topics.

Implicit Complexity: Since the introduction of the P and NP complexity classes, much work
has been done to build a well-developed complexity theory based on Turing Machines. In
particular, classical computational complexity theory is based on limiting resources used by
Turing machines, like time and space. Another approach is implicit computational complexity.
The term “implicit” in “implicit computational complexity” can sometimes be understood in
various ways, but a common point of these characterizations is that they provide (Turing or
equivalent) machine-independent alternative definitions of classical complexity.

Implicit characterization theory has gained enormous interest in the last decade. This
has led to many alternative characterizations of complexity classes using recursive functions,
function algebras, rewriting systems, neural networks, lambda calculus and so on.

However, most of – if not all – these models or characterizations are essentially discrete:
in particular they are based on underlying discrete time models working on objects which
are essentially discrete such as words, terms, etc. that can be considered as being defined in
a discrete space.

Models of computation working on a continuous space have also been considered: they
include Blum Shub Smale machines [4], and in some sense Computable Analysis [40], or
quantum computers [17] which usually feature discrete-time and continuous-space. Machine-
independent characterizations of the corresponding complexity classes have also been devised:
see e.g. [10, 24]. However, the resulting characterizations are still essentially discrete, since
time is still considered to be discrete.

In this paper, we provide a purely analog machine-independent characterization of the P
class. Our characterization relies only on a simple and natural class of ordinary differential
equations: P is characterized using ordinary differential equations (ODEs) with polynomial
right-hand side. This shows first that (classical) complexity theory can be presented in terms
of ordinary differential equations problems. This opens the way to state classical questions,
such as P vs NP, as questions about ordinary differential equations.

Analog Computers: Our results can also be interpreted in the context of analog models of
computation and actually originate as a side effect from an attempt to understand continuous-
time analog models of computation, and if they could solve some problem more efficiently
than classical models. Refer to [39] for a very instructive historical account of the history of
Analog computers. See also [29, 9] for other discussions.

Indeed, in 1941, Claude Shannon introduced in [38] the General Purpose Analog Computer
(GPAC) model as a model for the Differential Analyzer [11], a mechanical programmable
machine, on which he worked as an operator. The GPAC model was later refined in [35],
[23]. Originally it was presented as a model based on circuits (see Figure 1), where several
units performing basic operations (e.g. sums, integration) are interconnected (see Figure 2).

However, Shannon himself realized that functions computed by a GPAC are nothing more
than solutions of a special class of polynomial differential equations. In particular it can be
shown that a function is computed by Shannon’s model if and only if it is a (component of
the) solution of an ordinary differential equations (ODEs) with polynomial right-hand side
[38], [23]. In this paper, we consider the refined version presented in [23].

We note that the original model of the GPAC presented in [38], [23] is not equivalent to
Turing machine based models. However, the original GPAC model performs computations
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Figure 1 Circuit presentation of the GPAC: a circuit built from basic units.
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y′(t)= z(t)
z′(t)= −y(t)
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⇒
{
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z(t)= cos(t)

t

Figure 2 Example of GPAC circuit: computing sine and cosine with two variables.

in real-time: at time t the output is f(t), which different from the notion used by Turing
machines. In [19] a new notion of computation for the GPAC, which uses “converging
computations” as done by Turing machines was introduced and it was shown in [5],[6] that
using this new notion of computation, the GPAC and computable analysis are two equivalent
models of computation at a computability level.

In that sense, our paper extends this latter result and proves that the GPAC and
computable analysis are two equivalent models of computation, both at the computability
and at the complexity level. We also provide as a side effect a robust way to measure time in
the GPAC, or more generally in computations performed by ordinary differential equations:
basically, by considering the length of the curve.

This paper is organized as follows. Section 2 gives our main definitions and results.
Section 3 discusses the related work and consequences of our results. Section 4 gives a very
high-level overview of the proof. It also contains more definitions and results so that the
reader can understand the big steps of the proof.

2 Our Results

We consider the following class of differential equations:

y(0) = y0 y′(t) = p(y(t)) (1)

where y : I → Rd for some interval I ⊂ R and where p is a vector of polynomials. Such
systems are sometimes called PIVP, for polynomial initial value problems [21]. Observe that
there is always a unique solution to the PIVP, which is analytic, defined on a maximum
interval of life I containing y0, which we refer to as “the solution”.

