
The Complexity of Downward Closure
Comparisons
Georg Zetzsche∗

LSV, CNRS & ENS Cachan, Université Paris-Saclay, France
zetzsche@lsv.fr

Abstract
The downward closure of a language is the set of all (not necessarily contiguous) subwords of its
members. It is well-known that the downward closure of every language is regular. Moreover,
recent results show that downward closures are computable for quite powerful system models.

One advantage of abstracting a language by its downward closure is that then equivalence and
inclusion become decidable. In this work, we study the complexity of these two problems. More
precisely, we consider the following decision problems: Given languages K and L from classes C
and D, respectively, does the downward closure of K include (equal) that of L?

These problems are investigated for finite automata, one-counter automata, context-free gram-
mars, and reversal-bounded counter automata. For each combination, we prove a completeness
result either for fixed or for arbitrary alphabets. Moreover, for Petri net languages, we show
that both problems are Ackermann-hard and for higher-order pushdown automata of order k, we
prove hardness for complements of nondeterministic k-fold exponential time.
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1 Introduction

The downward closure of a language is the set of (not necessarily contiguous) subwords of
its members. It is a well-known result of Haines [17] that the downward closure of every
language is regular. Of course, it is not always possible to compute the downward closure of
a given language, but oftentimes it is. For example, it has been shown to be computable for
such powerful models as Petri net languages by Habermehl, Meyer, and Wimmel [14] and
higher-order pushdown automata by Hague, Kochems, and Ong [15]. A sufficient condition
for computability can be found in [34].

Moreover, not only are downward closures often computable, they are also a meaningful
abstraction of infinite-state systems. In a complex system, one can abstract a component
by the downward closure of the messages it sends to its environment. This corresponds to
the assumption that messages can be dropped on the way. Furthermore, recent work of
La Torre, Muscholl, and Walukiewicz [32] shows that among other mild conditions, computing
downward closures is sufficient for verifying safety conditions of parametrized asynchronous
shared-memory systems.

The advantage of having an abstraction of an infinite-state systems as regular languages is
that the latter offer an abundance of methods for analysis. An important example is deciding

∗ This work is supported by a fellowship within the Postdoc-Program of the German Academic Exchange
Service (DAAD).

EA
T

C
S

© Georg Zetzsche;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 123; pp. 123:1–123:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.123
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


123:2 The Complexity of Downward Closure Comparisons

behavioral equivalence or inclusion. This is notoriously hard to do and for nondeterministic
infinite-state systems, language equivalence and inclusion are usually undecidable. Using
downward closures, such behavioral comparisons can be made in an approximative manner.

Despite these facts, results about the complexity of deciding whether the downward
closure of one language includes or equals that of another mainly considered regular lan-
guages. Bachmeier, Luttenberger, and Schlund [4] have shown that the equivalence problem
for downward closures of two given NFAs is coNP-complete. Karandikar, Niewerth, and
Schnoebelen [22] strengthened coNP-hardness to the case of DFAs over binary alphabets and
proved coNP-completeness for the inclusion variant. They also obtained NL-completeness
of inclusion in the case of NFAs over a unary alphabet. Together with exponential-time
downward closure constructions [4, 7, 11, 33, 27], these results imply that equivalence and
inclusion are in coNEXP for context-free grammars. Rampersad, Shallit, and Xu [31] proved
that one can decide in linear time whether the downward closure of a given NFA contains all
words. Subsequently, Karandikar, Niewerth, and Schnoebelen [22] showed that this problem
is NL-complete. Similar questions have been studied for upward closures [4, 22].

Previous work on downward closures of infinite-state systems has mainly focused on mere
computability [1, 2, 7, 14, 15, 33, 34, 35] or on descriptional complexity [3, 10, 11, 27, 22]. This
work studies the complexity of the inclusion and the equivalence problem of downward closures
between some prominent types of system models—finite automata, one-counter automata,
reversal-bounded counter automata [19], and context-free grammars. More precisely, we are
interested in the following questions: For two system modelsM and N and languages L and
K generated by some device inM and N , respectively, what is the complexity of (i) deciding
whether K↓ ⊆ L↓ (downward closure inclusion problem) or (ii) deciding whether K↓ = L↓
(downward closure equivalence problem)?

Contribution. We determine the complexity of the downward closure inclusion problem and
the downward closure equivalence problem among finite automata, one-counter automata,
reversal-bounded counter automata (either with a fixed number of counters and reversals or
without), and context-free grammars.

For the inclusion problem, we prove completeness results in all cases except for two. The
complexities range from coNP over ΠP

2 to coNEXP (see Table 1). The two cases for which we
provide no completeness compare context-free grammars or general reversal-bounded counter
automata on the one side with reversal-bounded counter automata with a fixed number of
counters and reversals on the other side. However, we prove that both of these problems
are coNP-complete for each fixed input alphabet. For the equivalence problem, the situation
is similar. We prove completeness for each of the cases except for the combination above.
Again, fixing the alphabet leads to coNP-completeness.

The tools developed to achieve these results fall into three categories. First, there are
several generic results guaranteeing small witnesses to yield upper bounds. Second, we prove
model-specific results about downward closures that yield the upper bounds in each case.
Third, we have a general method to prove lower bounds for downward closure comparisons.
In fact, it applies to more models than the above: We prove that for Petri net languages,
the two comparison problems are Ackermann-hard. For higher-order pushdown automata of
order k, we show co-k-NEXP-hardness.

