
Distance Labeling Schemes for Trees
Stephen Alstrup∗1, Inge Li Gørtz†2, Esben Bistrup Halvorsen3, and
Ely Porat4

1 University of Copenhagen, Copenhagen, Denmark
s.alstrup@di.ku.dk

2 Technical University of Copenhagen, Copenhagen, Denmark
inge@dtu.dk

3 University of Copenhagen, Copenhagen, Denmark
esben@bistruphalvorsen.dk

4 Bar-Ilan University, Bar Ilan, Israel
porately@cs.biu.ac.il

Abstract
We consider distance labeling schemes for trees: given a tree with n nodes, label the nodes with
binary strings such that, given the labels of any two nodes, one can determine, by looking only
at the labels, the distance in the tree between the two nodes.

A lower bound by Gavoille et al. [Gavoille et al., J. Alg., 2004] and an upper bound by Peleg
[Peleg, J. Graph Theory, 2000] establish that labels must use Θ(log2 n) bits1. Gavoille et al. [Ga-
voille et al., ESA, 2001] show that for very small approximate stretch, labels use Θ(logn log logn)
bits. Several other papers investigate various variants such as, for example, small distances in
trees [Alstrup et al., SODA, 2003].

We improve the known upper and lower bounds of exact distance labeling by showing that
1
4 log2 n bits are needed and that 1

2 log2 n bits are sufficient. We also give (1 + ε)-stretch labeling
schemes using Θ(logn) bits for constant ε > 0. (1 + ε)-stretch labeling schemes with polylog-
arithmic label size have previously been established for doubling dimension graphs by Talwar
[Talwar, STOC, 2004].

In addition, we present matching upper and lower bounds for distance labeling for caterpillars,
showing that labels must have size 2 logn−Θ(log logn). For simple paths with k nodes and edge
weights in [1, n], we show that labels must have size (k − 1)/k logn+ Θ(log k).

1998 ACM Subject Classification E.1 Distributed data structures, E.1 Graphs and networks,
G.2.2 Graph Theory

Keywords and phrases Distributed computing, Distance labeling, Graph theory, Routing, Trees

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.132

1 Introduction

A distance labeling scheme for a given family of graphs assigns labels to the nodes of each
graph in the family such that, given the labels of two nodes in the graph and no other
information, it is possible to determine the shortest distance between the two nodes. The
labels are assumed to be composed of bits, and the goal is to make the worst-case label size as

∗ Research partly supported by the FNU project AlgoDisc – Discrete Mathematics, Algorithms, and Data
Structures.

† Research partly supported by the Danish Research Council (DFF 1323-00178) and the Danish Research
Council under the Sapere Aude Program (DFF 4005-00267).

1 Throughout this paper we use log for log2.

EA
T

C
S

© Stephen Alstrup, Esben Bistrup Halvorsen, Inge Li Gørtz, and Ely Porat;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 132; pp. 132:1–132:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.132
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

132:2 Distance Labeling Schemes for Trees

Table 1 Results presented in this paper. ε > 0 is a constant.

Problem Lower bound Upper bound
Exact, general trees 1

4 log2 n 1
2 log2 n

(1 + ε)-stretch, general trees Θ(log n)
Caterpillars 2 log n − Θ(log log n)

Weighted paths, k nodes, weights in [1, n] k−1
k

log n + Θ(log k)

small as possible. Labeling schemes are also called implicit representation of graphs [64, 71].
The problem of finding implicit representations with small labels for specific families of graphs
was introduced in the 1960s [16, 17], and efficient labeling schemes were introduced in [44, 57].
Distance labeling for general graphs has been considered since the 1970/80s [40, 72], and
later for various restricted classes of graphs and/or approximate distances, often tightly
related to distance oracle and routing problems, see e.g. [7]. This paper focuses on distance
labels for the well studied case of trees.

Exact distances. In [61] Peleg presented an O(log2 n) bits distance labeling scheme for
general unweighted trees. In [39] Gavoille et al. proved that distance labels for unweighted
binary trees require 1

8 log2 n−O(logn) bits and presented a scheme with 1/(log 3−1) logn ≈
1.7 logn bits. This paper presents a scheme of size 1

2 log2 n+ O(logn) and further reduces
the gap by showing that 1

4 log2 n−O(logn) bits are needed. Our upper bound is a somewhat
straightforward application of a labeling scheme for nearest common ancestors [8, 9].

