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Abstract
Designing query languages for graph structured data is an active field of research, where ex-
pressiveness and efficient algorithms for query evaluation are conflicting goals. To better handle
dynamically changing data, recent work has been done on designing query languages that can
compare values stored in the graph database, without hard coding the values in the query. The
main idea is to allow variables in the query and bind the variables to values when evaluating
the query. For query languages that bind variables only once, query evaluation is usually NP-
complete. There are query languages that allow binding inside the scope of Kleene star operators,
which can themselves be in the scope of bindings and so on. Uncontrolled nesting of binding and
iteration within one another results in query evaluation being PSPACE-complete.

We define a way to syntactically control the nesting depth of iterated bindings, and study how
this affects expressiveness and efficiency of query evaluation. The result is an infinite, syntactically
defined hierarchy of expressions. We prove that the corresponding language hierarchy is strict.
Given an expression in the hierarchy, we prove that it is undecidable to check if there is a language
equivalent expression at lower levels. We prove that evaluating a query based on an expression at
level i can be done in level i of the polynomial time hierarchy. Satisfiability of quantified Boolean
formulas can be reduced to query evaluation; we study the relationship between alternations in
Boolean quantifiers and the depth of nesting of iterated bindings.
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1 Introduction

Graph structures representing data have found many applications like semantic web [11],
social networks [19] and biological networks [13]. Theoretical models of such data typically
have a graph with nodes representing entities and edges representing relations among them.
One reason for the popularity of these models is their flexibility in handling semi-structured
data. While traditional relational databases impose rigid structures on the relations between
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data elements, graph databases are better equipped to handle data in which relations are
not precisely known and/or developing dynamically.

A fundamental query language for such models is Regular Path Queries (RPQs), which
is now part of the W3C recommendation [18]. An RPQ consists of a regular expression.
Suppose a communication network is modeled by a graph, where nodes represent servers and
edges labeled ` represent links between them. Evaluating the RPQ `˚ on this graph results in
the set of pairs of nodes between which there exists a route. Suppose each link has a priority
and we need pairs of connected nodes where all intermediate links have the same priority.
We can hard code the set of priorities in the query. If the set of priorities is not static, a
querying mechanism which avoids hard coding is better. Every edge can be labeled by a
supplementary data value (priority of the link, in this example) and we want query languages
that can compare data values without hard coding them in the syntax. Nodes can also carry
data values. In generic frameworks, there is no a priori bound on the number of possible
data values and they are considered to be elements of an infinite domain. Graph databases
with data values are often called data graphs in theory and property graphs in practice.

One way to design querying languages for data graphs is to extend RPQs using frame-
works that handle words on infinite alphabets [16, 15, 12, 23]. Expressiveness and efficient
algorithms for query evaluation are conflicting goals for designing such languages. We study
a feature common to many of these languages, and quantify how it affects the trade-off
between expressiveness and complexity of query evaluation. Variable finite automata [10]
and parameterized regular expressions [2] are conservative extensions of classical automata
and regular expressions. They have variables, which can be bound to letters of the alphabet
at the beginning of query evaluation. The query evaluation problem is NP-complete for these
languages. Regular expressions with binding (REWBs) [15] is an extended formalism where
binding of variables to values can happen inside a Kleene star, which can itself be in the
scope of another binding operator and so on. Allowing binding and iteration to occur inside
each other’s scope freely results in the query evaluation problem being Pspace-complete.
Here we study how the expressiveness and complexity of query evaluation vary when we
syntactically control the depth of nesting of iterated bindings.

Contributions
1. We syntactically classify REWBs according to the depth of nesting of iterated bindings.
2. The resulting hierarchy of data languages is strict, and so is the expressiveness of queries.
3. It is undecidable to check if a given REWB has a language equivalent one at lower levels.
4. An REWB query in level i can be evaluated in Σi in the polynomial time hierarchy.
5. For lower bounds, we consider quantified Boolean formulas with some restrictions on

quantifications and reduce their satisfiability to query evaluation, with some restrictions
on the queries.

For proving strictness of the language hierarchy, we build upon ideas from the classic star
height hierarchy [9]. Universality of REWBs is known to be undecidable [17, 12]. We combine
techniques from this proof with tools developed for the language hierarchy to prove the
third result above. The Σi upper bound for query evaluation involves complexity theoretic
arguments based on the same tools. In the reductions from satisfiability of quantified Boolean
formulas to the query evaluation problem, the relation between the number of alternations
(in the Boolean quantifiers) and the depth of nesting (of iterated bindings in REWBs) is
not straight forward. We examine this relation closely in the framework of parameterized
complexity theory, which is suitable for studying the effect of varying the structure of input
instances on the complexity.
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Related work: The quest for efficient evaluation algorithms and expressive languages to
query graph databases, including those with data values, is an active area of research; [1] is
a recent comprehensive survey. Numerous formalisms based on logics and automata exist for
handling languages over infinite alphabets [20]. In [16], the suitability of these formalisms
as query languages has been studied, zeroing in on register automata mainly for reasons of
efficient evaluation. The same paper introduced regular expressions with memory and proved
that they are equivalent to register automata. REWBs [15] have slightly less expressive power
but have better scoping structure for the binding operator. Properties of these expressions
have been further studied in [12]. In [14], XPath has been adapted to query data graphs.
Pebble automata have been adapted to work with infinite alphabets in [17]. A strict language
hierarchy based on the number of pebbles allowed in pebble automata has been developed
in [22]. Many questions about comparative expressiveness of register and pebble automata
are open [17]. Fixed-point logics can be used to define languages over infinite alphabets [4].
These logics can use the class successor relation, which relates two positions with the same
data value if no intermediate position carries the same value. Expressiveness of these logics
increase [6, 5], when the number of alternations between standard successor relation and
class successor relation increase.