Related work. Another abstraction of formal languages is the well-known Parikh image [28].
The Parikh image of a language L ⊆ X∗ contains for each word w ∈ L a vector in N|X| that
counts the number of occurrences of each letter. For some language classes, it is known that
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Table 1 Complexity of the inclusion problem. The entry in row M and column N is the
complexity ofM ⊆↓ N . Except in the case Ideal ⊆↓ Ideal, all entries indicate completeness. A †
means that the entry refers to the fixed alphabet case (for at least two letters).

Ideal NFA OCA RBCk,r CFG RBC
Ideal ∈ L NL NL NL P NP
NFA NL coNP [4, 22] coNP [3, 4, 22] coNP coNP ΠP

2

OCA NL coNP [3, 4, 22] coNP [3, 4, 22] coNP coNP ΠP
2

RBCk,r NL coNP coNP coNP coNP ΠP
2

CFG P coNP coNP coNP† coNEXP coNEXP
RBC coNP coNP coNP coNP† coNEXP coNEXP

their Parikh image is effectively semilinear, which implies decidability of the inclusion and
equivalence problem for Parikh images. The investigation of these problems’ complexity
has been initiated by Huynh [18] in 1985, who showed that this problem is ΠP

2 -hard and
in coNEXP for regular and context-free languages. Kopczyński and To [23, 24] have then
shown that these problems are ΠP

2 -complete for fixed alphabets. Only very recently, Haase
and Hofman [13] have shown that the case of general alphabets is coNEXP-complete.

Due to space restrictions, most proofs can only be found in the full version of this
work [36].

2 Concepts and Results

If X is an alphabet, X∗ (X≤n) denotes the set of all words (of length ≤ n) over X. The
empty word is denoted by ε ∈ X∗. For words u, v ∈ X∗, we write u � v if u = u1 · · ·un and
v = v0u1v1 · · ·unvn for some u1, . . . , un, v0, . . . , vn ∈ X∗. It is well-known that � is a well-
quasi-order on X∗ and that therefore the downward closure L↓ = {u ∈ X∗ | ∃v ∈ L : u � v}
is regular for every L ⊆ X∗ [17]. An ideal is a set of the form Y ∗0 {x1, ε}Y ∗1 · · · {xn, ε}Y ∗n ,
where Y0, . . . , Yn are alphabets and x1, . . . , xn are letters. We will make heavy use of the
fact that every downward closed language can be written as a finite union of ideals, which
was first discovered by Jullien [21]. By P(S), we denote the powerset of the set S.

A finite automaton is a tuple A = (Q,X,∆, q0, Qf ), where Q is a finite set of states, X
is its input alphabet, ∆ ⊆ Q × X∗ × Q is a finite set of edges, q0 ∈ Q is its initial state,
and Qf ⊆ Q is the set of its final states. The language accepted by A is denoted L(A).
Sometimes, we write |A| for the number of states of A.

A context-free grammar is a tuple G = (N,T, P, S) where N and T are pairwise disjoint
alphabets, whose members are called the nonterminals and terminals, respectively. S ∈ N is
the start symbol and P is the finite set of productions of the form A→ w with A ∈ N and
w ∈ T ∗. The language generated by G is defined as usual.

One-counter Automata. A one-counter automaton (OCA) is a nondeterministic finite
automaton that has access to one counter that assumes natural numbers as values. The
possible operations are increment, decrement, and test for zero. We will not require a formal
definition, since in fact, all we need is the well-known fact that membership and emptiness
are NL-complete and the recent result that given an OCA A, one can compute in polynomial
time an NFA B with L(B) = L(A)↓ [3].

ICALP 2016



123:4 The Complexity of Downward Closure Comparisons

Reversal-bounded counter automata. Intuitively, an r-reversal-bounded k-counter automa-
ton [19] (short (k, r)-RBCA) is a nondeterministic finite automaton with k counters that can
store natural numbers. For each counter, it has operations increment, decrement, and zero
test. Moreover, a computation is only valid if each counter reverses at most r times. Here, a
computation reverses a counter c if on c, it first executes a sequence of increments and then
a decrement command or vice versa. See [19] for details.

Instead of working directly with RBCA, we will work here with the model of blind counter
automata [9]. It is not as well-known as RBCA, but simpler and directly amenable to linear
algebraic methods. A blind k-counter automaton is a tuple A = (Q,X, q0,∆, Qf ), where Q,
X, q0, and Qf are defined as in NFAs, but ∆ is a finite subset of Q×(X∪{ε})×{−1, 0, 1}k×Q.
A walk is a word δ1 · · · δm ∈ ∆∗ where δi = (pi, xi, di, p

′
i) for i ∈ [1,m] and p′j = pj+1 for

j ∈ [1,m− 1]. The effect of the walk is d1 + · · ·+ dm. Its input is x1 · · ·xm ∈ X∗. If the walk
has effect 0 and p0 = q0 and pm ∈ Qf , then the walk is accepting. The language accepted by
A is the set of all inputs of accepting walks.

Using blind counter automata is justified because to each (k, r)-RBCA, one can construct
in logarithmic space a language-equivalent (kr, 1)-RBCA [5], which is essentially a blind
kr-counter automaton. On the other hand, every blind k-counter automaton can be turned in
logarithmic space into a (k + 1, 1)-RBCA [20]. Hence, decision problems about (k, r)-RBCA
for fixed k and r correspond to problems about blind k-counter automata for fixed k.

