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Abstract
We give NSPACE(n logn) algorithms solving the following decision problems. Satisfiability: Is the
given equation over a free partially commutative monoid with involution (resp. a free partially
commutative group) solvable? Finiteness: Are there only finitely many solutions of such an
equation? PSPACE algorithms with worse complexities for the first problem are known, but
so far, a PSPACE algorithm for the second problem was out of reach. Our results are much
stronger: Given such an equation, its solutions form an EDT0L language effectively representable
in NSPACE(n logn). In particular, we give an effective description of the set of all solutions for
equations with constraints in free partially commutative monoids and groups.
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1 Introduction

Free partially commutative monoids (a.k.a. trace monoids) and groups (a.k.a. RAAGs:
right-angled Artin groups) are well-studied objects, both in computer science (latest since
[18]) and in mathematics (with increasing impact since [24]). For years, decidability of
the satisfiability problem (i.e., the problem whether a given equation is solvable) over these
structures was open. A positive solution for trace monoids was obtained by Matiyasevich
[17] and for RAAGs by Diekert and Muscholl [8]. The known techniques did not cope with
the finiteness problem (i.e., the problem whether a given equation has only finitely many
solutions). Decidability of finiteness for trace monoids was wide open, whereas for RAAGs a
sophisticated generalization of Razborov-Makanin diagrams and geometric methods, available
for groups, yielded decidability [3], but without any complexity estimation.

We give a simple and effective description of the set of all solutions for equations with
constraints in free partially commutative monoids and groups; the correctness proof is
mathematically challenging. Once the correctness is established, the simplicity is also
reflected in a surprisingly low complexity. We give an NSPACE(n logn) upper bound for both
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satisfiability and finiteness—each problem for trace monoids as well as for RAAGs. Even for
satisfiability this complexity improves the previously known upper bounds. On the other
hand these problems are NP-hard. It remains open whether NSPACE(n logn) is optimal.

To obtain these results we apply a recent recompression technique [12], which was used as
a simple method to solve word equations. It uses simple compression operations: compress
ab into a letter c; and modify the equation so that such operations are sound. An algebraic
setting of the current paper enables a shift of perspective: the inverse operation, replacing
c by ab, is an endomorphism. Thus, the set of all solutions of an equation (solvable or
not) can be represented as a graph, whose nodes are labeled with equations and edges by
endomorphisms of free monoids. This graph can also be seen as a nondeterministic finite
automaton (NFA) that accepts a rational set of endomorphisms over a free monoid. (Recall
that a subset in a monoid M is rational if it is accepted by some NFA whose transitions
have labels from M .) It is known that applying a rational set of endomorphisms to a letter
yields an EDT0L language [1], and our construction guarantees that the obtained EDT0L
language describes exactly the set of all solution of the given equation. Moreover, as usual in
automata theory, the structure of the NFA reflects whether the solution set is finite. Last not
least, our method is conceptually simpler than all previously known approaches to solving
equations over free partially commutative structures.

Studying word equations is part of combinatorics on words for more than half a century
[2]. From the very beginning, motivation came partly from group theory: the goal was to
understand and parametrize solutions for equations in free groups. For example, Lyndon
and Schützenberger needed sophisticated combinatorial arguments to give a parametrized
solution to the equation am = bncp in a free group [14]. On the other hand, it is known that a
parametric description of the solution set is not always possible [10]. The satisfiability of word
equations in free monoids and free groups became a main open problem due to its connection
with Hilbert’s tenth problem. The problem was solved affirmative by Makanin in his seminal
papers [15, 16]. His algorithms became famous also due to the difficulty of the termination
proof and the extremely high complexity. A breakthrough to lower the complexity was
initiated by Plandowski and Rytter [21], who were the first to apply compression techniques
on word equations. Compression was also essential in showing that the satisfiability of
word equations is in PSPACE [19]. This approach was further developed [12] using the
“recompression technique”, which simplified all existing proofs for solving word equations; in
particular, it provided an effective description of all solutions; a similar representation was
given earlier by Plandowski [20]. In free groups, an algorithmic description of all solutions
was known much earlier due to Razborov [22]. His description became known as a Makanin-
Razborov diagram, a major tool in the positive solution of Tarski’s conjectures about the
elementary theory in free groups [13, 23]. None of these results provided a structural result
on the set of all solutions; interest in such results was explicitly expressed [11] by asking
whether it is an “indexed language”. Apparently, this question was posed without too much
hope that a positive answer is within reach. However, the answer was positive for quadratic
equations [9] (which is a severe restriction); the general case was established in [4]. Actually,
a stronger result holds: the set of all solutions for equations in free monoids (as well as in
free groups) is an EDT0L language, which is a proper subclass of indexed languages. The
closest results on word equations with partial commutation are in [8], but techniques used
there do not apply here as they boil down to a purely combinatorial construction of a normal
form and ignore the algebraic structure as well as the set of all solutions.
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2 Main result

Given a finite alphabet Γ, the free monoid Γ∗ is the set of all finite words over Γ with
concatenation. The empty word is denoted by 1. The length of a word w is denoted by |w|;
by |w|a we count how often the letter a appears in w. A resource function ρ : Γ→ 2R maps
elements of Γ to subsets of a finite set of resources R. We assume that R is of constant size.
The pair (Γ, ρ) is called a resource alphabet. If ρ(a) = S, then a is called an S-constant; a
nonempty sequence of S-constants is an S-run.