2 Preliminaries

2.1 Data Languages and Querying Data Graphs

We follow the notation of [15]. Let Σ be a finite alphabet and D a countably infinite set.
The elements of D are called data values. A data word is a finite string over the alphabet
ΣˆD. We will write a data word as

`

a1
d1

˘`

a2
d2

˘

. . .
`

an

dn

˘

, where each ai P Σ and di P D. A set
of data words is called a data language.

An extension of standard regular expressions, called regular expressions with binding
(REWB), has been defined in [15]. Here, data values are compared using variables. For a set
tx1, x2, . . . , xku of variables, the set of conditions Ck is the set of Boolean combinations of x“i
and x‰i for i P t1, . . . , ku. A data value d P D and a partial valuation ν : tx1, . . . , xku Ñ D
satisfies the condition x“i (written as d, ν |ù x“i ) if νpxiq “ d. The satisfaction for other
Boolean operators are standard.

I Definition 2.1 (Regular expressions with binding (REWB) [15]). Let Σ be a finite alphabet
and tx1, . . . , xku a set of variables. Regular expressions with binding over Σrx1, . . . , xks are
defined inductively as: r :“ ε | a | arcs | r` r | r ¨ r | r˚ | a Óx prq where a P Σ is a letter
in the alphabet, c P Ck is a condition on the variables and x P tx1, . . . , xku is a variable.

We call Óx the binding operator. In the expression a Óx prq, the expression r is said to
be the scope of the binding Óx. A variable x in an expression is bound if it occurs in the
scope of a binding Óx. Otherwise it is free. We write fvprq to denote the set of free variables
in r and rpx̄q to denote that x̄ is the sequence of all free variables. The semantics of an
REWB rpx̄q over the variables tx1, . . . , xku is defined with respect to a partial valuation
ν : tx1, . . . , xku Ñ D of the variables. A valuation ν is compatible with rpx̄q if νpx̄q is defined.

I Definition 2.2 (Semantics of REWB). Let rpx̄q be an REWB over Σrx1, . . . , xks and let
ν : tx1, . . . , xku Ñ D be a valuation of variables compatible with rpx̄q. The language of data
words Lpr, νq defined by rpx̄q with respect to ν is given as follows:

ICALP 2016
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r Lpr, νq r Lpr, νq r Lpr.νq

ε tεu a t
`

a
d

˘

| d P Du arcs t
`

a
d

˘

| d, ν |ù cu

r1 ` r2 Lpr1, νq Y Lpr2, νq r1 ¨ r2 Lpr1, νq ¨ Lpr2, νq r˚1 pLpr1, νqq
˚

a Óxi pr1q
Ť

dPDt
`

a
d

˘

u ¨ Lpr1, νrxi Ñ dsq

where νrxi Ñ ds denotes the valuation which is the same as ν except for xi which is mapped
to d. An REWB r defines the data language Lprq “

Ť

ν compatible with r Lpr, νq.

For example, the REWB a Óx pbrx
“s˚q defines the set of data words of the form ab˚ with

all positions having the same data value. The REWB pa Óx pbrx“sqq˚ defines the set of data
words of the form

`

a
d1

˘`

b
d1

˘`

a
d2

˘`

b
d2

˘

¨ ¨ ¨
`

a
dn

˘`

b
dn

˘

.

I Definition 2.3 (Data graphs). A data graph G over a finite alphabet Σ and an infinite set
of data values D is a pair pV,Eq where V is a finite set of vertices, and E Ď V ˆ ΣˆD ˆ V
is a set of edges which carry labels from ΣˆD.

We do not have data values on vertices, but they can be introduced without affecting the
results. A regular data path query is of the form Q “ x

r
ÝÑ y where r is an REWB. Evaluating

Q on a data graph G results in the set QpGq of pairs of nodes xu, vy such that there exists a
data path from u to v and the sequence of labels along the data path forms a data word in
Lprq. Evaluating a regular data path query on a data graph is known to be Pspace-complete
in general and Nlogspace-complete when the query is of constant size [15]. We sometimes
identify the query Q with the expression r and write rpGq for QpGq. A query r1 is said to be
contained in another query r2 if for every data graph G, r1pGq Ď r2pGq. It is known from [12,
Proposition 3.5] that a query r1 is contained in the query r2 iff Lpr1q Ď Lpr2q. Hence, if a
class E2 of REWBs is more expressive than the class E1 in terms of defining data languages,
E2 can also express more queries than E1.