In the following, by a model, we mean a way of specifying a language. In order to succinctly
refer to the different decision problems, we use symbols for the models above. By Ideal, NFA,
OCA, RBCk,r, RBC, CFG, we mean ideals, finite automata, OCA, RBCA with a fixed number
of counters and reversals, general RBCA, and context-free grammars, respectively. Then,
for M,N ∈ {Ideal,NFA,OCA,RBCk,r,RBC,CFG}, we consider the following problems. In
the downward closure inclusion problem M⊆↓ N , we are given a language K inM and a
language L in N and are asked whether K↓ ⊆ L↓. For the downward closure equivalence
problem M =↓ N , the input is the same, but we are asked whether K↓ = L↓.

Results. The complexity results for the inclusion problem are summarized in Table 1. For
the equivalence problem, we will see that every hardness result for M ⊆↓ N also holds
for M =↓ N . Since for non-ideal models, the appearing complexity classes are pairwise
comparable, this implies that the complexity for M =↓ N is then the harder of the two
classes forM⊆↓ N and N ⊆↓M. For example, the problem NFA =↓ RBC is ΠP

2 -complete
and for fixed alphabets, RBCk,r =↓ CFG is coNP-complete.

3 Ideals and Witnesses

Our algorithms for inclusion use three types of witnesses. The first type is a slight variation
of a result of [4]. The latter authors were interested in equivalence problems, which caused
their bound to depend on both input languages. The proof is essentially the same.

I Proposition 1 (Short witness). If A is an NFA and K↓ 6⊆ L(A)↓, then there exists a
w ∈ K↓ \ L(A)↓ with |w| ≤ |A|+ 1.

The other types of witnesses strongly rely on ideals, which requires some notation. An
ideal is a product I = Y ∗0 {x1, ε}Y ∗1 · · · {xn, ε}Y ∗n where the Yi are alphabets and the xi are
letters. Its length |I|I is the smallest n such that I can be written in this form. Since every
downward closed language can be written as a finite union of ideals, we can extend this
definition to languages: |L|I is the smallest n such that L↓ is a union of ideals of length ≤ n.
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Sometimes, it will be convenient to work with a different length measure of ideals. An
ideal expression (of length n) is a product L1 · · ·Ln, where each Li is of the form Y ∗ or
{x, ε}, where Y is an alphabet and x is a letter. Note that Y ∗ = Y ∗{x, ε} if x ∈ Y and
{x, ε} = ∅∗{x, ε}. Therefore, an ideal expression of length n defines an ideal of length
≤ n. In analogy to | · |I, for a language L, we define its expression length |L|E to be the
smallest n such that L↓ can be written as a finite union of ideal expressions of length ≤ n.
The expression length has the advantage of being subadditive: For languages K,L we have
|KL|E ≤ |K|E + |L|E. Moreover, we have |L|I ≤ |L|E ≤ 2|L|I + 1.

The measure | · |I turns out to be instrumental for the inclusion problem. Note that
K↓ 6⊆ L↓ if and only if there is an ideal I ⊆ K↓ of length ≤ |K|I with I 6⊆ L↓. We can
therefore guess ideals and check inclusion for them. From now on, we assume alphabets to
come linearly ordered. This means for every alphabet Y , there is a canonical word wY in
which every letter from Y occurs exactly once.

I Proposition 2 (Ideal witness). Let I = Y ∗0 {x1, ε}Y ∗1 · · · {xn, ε}Y ∗n . Then the follow-
ing are equivalent: (i) I ⊆ L↓. (ii) wm

Y0
x1w

m
Y1
· · ·xnw

m
Yn
∈ L↓ for every m ≥ |L|I + 1.

(iii) wm
Y0
x1w

m
Y1
· · ·xnw

m
Yn
∈ L↓ for some m ≥ |L|I + 1.

A word of the form wm
Y0
x1w

m
Y1
· · ·xnw

m
Yn
∈ L↓ with m ≥ |L|I + 1 is therefore called an ideal

witness for I and L. The proof of Proposition 2 is a simple pumping argument based on
the fact that an ideal of length ≤ m admits an NFA with ≤ m+ 1 states. Ideal witnesses
are useful when we have a small bound on |K|I and |L|I but only a large bound on the NFA
size of L↓. Observe that putting a bound on |L|I amounts to proving a pumping lemma: We
have |L|I ≤ n if and only if for every w ∈ L, there is an ideal I with |I|I ≤ n and x ∈ I ⊆ L↓.

However even if, say, |K|I is polynomial and |L|I is exponential, ideal witnesses can be
stored succinctly in polynomial space, by keeping a binary representation of the power m.
For instance, this will be used in the case NFA ⊆↓ RBC.

Sometimes, we have a small bound on |L|I, but |K|I may be large. Then, ideal witnesses
are too large to achieve an optimal algorithm. In these situations, we can guarantee smaller
witnesses if we fix the alphabet.

I Proposition 3 (Small alphabet witness). Let K,L ⊆ X∗. If K↓ 6⊆ L↓, then there exists a
w ∈ K↓ \ L↓ with |w| ≤ |X| · (|L|I + 1)|X|.

The proof of Proposition 3 is more involved than Propositions 2 and 1. Note that a naive
bound can be obtained by intersecting exponentially (in |L|I) many automata for the ideals
of L↓ and complementing the result. This would yield a doubly exponential (in |L|I) bound,
even considering the fact that ideals have linear-size DFAs. We can, however, use the latter
fact in a different way.