A resource monoid M(Γ, ρ) is the quotient of all finite words Γ∗ by a partial commutation:
M(Γ, ρ) = Γ∗/ {ab = ba | ρ(a) ∩ ρ(b) = ∅}, i.e., letters a 6= b commute if and only if they do
not share a resource. Resource monoids can equivalently be seen as free partially commutative
monoids or trace monoids. We choose the resource-based approach as it best suits our
purposes. Elements of a resource monoid are called traces. The natural projection π maps
elements of the free monoid Γ∗ to traces in M(Γ, ρ); this is not a bijection and we view
w ∈ Γ∗ as a word representation of the trace π(w). In a monoid, an element v is a factor of w
if w = pvq for some p, q. We assume that the monoid M(Γ, ρ) is equipped with an involution,
that is, a bijection x 7→ x on M(Γ, ρ) such that x = x, xy = y x for all x, y ∈ M(Γ, ρ). To
make the definition well defined, we require that ρ(x) = ρ(x) for x ∈ Γ. In the following, a
trace monoid means a resource monoid with involution. A morphism ϕ : M →M ′ between
monoids with involution is a homomorphism additionally respecting the involution. If ∆ is a
subset of M , then we often denote the restriction of ϕ to ∆ by ϕ. If ϕ(d) = d for all d ∈ ∆,
then ϕ is a ∆-morphism.

If there is no letter a ∈ Γ with a = a, then, by adding defining relations aa = 1 for all
a ∈ Γ, we obtain the free partially commutative group G(Γ, ρ). Free partially commutative
groups are also known as right-angled Artin groups or RAAGs for short. As a set, we can
identify a RAAG G(Γ, ρ) with the subset traces of the trace monoid M(Γ, ρ) without factors
aa. Such traces are called reduced. We take inversion on groups as involution; the canonical
projection of the monoid M(Γ, ρ) onto the group G(Γ, ρ) respects the involution.

Let (Γ, ρ) be a resource alphabet. An equation is a pair of words (U, V ) over an alphabet
Γ = A ∪ X has a partition into constants A and variables X , both sets are closed under
involution. A constraint is a morphism µ : M(Γ, ρ)→ N , where N is a finite monoid with
involution. For our purposes, it is enough to consider constraints such that the elements
of N can be represented by O(log |Γ|) bits, and that all necessary computations in N

(multiplication, involution, etc.) can be performed in space O(log |Γ|) and the specification
of these operations requires O(|Γ| log |Γ|) space. If (U, V ) is an equation over (Γ, ρ), then we
define the input size of an equation with constraints as n = |UV |+ |Γ|.

We write (U, V, µ) for an equation (U, V ) with constraints µ. A solution of (U, V, µ)
over M(A, ρ) is an A-morphism σ : M(A ∪ X , ρ) → M(A, ρ) such that σ(U) = σ(V ) and
µσ(X) = µ(X) for all X ∈ X . If the equation is over G(A, ρ), then instead of σ(U) = σ(V )
we require πσ(U) = πσ(V ) for the canonical projection π : M(A, ρ)→ G(A, ρ). We also say
that σ solves (U, V, µ) in M(A, ρ) (resp. in G(A, ρ)). For equations over G(A, ρ) we only
allow solutions where the trace σ(X) is reduced for all X ∈ X . The main result of this paper
is that the set of all solutions of a trace equation (resp. an equation in a RAAG) with rational
constraints is an effectively computable EDT0L language, and the underlying automaton
reflects whether there are infinitely many solutions.

I Theorem 1.
[Monoid version] There is an NSPACE(n logn) algorithm for the following task. The input
is a resource alphabet (A∪X , ρ) with involution and a trace equation (U, V, µ) with constraints
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µ in constants A and variables X = {X1, . . . , Xk}. The algorithm computes an alphabet
C ⊇ A of size O(n), constants c1, . . . , ck ∈ C, and an NFA A accepting a rational set R
of A-endomorphisms on C∗ such that: h(C∗) ⊆ A∗ for all h ∈ R and under the canonical
projection π : A∗ →M(A, ρ) we have

{(πh(c1), . . . , πh(ck)) | h ∈ R} = {(σ(X1), . . . , σ(Xk)) | σ solves (U, V, µ) in M(A, ρ)} .

Thus, the set of all solutions is an effectively computable EDT0L language. Furthermore,
(U, V, µ) has a solution if and only if A accepts a nonempty set; (U, V, µ) has infinitely
many solutions if and only if A has a directed cycle. These conditions can be tested in
NSPACE(n logn).

[Group version] The same, but solutions σ satisfy σ(U) = σ(V ) in the RAAG G(A, ρ) and
for a variable X the solution σ(X) is restricted to be a reduced trace.