2.2 Parameterized Complexity
The size of queries are typically small compared to the size of databases. To analyze the
efficiency of query evaluation algorithms, the size of the input can be naturally split into the
size of the query and the size of the database. Parameterized complexity theory is a formal
framework for dealing with such problems. An instance of a parameterized problem is a pair
px, kq, where x is an encoding of the input structure on which the problem has to be solved
(e.g., a data graph and a query), and k is a parameter associated with the input (e.g., the size
of the query). A parameterized problem is said to be in the parameterized complexity class
Fixed Parameter Tractable (FPT) if there is a computable function f : NÑ N, a constant
c P N and an algorithm to solve the problem in time fpkq|x|c.

We will see later that the query evaluation problem is unlikely to be in FPT, when
parameterized by the size of the regular data path query. There are many parameterized
complexity classes that are unlikely to be in FPT, like W[SAT], W[P], AW[SAT] and
AW[P]. To place parameterized problems in these classes, we use FPT-reductions.

I Definition 2.4 (FPT reductions). A FPT reduction from a parameterized problem Q to
another parameterized problem Q1 is a mapping R such that:
1. For all instances px, kq of parameterized problems, px, kq P Q iff Rpx, kq P Q1.
2. There exists a computable function g : NÑ N such that for all px, kq, say with Rpx, kq “

px1, k1q, we have k1 ď gpkq.
3. There exist a computable function f : N Ñ N and a constant c P N such that R is

computable in time fpkq|x|c.
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3 Nesting Depth of Iterated Bindings and Expressive Power

A binding Óx along with a condition rx“s or rx‰s is used to constrain the possible data values
that can occur at certain positions in a data word. A binding inside a star — an iterated
binding — imposes the constraint arbitrarily many times. For instance, the expression
r1 :“ pa1 Óx1 pb1rx

“
1 sqq

˚ defines data words in pa1b1q
˚ where every a1 has the same data

value as the next b1. We now define a syntactic mechanism for controlling the nesting depth
of iterated bindings. The restrictions result in an infinite hierarchy of expressions. The
expressions at level i are generated by Fi in the grammar below, defined by induction on i.

F0 ::“ ε | a | arcs | F0 ` F0 | F0 ¨ F0 | F
˚
0

Ei ::“ Fi´1 | Ei ` Ei | Ei ¨ Ei | a Óxj
pEiq

Fi ::“ Ei | Fi ` Fi | Fi ¨ Fi | F
˚
i

where i ě 1, a P Σ, c is a condition in Ck and xj P tx1, . . . , xku. Intuitively, Ei can add
bindings over iterations (occurring in Fi´1) and Fi can add iterations over bindings (occurring
in Ei). The nesting depth of iterated bindings in an expression in Fi is therefore i. The union
of all expressions at all levels equals the set of REWBs. In this paper, we use subscripts to
denote the levels of expressions and superscripts to denote different expressions in a level: so
e1

5 is some expression in E5, f2
3 is some expression in F3.

We now give a sequence of expressions triuiě1 such that each ri is in Fi but no language
equivalent expression exists in Fi´1. For technical convenience, we use an unbounded number
of letters from the finite alphabet and an unbounded set of variables. The results can be
obtained with a constant number of letters and variables.

I Definition 3.1. Let ta1, b1, a2, b2, . . . u be an alphabet and tx1, x2, . . . u a set of variables.
We define r1 to be pa1 Óx1 pb1rx

“
1 sqq

˚. For i ě 2, define ri :“ pai Óxi
pri´1birx

“
i sqq

˚.

From the syntax, it can be seen that each ri is in Fi. To show that Lpriq cannot be
defined by any expression in Fi´1, we will use an “automaton view” of the expression, as
this makes pigeon-hole arguments simpler. No automata characterizations are known for
REWBs in general; the restrictions on the binding and star operators in the expressions of a
given level help us build specific automata in stages.

Standard finite state automata can be converted to regular expressions by considering
generalized non-deterministic finite automata, where transitions are labeled with regular
expressions instead of a single letter (see e.g., [21, Lemma 1.32]). The language of an
expression f1

i can be accepted by such an automaton, where transitions are labeled with
expressions in Ei. We will denote this automaton by Apf1

i q. Similarly, the language of an
expression e1

i can be accepted by an automaton whose transitions are labeled with expressions
in Fi´1 or with a Óx. We will denote this automaton by Ape1

i q. There are no cycles in Ape1
i q,

since e1
i can not use the Kleene ˚ operator except inside expressions in Fi´1. The runs of

Ape1
i q are sequences of pairs of a state and a valuation for variables. The valuations are

updated after every transition with a label of the form a Óx. Formal semantics are given in
Appendix A of the full version of this paper, which also contains all the proofs in detail.