A DFA is ordered if its states can be partially ordered so that for every transition p x−→ q,
we have p ≤ q. In other words, the automaton is acyclic except for loop transitions. The
following lemma is easy to see: In order to check membership in an ideal, one just has to
keep a pointer into the expression that never moves left.

I Lemma 4. Given an ideal representation of length n, one can construct in logarithmic
space an equivalent ordered DFA with n+ 2 states.

An ordered DFA cycles at a position of an input word if that position is read using a
loop. The following lemma is the key idea behind Proposition 3. Together with Lemma 4, it
clearly implies Proposition 3. For unary alphabets, it is easy to see. We use induction on
|X| and show, roughly speaking, that without such a position, no strict subalphabet can be
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used for too long. Then, all letters have to appear often, meaning a state has to repeat after
seeing the whole alphabet. Hence, the automaton stays in this state until the end.

I Lemma 5. If w ∈ X∗ with |w| > |X| · (n − 1)|X|, then w has a position at which every
ordered n-state DFA cycles.

4 Insertion trees

In Section 5, we will show upper bounds for the size of downward closure NFAs and for ideal
lengths for counter automata. These results employ certain decompositions of NFA runs into
trees, which we discuss here. Let A = (Q,X,∆, q0, Qf ) be a finite automaton. A walk is a
word w = δ1 · · · δm ∈ ∆∗ where δi = (pi, xi, p

′
i) for i ∈ [1,m] and p′j = pj+1 for j ∈ [1,m− 1].

The walk is a (p1-)cycle if p1 = p′m. In this case, we define σ(w) := p1. A cycle is prime if
pi = p1 implies i = 1. A cycle is simple if pi = pj implies i = j. A state q occurs on the cycle
if pi = q for some i. If i 6= 1, then q occurs properly.

A common operation in automata theory is to take a run and delete cycles until the run
has length at most |Q|. The idea behind an insertion tree is to record where we deleted
which cycles. This naturally leads to a tree.

For our purposes, trees are finite, unranked and ordered. An insertion tree is a tree
t = (V,E) together with a map γ : V → ∆∗ that assigns to each vertex v ∈ V a simple cycle
γ(v) such that if u is the parent of v, then σ(γ(v)) properly occurs in γ(u). Note that we
allow multiple children for a state that occurs in γ(u).

Since t is ordered and in every simple cycle there is at most one proper occurrence of
each state, an insertion tree defines a unique (typically not simple) cycle α(t). Formally, if t
is a single vertex v, then α(t) := γ(v). If t consists of a root r and subtrees t1, . . . , ts, then
α(t) is obtained by inserting each α(ti) in γ(r) at the (unique) occurrence of σ(α(ti)). The
height of an insertion tree is the height of its tree.

I Lemma 6. Every prime cycle of A admits an insertion tree of height at most |Q|.

The idea is to pick a cycle c strictly contained in the prime cycle, but of maximal length.
Then, after removing c, no state occurs both before and after the old position of c. This
forces any insertion tree t of the remainder to place this position in the root. We then apply
induction to the subtrees of t and to c. The resulting trees can then all be attached to the
root, increasing the height by at most one.

One application of Lemma 6 is to construct short ideals in a pumping lemma for counter
automata. Part of this construction is independent from counters, so we stay with NFAs
for a moment. Suppose we have an insertion tree t = (V,E) with map γ : V → ∆∗ and a
subset F ⊆ V , whose members we call fixed vertices or fixed cycles. Those in V \F are called
pumpable vertices/cycles.

We use fixed and pumpable vertices to guide a pumping process as follows. A sequence
s = t1 · · · tm of insertion trees is called compatible if σ(α(t1)) = · · · = σ(α(tm)). We assume
that we have a global set F of vertices that designates the fixed vertices for all these trees.
Suppose v is a pumpable vertex. We obtain new compatible sequences in two ways:

Let v1, . . . , v` be the children of v. We choose i ∈ [0, `] and split up v at i, meaning that
we create a new vertex v′ with γ(v′) = γ(v) to the right of v and move vi+1, . . . , v` (and,
of course, their subtrees) to v′.
If the whole subtree under v is pumpable (we call such subtrees pumpable), then we can
duplicate this subtree and attach its root somewhere as a sibling of v.
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If v is a root, these operations mean that we introduce a new tree in the sequence. If a
compatible sequence s′ is obtained from s by repeatedly performing these operations, we say
that s′ is obtained by pumping s. This allows us to define the following language:

P (t1 · · · tm, F ) = {ι(α(t′1) · · ·α(t′k)) | t′1 · · · t′k results from pumping t1 · · · tm}.

Here, for a walk w, ι(w) denotes the input word read by w. The following lemma will yield
the desired short ideals.

I Lemma 7. Let s = t1 · · · tm be a compatible sequence of insertion trees of height ≤ h

and let F be a set of fixed vertices. Then, the language P (s, F )↓ is an ideal that satisfies
|P (s, F )↓|E ≤ h|F |(2|Q|+ |F |)2.

Roughly speaking, the pumping process is designed so that pumpable subtrees only cause
alphabets Y in factors Y ∗ of the ideal to grow and thus do not affect the ideal length. Hence,
the only vertices that contribute to the length are those that are ancestors of vertices in F .
Since the trees have height ≤ h, there are at most h|F | such ancestors.