Approximate distances. Let distT (x, y) denote the shortest distance between nodes x, y in
a tree T . An r-additive approximation scheme returns a value dist′T (x, y), where distT (x, y) ≤
dist′T (x, y) ≤ distT (x, y)+r. An s-stretched approximation scheme returns a value dist′T (x, y),
where distT (x, y) ≤ dist′T (x, y) ≤ distT (x, y) · s. For trees of height h Gavoille et al. [32,
theorem 4] gave a 1-additive O(logn log h) bit labeling scheme. However, using an extra bit
in the label for the node depth modulo 2, it is easy to see that any 1-additive scheme can
be made exact. Gavoille et al. [32] also gave upper and lower bounds of Θ(log logn logn)
bits for (1 + 1/ logn)-stretched distance. This paper presents a scheme of size Θ(logn) for
(1 + ε)-stretch for constant ε > 0. Labeling schemes for (1 + ε)-stretch with polylogarithmic
size label have previously been given for graphs of doubling dimension [65] and planar
graphs [67].

Distances in caterpillars and paths. Labeling schemes for caterpillars have been studied
for various queries, e.g., adjacency [15]. Here we present upper and lower bounds showing
that distance labeling caterpillars requires 2 logn−Θ(log logn) bits. The upper bound is
constructed by reduction to the case of weighted paths with k > 1 nodes and positive integer
edge weights in [1, n], for which we give upper and lower bounds showing that labels must
have size k−1

k logn+ Θ(log k).

1.1 Related work

Distances in trees with small height. It is known that, for unweighted trees with bounded
height h, labels must have size Θ(logn log h). The upper bound follows from [32, Theorem 2]

S. Alstrup, E. B. Halvorsen, I. L Gørtz, and E. Porat 132:3

and the lower bound from [39, Section 3]2. In [45] distance labeling for various restricted
class of trees, including trees with bounded height, is considered, and in [66] another distance
labeling scheme for unweighted trees using O(logn log h) bits is given.

Small distances in trees. Distances in a tree between nodes at distance at most k can be
computed with labels of size logn + O(k

√
logn) [46]. In [5] it is shown that size logn +

Θ(log logn) are needed for labeling schemes supporting both parent and sibling queries.
More generally, [5] shows that, using labels of size logn+ O(log logn), the distance between
two nodes can be determined if it is at most k for some constant k, which is optimal for
k > 1. In [33, 34] further improvements are given for small distances in trees. For k = 1,
corresponding to adjacency testing, there is a sequence of papers that improve the second
order term, recently ending with [6] which establishes that logn+ Θ(1) bits are sufficient.

Various other cases for trees. Distance labeling schemes for various other cases have been
considered, e.g., for weighted trees [32, 39, 61], dynamic trees [52], and a labeling scheme
variation with extra free lookup [50, 51].

Exact and approximate distances in graphs. Distance labeling schemes for general graphs [7,
39, 40, 64, 70, 72] and various restricted graphs exist, e.g., for bounded tree-width, planar and
bounded degree [39], distance-hereditary [36], bounded clique-width [22], some non-positively
curved plane [19], interval [37] and permutation graphs [14]. Approximate distance labeling
schemes, both additive and stretched, are also well studied; see e.g., [18, 26, 32, 35, 39, 41,
42, 53, 61, 69]. An overview of distance labeling schemes can be found in [7].

1.2 Second order terms for labeling schemes are theoretically well
studied

Chung’s solution in [20] gives labels of size logn + O(log logn) for adjacency labeling in
trees, which was improved to logn+O(log∗ n) in FOCS’02 [13] and in [15, 20, 29, 30, 47] to
logn+ Θ(1) for various special cases. Finally it was improved to logn+ Θ(1) for general
trees in FOCS’15 [6].

A recent STOC’15 paper [11] improves label size for adjacency in general graphs from
n/2 +O(logn) [44, 56] to n/2 +O(1) almost matching an (n− 1)/2 lower bound [44, 56].

Likewise, the second order term for ancestor relationship is improved in a sequence of
STOC/SODA papers [2, 4, 12, 30, 31] (and [1, 47]) to Θ(log logn), giving labels of size
logn+ Θ(log logn).

Somewhat related, succinct data structures (see, e.g., [24, 27, 28, 58, 59]) focus on the
space used in addition to the information theoretic lower bound, which is often a lower order
term with respect to the overall space used.