Theorem 1 generalizes to systems of equations. Another generalization are finitely
generated graph products with involution over free monoids, free groups, and finite groups.
See [7] for a definition and the known results concerning solvability of equations in graph
products. This generalization is rather technical but does not reveal new ideas; it is done
elsewhere.

3 Basic concepts

Equations in RAAGs can be reduced to equations in resource monoids [8], such an approach
is standard since its introduction for free groups [5], which are reduced to free monoids. In
essence, the reduction simulates the inverse operation by involution and it enforces that the
solution in the monoids is in the reduced form by (additional) constraints. We employ a
similar approach; thus, our presentation focuses on the equations over resource monoids.

Using a standard technique one can ensure that there are no self-involuting constants in
the initial equation [8]. This step is not needed for RAAGs as a = a = a−1 implies a2 = 1 in
groups, but RAAGs are torsion-free. For technical reasons we introduce a new special symbol
#, which serves as a marker and becomes the only self-involuting constant; set ρ(#) = R

and ∅ 6= ρ(a)  R for all other constants. We let

Winit = #X1# · · ·Xk#U#V#U#V#Xk# · · ·X1#.

During the process, the #’s will not be touched, so we keep control over the prefix corre-
sponding to #X1# · · ·#Xk# which encodes the tuples (σ(X1), . . . , σ(Xk)). Moreover, we
have σ(U) = σ(V ) if and only if σ(W ) = σ(W ). Thus, we can treat a single trace as an
equation. Solutions become A-morphisms σ satisfying σ(W ) = σ(W ).

The equations that we consider are over a more general structure than a trace monoid.
To simplify the notion, we denote the equation and a monoid over which it is by a tuple
(W,B,X , ρ, θ, µ), where W ∈ (B ∪ X )∗ is the “equation” with constants B and variables
X , the mapping ρ : B ∪ X → 2R is the resource function, and µ : M(B ∪ X , ρ) → N

represents the constraints (given by the mapping µ : B∪X → N). Since 2R is a commutative
monoid, we shall view ρ as a morphism from M(B ∪ X , ρ) to 2R, too. The symbol θ
refers to a “type” which adds partial commutation. A type is given by a list of certain
pairs (x, y) ∈ (B ∪ X )+ ×B+; and each such pair yields a defining equation xy = yx. For
example, we typically have (X, y) ∈ θ when considering a solution σ with σ(X) ∈ y+. Then
ρ(X) = ρ(y), but we wish to use the fact that σ(X)y = yσ(X). This is the purpose of a
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type. We only use types in the subprocedures of block and quasi-block compression, see
Section 4.3.1. Such a monoid is denoted as M(B ∪ X , ρ, θ, µ). In most cases, θ is empty.
Then we use (W,B,X , ρ, µ) as an abbreviation of (W,B,X , ρ, ∅, µ) and M(B ∪ X , ρ, θ, µ) as
an abbreviation of M(B ∪ X , ρ, µ).

A B-solution of (W,B,X , ρ, µ) is a B-morphism σ : M(B ∪ X , ρ, µ)→M(B, ρ, µ) such
that σ(W ) = σ(W ) (i.e., it solves the equation) and µ(σ(X)) = µ(X) (i.e., it satisfies the
constraints).

During the algorithm we “increase the resources” of constants. It is useful to assume
that for every constant a ∈ A and every set of resources S with ρ(a)  S the alphabet A
has a corresponding constant with set of resources S. We denote such a constant by (a, S),
the involution on it is defined by (a, S) = (a, S). We naturally identify a with (a, ρ(a)). We
assume that the initial alphabet A is closed under taking such constants, i.e., if a ∈ A and
ρ(a) ⊆ S, then (a, S) ∈ A.

In some cases, when we “increase the resources”, we prefer to use a fresh constant of
appropriate resources: For a constant a with ρ(a)  S, by [a, S] we denote a “fresh” S-
constant outside A such that ρ([a, S]) = S, µ([a, S]) = µ(a) and [a, S] = [a, S]; replacing a
with [a, S] is called lifting.

During the algorithm we perform various operations on variables and constants. As a rule,
whenever we perform such an operation, we perform a symmetric action on the involuted
constants/variables. That is, whenever we replace X by aX, we replace X by X a; and when
we replace ab by c, then we also replace b a by c. This simplifies the description, as actions
performed on “the right side” of X are actions performed on “the left side” of X.

Whenever we perform operations on variables/constants, we want the constraints and
resources to remain unaffected (except for lifting, in which case we explicitly change the set
of resources); if we replace a trace W by a trace W ′, then (if not explicitly stated otherwise)
we ensure that ρ(W ) = ρ(W ′) and µ(W ) = µ(W ′). For instance, when replacing X by aX ′,
we set µ(X ′) so that µ(aX ′) = µ(X). The same applies to ρ. Similarly, when replacing ab by
c, we set ρ(c) = ρ(ab) and µ(c) = µ(ab). In particular, we do not mention in the description
of the procedures that we perform such operations.