Our crucial and key idea is that, when using PIVPs to compute a function f , the
complexity should be measured as the length of the solution curve of the PIVP computing
the function f . We recall that the length of a curve y ∈ C1(I,Rn) defined over some interval
I = [a, b] is given by leny(a, b) =

∫
I
‖y′(t)‖ dt, where ‖y‖ refers to the infinite norm of y.

ICALP 2016



109:4 Polynomial Time Corresponds to Solutions of Polynomial ODEs of Polynomial Length

We assume the reader familiar with the notion of polynomial time computable function
f : [a, b]→ R (see [40] for an introduction to computable analysis). We take R+ = [0,+∞[
and denote by RP the set of polynomial time computable reals. For any vector y, yi...j refers
to the vector (yi, yi+1, . . . , yj). For any sets X and Z, f :⊆ X → Z refers to any function
f : Y → Z where Y ⊆ X and dom f refers to the domain of definition of f .

I Remark (The space K of the coefficients). In this paper, the coefficients of all considered
polynomials will belong to K. Formally, K needs to a be generable field, as introduced in
[33]. However, without a significant loss of generality, the reader can consider that K = RP
which is the set of polynomial time computable real numbers. All the reader needs to know
about K is that it is a field and it is stable by generable functions (introduced in Section 4.2),
meaning that if α ∈ K and f is generable then f(α) ∈ K. It is shown in [33] that there
exists a small generable field RG lying somewhere between Q and RP , with expected strict
inequality on both sides.

Our main results (the class AP is defined in Definition 3, and the notion of language
recognized by a continuous system is given in Definition 4) are the following. Let us recall
that P(R) is the class of polynomial time computable real functions, as defined in [27].

I Theorem 1 (An implicit characterization of P(R)). Let a, b ∈ RP . A function f : [a, b]→ R
is computable in polynomial time iff its belongs to the class AP.

I Theorem 2 (An implicit characterization of P). A decision problem (language) L belongs to
class P if and only if it is analog-recognizable.

I Definition 3 (Complexity Class AP). We say that f :⊆ Rn → Rm is in AP if and only if
there exists a vector p of polynomials with d > m variables and a vector q of polynomials
with n variables, both with coefficients in K, and a bivariate polynomial Ω such that for any
x ∈ dom f , there exists (a unique) y : R+ → Rd satisfying for all t ∈ R+:

y(0) = q(x) and y′(t) = p(y(t)) I y satisfies a PIVP
for all µ ∈ R+, if leny(0, t) > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ I y1..m converges

to f(x)
leny(0, t) > t I technical condition: the length grows at least linearly with time1

Intuitively, a function f belongs to AP if there is a PIVP that approximates f with a
polynomial length to reach a given level of approximation.

In definition 3, the PIVP was given its input x as part of the initial condition: this is
very natural because x was a real number. In the following, we will characterize languages
with differential equations. Since a language is made up of words, we need to discuss how to
represent (encode) a word with a real number. We fix a finite alphabet Γ = {0, .., k − 2} and
define the encoding2 ψ(w) =

(∑|w|
i=1 wik

−i, |w|
)
for a word w = w1w2 . . . w|w|.

I Definition 4 (Analog recognizability). A language L ⊆ Γ∗ is called analog-recognizable if
there exists a vector q of bivariate polynomials and a vector p of polynomials with d variables,

1 This is a technical condition required for the proof. This can be weakened, for example to
∥∥y′(t)

∥∥ =
‖p(y(t))‖ > 1

poly(t) . The technical issue is that if the speed of the system becomes extremely small, it
might take an exponential time to reach a polynomial length, and we want to avoid such “unatural”
cases. This is satisfied by all examples of computations we know [39].

2 Other encodings may be used, however, two crucial properties are necessary: (i) ψ(w) must provide a
way to recover the length of the word, (ii) ‖ψ(w)‖ ≈ poly(|w|) in other words, the norm of the encoding
is roughly the size of the word.
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both with coefficients in K, and a polynomial Ω : R+ → R+, such that for all w ∈ Γ∗ there is
a (unique) y : R+ → Rd such that for all t ∈ R+:

y(0) = q(ψ(w)) and y′(t) = p(y(t)) I y satisfies a differential equation
if |y1(t)| > 1 then |y1(u)| > 1 for all u > t I the decision is stable
if w ∈ L (resp. /∈ L) and leny(0, t) > Ω(|w|) then y1(t) > 1 (resp. 6 −1) I decision
leny(0, t) > t I technical condition

Intuitively this definition says that a language is analog-recognizable if there is a PIVP
such that, if the initial condition is set to be (the encoding of) some word w ∈ Γ∗, then by
using a portion of polynomial length of the curve, we are able to tell if this word should be
accepted or rejected, by watching to which region of the space the trajectory will go: the
value of y1 determines if the word has been accepted or not, or if the computation is still in
progress.