1.3 Labeling schemes in various settings and applications
Using labeling schemes to compute locally and distributed, it is possible to avoid costly access
to large global tables. Such properties are used, e.g., in XML search engines [2], network
routing and distributed algorithms [23, 25, 68, 69], dynamic and parallel settings [21, 52],
graph representations [44], and other applications [48, 49, 60, 61, 62].

2 We thank Gavoille for pointing this out.

ICALP 2016

132:4 Distance Labeling Schemes for Trees

Trees have always been a subject of special interest in the routing literature (see e.g.
[3, 10, 55, 73]). As pointed out by Leighton [54], many networks are simply trees, and,
moreover, routing in general graphs may be done using only the edges of a spanning tree of
the graph. In [68] a O(logn) labeling routing scheme for tree is given. This e.g. combined
with one of the results in this paper makes it possible using labels of size O(logn) not only
to route packets in trees, but also estimate the distance to its destination.

Various computability requirements are sometimes imposed on labeling schemes [2, 44, 48].
This paper assumes the RAM model.

2 Preliminaries

Trees. Given nodes u, v in a rooted tree T , u is an ancestor of v and v is a descendant of u,
if u is on the unique path from v to the root. For a node u of T , denote by Tu be the subtree
of T consisting of all the descendants of u (including itself). The depth of u is the number
of edges on the unique simple path from u to the root of T . The nearest common ancestor
(NCA) of two nodes is the unique common ancestor with largest depth. Let T [u, v] denote
the nodes on the simple path from u to v in T . The variants T (u, v] and T [u, v) denote the
same path without the first and last node, respectively. The distance between u and v is
the number dist(u, v) = |T (u, v]|. We set distroot(v) = dist(v, r), where r is the root of T .
A caterpillar is a tree whose non-leaf nodes form a path, called the spine.

Heavy-light decomposition (From [63]). Let T be a rooted tree. The nodes of T are
classified as either heavy or light as follows. The root r of T is light. For each non-leaf node
v, pick one child w where |Tw| is maximal among the children of v and classify it as heavy;
classify the other children of v as light. The apex of a node v is the nearest light ancestor of v.
By removing the edges between light nodes and their parents, T is divided into a collection
of heavy paths. Any given node v has at most logn light ancestors (see [63]), so the path
from the root to v goes through at most logn heavy paths.

Bit strings. A bit string s is a member of the set {0, 1}∗. We denote the length of a bit
string s by |s|, the ith bit of s by si, and the concatenation of two bit strings s, s′ by s ◦ s′.
We say that s1 is the most significant bit of s and s|s| is the least significant bit.

Labeling schemes. An distance labeling scheme for trees of size n consists of an encoder
e and a decoder d. Given a tree T , the encoder computes a mapping eT : V (T) → {0, 1}∗

assigning a label to each node u ∈ V (T). The decoder is a mapping d : {0, 1}∗×{0, 1}∗ → Z+,
where Z+ denotes the positive integers, such that, given any tree T and any pair of nodes
u, v ∈ V (T), d(e(u), e(v)) = dist(u, v). Note that the decoder does not know T . The size of
a labeling scheme is defined as the maximum label size |eT (u)| over all trees T and all nodes
u ∈ V (T). If, for all trees T , the mapping eT is injective we say that the labeling scheme
assigns unique labels.

3 Distances on weighted paths

In this section we study the case of paths with k nodes and integral edge weights in [1, n].
The solution to this problem will later be used to establish the upper bound for caterpillars.

S. Alstrup, E. B. Halvorsen, I. L Gørtz, and E. Porat 132:5

3.1 Upper Bound

I Theorem 1. There exist a distance labeling scheme for paths with k nodes and positive
integral edge weights in [1, n] with labels of size k−1

k logn+O(log k).

Proof. We begin by considering the family of paths with k nodes, integral edge weights and
diameter < n. We shall prove that there exists a distance labeling scheme for this family
with labels of size k−1

k logn+ log k + O(log log k).
So consider such a path, and root it in one of its end nodes, denoted v0. Denote the

nodes on the path v0, . . . , vk−1 in order. Let di = distroot(vi) and note that, by assumption,
di < n for all i. We will let the label for vi store the number di + x for some x < n that
allows us to represent di + x compactly. Since we use the same x for all nodes, we can easily
compute the distance between any pair of nodes vi, vj as |(di + x)− (dj + x)|.