5 Counter Automata

In this section, we construct downward closure NFAs for counter automata and prove upper
bounds for ideal lengths. Mere computability of downward closures of blind counter automata
can be deduced from computability for Petri net languages [14]. However, that necessarily
results in non-primitive recursive automata (see Section 8). As a special case of stacked
counter automata, blind counter automata were provided with a new construction method
in [35]. That algorithm, however, yields automata of non-elementary size. Here, we prove an
exponential bound.

I Theorem 8. For each n-state blind k-counter automaton A, there is an NFA B with
L(B) = L(A)↓ and |B| ≤ (3n)5nk+7k3 . Moreover, B can be computed in exponential time.

Linear Diophantine equations. In order to show correctness of our construction, we employ
a result of Pottier [29], which bounds the norm of minimal non-negative solutions to a
linear Diophantine equation. Let A ∈ Zk×m be an integer matrix. We write ‖A‖1,∞ for
supi∈[1,k](

∑
j∈[1,m] |aij |), where aij is the entry of A at row i and column j. A solution

x ∈ Nm to the equation Ax = 0 is minimal if there is no y ∈ Nm with Ay = 0 and y ≤ x,
y 6= x. The set of all solutions clearly forms a submonoid of Nm, which is denoted M . The
set of minimal solutions is denoted H(M) and called the Hilbert basis of M . Let r be the
rank of A. Pottier showed the following.

I Theorem 9 (Pottier [29]). For each x ∈ H(M), ‖x‖1 ≤ (1 + ‖A‖1,∞)r.

By applying Theorem 9 to the matrix (A| − b), it is easy to deduce that for each x ∈ Nm

with Ax = b, there is a y ∈ Nm with Ay = b, y ≤ x, and ‖y‖1 ≤ (1 + ‖(A| − b)‖1,∞)r+1.

Automata for the downward closure. Let A be a blind k-counter automaton with n states.
The idea of the construction of B is to traverse insertion trees of prime cycles of A. Although
insertion trees were introduced for finite automata, they also apply to blind counter automata
if we regard the counter updates as input symbols. B keeps track of where it is in the tree
using a stack of bounded height. The stack alphabet will be Γ = Q× [−n, n]k. We define
B = n+ n · (3n)(k+1)2 . The state set of our automaton B1 is the following:

Q1 = Q× Γ≤n × [−B,B]k × P([−n, n]k)× P([−n, n]k).

ICALP 2016
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Here, the number of states is clearly doubly exponential, but we shall make the automaton
smaller in two later steps. The idea behind B1 is that counter values in the interval [−B,B]
are simulated precisely (in the factor [−B,B]k). Roughly speaking, whenever we encounter
a cycle, we can decide whether to (i) add its effect to this precise counter or to (ii) remember
the effect as “must be added at least once”. We call the former precise cycles; the latter are
dubbed obligation cycles and are stored in the first factor P([−n, n]k). In either case, the
effect of a cycle is kept as “repeatable” in the second factor P([−n, n]k).

In order to be able to guess for each cycle whether it should be a precise cycle or an
obligation cycle, we traverse an insertion tree of (the prime cycles on) a walk of A. On
the stack (the factor Γ≤n), we keep the cycles that we have started to traverse. Suppose
we are executing a cycle in a vertex v and the path from the root to v consists of the
vertices v1, . . . , vm. Let γ(vi) be a qi-cycle for i ∈ [1,m]. Then, the stack content is
(q1, u1) · · · (qm, um), where ui is the effect of the part of γ(vi) that has already been traversed.

In the end, we verify that (i) the precise counter is zero and (ii) one can add up obligation
cycles (each of them at least once) and repeatable cycles to zero. The latter condition
is captured in the following notion. Let S, T ⊆ Zk be finite sets with S = {u1, . . . , us},
T = {v1, . . . , vt}. We call the pair (S, T ) cancellable if there are x1, . . . , xs ∈ N \ {0} and
y1, . . . , yt ∈ N with

∑s
i=1 xiui +

∑t
i=1 yivi = 0. In particular, (∅, T ) is cancellable for any

finite T ⊆ Zk. Together, (i) and (ii) guarantee that the accepted word is in the downward
closure: They imply that we could have executed all of the obligation cycles and some others
(again) to fulfill our obligation. Hence, there is a run of A accepting a superword.

The number of cycles we can use as precise cycles is limited by the capacity B of our
precise counter. We shall apply Theorem 9 to show that there is always a choice of cycles to
use as precise cycles so as to reach zero in the end and not exceed the capacity.

The first type of transition in B1 is the following. For each transition (p, a, d, q) ∈ ∆ and
state (p, ε, v, S, T ) ∈ Q1 such that v + d ∈ [−B,B]k, we have a transition

(p, ε, v, S, T ) a−→ (q, ε, v + d, S, T ). (1)

These allow us to simulate transitions in a walk of A that are not part of a cycle. We can
guess that a cycle is starting. If we are in state p, then we push (p, 0) onto the stack:

(p, w, v, S, T ) ε−→ (p, w(p, 0), v, S, T ). (2)

While we are traversing a cycle, new counter effects are stored in the topmost stack entry.
For each (p, a, d, q) ∈ ∆ and (p, w(r, u), v, S, T ) ∈ Q1 with u+ d ∈ [−n, n]k, we have:

(p, w(r, u), v, S, T ) a−→ (q, w(r, u+ d), v, S, T ). (3)