3 Discussion

Extensions. Our characterizations of the polynomial time can easily be extended to char-
acterizations of deterministic complexity classes above polynomial time. For example,
EXPTIME can be shown to correspond to the case where polynomial Ω is replaced by some
exponential function.

I Theorem 5. Let a and b in RP . A function f : [a, b] → R is computable in exponential
time iff its belongs to the class f ∈ AEXP.

I Definition 6 (Definition of the complexity class AEXP for continuous systems). We say that
f :⊆ Rn → Rm is in AEXP if and only if there exists a vector p of polynomial functions
with d variables, a vector q of polynomial with n variables, both with coefficients in K, an
exponential function Ω : R2

+ → R+ such that for any x ∈ dom f , there exists (a unique)
y : R+ → Rd satisfying for all t ∈ R+:

y(0) = q(x) and y′(t) = p(y(t)) for all t > 0 I y satisfies a PIVP
for any µ ∈ R+, if leny(0, t) > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µI y1..m converges
‖y′(t)‖ > 1 I technical condition: The length grows at least linearly with time3

Applications to computational complexity. We believe these characterizations to really
open a new perspective on classical complexity, as we indeed provide a natural definition
(through previous definitions) of P for decision problems and of polynomial time for functions
over the reals using analysis only i.e. ordinary differential equations and polynomials, no
need to talk about any (discrete) machinery like Turing machines. This may open ways to
characterize other complexity classes like NP or PSPACE. In the current settings of course
NP can be viewed as an existential quantification over our definition, but we are obviously
talking about “natural” characterizations, not involving unnatural quantifiers (for e.g. a
concept of analysis like ordinary differential inclusions).

As a side effect, we also establish that solving ordinary differential equations with
polynomial right-hand side leads to P- (or EXPTIME-)complete problems, when the length
of the solution curve is taken into account. In an less formal way, this is stating that ordinary

3 This is a technical condition required for the proof. This can be weakened, for example to ‖p(y(t))‖ >
1

poly(t) . The technical issue is that the speed of the system becomes extremely small, it might take an
exponential time to reach a polynomial length, and we want to avoid such “unatural” cases.

ICALP 2016
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differential equations can be solved by following the solution curve (as most numerical analysis
method do), but that for general (and even right-hand side polynomial) ODEs, no better
method can work, unless some famous complexity questions do not hold. Note that our
results only deal with ODEs with a polynomial right-hand side and that we do not know
what happens for ODEs with analytic right-hand sides over unbounded domains. There are
some results (see e.g. [31]) which show that ODEs with analytic right-hand sides can be
computed locally in polynomial time. However these results do not apply to our setting since
we need to compute the solution of ODEs over arbitrary large domains, and not only locally.

Applications to continuous-time analog models. PIVPs are known to correspond to
functions that can be generated by the GPAC of Claude Shannon [38].

Defining a robust (time) complexity notion for continuous time systems is a well known
open problem [9] with no generic solution provided to this day. In short, the difficulty is
that the naive idea of using the time variable of the ODE as measure of “time complexity”
is problematic, since time can be arbitrarily contracted in a continuous system due to the
“Zeno phenomena” (e.g. by using functions like arctan which contract the whole real line
into a bounded set). It follows that all computable languages can then be computed by a
continuous system in time O(1) (see e.g. [36], [37], [30], [7], [8], [1], [12], [15], [13], [14]).

With that respect, we solve this open problem by stating that the “time complexity”
should be measured by the length of the solution curve of the ODE. Doing so, we get a
robust notion of time complexity for PIVP systems. Indeed, the length is a geometric
property of the curve and is thus “invariant” by rescaling. Notice that this is not sufficient
to get robustness: the fact that we restrict to PIVP systems is crucial because more general
ODEs are usually hard to simulate (e.g. see [26]). This explains why all previous attempts
of a general complexity for general sytems failed in some sense [9]. Super-Turing “Zeno
phenomena” can still happen with general ODEs, but not with PIVPs.

Applications to algorithms. We also believe that transferring the notion of time complexity
to a simple consideration about length of curves allows for very elegant and nice proofs
of polynomiality of many methods for solving continuous but also discrete problems. For
example, the zero of a function f can easily be computed by considering the solution of
y′ = −f(y) under reasonable hypotheses on f . More interestingly, this may also covers many
interior-point methods or barrier methods where the problem can be transformed into the
optimization of some continuous function (see e.g. [25, 16, 3, 28]).