We will prove that Lpriq cannot be defined by any expression in Ei (and hence not by any
expression in Fi´1). We first define the following sequence of words, which will be used in
the proof. Let tdrj1, j2s P D | j1, j2 P Nu be a set of data values such that drj1, j2s ‰ drj11, j

1
2s

ICALP 2016
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if xj1, j2y ‰ xj
1
1, j

1
2y. For every n ě 1, define the words:

u1,n :“
ˆ

a1

dr1, 1s

˙ˆ

b1

dr1, 1s

˙ˆ

a1

dr1, 2s

˙ˆ

b1

dr1, 2s

˙

¨ ¨ ¨

ˆ

a1

dr1, n2s

˙ˆ

b1

dr1, n2s

˙

ui,n :“
ˆ

ai
dri, 1s

˙

ui´1,n

ˆ

bi
dri, 1s

˙ˆ

ai
dri, 2s

˙

ui´1,n

ˆ

bi
dri, 2s

˙

¨ ¨ ¨

ˆ

ai
dri, n2s

˙

ui´1,n

ˆ

bi
dri, n2s

˙

for all i ě 2

In order to prove that Lpriq cannot be defined by any expression in Ei, we will show the
following property: if ui,n occurs as a sub-word of a word w in the language of a “sufficiently
small” expression e1

i , then the same expression accepts a word where some aj and a matching
bj have different data values. Let Mismatchi,n be the set of all data words obtained from
ui,n by modifying the data values so that there exist two positions p, p1 with p ă p1 and a
j ď i such that: p contains

`

aj

d

˘

and p1 contains
`

bj

d1

˘

with d ‰ d1; moreover between positions
p and p1, bj does not occur in the word. We consider expressions in which no two occurrences
of the binding operator use the same variable. For an expression e, let |Apeq| denote the
number of states in the automaton Apeq and |varpeq| denote the number of variables in e.

I Lemma 3.2. Let e1
i be an expression and let n P N be greater than p|Apeq| ` 1q and

p|varpeq| ` 1q for every sub-expression e of e1
i . Let ν be a valuation of fvpe1

i q and let x, z be
data words. Then: xui,nz P Lpe1

i , νq ùñ xūi,nz P Lpe
1
i , νq for some ūi,n P Mismatchi,n.

Proof idea. By induction on i. Suppose xui,nz P Lpe1
i , νq. The run of Ape1

i q on xui,nz

consists of at most n transitions, since the automaton is acyclic and has at most n states.
Each of the (at most) n transitions reads some sub-word in the language of some sub-
expression f1

i´1, while the whole word consists of n2 occurrences of aiui´1,nbi. Hence, at least
one sub word consists of n occurrences of aiui´1,nbi. A run of Apf1

i´1q on such a sub-word is
shown below.

x1 z1ai ui´1,n bi ai ui´1,n bi ai ui´1,n bi ai ui´1,n bi ai ui´1,n bi ai ui´1,n bi

q10 q11 q12 q1s´3 q1s´2 q1s´1 q1s

e1
i´1 e2

i´1 es´2
i´1 es´1

i´1 es
i´1¨ ¨ ¨

Every transition of this run reads sub-words in the language of some sub-expression eji´1. If
some transition of this run reads an entire sub-word ui´1,n (as in transition q11 ÝÑ q12), then
we can create a mismatch inside this ui´1,n by induction hypothesis. Otherwise, none of the
transitions read an ai and the corresponding bi together (as in q1s´2 ÝÑ q1s´1 in the figure).
None of the bis is compared with the corresponding ai, so the data value of one of the bis
can be changed to create a mismatch. The resulting data word will be accepted provided the
change does not result in a violation of some condition. Since the range of the valuation has
at most pn´ 1q distinct values, one of the n bis is safe for changing the data value. J

I Theorem 3.3. For any i, the language Lpriq cannot be defined by any expression in Ei.

Proof. Suppose ri is equivalent to an expression e1
i . Pick an n bigger than |Apeq| and

|fvpeq| for every sub-expression e of e1
i . The word ui,n belongs to Lpriq and hence Lpe1

i q.
By Lemma 3.2, we know that if this is the case, then ūi,n P Lpriq for some word ūi,n P

Mismatchi,n. But Lpriq cannot contain words with a mismatch. A contradiction. J

Given an expression at some level, it is possible that its language is defined by an
expression at lower levels. Next we show that it is undecidable to check this.
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I Theorem 3.4. Given an expression in Fi`1, checking if there exists a language equivalent
expression in Fi is undecidable.

Proof idea. By reduction from Post’s Correspondence Problem (PCP). The basic idea is
from the proof of undecidability of universality of REWBs and related formalisms [17, 15].
For an instance tpu1, v1q, . . . , pun, vnqu of PCP, a solution (if it exists) can be encoded by a
data word of the form w1#ri#w2, where w1 is made up of ui’s, w2 is made up of vi’s and ri
is from Definition 3.1. To ensure that such a data word indeed represents a solution, we need
to match up the ui’s in w1 with the vi’s in w2, which can be done through matching data
values. Consider the language of data words of the form w11#ri#w12 that are not solutions of
the given PCP instance. This language can be defined by an expression ∆ in Ei`1, which
compares data values in the left of #ri# with those on the right side, to catch mismatches.
We can prove that no equivalent expression exists in lower levels, using techniques used in
Lemma 3.2. On the other hand, if the given PCP instance does not have a solution, no data
word encodes a solution, so the given language is defined by Σ˚riΣ˚, which is in Fi. J

4 Complexity of Query Evaluation

In this section, we will study how the depth of nesting of iterated bindings affects the
complexity of evaluating queries. An instance of the query evaluation problem consists of a
data graph G, an REWB e, a valuation ν for fvpeq and a pair xu, vy of nodes in G. The goal
is to check if u is connected to v by a data path in Lpe, νq.