When we are at the end of a cycle, we have to decide whether it should be a precise cycle or
an obligation cycle. The following transition means it should be precise: The counter effect
u of the cycle is added to the counter v, the stack is popped, and u is added to the set of
repeatable effects T . For each (p, w(p, u), v, S, T ) ∈ Q1 with v + u ∈ [−B,B]k, we have:

(p, w(p, u), v, S, T ) ε−→ (p, w, v + u, S, T ∪ {u}). (4)

In order to designate the cycle as an obligation cycle, we have the following transition: The
stack is popped and u is added to both S and T . For each state (p, w(p, u), v, S, T ) ∈ Q1, we
include the transition

(p, w(p, u), v, S, T ) ε−→ (p, w, v, S ∪ {u}, T ∪ {u}) (5)
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The initial state is (q0, ε, 0, ∅, ∅) and the final states are all those of the form (q, ε, 0, S, T )
where q is final in A and (S, T ) is cancellable. Employing Lemma 6 and Theorem 9, one can
now show that L(A) ⊆ L(B1) ⊆ L(A)↓.

State space reduction I. We have thus shown that L(B1)↓ = L(A)↓. However, B1 has a
doubly exponential number of states. Therefore, we now reduce the number of states in
two steps. First, instead of remembering the set S of obligation effects, we only maintain
a linearly independent set of vectors generating the same vector space. For a set R ⊆ Qk,
let span(R) denote the Q-vector space generated by R. Moreover, I(R) denotes the set of
linearly independent subsets of R. Our new automaton B2 has states

Q2 = Q× Γ≤n × [−B,B]k × I([−n, n]k)× P([−n, n]k)

and a state in B2 is final if it is final in B1. B2 has the same transitions as B1, except that
aside from those of type (5), it has

(p, w(p, u), v, S, T ) ε−→ (p, w, v, S′, T ∪ {u}) (6)

for each linearly independent subset S′ ⊆ S ∪ {u} such that span(S′) = span(S ∪ {u}). Of
course, such an S′ exists for any S and u. This means, by induction on the length, for any
walk of B1 from (p, w, v, S, T ) to (q, w′, v′, S′, T ′), we can find a walk with the same input
in B2 from (p, w, v, S, T ) to (q, w′, v′, S′′, T ′) with S′′ ⊆ S′ and span(S′′) = span(S′). Since
(S′, T ′) is cancellable and S′ ⊆ T ′, the pair (S′′, T ′) is cancellable as well. This means, our
walk in B2 is accepting and hence L(B1) ⊆ L(B2). It remains to verify that L(B2) ⊆ L(B1).

Observe that for any walk arriving in (q, w, v, S, T ) in B2, there is a corresponding walk
in B1 arriving in (q, w, v, S′, T ) for some S′ ⊇ S with span(S′) = span(S). The next lemma
tells us that if (q, w, v, S, T ) is a final state in B2, then (q, w, v, S′, T ) is final in B1. This
implies that L(B2) ⊆ L(B1) and hence L(B2) = L(B1).

I Lemma 10. Let T ⊆ Zk and S1 ⊆ S2 ⊆ Zk such that span(S1) = span(S2). If (S1, T ) is
cancellable, then so is (S2, T ).

State space reduction II. We apply a similar transformation to the last factor of the state
space. In B3, we have the state space

Q3 = Q× Γ≤n × [−B,B]k × I([−n, n]k)× I([−n, n]k).

and a state is final in B3 if and only if it is final in B2. Analogous to B2, we change the
transitions so that instead of adding u ∈ [−n, n]k to T , we store an arbitrary T ′ ∈ I(T ∪{u}).

This time, it is clear that L(B3) ⊆ L(B2): For every walk in B3 arriving at (q, w, v, S, T ),
there is a corresponding walk in B2 arriving at (q, w, v, S, T ′) such that T ⊆ T ′. Clearly,
if (S, T ) is cancellable, then (S, T ′) must be cancellable as well. The following lemma
implies L(B2) ⊆ L(B3): It says that for each walk in B2 arriving at (q, w, v, S, T ), there is a
corresponding walk in B3 arriving at (q, w, v, S, T ′) for some linearly independent T ′ ⊆ T

such that (S, T ′) is cancellable and hence (q, w, v, S, T ′) is final.

I Lemma 11. Let S, T ⊆ Zk such that (S, T ) is cancellable. Then there is a linearly
independent subset T ′ ⊆ T such that (S, T ′) is cancellable.

We have thus shown that L(B3)↓ = L(A)↓. An estimation of the size of Q3 now completes
the proof of Theorem 8. We apply Theorem 8 to derive an algorithm for Ideal ⊆↓ RBC.
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I Corollary 12. The problem Ideal ⊆↓ RBC is in NP.

Since Theorem 8 provides an exponential bound on |L(A)|I, we can use an ideal witness
w = wm

Y0
x1w

m
Y1
· · ·x`w

m
Y`

(Proposition 2) for which we have to check membership in L(A).
Since ` is polynomial and m exponential, we can compute a compressed representation of w
in form of a straight-line program, a context-free grammar that generates one word [25]. It
follows easily from work of Hague and Lin [16] that membership of such compressed words
in languages of blind (or reversal-bounded) counter automata is decidable in NP.

Fixed number of counters. Unfortunately, the size bound for the NFAs provided by
Theorem 8 has the number of states in the exponent, meaning that if we fix the number
k of counters, we still have an exponential bound. In fact, we leave open whether one can
construct polynomial-size NFAs for fixed k. However, in many cases it suffices to have a
polynomial bound on the length of ideals.