Related work. We believe no purely continuous-time definition of P has ever been stated
before. One direction of our characterization is based on a polynomial time algorithm (in the
length of the curve) to solve PIVPs over unbounded time domains, such a result strengthens
all existings results on the complexity of solving ODEs over unbounded time domains. In the
converse direction, our proof requires a way to simulate a Turing machine using PIVP systems
with a polynomial length, a task whose difficulty is discussed below, and still something that
has never been done up to date.

Attempts to derive a complexity theory for continous-time systems include [18]. However,
the theory developped there is not intended to cover generic dynamical systems but only
specific systems that are related to Lyapunov theory for dynamical systems. The global
minimizers of particular energy functions are supposed to give solutions of the problem. The
structure of such energy functions leads to the introduction of problem classes U and NU ,
with the existence of complete problems for theses classes.



O. Bournez, D. S. Graça, and A. Pouly 109:7

Another attempt is [2], also focussed on a very specific type of systems: dissipative flow
models. The proposed theory is nice but non-generic. This theory has been used in several
papers from the same authors to study a particular class of flow dynamics [3] for solving
linear programming problems.

Both approaches are not at all intended to cover generic ODEs, and none of them is able
to relate the obtained classes to classical classes from computational complexity.

Up to our knowledge, the most up to date survey about continuous time computation are
[9, 29].

Relating computational complexity problems (like the P vs NP question) to problems of
analysis has already been the motivation of series of works. In particular, Félix Costa and
Jerzy Mycka have a series of work (see e.g. [32]) relating the P vs NP question to questions
in the context of real and complex analysis. Their approach is very different: they do so
at the price of a whole hierarchy of functions and operators over functions. In particular,
they can use multiple times an operator which solves ordinary differential equations before
defining an element of DAnalog e NAnalog (the counterparts of P and NP introduced in
their paper), while in our case we do not need the multiple application of this kind of operator:
we only need to use one application of such operator (i.e. we only need to solve one ordinary
differential equations with polynomial right-hand side).

We also mention that Friedman and Ko (see [27]) proved that polynomial time computable
functions are closed under maximization and integration if and only if some open problems of
computational complexity (like P = NP for the maximization case) hold. The complexity of
solving Lipschitz continuous ordinary differential equation has been proved to be polynomial-
space complete by Kawamura [26].

All the results of this paper are fully developped in the PhD thesis of Amaury Pouly [33].

4 Overview of the proof

To show our main results (Theorem 1 and Theorem 2), we need to show two implications:
(i) if a function f : [a, b]→ R (resp. a language L) is polynomial time computable, then it
belongs to AP (resp. it is analog-recognizable) and (ii) if a function f : [a, b]→ R belongs to
AP (resp. a language L is analog-recognizable) then it is polynomial time computable (resp.
belongs to P).

The second implication (ii) is proved by computing the solution of a PIVP system using
some numerical algorithm. If a function f : [a, b]→ R in AP can be computed (up to some
given accuracy) by following the solution curve of its associated ODE up to a reasonable
(polynomial) amount of the length of the curve, the numerical simulation of its associated
ODE will use a reasonable (polynomial) amount of resources to simulate this bounded portion
of the solution curve. Hence the function f will be computed (up to some given accuracy, as
usual in Computable Analysis) by a Turing machine in polynomial time. A similar idea can
be used for showing the implication (ii) for P and analog-recognizable languages.

The idea sketched above gives the intuition of the proof but the usual ODE solving
algorithms cannot be used here since (1) they are only guaranteed to compute the solution of
an ODE with a given accuracy over a bounded time domain, but here we need to compute
this solution over an unbounded time domain4 which introduce further complications and (2)

4 Note that while f has domain of definition [a, b], from Definition 3 f is approximated by a PIVP whose
solution is defined over the unbounded time domain R

ICALP 2016
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we need polynomial complexity in the length of the curve, which is not a classical measure of
complexity.

The first implication (i) is proved by simulating Turing machines with PIVPs and by
showing that these simulations can be performed by using a reasonable (polynomial) amount
of resources (length of the solution curve) if the Turing machine runs in polynomial time.