A trace a1a2 · · · an has many word representations and we would like to formalize a notion
that some constants occur before others (in all word representations). To this end consider a
set of positions {1, 2, . . . , n} and the smallest partial order � such that i � j if both i ≤ j
and ρ(ai) ∩ ρ(aj) 6= ∅. A Hasse diagram H(W ) of a trace W = a1a2 · · · an is a graph with a
set of nodes {1, 2, . . . , n}, labeled with a1, a2, . . . , an. It contains (directed) edges between
immediate successors, i.e., (i, j) is an edge if i ≺ j and i � k � j implies k ∈ {i, j}. By
a standard result in trace theory [18], we have W = W ′ in M(Γ, ρ) if and only if H(W )
and H(W ′) are isomorphic as abstract node-labeled directed graphs. When considering
traces we usually work with their Hasse diagrams. If this causes no confusion, we identify
W = a1 · · · an with H(W ) and refer to labels a1, a2, . . . rather than to node names.

A constant a ∈ A is minimal in a trace W if it is minimal in its Hasse diagram, which
means that W = aY for some trace Y . We denote the set of minimal elements of W by
min(W ). Maximal elements are left-right dual; they are denoted by max(W ).

An arc a → b is an S-arc if S ∈ {ρ(a), ρ(b)}; it is balanced if ρ(a) = ρ(b), unbalanced
otherwise.
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4 NFA recognising the set of all solutions

In this section we define the NFA A that recognises the set of all solutions of a trace equation,
treated as a set of endomorphisms End(C∗) over an alphabet C ⊇ A.

4.1 The automaton
We first fix an alphabet of constants C ⊇ A of size κn, where κ is a suitable constant (which
depends on the number of resources |R|, viewed as O(1)) and a set of variables Ω with
|Ω| ≤ |C|. Henceforth, we assume A ⊆ B ⊆ C and X ⊆ Ω.

The states of the automaton A are equations of the form (W,B,X , ρ, θ, µ). Each state
V = (W,B,X , ρ, θ, µ) has a weight ‖V ‖ which is a 5-tuple of natural numbers:

‖V ‖ = (|W | , ω, ω′, |θ| , |B|) ∈ N5

with ω =
∑
a∈B(|R| − |ρ(a)|) · |W |a and ω′ = |W | − |{a ∈ B | |W |a ≥ 1}|. We order

tuples in N5 lexicographically. The NFA contains only states V whose max-norm ‖V ‖∞ =
max {|W | , ω, ω′, |θ| , |B|} ∈ N is at most κ′n for a suitable constant κ′.

The initial state is (Winit, Ainit,Xinit, ρinit, µinit), it corresponds to the input equation.
A state (W,B, ∅, ρ, µ) without variables is final if W = W has the prefix #c1# · · ·#ck#,
where c1, . . . , ck are the distinguished constants. We require that the initial state has no
incoming and the final states no outgoing transitions.

The transitions, say between V = (W,B,X , ρ, θ, µ) and V ′ = (W ′, B′,X ′, ρ′, θ′, µ′),
are labeled by A-morphisms and they either affect the variables (substitution transitions),
or the monoid (compression transitions). The former is formalized using a B-morphism
τ : M(B ∪ X , ρ, θ, µ) → M(B′ ∪ X ′, ρ′, θ′, µ′). In this case we put several requirements on
the equations: the new equation should be obtained by substitution τ(X) for each X, there
are no new constants, resources and constraints of X and τ(X) should be the same; this is
formalized as

W ′ = τ(W ), B′ = B, ρ = ρ′τ, µ = µ′τ. (1)

Moreover, τ(X) is either the empty word (it removes X from W ) or τ(X) ∈ X ∗B+X ∗
(at least one constant pops up in the substituted variable). Note that the requirement
W ′ = τ(W ) implicitly upper-bounds the size ‖τ‖, defined as

∑
a∈B∪X |τ(a)|, to be linear.

Furthermore, as B′ = B we have a natural identity morphism from M(B′, ρ′, θ′, µ′) to
M(B, ρ, θ, µ), call it the associated morphism and denote it by ε. This morphism labels the
transition, its direction is opposite of the transition and τ ; we denote the transitions from V

to V ′ with a corresponding morphism h by V h−→ V ′.
A compression transition leaves the variables invariant and so it is defined by an (A∪X )-

morphism h : M(B′ ∪ X , θ′, ρ′)→ M(B ∪ X , θ, ρ), note that it could be that θ 6= θ′ which
corresponds to a type introduction or removal; this is the associated morphism in this case.
A morphism h defined by, say h(c) = ab, represents a compression of a factor ab into a
single letter c. For its properties, W is obtained by decompression of new constants, and the
resources and constraints are preserved:

W = h(W ′), ρ′ = ρh, µ′ = µh. (2)

As in the case of substitutions, the assumption that W = h(W ′) implicitly upper-bounds
‖h‖ to linear values.
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The transition in the NFA is in the direction of the compression which is opposite to
direction of the morphism h. Note that W = h(W ′) implies ‖V ′‖ < ‖V ‖. For technical
reasons we do not allow compression transitions which introduce self-involuting letters
(such as c 7→ aa); we never compress the marker symbol #. Moreover, following the last
compression transition to final states, the restriction ‖V ′‖ < ‖V ′‖ is not applied.