4.1 Upper Bounds

An expression in Fi can be thought of as a standard regular expression (without data values)
over the alphabet of its sub-expressions. This is the main idea behind our upper bound
results. The main result proves that evaluating queries in Ei can be done in Σi in the
polynomial time hierarchy.

I Lemma 4.1. With an oracle for evaluating Ei queries, Fi queries can be evaluated in
polynomial time.

Proof idea. Suppose the query f1
i is to be evaluated on the data graph G and f1

i consists
of the sub-expressions e1

i , . . . , e
m
i in Ei. For every j, add an edge labeled eji between those

pairs xv1, v2y of nodes of G for which xv1, v2y is in the evaluation of eji on G. Evaluating the
sub-expressions can be done with the oracle. Now f1

i can be treated as a standard regular
expression over the finite alphabet te1

i , . . . , e
m
i u, and can be evaluated in polynomial time

using standard automata theoretic techniques. J

I Theorem 4.2. For queries in Ei, the evaluation problem belongs to Σi.

Proof idea. Since bindings in Ei are not iterated, each binding is performed at most once.
The data value for each variable is guessed non-deterministically. The expression can be
treated as a standard regular expression over its sub-expressions and the guessed data values.
The sub-expressions are in Fi´1, which can be evaluated in polynomial time (Lemma 4.1)
with an oracle for evaluating queries in Ei´1. This argument will not work in general for
arbitrary REWBs — bindings that are nested deeply inside iterations and other bindings
may occur more than polynomially many times in a single path. J

ICALP 2016
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Next we consider the query evaluation problem with the size of the query as the parameter.
An instance of the parameterized weighted circuit satisfiability problem consists of a Boolean
circuit and the parameter k P N. The goal is to check if the circuit can be satisfied by a
truth assignment of weight k (i.e., one that sets exactly k propositional atoms to true). The
class W[P] is the set of all parameterized problems which are FPT-reducible to the weighted
circuit satisfiability problem.

I Theorem 4.3. Evaluating REWB queries in E1, parameterized by the size of the query is
in W[P].

Proof idea. It is proved in [3, Lemma 7, Theorem 8] that a parameterized problem is in
W[P] iff there is a non-deterministic Turing machine that takes an instance px, kq and decides
the answer within fpkq|x|c steps, of which at most fpkq log |x| are non-deterministic (for
some computable function f and a constant c). Such a Turing machine exists for evaluating
REWB queries in E1, using the steps outlined in the proof idea of Theorem 4.2. J

Thus, the number of non-deterministic steps needed to evaluate an E1 query depends only
logarithmically on the size of the data graph. It is also known that W[P] is contained in
the class para-NP — the class of parameterized problems for which there are deterministic
algorithms taking instances px, kq and computing an equivalent instance of the Boolean
satisfiability problem in time fpkq|x|c. Hence, we can get an efficient reduction to the
satisfiability problem, on which state of the art sat solvers can be run. Many hard problems
in planning fall into this category [7].

We next consider the parameterized complexity of evaluating queries at higher levels.
The parameterized class uniform-XNL is the class of parameterized problems Q for which
there exists a computable function f : NÑ N and a non-deterministic algorithm that, given
a pair px, kq, decides if px, kq P Q in space at most fpkq log |x| [3, Proposition 18].

I Theorem 4.4. Evaluating REWB queries, with size of the query as parameter, is in
uniform-XNL.

Proof idea. Let k be the size of the query e1
i to be evaluated, on a data graph with n nodes.

Suppose a pair of nodes is connected by a data path w in Lpe1
i q. Iterations in e1

i can only
occur inside its Fi´1 sub-expressions. Hence w consists of at most k sub-paths, each sub-path
wj in the language of some sub-expression f ji´1. When f ji´1 is considered as a standard
regular expression over its sub-expressions (in Ei´1), there are no bindings. By a standard
pigeon hole principle argument, we can infer that wj consists of at most kn sub-paths, each
one in the language of some sub-expression e1

i´1. This argument can be continued to prove
that w is of length at most pk2nqi. The existence of such a path can be guessed and verified
by a non-deterministic Turing machine in space Opik2 lognq. J

4.2 Lower Bounds
We obtain our lower bounds by reducing various versions of the Boolean formula satisfiability
problem to query evaluation. We begin by describing a schema for reducing the problem
of evaluating a Boolean formula on a given truth assignment to the problem of evaluating
a query on a data graph. The basic ideas for the gadgets we construct below are from [15,
proofs of Proposition 2, Theorem 5]. We will need to build on these ideas to address finer
questions about the complexity of query evaluation.

Suppose the propositional atoms used in the Boolean formula are among tpr1, . . . , prnu.
We use pr1, . . . , prn also as data values. An edge labeled

` pa
prj

˘

indicates the propositional
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atom prj occurring in a sub-formula. The data values po and ne appear on edges labeled
with the letter pn?, to indicate if a propositional atom appears positively or negatively.
The symbol ˚ denotes an arbitrary data value different from all others. We will assume
that the Boolean formula is in negation normal form, i.e., negation only appears in front of
propositional atoms. This restriction does not result in loss of generality, since any Boolean
formula can be converted into an equi-satisfiable one in negation normal form with at most
linear blowup in the size. The data graph is a series parallel digraph with a source and a
sink, defined as follows by induction on the structure of the Boolean formula.