Some simulation of Turing machines with PIVPs was already performed e.g. in [6], [22].
Basically one has to simulate the behavior of a Turing machine with a continuous system.
This is problematic since Turing machines behave discretely (e.g. “if x happens then do
A, otherwise do B”) and one only has access to continuous (analytic) functions. This can
be solved by approximating discontinuous functions with continuous functions to obtain an
approximation of the transition function of the Turing machine. Then, by using special
techniques, one can iterate the new (now continuous) transition function to simulate the step-
by-step evolution of the Turing machine. Here we have one new difficult problem to tackle
(not covered in previous papers like [6] and [22]) because we must ensure that everything can
be done using only a reasonable (polynomial) amount of the length of the solution curve of
the PIVP. In particular, this constraint rules out particularly simple techniques like integer
encodings of the tape and error correction, as used in the previously mentioned papers.

At a high level, our proof relies on considerations about (polynomial length) ODE
programming: we prove that it is possible to “program” with polynomial length ODE systems
that keep some variable fixed, do assignement, iterate some functions, compute limits, etc.
We use those basic operations and basic functions with PIVPs (e.g. min,max, continuous
approximation of rounding, etc.) to create more complex functions and operations that
simulate the transition function of a given Turing machine and its iterations. To be sure that
the more complex functions still satisfy all the properties we want (e.g. that they belong to
AP), we prove several closure properties: in particular, we prove very strong and elegant
equivalent definitions of class AP.

For reasons of lack of space, we do not detail all these operators and functions, but
we sketch the proof of a few properties and some key ideas of our techniques. We use the
following notation: when p is a polynomial, Σp is the sum of the absolute values of its
coefficients and deg(p) its degree. If p is a vector of polynomials, we extend those notions by
taking the maximum for each component.

4.1 Polytime analog computability implies polytime computability
We start by sketching the proof of the “only if” direction of Theorem 2, and then of Theorem 1.
Recall that a real function is polynomial time computable if given arbitrary approximations
of the input, we can produce arbitrary approximations of the output in polynomial time. As
it is customary, we proceed in two steps. We first show that the function has a polynomial
modulus of continuity. This allows us to restrict the problem to rational inputs of controlled
size.

I Theorem 7 (Modulus of continuity). If f ∈ AP, then f admits a polynomial modulus
of continuity: there exists a polynomial f : R2

+ → R+ such that for all x, y ∈ dom f and
µ ∈ R+:

‖x− y‖ 6 e−f(‖x‖,µ) ⇒ ‖f(x)− f(y)‖ 6 e−µ.

We then show that the solution of a such a PIVP can be approximated in polynomial
time. For this, will need the following theorem to get the complexity of numerically solving
this PIVP. The idea of the proof is detailled below.
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I Theorem 8 (Complexity of Solving PIVP[34]). If 5 y : R→ Rd satisfies for all t > 0.

y(0) = y0 y′(t) = p(y(t)). (2)

Then y(t) can be computed with precision 2−µ in time bounded by

poly(deg(p), leny(0, t), log ‖y0‖ , log Σp, µ)d. (3)

More precisely, there exists a Turing machineM such that for any oracle O representing6
(y0, p, t) and any µ ∈ N,

∥∥MO(µ)− PIVP(y0, p, t)
∥∥ 6 2−µ if y(t) exists, and the number of

steps of the machine is bounded by (3) for all such oracles.

General Idea. Assume that L is analog-recognizable in the sense of Definition 4, using
corresponding notations d, q, p,Ω. Let w ∈ Γ∗ and consider the following system: y(0) =
q(ψ(w)), y′(t) = p(y(t)). We show that we can decide in time polynomial in |w| whether
w ∈ L or not. Theorem 8 can be used to conclude that we can compute y(t)± e−µ in time
polynomial in log ‖q(ψ(w))‖ , µ and leny(0, t). Recall that ‖ψ(w)‖ = |w| and that the system
is guaranteed to give an answer as soon as leny(0, t) > Ω(|w|). This means that it is enough
to compute y(t∗), where t∗ satisfies leny(0, t∗) > Ω(|w|), with precision 1/2 to distinguish
between y1(t) > 1 and y1(t) 6 −1. Since leny(0, t) > t, thanks to the technical condition of
the definition, we know that we can find a t∗ 6 Ω(|w|). Note that leny(0,Ω(|w|)) might not
be polynomial in |w| so we cannot simply compute y(Ω(|w|)).