I Theorem 13. If A is an n-state blind k-counter automaton, then |L(A)|I ≤ (5n)7(k+1)2 .

Recall that an upper bound on |L|I is essentially a pumping lemma (see Section 3). Here, the
idea is to take a walk of A and delete cycles until the remaining walk u is at most n steps.
For the deleted cycles, we take an insertion tree of height at most n (Lemma 6). Then, using
Theorem 9, we pick a subset F (whose size is polynomial when fixing k) of cycles that can
balance out the effect of u. We then employ Lemma 7 to the insertion trees to construct an
ideal whose length is polynomial in |F |.

6 Context-Free Grammars

We turn to context-free grammars. First, we mention that given a context-free grammar G, one
can construct in exponential time an (exponential-size) NFA accepting L(A)↓ [4, 7, 11, 33, 27].
Second, we provide an algorithm for the problem Ideal ⊆↓ CFG.

I Theorem 14. The problem Ideal ⊆↓ CFG is in P.

In [34], this problem has been reduced to the simultaneous unboundedness problem (SUP)
for context-free languages. The latter asks, given a language L ⊆ a∗1 · · · a∗n, whether we
have L↓ = a∗1 · · · a∗n. Moreover, this reduction is clearly polynomial. Hence, we assume
that L(G) ⊆ a∗1 · · · a∗n and that the grammar G = (N,T, P, S) is productive and in Chomsky
normal form, meaning that productions are of the form A → BC, A → ai, or A → ε for
A,B,C ∈ N . First, we add productions A→ ε for all A ∈ N , so that the resulting grammar
G′ satisfies L(G′) = L(G)↓. For each A ∈ N , we can in polynomial time construct a CFG
for {w ∈ (N ∪ T )∗ | A⇒∗G′ w}, so we can compute the sets Li = {A ∈ N | A⇒∗G′ aiA} and
Ri = {A ∈ N | A⇒∗G′ Aai} using membership queries. We can thus compute the grammar
Gω, which results from G′ by (i) removing all productions A → ai, (ii) adding A → aω

i A

for each A ∈ Li and (iii) adding A → Aaω
i for each A ∈ Ri. Clearly, an occurrence of aω

i

certifies the ability to generate an unbounded number of ai’s. Thus, if aω
1 · · · aω

n ∈ L(Gω),
then a∗1 · · · a∗n ⊆ L(G′) = L(G)↓. It is not hard to see that the converse is true as well. We
have thus reduced the SUP to the membership problem.

7 Algorithms

Algorithms forM⊆↓ Ideal. SupposeM = Ideal and we want to decide whether I ⊆ J for
ideals I, J ⊆ X∗. In logspace, we construct an ideal witness w for I and J (Proposition 2)
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and a DFA A for X∗ \ J (Proposition 4) and check whether w ∈ L(A). In all other cases, to
decide L↓ ⊆ I, we construct a DFA A for X∗ \ I and check whether L↓ ∩ L(A) = ∅.

Algorithms forM⊆↓ NFA. SupposeM = Ideal and we want to decide whether I ⊆ L(A)↓
for an NFA A. Since |L(A)|I ≤ |A|, we can construct in logspace an ideal witness w for I and
L(A)↓ and verify w ∈ L(A)↓. In all other cases, we use a short witness for coNP-membership.

Algorithms forM⊆↓ OCA. SupposeM = Ideal and we want to decide whether I ⊆ L(A)↓
for an OCA A. We have a polynomial bound on |L(A)|I (see Section 2). Hence, we construct
in logspace an ideal witness w for I and L(A)↓. We can also construct in logspace an OCA
A′ with L(A′) = L(A)↓. Membership for OCA is in NL = coNL, so we can verify w ∈ I and
w /∈ L(A′) = L(A)↓. In all other cases, we convert the OCA to an NFA (see Section 2).

Algorithms forM⊆↓ RBCk,r. Let A be drawn from RBCk,r. First, supposeM = Ideal
and we want to decide whether I ⊆ L(A). By Theorem 13, we have a polynomial bound
on |L(A)|I and can construct in logspace an ideal witness w for I and L(A). We can also
construct in logspace an RBCA A′ with L(A′) = L(A)↓. Since membership for RBCk,r is
in NL [12], we can check whether w ∈ L(A′). Now let M ∈ {NFA,OCA,RBCk,r} and we
are given L inM and an automaton A from RBCk,r. For NFA, OCA, and RBCk,r, we have
a polynomial bound on |L|I (see Section 2 and Theorem 13). Thus, we guess an ideal I
of polynomial length and then verify that I ⊆ L↓ but I 6⊆ L(A)↓. Since Ideal ⊆↓ M and
Ideal ⊆↓ RBCk,r are in NL, the verification is done in NL. Hence, non-inclusion is in NP. For
M ∈ {CFG,RBC}, we assume a fixed alphabet. Let L be in M. Then Proposition 3 and
Theorem 13 provide us with a witness of polynomial length. Since (non-)membership in L↓
and in L(A)↓ can be decided in NP, non-inclusion is in NP.