Positively occurring propositional atom prj : ¨
pb
˚q
ÝÝÑ ¨

ppn?
po q

ÝÝÝÑ ¨
p pa

prj
q

ÝÝÝÑ ¨
pe
˚q
ÝÝÑ ¨.

Negatively occurring propositional atom prj : ¨
pb
˚q
ÝÝÑ ¨

ppn?
ne q

ÝÝÝÑ ¨
p pa

prj
q

ÝÝÝÑ ¨
pe
˚q
ÝÝÑ ¨.

φ1^ ¨ ¨ ¨^φr: inductively construct the data graphs for the conjuncts, then do a standard
serial composition, by fusing the sink of one graph with the source of the next one.
φ1 _ ¨ ¨ ¨ _ φr: inductively construct the data graphs for the disjuncts, then do a standard
parallel composition, by fusing all the sources into one node and all the sinks into another
node.
After the whole formula is handled, the source of the resulting graph is fused with the

sink of the following graph: ¨
pa

poq
ÝÝÑ ¨

pa
neq
ÝÝÑ ¨.

Let Gφ denote the data graph constructed above for formula φ. The data graph Gφ is shown
below for φ “ ppr1 _ pr2q ^ pppr2 ^ pr3q _ p pr1 ^ pr4qq.

`

a
po
˘

`

a
ne
˘

`pn?
po
˘

` pa
pr1

˘
`pn?

po
˘

` pa
pr2

˘

`

e
˚

˘ `

b
˚

˘

`pn?
po
˘

` pa
pr3

˘

`

b
˚

˘

`pn?
ne

˘

` pa
pr2

˘

`

e
˚

˘
`

b
˚

˘

`pn?
ne

˘

` pa
pr1

˘

`

e
˚

˘ `

b
˚

˘

`pn?
po
˘

` pa
pr4

˘

`

e
˚

˘

The query uses x1, . . . , xk to remember the propositional atoms that are set to true.

eevalrks :“ a Óxpo pa Óxne p (1)
pbppn?rx“pos ¨ parx“1 _ ¨ ¨ ¨ _ x“k s ` pn?rx“nes ¨ parx‰1 ^ ¨ ¨ ¨ ^ x‰k sqeq

˚ qq .

I Lemma 4.5. Let φ be a Boolean formula over the propositional atoms pr1, . . . , prn and
ν : tx1, . . . , xku Ñ tpr1, . . . , prn, ˚u be a valuation. The source of Gφ is connected to its sink
by a data path in Lpeevalrks, νq iff φ is satisfied by the truth assignment that sets exactly the
propositions in tpr1, . . . , prnu X Rangepνq to true.

Proof idea. The two bindings in the beginning of eevalrks forces xpo, xne to contain po,ne
respectively. A positively occurring propositional atom generates a data path of the form

¨
pb
˚q
ÝÝÑ ¨

ppn?
po q

ÝÝÝÑ ¨
p pa

prj
q

ÝÝÝÑ ¨
pe
˚q
ÝÝÑ ¨, which can only be in the language of the expression b ¨pn?rx“pos ¨

parx“1 _ ¨ ¨ ¨ _ x“k se. This forces prj to be contained in one of x1, . . . , xk. Similar arguments
works for negatively occurring atoms. Rest of the proof is by induction on the structure of
the formula. J

I Theorem 4.6. For queries in E1, the evaluation problem is NP-hard.

Proof idea. To check if a Boolean formula φ is satisfiable, evaluate the query a Óx1 a Óx2

¨ ¨ ¨ a Óxn eevalrns on the data graph ¨
p a

pr1{˚q
ÝÝÝÝÑ ¨

p a
pr2{˚q
ÝÝÝÝÑ ¨ ¨ ¨

p a
prn{˚

q
ÝÝÝÝÝÑ ¨ ´Gφ Ñ ¨. Here,

p a
prj {˚

q
ÝÝÝÝÑ

denotes two edges in parallel, one labeled with
`

a
prj

˘

and another with
`

a
˚

˘

. J
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Evaluating queries in E1 is NP-complete, evaluating REWB queries in general is Pspace-
complete and evaluating queries in Ei is in Σi. To prove a corresponding Σi lower bound,
one would need to simulate Σi computations using queries with bounded depth of nesting of
iterated bindings. However, this does not seem to be possible. We take a closer look at this
in the rest of the paper. Finding the exact complexity of evaluating queries in Ei remains
open.