Since we choose x < n, the largest number stored in a label will be dk + x < 2n, which
can be represented with exactly L = dlog(2n)e bits. Divide those L bits to k + 1 segments,
whereof k have ` = bL/kc bits and the last segment contains the remaining bits. The first
segment, segment 0, will contain the ` least significant bits, segment 1 the following ` bits
and so on. We will choose x such that the representation of di + x has 0s in all the bits
in the i’th segment. If we manage to do so, we will be able to encode each di + x with
L − ` + dlog ke bits. Indeed, we can use exactly dlog ke bits to represent i, and the next
L− ` bits to represent di + x where we skip the i’th segment. Prefixing with a string in the
form 0dlogdlog kee1, we get a string from which we can determine the number of bits needed
to write dlog ke and therefrom the numbers i and di + x. We use this string as the label for
vi. The label length is L− `+ dlog ke+ dlog dlog kee+ 1 = k−1

k logn+ log k +O(log log k).
It remains to show that there exist a number x < n as described. In the following we shall,

as in the above, represent numbers < 2n with L bits that are divided into k + 1 segments
whereof the first k have size `. For i < k and y < 2n, let a(i, y) be a function which returns
a number z with the following properties:
(i) In z, all bits outside segment i are 0.
(ii) z + y has only 0s in segment i.
This function is constructed as follows. If y only has 0s in segment i, let a(i, y) = 0. Otherwise
take the representation of y, zero out all bits outside segment i, reverse the bits in segment i
and add v to the resulting number, where v has a 1 in the least significant bit of segment i
and 0s in all other positions.

Note that from (i) it follows that adding z to any number will not change bits in less
significant positions than segment i. We can now scan through the nodes v0, . . . vk−1,
increasing x by adding bits to x in more and more significant positions (in non-overlapping
segments), as follows:

Set x = 0.

For i = 1 . . . , k − 1, set x = x+ a(i, x+ di).
After iteration i we have that x+ di in segment i only has 0s, and in the following iterations,
1s are only added to x in more significant bit positions, meaning that di + x continues to
have only 0s in segment i. Since the segments are non-overlapping, we end up with x < n.

For the more general family of paths with k nodes and edge weights in [1, n], we simply
note that the diameter of any path in this family is at most kn. Using the above result thus
immediately gives us a labeling scheme with labels of size k−1

k logn+O(log k). J

ICALP 2016

132:6 Distance Labeling Schemes for Trees

3.2 Lower bound
I Theorem 2. Labeling scheme for distances on weighted paths with k nodes and edge weights
[1, n] require k−1

k logn+ Ω(log k) bits.

Proof. Let F denote the family of paths with k nodes and integral edge weights in [1, n].
We can construct all the members of F by selecting (k − 1) different edge weights in the
range [1, n], skipping the paths which have already been constructed by the reverse sequence
of edge weights. With this construction we will at most skip half of the paths, and hence
|F| ≥ 1

2n
k−1. Let the worst-case label size of an optimal distance labeling scheme for such

paths have length L. The number of different labels with length at most L is N = 2L+1 − 1.
We can uniquely represent each of the paths in F with the collection of their labels, and hence
|F| ≤

(
N
k

)
. Thus, we have found that 1

2n
k−1 ≤

(
N
k

)
. Since

(
N
k

)
≤ (Ne/k)k, it follows that

k−1
k logn ≤ logN − log k+O(1) and hence that L ≥ k−1

k logn+ log k−O(1) as desired. J

Combining Theorem 2 with Theorem 1 we see that distance labels for paths of k nodes with
integral weights in [1, n] must have length k−1

k logn+ Θ(log k).

4 Distances in caterpillars

4.1 Upper bound
I Theorem 3. There exist a distance labeling scheme for caterpillars with worst-case label
size 2 logn− log logn+O(log log logn).

Proof. We will start by giving a simple 2 logn bits scheme and then improve it. The simple
solution assigns two numbers to each node. The nodes on the spine save distroot and the
number 0. The nodes not on the spine save their parent’s distroot and a number that is
unique among their siblings. The second number is required to distinguish siblings, and
hence determine if the distance between two nodes is 0 or 2. The worst-case label size for
this solution is 2 logn+O(1).

To improve the solution, we split up the nodes on the spine into two groups: (1) nodes
with > n

k leaves and (2) nodes with ≤ n
k leaves, for some parameter k to be chosen later. We

add the root to the first group no matter what. Note that the first group can contain at
most k nodes.