Fortunately, the proof of Theorem 8 provides us with an algorithm that solves the PIVP
by making small time steps, and at each step the length cannot increase by more than a
constant. This means that we can run algorithm to compute y(Ω(|w|)) and stop it as soon as
the length is greater than Ω(|w|). Let t∗ be the time at which the algorithm stops. Then the
running time of the algorithm will be polynomial in t∗, µ and leny(0, t∗) 6 Ω(|w|) +O (1).
Finally, thanks to the technical condition, t∗ 6 leny(0, t∗), this algorithm has running time
polynomial in |w|.

The proof of Theorem 1 is established using the same principle based on Theorem 8,
observing in addition that functions in AP can easily be approximated by considering only
their value on rationals, since they have a polynomial modulus of continuity, as shown by
the following theorem.

It thus appears that the true remaining difficulty lies in proving Theorem 8. An important
point is that none of the classical methods for solving ordinary differential equations are
polynomial time over unbounded time domains. Indeed, no method of fixed order r is
polynomial in variable t over the whole domain R.7 For more information, we refer the reader
to [34].
I Remark. Observe that the solution of the following PIVP y′1 = y1, y

′
2 = y1y2, y

′
3 =

y2y3, . . . , y
′
n = yn−1yn is a tower of n exponentials. Its solution can be computed in

polynomial time over any fixed compact [a, b] [31]. However, the solution cannot be computed
in polynomial time over R, as just writing this value in binary cannot ever been done in
polynomial time. Hence, the solution of a PIVP cannot be computed in polynomial time,
over R, in the general case. A key feature of our method is that we are searching methods
polynomial in the length of the curve, which is not a classical framework.

5 The existence of a solution y up to a given time is undecidable [20] so we have to assume existence.
6 See [27] for more details. In short, the machine can ask arbitrary approximation of y0, p and t to the
oracle. The polynomial is represented by the finite list of coefficients.

7 This is why most studies restricts to a compact domain.
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4.2 Polytime computability implies polytime analog computability
The idea of the proof of the “if” directions is to simulate a Turing machine using a PIVP.
But this is far from trivial since we need to do it with a polynomial length.

About generable functions. The following concept can be attributed to [38]: a function
f : R → R is said to be a PIVP function if there exists a system of the form (1) with
f(t) = y1(t) for all t, where y1 denotes first component of the vector y defined in Rd. We
need in our proof to extend the concept to talk about (i) multivariable functions and (ii)
the growth of these functions. The following class and closure properties can be seen as
extensions of results from [21].

I Definition 9 (Polynomially bounded generable function). Let d, e ∈ N, I be an open and
connected subset of Rd and f : I → Re. We say that f ∈ GPVAL if and only if there exists a
polynomial sp : R→ R+, n > e, a n× d matrix p consisting of polynomials with coefficients
in K , x0 ∈ Kd, y0 ∈ Kn and y : I → Rn satisfying for all x ∈ I:

y(x0) = y0 and Jy(x) = p(y(x)) I y satisfies a differential equation8

f(x) = y1..e(x) I f is a component of y
‖y(x)‖ 6 sp(‖x‖) I y is polynomially bounded

I Lemma 10 (Closure properties of GPVAL). Let f :⊆ Rd → Rn ∈ GPVAL and g :⊆ Re →
Rm ∈ GPVAL. Then f + g, f − g, fg and f ◦ g are in GPVAL.

I Lemma 11 (Generable functions are closed under ODE). Let d ∈ N, J ⊆ R an interval,
f :⊆ Rd → Rd in GPVAL, t0 ∈ K ∩ J and y0 ∈ Kd ∩ dom f . Assume there exists y : J →
dom f , and a polynomial sp : R+ → R+ satisfying for all t ∈ J :

y(t0) = y0 y′(t) = f(y(t)) ‖y(t)‖ 6 sp(t)

Then y ∈ GPVAL and it is unique.

It follows that many polynomially bounded usual analytic9 functions are in the class
GPVAL. The inclusion GPVAL ⊂ AP holds for functions whose domain is simple enough.
However, the inclusion GPVAL ⊂ AP is strict10, since functions like the inverse of the
Gamma function Γ(x) =

∫∞
0 tx−1e−tdt or Riemann’s Zeta function ζ(x) =

∑∞
k=0

1
kx are not

differentially algebraic [38] but belong to AP.

Robustness of AP. A very strong key argument of our proof is that the notion of comput-
ability given by Definition 3 is actually very robust and can be stated in many equivalent
ways. A key point is that the definition can be weakened and strengthened. The following
theorem shows that we weaken the definition without changing the class. Since it might not
be obvious to the reader, we emphasize that this notion is a priori weaker (thus AP is a
priori larger than AWP). Indeed, (i) the system accepts errors in the input (ii) the system
does not even converge, but merely approximates the output, doing the best it can given the
input error.