So far the defined NFA can have many useless states, so as a last step we trim the
automaton, i.e., we remove all vertices not appearing on some accepting path.

The algorithmic part is finished: A can be constructed using standard arguments in
NSPACE(n logn).

By the usual definition, the recognized language R consists of all A-morphisms h1 · · ·hk,
where h1, . . . , hk are consecutive labels on an accepting path. We claim that the set of all
solutions is exactly {(πh(c1), . . . , πh(ck)) | h ∈ R} where π : A∗ → M(A, ρ) is the natural
projection.

The correctness proof boils down to show that we can calculate the exact constants
κ, κ′ (depending on R but not on n) and to prove soundness and completeness, i.e., that
h ∈ R yields a solution and that every solution can be obtained in this way. Out of those,
soundness is relatively easy to show, see Section 4.2, the completeness argument spans over
Sections 4.3–4.4. Those arguments also show the other claims on the automaton (conditions
for emptiness and acyclicity).

4.2 Soundness
As the final states have only one solution (identity), using an induction on the following
Lemma, any accepting path labeled with h1, . . . , hk yields a solution πh1 · · ·hk, which shows
soundness.

I Lemma 2. Given two states V = (W,B,X , ρ, θ, µ) and V ′ = (W ′, B′,X ′, ρ′, θ′, µ′), if
V

h−→ V ′ and V ′ has a B′-solution σ′ then V has a B-solution σ = hσ′.

The proof follows by a mechanical application of (1) or (2).

4.3 On-the-fly construction of the NFA
While we described the NFA recognizing all solutions, we did not discuss how to find the
appropriate constants κ, κ′ nor how to show completeness. For this it is easier to first describe
the construction as an “on-the-fly” algorithm, that is, given an equation (W,B,X , ρ, θ, µ)
(= current state V of the NFA) and its B-solution σ we will transform it into a different
equation (W ′, B′,X ′, ρ′, θ′, µ′) (= next state V ′ of the NFA) and a corresponding B′-solution
σ′, where V h−→ V ′ and σ = hσ′. Thus we moved from one state of the NFA to the other,
without the knowledge of the full NFA. Note that the solutions are not given explicitly, but
they are “used” in the nondeterministic choices of the algorithm.

For a fixed set of resources S traces consisting only of S-constants and variables behave
as words and we apply to them the known recompression approach: we iteratively apply
compression operations to S-runs (so we replace S-runs by new single S-constants). Those
operations are applied on constants in the equation, but conceptually we apply them to
a solution of the trace equation. To make this approach sound, we also modify the variables,
by popping S-constants from them. We apply these operations until each S-run (in the
solution) is reduced to a single S-constant; when the compressions and popping operations
are applied in appropriate order, the size of the trace equation remains linear.

ICALP 2016
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Compression of S-runs alone is not enough, as there are constants of different resources in
the solution of the trace equation. To remedy this, we gradually linearize the solution. This
is done by increasing the set of resources of particular constants: when we compressed each
S-run to a single constant, we lift all S-constants, so that all S-constants and S-variables
are eliminated from the equation. To make the whole approach work, we define an order ≤
on sets of resources: it is any linear order that extends the partial ordering by the size, i.e.,
|S| ≤ |T | implies S ≤ T . A set of resources S is called minimal (for a solution σ), if it is
minimal according to ≤ in the set {T | there is a T -constant in σ(W )}. We process the sets
of resources according to ≤, each time treating a minimal sets of resources.

4.3.1 Fixed resources
We define the actions of the algorithm eliminating the S-constants for a fixed minimal set of
resources S. To thi end, we need some notions of “easy” and “difficult” factors of σ(W ).

I Definition 3. Let (W,B,X , ρ, µ) be a state and σ its B-solution. A factor v of σ(W ) is
visible if for some occurrence at least one of its positions is obtained form a position labeled
by a constant in W ; a factor is invisible if it is not visible. A trace v is crossing if for some
occurrence of v in σ(W ) some but not all positions belong to the substitution of a variable X
by σ(X); and this occurrence is visibly crossing. A trace is noncrossing if it is not crossing.

The factors that we typically consider are pairs, i.e., ab where a 6= b 6= a, a-blocks, i.e.,
a maximal factor of the form a` (this occurrence of a` if not part of a factor a`+1), and
a-quasi-blocks, i.e., (aa)` that is not part of a factor (aa)`+1. In the latter case, aa is called
a quasi-letter. The intuitive meaning of a quasi-letter is that we cannot compress aa into
a single constant as it is would be self-involuting, hence we treat those two letters as if they
were a single constant.