Algorithms for M ⊆↓ CFG. The case Ideal ⊆↓ CFG is shown in Theorem 14. Suppose
M ∈ {NFA,OCA,RBCk,r} and we are given L inM and a CFG G. We have a polynomial
bound on |L|I (see Section 2 and Theorem 13), so that we can guess a polynomial-length
ideal I. Since Ideal ⊆↓ M is in NL in every case and Ideal ⊆↓ CFG is in P, we can verify
in polynomial time that I ⊆ L↓ and I 6⊆ L(G)↓. Thus, non-inclusion is in NP. In the case
M∈ {RBC,CFG}, we construct exponential-size downward closure NFAs and check inclusion
for them (and the latter problem is in coNP). This yields a coNEXP algorithm.

Algorithms forM⊆↓ RBC. Let A be from RBC. The ideal case is treated in Corollary 12.
When given L inM∈ {NFA,OCA,RBCk,r}, we guess a polynomial length ideal I and verify
that I ⊆ L↓ in NL. Since Ideal ⊆↓ RBC is in NP, we can also check in coNP that I 6⊆ L(A)↓.
Hence, non-inclusion is in ΣP

2 . ForM∈ {CFG,RBC}, we proceed as forM⊆↓ CFG.

8 Hardness

In this section, we prove hardness results. Most of them are deduced from a generic hardness
theorem that, under mild assumptions, derives hardness from the ability to generate finite
sets with long words. We will work with bounds that exhibit the following useful property.
A monotone function f : N→ N will be called amplifying if f(n) ≥ n for n ≥ 0 and there is
a polynomial p such that f(p(n)) ≥ f(n)2 for large enough n ∈ N. We say that a model has
property ∆(f) (or short: is ∆(f)) if for each given n ∈ N, one can construct in polynomial
time a description of a finite language whose longest word has length f(n). For the sake
of simplicity, we will abuse notation slightly and write ∆(f(n)) instead of ∆(f). For a
function t : N→ N, we use coNTIME(t) to denote the complements of languages accepted by
nondeterministic Turing machines that are time bounded by O(t(nc)) for some constant c.
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We also need two mild language theoretic properties. A transducer is a finite automaton
where every edge reads input and produces output. For a transducer T and a language L,
the language T L consists of all words output by the transducer while reading a word from L.
We call a modelM a full trio model if given a transducer T and a language L described
withM, one can compute in polynomial time a description of T L. A substitution is a map
σ : X → P(Y ∗) that replaces each letter by a language. For languages L, we define σ(L)
in the obvious way. We call σ simple if X ⊆ Y and there is some x ∈ X such that for all
x′ ∈ X \ {x}, we have σ(x′) = {x′} and x occurs in each word from L at most once. We say
thatM has closure under simple substitutions if given a description of L and of σ(x) inM,
we can compute in polynomial time a description of σ(L).

I Theorem 15. Let t : N→ N be amplifying and letM and N be full trio models that are
∆(t) and have closure under simple substitutions. Then both M ⊆↓ N and M =↓ N are
hard for coNTIME(t). Moreover, this hardness already holds for binary alphabets.

Since NFAs are ∆(n), Theorem 15 yields coNP-hardness for inclusion and equivalence.
In [4], hardness of equivalence was shown directly. RBCA and CFG clearly exhibit closure
under simple substitutions and can generate exponentially long words. This yields:

I Corollary 16. ForM,N ∈ {CFG,RBC},M⊆↓ N andM =↓ N are coNEXP-hard.

From Theorem 15, we can also deduce hardness for other models. It was shown by
Habermehl, Meyer, and Wimmel [14] that downward closures or Petri net languages are
computable, which implies decidability of our problems. We use Theorem 15 to prove an
Ackermann lower bound. Let An : N → N be defined as A0(x) = x + 1, An+1(0) = An(1),
and An+1(x+ 1) = An(An+1(x)). Then, the function A : N→ N with A(n) = An(n) is the
Ackermann function. Of course, for large enough n, we have An(x) ≥ x2. For such n, we
have A(n+ 1) = An(An+1(n)) ≥ An+1(n)2 ≥ A(n)2, so A is amplifying. A result of Mayr
and Meyer [26] (see also [30]) states that given n ∈ N, one can construct in polynomial time
a Petri net that, from its initial marking, can produce up to A(n) tokens in an output place.
Hence, Petri nets are ∆(A) and they clearly satisfy the language-theoretic conditions.

I Corollary 17. For Petri net languages, inclusion and equivalence of downward closures is
Ackermann-hard.

Building on the sufficient condition of [34], Hague, Kochems, and Ong [15] have shown
that downward closures are computable for higher-order pushdown automata. However, the
method of [34] does not yield any information about the complexity of this computation.
For k ∈ N, we denote by expk the function with exp0(n) = n and expk+1(n) = 2expk(n). It
is easy to see that order-k pushdown automata are ∆(expk) (for instance, one can adapt
Example 2.5 of [8]). By co-k-NEXP, we denote the complements of languages accepted by
nondeterministic Turing machines in time O(expk(nc)) for some constant c.

I Corollary 18. For higher-order pushdown automata of order k, inclusion and equivalence
of downward closures is hard for co-k-NEXP.

Our last hardness result could also be shown using the method of Theorem 15. However,
it is simpler to reduce a variant of the subset sum problem [6].

I Proposition 19. NFA ⊆↓ RBC and NFA =↓ RBC are ΠP
2 -hard, even for binary alphabets.

We have thus shown hardness for all inclusion problems that do not involve ideals.
The remaining cases inherit hardness from the emptiness problem (forM⊆↓ Ideal) or the
non-emptiness problem (Ideal ⊆↓M).
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