As before, all nodes save two numbers: distroot and the number 0 for spine nodes or a
number to distinguish siblings. The idea is to reduce label size with log k bits by using fewer
bits for the first number for nodes in the first group and for the second number for nodes in
the second group.

The nodes in the first group form a path with at most k nodes and edge weights in [1, n]
(where each weight corresponds to the distance between the nodes in the original graph).
The algorithm from Theorem 1 will add a number x, which is less than the diameter, which
again is less than n, to the numbers representing the root distances of the nodes. Using this
technique, we can, as seen in the proof of Theorem 1, encode the (modified) distroots of the
nodes in the first group with only k−1

k logn+ log k +O(log log k) bits. This gives labels of
size 2k−1

k logn+ log k+O(log log k) for non-spine nodes whose parents are in the first group.
We will also add x to the distroots of nodes in the second group, but since x < n this

will not change the label size by more than a single bit. For non-spine nodes whose parents
are in the second group, we need at most logn− log k +O(1) bits for the second number,
giving a total label size of 2 logn− log k +O(1).

S. Alstrup, E. B. Halvorsen, I. L Gørtz, and E. Porat 132:7

Finally, since the two numbers that form a label now have different lengths, we need an
additional O(log log k) bits to determine when one number ends and the next begins. Indeed,
it wil be possible to split up labels into their components if we know the number of bits used
to write dlog ke, and we represent this number with O(log log k) bits.

Setting k = logn
2 log logn , we now see that our worst-case label size is the maximum of

2 logn− log k +O(log log k) = 2 logn− log logn+O(log log logn)

and
2k − 1
k

logn+ log k +O(log log k) = 2 logn− 2 log logn+ log logn+O(log log logn)

= 2 logn− log logn+O(log log logn).

This proves the theorem. J

It is worth noting that the ability to distinguish nodes plays a significant part in the
label size. Indeed, if the two nodes given as input to the decoder could always be assumed
to be distinct, then a distance labeling scheme for caterpillars with worst-case label size
logn+O(1) would be possible.

4.2 Lower bound
We present a technique that counts tuples of labels that are known to be distinct and
compares the result to the number of tuples one can obtain with labels of size L. The
technique may have applications to distance labeling for other families of graphs.

I Theorem 4. For any n ≥ 4, any distance labeling scheme for the family of caterpillars
with at most n nodes has a worst-case label size of at least 2blognc − blogblogncc − 4.

Proof. Set k = blognc and m = 2k. Let (i1, . . . , ik) be a sequence of k numbers from the
set {1, . . . ,m/2} with the only requirement being that i1 = 1. Now consider, for each such
sequence, the caterpillar whose main path has length m/2 and where, for t = 1, . . . , k, the
node in position it has bm/2kc leaf children (not on the main path). We shall refer to these
children as the t’th group. Note that two disjoint groups of children may be children of the
same node if it = is for some s, t. Each of these caterpillars has m/2 + kbm/2kc ≤ m ≤ n
nodes.

Suppose that σ is a distance labeling scheme for the family of caterpillars, and consider
one of the caterpillars defined above. Given distinct nodes u, v not on the main path, their
distance will be dist(u, v) = |is − it| + 2, where is and it are the positions on the main
path of the parents of u and v, respectively. In particular, if s = 1, so that is = 1, then
dist(u, v) = it + 1. Thus, if σ has been used to label the nodes of the caterpillar, the number
it for a child in the t’th group can be uniquely determined from its label together with
the label of any of the children from the first group. It follows that any k-tuple of labels
(l1, . . . , lk) where lt is a label of a child in the t’th group uniquely determines the sequence
(i1, . . . , ik). In particular, k-tuples of labels from distinct caterpillars must be distinct. Of
course, k-tuples of labels from the same caterpillar must also be distinct, since labels are
unique in a distance labeling scheme.