Given a subalphabet S±, we consider an involuting partition (S+, S−) that satisfies the
conditions S+ = S−, S+ ∩ S− = ∅ and S+ ∪ S− = S±. Such a partition is crossing if at
least one pair ab ∈ S+S− is; it has crossing quasi-blocks if there is a ∈ S+ that has crossing
quasi-blocks. Lastly, S± has crossing blocks if there is a ∈ S± that has crossing blocks.

Pair compression is implemented essentially in the same way as in the case of word
equations. Given a pair ab with a 6= b 6= a we want to replace each factor ab in σ(W ) with a
fresh constant c. This is easy, when ab is noncrossing: it is enough to perform this operation on
W and each σ(X), the latter is done implicitly and we obtain a different solution σ′ in this way.
We also set ρ and µ for c appropriately: ρ(c) = ρ(ab) and µ(c) = µ(ab). Performing several
such compressions is possible for ab ∈ S+S−, where (S+, S−) is a noncrossing involuting
partition, as for each constant in σ(W ) we can uniquely determine to which replaced pair it
belongs (if any). We do not compress pairs aa, though, as this would create a self-involuting
letter.

We need to ensure that indeed (S+, S−) is noncrossing. A pair ab ∈ S+S− is crossing
if aX is a factor of W and b ∈ min(σ(X)). The other option is that Xb is a factor and
a ∈ max(σ(X)); it is taken care by considering bX and the pair ba. Then we replace X with
bX. After doing this, for all variables, the partition (S+, S−) is noncrossing and so we can
compress pairs in this partition.

Pair compression cannot be applied to aa, as it makes the compression of longer blocks
ambiguous. However, when a has no crossing block, (in several steps) we replace each a-block
aλ by cλ. Similarly as in the case of pair compression, we can compress blocks of several
letters in parallel, as blocks of different letters do not overlap.
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Again, to apply this subprocedure we need to ensure that each a ∈ S± has no crossing
blocks. Given a visibly crossing block a`, popping one node may be not enough as this
block may still be crossing. Thus for each variable X we pop its whole a-prefix whenever
a ∈ min(X) ∩ S, where a` is the a-prefix of a trace V when ` is maximal with V = a`V ′.

We do not apply the pair compression to aa as this introduces self-involuting letters.
Instead, we perform a variant of block compression on them: the quasi-block compression.
We replace each a-quasi-block (aa)λ with cλcλ; note that we treat a and a asymmetrically.
We again perform this operation in parallel (in several steps), for all a ∈ S+, where (S+, S−)
is an involuting partition.

For uncrossing of quasi-blocks we act the same as for uncrossing of blocks, but we pop the
whole (aa)-prefix when a ∈ S+; the aa prefix of V is the longest factor V ′ ∈ a(aa)∗ ∪ (aa)∗
such that V = V ′V ′′.

Using those operations we can process a minimal set of resources S: We iterate the
following operations as long as something changes in the equation. For each variable we
guess whether it has a minimal S-letter and if so we pop this letter. Then we compute the
set S± of visible S-constants. We uncross blocks from S± and then compress blocks of S±.
We then arbitrarily partition S± into an involuting partition (S+, S−). Then we uncross
quasi-blocks for S+ and then compress quasi-blocks from S+. We again partition S± into
an involuting partition (S+, S−); the partition is chosen so that there are many occurrences
of pairs in S+S− in the equation, see the appendix. Finally, we uncross (S+, S−) for pair
compression and perform the pair compression for (S+, S−).

Using similar arguments as in the case of word equations, one can show that the procedure
FixedResources(S) for a fixed set of resources uses linear space. Concerning the S-runs after
FixedResources(S), ideally all S-runs are of length 1 and are either visible or invisible. This
is not entirely true, as aa cannot be compressed, but those are the longest visible S-runs
that can prevail.

I Lemma 4. Let S be minimal. The length of the equation during FixedResources(S) is
linear. After FixedResources(S) there are no crossing S-runs, no S-variables. Furthermore,
visible S-runs have length at most 2.

4.3.2 Lifting arcs
Compression of S-runs alone is not enough, as there are runs for different sets of resources.
To remedy this we linearize the trace, for technical reasons it is easier to lift whole Hasse
arcs rather than individual nodes.

To lift a Hasse arc e = (a → b) we want to relabel its ends by [a, ρ(a) ∪ ρ(b)] and
[b, ρ(a) ∪ ρ(b)], i.e., by fresh (ρ(a) ∪ ρ(b))-constants. For correctness reasons we need to also
lift the edges that “correspond” to e; moreover, as in the case of compression, lifting may be
difficult when an arc connects constants in the equation with constants in the substitution
for a variable. Those notions are formalized below.

I Definition 5. Let (W,B,X , ρ, µ) be a state and σ its B-solution. A Hasse-arc a → b in
σ(W ) is visible (invisible, visibly crossing) if the corresponding factor ab in σ(W ) has this
property. Let ∼ be the smallest equivalence relation which satisfies the following conditions:

If e = (a→ b) in σ(W ) and f = (b→ a) is the corresponding arc in σ(W ), then e ∼ f .
If e is invisible and inside some σ(X) where X ∈ X and f is a corresponding arc in some
different σ(X), then e ∼ f .