8 Jy denotes the Jacobian matrix of y.
9 Functions from GPVAL are necessarily analytic, as solutions of an analytic ODE are analytic.
10Even with functions with star domains with a vantage point.
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I Theorem 12 (Weak Computability). AP = AWP where AWP corresponds to the class
of functions f :⊆ Rn → Rm such that there are some polynomials Ω : R2

+ → R+ and
Υ : R3

+ → R+, d ∈ N, p, q ∈ GPVAL, such that for any x ∈ dom f and µ ∈ R+, there exists
(a unique) y : R+ → Rd satisfying for all t ∈ R+:

y(0) = q(x, µ) and y′(t) = p(y(t)) I y satisfies a PIVP
if t > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ I y1..m approximates f(x) within e−µ
‖y(t)‖ 6 Υ(‖x‖ , µ, t) I y(t) is polynomially bounded

The proof of Theorem 12, however, is quite involved: first p and q can be equivalently
assumed to be polynomials instead of functions in GPVAL above, from Lemma 11. Then
AP ⊂ AWP, follows from the fact that this is possible to rescale the system using the length
of the curve as a new variable to make sure it does not grow faster than a polynomial time,
we get what is needed. The other direction (AWP ⊂ AP) is really harder: the first step
is to transform a computation into a computation that tolerates small perturbations of
the dynamics (AWP ⊂ ARP). The second problem is to avoid that the system explodes
for inputs not in the domain of the function, or for too big perturbation of the dynamics
perturbations on inputs (ARP ⊂ ASP). As a third step, we allow the system to have its
inputs (input and precision) changed during the computation and the system has a maximum
delay to react to these changes (ASP ⊂ AXP). Finally, as a fourth step, we add a mechanism
that feeds the system with the input and some precision. By continuously increasing the
precision with time, we ensure that the system will converge when the input is stable. The
result of these 4 steps is the following lemma, yielding a nice notion of online-computation
(AXP ⊂ AOP). Equality AP = AWP = AOP follows because time and length are related
for polynomially bounded systems. The notion of online computability is an example of a
priori strengthening of our notion of computation; yet it still corresponds to the same class of
function. Intuitively, a function is online computable if, on any (long enough) time interval
where the input is almost constant, the system converges (after some delay) the output of
the function. Of course, the output will have some error that is related to the input error
(due to the input not being exactly constant).

I Lemma 13 (Online computability). AWP ⊂ AOP, where AOP corresponds to the class of
functions f :⊆ Rn → Rm such that for polynomials Υ,Ω,Λ : R2

+ → R+, there exists δ > 0,
d ∈ N and p ∈ Kd[Rd × Rn] and y0 ∈ Kd such that for any x ∈ C0(R+,Rn), there exists (a
unique) y : R+ → Rd satisfying for all t ∈ R+:

y(0) = y0 and y′(t) = p(y(t), x(t))
‖y(t)‖ 6 Υ

(
supu∈[t−δ,t] ‖x(u)‖ , t

)
For any I = [a, b], if there exists x̄ ∈ dom f and µ̄ > 0 such that for all t ∈ I, ‖x(t)− x̄‖ 6
e−Λ(‖x̄‖,µ̄) then ‖y1..m(u)− f(x̄)‖ 6 e−µ̄ whenever a+ Ω(‖x̄‖ , µ̄) 6 u 6 b.

ODE Programming. With the closure properties of AP, programming with (polynomial
length) ODE becomes a rather pleasant exercise, once the logic is understood. For ex-
ample, simulating the assignement y := g∞ corresponds to dynamics y(0) = y0, y′(t) =
reach(φ(t), y(t), g(t)) + E(t), for a fixed function reach ∈ GPVAL, tolerating bounded error
E(t) on dynamics, and g fluctuating around g∞. Other example: from a AP system comput-
ing f , just adding the corresponding AOP-equations for g, yields a PIVP computing g ◦ f ,
by feeding output of the system computing f to the (online) input of g.