We now extend our satisfiability-to-query evaluation schema to handle Boolean quantifiers.
Let PR “ tpr1, . . . , prnu be a set of propositional atoms. To handle existential Boolean
quantifiers, we build a new graph and a query. These gadgets build on earlier ideas to
bring out the difference in the role played by the data graph and the query while reducing

satisfiability to query evaluation. The new graph GrDk{PRs ˝G, is as follows: ¨
pa1

pr1q
ÝÝÝÑ ¨

pa1
pr2q
ÝÝÝÑ

¨ ¨ ¨
p a1

prn
q

ÝÝÝÑ ¨ ´GÑ ¨. We assume that the letter a1 is not used inside G, which is equal to Gφ
for some Boolean formula φ. The new query erDks ˝ e is defined as follows:

erDks ˝ e :“ a˚1a1 Óx1 a
˚
1a1 Óx2 a

˚
1 ¨ ¨ ¨ a

˚
1a1 Óxk

a˚1e (2)

where e “ eevalrks for some k P N.
We now give a parameterized lower bound for evaluating E1 queries. An instance of the

weighted satisfiability problem consists of a Boolean formula (not necessarily in Conjunctive
Normal Form) and a parameter k P N. The goal is to check if the formula is satisfied by a
truth assignment of weight k. The class W[SAT] is the set of all parameterized problems
that are FPT-reducible to the weighted satisfiability problem (see [8, Chapter 25]).

I Lemma 4.7. Let φ be a Boolean formula over the set PR of propositions and k P N. We
can construct in polynomial time a data graph G and an REWB e1

1 satisfying the following
conditions.
1. The source of G is connected to its sink by a data path in Lpe1

1q iff φ has a satisfying
assignment of weight k.

2. The size of e1
1 depends only on k.

Proof idea. The required data graph is GrDk{PRs ˝Gφ and e1
1 is erDks ˝ eevalrks. The data

path ¨
pa1

pr1q
ÝÝÝÑ ¨

pa1
pr2q
ÝÝÝÑ ¨ ¨ ¨

p a1
prn
q

ÝÝÝÑ ¨ in the graph GrDk{PRs ˝ Gφ has to be in the language of
a˚1a1 Óx1 a

˚
1a1 Óx2 a

˚
1 ¨ ¨ ¨ a

˚
1a1 Óxk

a˚1 . This induces a valuation ν1 which maps tx1, . . . , xku

injectively into PR, denoting the k propositions that are set to true. With this the data path
continues from the source of Gφ to its sink. Rest of the proof follows from Lemma 4.5. J

I Theorem 4.8. Evaluating REWB queries in E1, parameterized by the size of the query is
hard for W[SAT] under FPT reductions.

Proof. The reduction given in Lemma 4.7 is a FPT reduction from the weighted satisfiability
problem to the problem of evaluating E1 queries , parameterized by the size of the query. J

Finally we extend our gadgets to handle universal Boolean quantifiers. These gadgets
build upon the previous ideas and bring out the role of nested iterated bindings when
satisfiability is reduced to query evaluation. We would first like to check if the source of
some graph G is connected to its sink by a data path in the language of some REWB e,
for every possible injective valuation ν : tx1, . . . , xku Ñ PR. We will now design some data
graphs and expressions to achieve this. Let skip be a letter not used in G. The data graphs
G0, . . . , Gk are as shown in Figure 1.
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source

sink

G
`skip

pr1

˘`skip
prn

˘

Gi´1

source sink

`

ai

pr1

˘ `

ai

pr2

˘ `

ai

prn

˘ `

ai

prn

˘
`

ai

prn´1

˘
`

ai

pr1

˘

bi
cici

ci

Figure 1 Data graphs G0 (left) and Gi (right).

The expressions e0, . . . , ek are as follows.

e0 :“ e`
ă

1ďiăjďk
skiprx“i ^ x“j s ei :“ bipai Óxi pe

i´1airx
“
i sqciq

˚ (3)

The graph G0 and the expression e0 are designed to ensure that the source of G is connected
to its sink by a path in Lpe, νq, unless ν is not injective, in which case G can be bypassed by
one of the edges labeled

`skip
prj

˘

introduced in G0. The graph Gi and the expression ei are
designed to ensure that any path from the source of Gi to its sink has to go through Gi´1
multiple times, once for each prj stored in the variable xi. The nesting depth of iterated
bindings in the expression ei is one more than that of ei´1.

Suppose ν is a partial valuation of some variables, whose domain does not intersect with
tx1, . . . , xku. We denote by νrtx1, . . . , xku Ñ PRs the set of valuations ν1 that extend ν such
that domainpν1q “ domainpνqYtx1, . . . , xku and tν1px1q, . . . , ν

1pxkqu Ď PR. We additionally
require that ν1 is injective on tx1, . . . , xku when we write νrtx1, . . . , xku

1:1
ÝÝÑ PRs.

I Lemma 4.9. Let i P t1, . . . , ku and νi be a valuation for fvpeiqztx1, . . . , xiu. The source of
Gi is connected to its sink by a data path in Lpei, νiq iff for every ν P νirtx1, . . . , xiu Ñ PRs,
there is a data path in Lpe0, νq connecting the source of G0 to its sink.

Proof idea. The data path has to begin with bi
`

ai

pr1

˘

in the language of biai Óxi
, forcing xi

to store pr1. Then the path has to traverse Gi´1 using ei´1. At the sink of Gi´1, the path
is forced to take

`

ai

pr1

˘

ci to satisfy the condition in airx“i sci. This forces the path to start
again in

`

ai

pr2

˘

and so on. J

We write Gr@k{PRs ˝G and er@ks ˝ e to denote the graph Gk and REWB ek constructed
above. We implicitly assume that the variables x1, . . . , xk are not bound inside e. We can
always rename variables to ensure this. If e is in Ei, then er@ks ˝ e is in Fi`k´1.