We say that e is crossing if there is exists a visibly crossing f with f ∼ e; e is free otherwise.
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Note that for arcs the notion of crossing/free is finer than for traces: since it is possible
that e 6∼ e′ while both are of the form (a→ b), in particular e could be free and e′ crossing.

When e = (a→ b) is a free unbalanced arc, the promised linearization of traces is done
through lifting: let S = ρ(a) ∪ ρ(b), then for f ∼ e we change the label on each of its ends
from c ∈ {a, b, a, b} to [c, S]. Note that this balances f . To make this operation well defined,
we partially linearizes a trace: each position that was before (after) any of relabeled a, b is
now before (after) both of [a, S], [b, S] (the same is done for arc b→ a).

We can lift free arcs “for free”, but some S-arcs may be crossing. Freeing them is similar
to uncrossing factors, but we need to take into the account that ρ(a) 6= ρ(b). Thus ab could be
a crossing arc in aX and b is not a minimal element of σ(X), so it cannot be popped. Freeing
is done in two stages: first we deal with the case when b is an S-letter. Then for σ(X) = PbQ,
such that S 6= ρ(P )  ρ(X) we pop the whole P , which is done by introducing a fresh
variable, i.e., we substitute X 7→ X ′bX. The new solution is σ′(X ′) = P and σ′(X) = Q.
Then we deal with the case when a is an S-letter (and b not). Thus for σ(X) = PbQ, where
ρ(a) ∩ ρ(P ) = ∅, we substitute X 7→ X ′bX. The new solution is σ′(X ′) = P and σ′(X) = Q.
Those operations are called splitting of variables. Observe that the first splitting can be done
for any set of S-constants and all variables in parallel, while the second can be performed in
parallel for all variables and any set of constants that is a subset of {b | ρ(b) ∩ S 6= ∅}.

We want to lift all unbalanced S arcs, but this is not possible for all such arcs in parallel
due to involution: for an S-letter a and a trace bac we have to choose which arc, b→ a or
a→ c, we lift. But it can be done in stages: let (S+, S−) and (T+, T−) be involuting partitions
of all S-constants and all constants having a common resource with S, i.e., {a | ρ(a) ∩ S 6= ∅}.
Then we process all S arcs in four groups S+T+, S−T+, S+T− and S−T−; processing of each
one is similar, we describe processing of one — S+T+. We first split the variables for S+ and
then for T+, as described above. Then each arc (a → b) with ab ∈ S+T+ is free, thus we
lift those arcs. We continue with groups S−T+, S+T− and S−T−. Note that the processing
may introduce new crossing arcs, but it can be shown that they are always in next groups.
Afterwards, there are no S arcs.

Let Remove(S) be the above procedure for lifting the S-letters. It is easy to show that
after Remove(S) all S-constants and S-variables are eliminated.

I Lemma 6. After Remove(S) there are neither S-constants nor S-variables in σ(X).

4.3.3 The algorithm
TrEqSat considers possible sets of resources S in order ≤ on them. For a fixed S it first runs
FixedResources(S) and then Remove(S).

4.4 Analysis
We begin with estimating the space usage. Firstly we upper-bound the number of introduced
variables: they are introduced only during splitting of variables, which happens O(1) times
per resource set, and each variable introduces O(1) variables, which have less resources; this
yields that the number of occurrences of variables is linear in the size of the input equation.

We then estimate the length of the equation, which is also linear in the size of the input
equation: Here the estimations are similar as in the case of word equations. For a fixed
resource set S we claim that the number of S-constants in the equation stays linear and that
processing S introduces in total O(1) constants per variable. Together with the estimation
on the number of variables this yields a bound on the size of the equation.
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This guarantees that our algorithm does not exceed a space limit, but may loop forever.
Thus we want to show that solutions in consecutive steps get “smaller”. Unfortunately,
the length of σ(W ) is not good enough for our purposes, but we can define the weight of
the solutions (for an equation) and indeed show that our subprocedures decrease it. This
guarantees termination.

We then move to the correctness of the algorithm, i.e., we show how the algorithm
transforms the solutions between different equations obtained on the way. In a first step
we equip each solution with a function that tells us, what solution of the input equation it
represents. Then we show that if subprocedure transforms one equation into the other, then
the morphism associated with this transition transforms the solution of the latter equation to
a solution of the former, so that they they represent the same solution of the input equation.

4.4.1 Space usage
The below estimations of space usage do not depend on the nondeterministic choices, they
apply to all executions of the algorithm.

Comparing to the algorithms in the free monoid case, the main difference is that our
algorithm introduces new variables to the equation. This is potentially a problem, as the
whole recompression is based on the assumption that the number of constants is not altered.
However, we can still bound the number of introduced variables.

I Lemma 7. During TrEqSat there are O(n) occurrences of variables in the trace equation.

Fix a variable X for which initially T = ρ(X). Observe that ρ(X) cannot increase, though
it can decrease: resources increase by lifting arcs and we only lift free arcs, thus, each resource
of the new constant was present on one of the ends of the arc. On the other hand, popping
constants as well as splitting may decrease the resources of a variable.