Now, there are (m/2)k−1 choices for the sequence (i1, . . . , ik), and hence there are
(m/2)k−1 different caterpillars in this form. For each of these, there are bm/2kck different
choices of k-tuples of labels. Altogether, we therefore have (m/2)k−1bm/2kck distinct k-
tuples of labels. If the worst-case label size of σ is L, then we can create at most (2L+1 − 1)k

ICALP 2016

132:8 Distance Labeling Schemes for Trees

distinct k-tuples of labels, so we must have (m/2)k−1bm/2kck ≤ (2L+1 − 1)k. From this it
follows that

L ≥ bk − 1
k

(logm− 1) + logbm/2kcc

≥ b (k − 1)2

k
+ k − log kc − 2

≥ 2k − blog kc − 4
= 2blognc − blogblogncc − 4. J

5 Exact distances in trees

5.1 Upper bound
Let u, v be nodes in a tree T and let w be their nearest common ancestor. We then have

dist(u, v) = distroot(u)− distroot(v) + 2 dist(w, v) . (1)

If w = u so that u is an ancestor of v, then the above equation is just a difference of distroots,
which can be stored for each node with logn bits. The same observation clearly holds if
w = v.

Assume now that w /∈ {u, v} so that u and v are not ancestors of each other. Consider
the heavy-light decomposition [63] described in the preliminaries. At least one of the nodes
u and v must have an ancestor which is a light child of w. Assume that it is v. Now, v has
at most logn light ancestors. Saving the distance to all of them together with distroot gives
us sufficient information to compute the distance between u and v using equation (1). This
is the idea behind Theorem 6 below.

By examining the NCA labeling scheme from [8, 9], we see that it can easily be extended
as follows.

I Lemma 5 ([8, 9]). There exists an NCA labeling scheme of size O(logn). For any two
nodes u, v the scheme returns the label of w = nca(u, v) as well as:

which of u and v (if any) have a light ancestor that is a child of w; and
the number of light nodes on the path from the root to w and from w to u and v,
respectively.

I Theorem 6. There exists a distance labeling scheme for trees with worst-case label size
1
2 log2 n+O(logn).

Proof. We use O(logn) bits for the extended NCA labeling in Lemma 5 and for distroot.
Using (1) it now only remains to efficiently represent, for each node, the distance to all its
light ancestors.

We consider the light ancestors of a node v encountered on the path from the root to
v. The distance from v to the root is at most n − 1 and can therefore be encoded with
exactly dlogne bits (by adding leading zeros if needed). By construction of the heavy-light
decomposition, the next light node on the path to v will be the root of a subtree of size
at most n/2, meaning that the distance from v to that ancestor is at most n/2 − 1 and
can be encoded with exactly dlogne − 1 bits. Continuing this way, we encode the i’th light
ancestor on the path from the root to v with exactly dlogne − i bits. When we run out of
light ancestors, we concatenate all the encoded distances, resulting in a string of length at
most

dlogne+ (dlogne − 1) + · · ·+ 2 + 1 = 1
2 dlogne2 + 1

2 dlogne .

S. Alstrup, E. B. Halvorsen, I. L Gørtz, and E. Porat 132:9

z4 z4

W
a2 − z4

z3 z3

W
a2 − z3

y2 y2

W
a − y2

z2 z2

W
a2 − z2

z1 z1

W
a2 − z1

y1 y1

W
a − y1

x x

W − x

Figure 1 An (h, W, a)-tree, where h = 3. We require that x < W , y1, y2 < W/a and z1, . . . , z4 <

W/a2.

We can use O(logn) extra bits to encode n and to separate all sublabels from each other.
The decoder can now determine dlogne and split up the entries in the list of distances. When
applying formula (1), it can then determine the distance between v and w by adding together
the relevant distances in the list of light ancestors, using the fact from Lemma 5 that it
knows the number of light ancestors from v to w. J

5.2 Lower bound

In the case of general trees, Gavoille et al [39] establish a lower bound of 1
8 log2 n−O(logn)

using an ingenious technique where they apply a distance labeling scheme to a special class
of trees called (h,M)-trees3. The following uses a generalization of (h,M)-trees to improve
their ideas and leads to a lower bound of 1

4 log2 n−O(logn).

(h, W, a)-trees. We begin with some definitions. For integers h,W ≥ 0 and a number
a ≥ 1 such that W/ai is integral for all i = 0, . . . , h, an (h,W, a)-tree is a rooted binary tree
T with edge weights in [0,W] that is constructed recursively as follows. For h = 0, T is just a
single node. For h = 1, T is a claw (i.e. a star with three edges) with edge weights x, x,W −x
for some 0 ≤ x < W rooted at the leaf node of the edge with weight W − x. For h > 1, T
consists of an (1,W, a)-tree whose two leaves are the roots of two (h− 1,W/a, a)-trees T0, T1.
We shall denote an (h,W, a)-tree constructed in this way by T = 〈T0, T1, x〉 An example
for h = 3 can be seen in Figure 1. Note that the case a = 1 simply corresponds to the
(h,W)-trees defined in [39].