I Lemma 4.10. Let ν be a valuation for fvpeqztx1, . . . , xku for some REWB e. The source
of Gr@k{PRs ˝ G is connected to its sink by a data path in Lper@ks ˝ e, νq iff for all ν1 P
νrtx1, . . . , xku

1:1
ÝÝÑ PRs, the source of G is connected to its sink by a data path in Lpe, ν1q.

Proof idea. Lemma 4.9 ensures that there is a path wν1 in Lpe0, ν1q connecting the source of
G0 to its sink for every valuation ν1 P νrtx1, . . . , xku Ñ PRs. From Figure 1, wν1 can either
be a skip edge, or a path through G. By definition, e0 allows a skip edge to be taken only
when two variables among x1, . . . , xk have the same data value. Hence for valuations ν1 that
are injective on tx1, . . . , xku, wν1 is in Lpe, ν1q. J
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If φ is a partially quantified Boolean formula with the propositional atoms in PR occurring
freely, we write DkPR φ to denote that atoms in PR are existentially quantified with the
constraint that exactly k of them should be set to true. We write @kPR φ to denote that
atoms in PR are universally quantified and that only those assignments that set exactly k of
the atoms to true are to be considered. An instance of the weighted quantified satisfiability
problem consists of a Boolean formula φ over the set PR of propositional atoms, a partition
PR1, . . . ,PR` of PR and numbers k1, . . . , k`. The goal is to check if pDk1PR1@

k2PR2 ¨ ¨ ¨φq is
true.

I Lemma 4.11. Given an instance of the weighted quantified satisfiability problem, We
can construct in polynomial time a data graph G and an REWB e1

1`k2`k4`¨¨¨
satisfying the

following conditions.
1. The source of G is connected to its sink by a data path in Lpe1

1`k2`k4`¨¨¨
q iff the given

instance of the weighted quantified satisfiability problem is a yes instance.
2. The size of e1

1`k2`k4`¨¨¨
depends only on k1, . . . , k`.

Proof idea. The required data graph G is GrDk1{PR1s ˝ Gr@k2{PR2s ˝ ¨ ¨ ¨ ˝ Gφ and the
required REWB e1

1`k2`k4`¨¨¨
is erDk1s ˝ er@k2s ˝ ¨ ¨ ¨ ˝ eevalrk1 ` ¨ ¨ ¨ ` k`s. We assume that

˝ associates to the right, so G1 ˝G2 ˝G3 is G1 ˝ pG2 ˝G3q and e1 ˝ e2 ˝ e3 is e1 ˝ pe2 ˝ e3q.
Correctness follows from Lemma 4.10 and Lemma 4.5. J

The weighted quantified satisfiability problem is parameterized by `` k1 ` ¨ ¨ ¨ ` k`. The
class AW[SAT] is the set of parameterized problems that are FPT-reducible to the weighted
quantified satisfiability problem (see [8, Chapter 26]).

I Theorem 4.12. Evaluating REWB queries, parameterized by the size of the query is hard
for AW[SAT] under FPT reductions.

Proof. The reduction given in Lemma 4.11 is a FPT reduction from the weighted quantified
satisfiability problem to the problem of evaluating REWB queries, with query size as the
parameter. J

5 Summary and Open Problems

We have proved that increasing the depth of nesting of iterated bindings in REWBs increase
expressiveness. Given an REWB, it is undecidable to check if its language can be defined
with another REWB with smaller depth of nesting of iterated bindings. The complexity
of query evaluation problems are summarized in the following table, followed by a list of
technical challenges to be overcome for closing the gaps.

Query level Evaluation Parameterized complexity, query size is parameter

E1 NP-complete (?2)W[SAT] lower bound, W[P] upper bound
Ei, i ą 1 (?1), Σi upper bound (?3)
Unbounded Pspace-complete [15] (?4)AW[SAT] lower bound, uniform-XNL upper bound

1. Suppose we want to check the satisfiability of a Σ2 Boolean formula over pne ` nuq

propositional atoms of which the first ne atoms are existentially quantified and the last
nu are universally quantified. With currently known techniques, reducing this to query
evaluation results in an REWB in Epnu`1q. Hence, with bounded nesting depth, we
cannot even prove a Σ2 lower bound.
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2. Weighted formula satisfiability, complete for W[SAT], can be simulated with series-
parallel graphs. Queries in E1 do not seem to be powerful enough for weighted circuits.

3. Without parameterization, the Σi upper bound is obtained by an oracle hierarchy of
NP machines. With parameterization, an oracle hierarchy of W[P] machines does not
correspond to any parameterized complexity class. See [3, Section 4] for discussions on
subtle points which make classical complexity results fail in parameterized complexity.

4. As in point 2, here one might hope for a AW[P] lower bound, which is quantified
weighted circuit satisfiability (stronger than AW[SAT], which is quantified weighted
formula satisfiability). Even if this improvement can be made, there is another classical
complexity result not having analogous result in parameterized complexity: not much is
known about the relation between parameterized alternating time bounded class (AW[P])
and parameterized space bounded class (uniform-XNL).

Acknowledgements. The authors thank Partha Mukhopadhyay and Geevarghese Philip for
helpful discussions about polynomial time hierarchy and parameterized complexity theory.
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