We say that X directly created an occurrence of X ′ when X ′ was created in Split when it
considered X; X created X ′ when there is a sequence X = X1, X2, . . . , Xk = X ′ such that
Xi directly created Xi+1. Consider a variable X, it can be split at most eight times during
lifting of crossing arcs when we consider T ′ ⊆ R. This gives all variables that are directly
created by X. Note, that each of the directly generated variable has less resources than X:
when we replace X with X ′bX, then we require that ρ(X ′)  ρ(X ′bX).

Let f(k) be the maximal number of occurrences of variables that can be created by
a variable with at most k resources. Using the above analysis we can write a recursive
formula for f ; as the number of resources is a constant, this yields the bound.

We show that during TrEqSat the length of the trace equation is linear in the size of
the variables, this is similar as in the case of word equations and in fact the proof proceeds
using similar steps. First, we focus on FixedResources and its processing of a fixed set of
resources S. In each application of the while loop we introduce O(1) S-constants per variable
(in case of block and quasi-block compression we may introduce long blocks but they are
replaced with O(1) constants afterwards). On the other hand, using standard expected value
argument we can show that compression of a randomly chosen partition results in removal of
a constant fraction of S-constants from the equation.

Comparing the number of constants in the equation before and after processing S, it
increases only by the S-factors that were popped from variables. There are O(1) such factors
for a variable and each is of length at most 2. Thus for a fixed set of resources the size of the
equation increases by O(n). Summing over possible sets of resources (which is of constant
size) yields the claim.

I Lemma 8. During TrEqSat the length of the trace equation is O(n).
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4.4.2 Weight of solutions
To guarantee the termination, we show that all subprocedures decrease the (appropriately
defined) weight of a solution. This weight is in fact defined with respect to the original
solution: The B-solution σ corresponds to some solution of the input equation, as letters of
B correspond to some traces in the original equation. To keep track of those traces we use an
A-morphism α : M(B, ρ, θ, µ)→M(A, ρ0, µ0); the idea is that c ∈ B represents a trace α(c)
in M(A, ρ0, µ0). Conceptually, α(σ(W )) is the corresponding solution of the input equation.
We call a pair (σ, α) a solution at (W,B,X , ρ, µ), where σ is a B-solution. Note that this
morphism is a tool of analysis and proof, it is neither computed nor stored anywhere by the
algorithm.

Using the morphism we define the weight of a solution (α, σ) as ‖α, σ‖ =
∑
X∈X |ασ(X)|.

All subprocedures performed by our algorithm do not increase the weight. In order to ensure
that they all decrease some “weight”, we take into the account also the weight of the equations
and define a weight of a solution (α, σ) at a state V as (‖α, σ‖ , ‖V ‖) which is evaluated in
lexicographic order. All subprocedures decrease such defined weight. Thus, the path in NFA
for a fixed solution is finite and terminates in a final state.

4.4.3 Internal operations
So far all the described operations were performed on the equation and had some influence
also on the solutions. However, there are also operations that are needed for the proof but
are performed either on the monoid or on the solutions alone, hence they do not affect the
equation at all. For this reason we call them internal. In essence, we apply them to the
equation whenever this is possible.

A constant a ∈ B \A is useless if it does not occur in σ(W ); it is useful otherwise; useless
constants are invisible. A variable is useless if it does not occur in W . We remove from the
monoid all useless constants and variables.

Due to compression we can be left with invisible but useful constants, i.e., such that they
occur in σ(W ) but not in W .

We cannot remove such constants from B, as we deal with all solutions. However, we can
replace them with corresponding traces over M(A, ρ0, µ0). The idea is that we replaced α(c)
with c too eagerly. We revert this compression. We do not revert the linearization of the
trace, though. Thus we lift each letter in α(c) so that it has the same resources as c: we
replace every invisible letter c with (a1, ρ(c))(a2, ρ(c)) · · · (a`, ρ(c)), where α(c) = a1a2 · · · a`,
i.e., with a chain of letters corresponding to the trace compressed into c but lifted into current
resources of c. Note that we use letters from A ⊆ B, so the procedure is not applicable to
letters that it just introduced.

4.4.4 Completeness
The last step to show completeness is an observation that each given subprocedure corresponds
to a composition of finitely many substitution and compression transitions: indeed, this is
done by mechanical verification.

The completeness, formulated below, easily follows: given an equation with a solution
(α, σ) we apply the subprocedures that lead to a final state. By observation above each
subprocedure corresponds to a short path in the NFA. The guarantee on the size of the states
follows from Lemma 8. Finally, we cannot iterate forever, as each subprocedure decreases
the weight of the solution at a state.
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I Lemma 9. There is constant κ′′ ≥ 1 (depending on R but independent of n) such that for
all states V , if ‖V ‖ ≤ κ′′ · n and V has a solution (α, σ), then there exists a path to final
state labeled with h1, h2, . . . , hk such that

σ = h1h2 · · ·hk.
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