Turing machines. Consider a Turing machineM = (Q,Σ, b, δ, q0, q∞). A (instantaneous)
configuration of M can be seen as a tuple c = (x, σ, y, q) where x ∈ Σ∗ is the part of the
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tape at left of the head, y ∈ Σ∗ is the part at the right, σ ∈ Σ is the symbol under the head
and q ∈ Q the current state. Let CM be the set of configurations ofM, andM denotes the
function mapping a configuration to its next configuration. In order to simulate a machine,
we encode configurations with real numbers as follows. Recall that Γ = {0, 1, . . . , k − 2} and
let 〈c〉 = (0.x, σ, 0.y, q) ∈ Q× Σ×Q×Q where 0.x = x1k

−1 + x2k
−2 + · · ·+ x|x|k

−|x| ∈ Q
with x = x1x2 . . . x|x|.

I Theorem 14 (Robust Real Step). For any machine M, there is some function 〈M〉 ∈
AP such that for all c ∈ CM, µ ∈ R+ and c̄ ∈ R4, if ‖〈c〉 − c̄‖ 6 1

2k2 − e−µ then
‖〈M〉 (c̄, µ)− 〈M(c)〉‖ 6 k ‖〈c〉 − c̄‖.

The difficulty of the proof is that one step of Turing machine with our encoding naturally
involves computing the integer and fractional parts of a number. These operations are
discontinuous and thus cannot be done in AP in full generality. This is solved by proving
that a continuous and good enough “fractional part” like-function is in AP (and avoids
constructions from [21]).

Iterating Functions. A key point for proving the main result is to show that it is possible
to iterate a function using a PIVP under some specific hypotheses. The proof consists in
building by ODE programming an ordinary differential equation using three variables y, z
and w updating in a cycle to be repeated n times. At all time, y is an online component of
the system computing f(w). During the first stage of the cycle, w stays still and y converges
to f(w). During the second stage of the cycle, z copies y while w stays still. During the
last stage, w copies z thus effectively computing one iterate. This computes all the iterates
f(x), f [2](x), . . .. The crucial point of this process is the error estimation, to guarantee that
the system does not diverge, while keeping polynomial length. One of the key assumption
to ensure this is for f to admit a specific kind of modulus of continuity. The other key
assumption is an effective “openness” of the iteration domain.

I Theorem 15 (Closure by iteration). Let I ⊆ Rm, (f : I → Rm) ∈ AP, η ∈ [0, 1/2[
and assume that there exists a family of subsets In ⊆ I, for all n ∈ N and polynomials
f : R+ → R+ and Π : R2

+ → R+ such that:
for all n ∈ N, In+1 ⊆ In and f(In+1) ⊆ In
for all x ∈ In,

∥∥f [n](x)
∥∥ 6 Π(‖x‖ , n)

for all x ∈ In, y ∈ Rm, µ ∈ R+, if ‖x− y‖ 6 e−f(‖x‖)−µ then y ∈ I and ‖f(x)− f(y)‖ 6
e−µ.

Define f∗η (x, u) = f [n](x) for x ∈ In, u ∈ [n− η, n+ η] and n ∈ N. Then f∗η ∈ AP.

The iteration of the (transition) functions given by Theorem 14 leads to a way to emulate
any function computable in polynomial time.

At a high level, the “if” direction of Theorem 2 then follows. Indeed, decidability can be
seen as the computability of some particular function with boolean output.

For the “if” direction of Theorem 1, there are further nontrivial obstacles to overcome.
Given x ∈ [a, b] and µ ∈ N, we want to compute an approximation of f(x)±2−µ and take the
limit when µ→∞. To compute f , we will use a polynomial time computable function g that
computes f over rationals, and m a modulus of continuity. All we have to do is simulate g
with input x̃ and µ, where x̃ = x± 2−m(µ) because we can only feed the machine with a finite
input of course. The remaining nontrivial part of the proof is how to obtain the encoding of
x̃ from x and µ. Indeed, the encoding is a discrete quantity whereas x is real number, so
by a simple continuity argument, one can see that no such function can exist. The trick is
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the following: from x and µ, we can compute two encodings ψ1 and ψ2 such that at least
one of them is valid, and we know which one it is. So we are going to simulate g on both
inputs and then select the result. Again, the select operation cannot be done continuously
unless we agree to “mix” both results, i.e. we will compute αg(ψ1) + (1− α)g(ψ2). The trick
is to ensure that α = 1 or 0 when only one encoding is valid, α ∈]0, 1[ when both are valid
(by “when” we mean with respect to x). This way, a mixing of both will ensure continuity
but in fact when both encodings are valid, the outputs are nearly the same so we are still
computing f . Obtaining such encodings ψ1 and ψ2 is also nontrivial and requires more uses
of the closure by iteration property.
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