It is easy to see that an (h,W, a)-tree has 2h leaves and 3 · 2h − 2 nodes. Further, it is
straightforward to see that, if u, v are leaves in an (h,W, a)-tree T = 〈T0, T1, x〉, then

distT (u, v) =
{

2W a−1−a−h

1−a−1 + 2x, if u ∈ T0 and v ∈ T1, or vice versa,
distTi

(u, v), if u, v ∈ Ti for some i = 0, 1.
(2)

3 Note that their exposition has some minor errors as pointed out (and corrected) in [43].

ICALP 2016

132:10 Distance Labeling Schemes for Trees

Leaf distance labeling schemes. In the following we shall consider leaf distance labeling
schemes for the family of (h,W, a)-trees: that is, distance labeling schemes where only the
leaves in a tree need to be labeled, and where only leaf labels can be given as input to the
decoder. Since an ordinary distance labeling scheme obviously can be used only for leaves,
any lower bound on worst-case label sizes for a leaf distance labeling scheme is also a lower
bound for an ordinary distance labeling scheme. We denote by g(h,W, a) the smallest number
of labels needed by an optimal leaf distance labeling scheme to label all (h,W, a)-trees.

I Lemma 7. For all h ≥ 1 and W ≥ 2, g(h,W, a)2 ≥Wg(h− 1,W 2/a2, a2).

Proof. Fix an optimal leaf distance labeling scheme σ which produces exactly g(h,W, a)
distinct labels for the family of (h,W, a)-trees. For leaves u and v in an (h,W, a)-tree, denote
by l(u) and l(v), respectively, the labels assigned by σ. For x = 0, . . . ,W − 1, let S(x) be the
set consisting of pairs of labels (l(u), l(v)) for all leaves u ∈ T0 and v ∈ T1 in all (h,W, a)-trees
T = 〈T0, T1, x〉.

The sets S(x) and S(x′) are disjoint for x 6= x′, since every pair of labels in S(x) uniquely
determines x due to (2). Letting S =

⋃W−1
x=0 S(x), we therefore have |S| =

∑W−1
x=0 |S(x)|.

Since S contains pairs of labels produced by σ from leaves in (h,W, a)-trees , we clearly also
have |S| ≤ g(h,W, a)2, and hence it only remains to prove that |S| ≥Wg(h− 1,W 2/a2, a2),
which we shall do by showing that |S(x)| ≥ g(h− 1,W 2/a2, a2) for all x.

The goal for the rest of the proof is therefore to create a leaf distance labeling scheme for
(h−1,W 2/a2, a2)-trees using only labels from the set S(x) for some fixed x. So let x be given
and consider an (h− 1,W 2/a2, a2)-tree T ′. Let V = W/a. From T ′ we shall construct an
(h−1, V, a)-tree φi(T ′) for i = 0, 1 such that every leaf node v in T ′ corresponds to nodes φi(v)
in φi(T ′) for i = 0, 1. The trees φi(T ′) are defined as follows. If h = 1, so that T ′ consists of
a single node, then φi(T ′) = T ′ for i = 0, 1. If h > 1, then T ′ is in the form T ′ = 〈T ′0, T ′1, y〉
for some 0 ≤ y < V 2. We can write y in the form y = y0 + y1V for uniquely determined
y0, y1 with 0 ≤ y0, y1 < V . For i = 0, 1, we recursively define φi(T ′) = 〈φi(T ′0), φi(T ′1), yi〉.
Thus, φi(T ′) is an (h− 1, V, a)-tree that is similar to T ′ but where we replace the top edge
weight y by edge weights yi and, recursively, do the same for all (h− 2, V 2/a2, a2)-subtrees.
Note also that the corresponding edge weight V 2 − y in T ′ automatically is replaced by the
edge weight V − yi in φi(T ′) in order for φi(T ′) to be an (h− 1, V, a)-tree.

Denote by φi(v) the leaf in φi(T ′) corresponding to the leaf v in T ′.
Consider now the (h,W, a)-tree T = 〈φ0(T ′), φ1(T ′), x〉. Every leaf v in T ′ corresponds

to the leaves φ0(v), φ1(v) in T where φi(v) ∈ φi(T ′) for i = 0, 1. Using formula (2) for the
distances in T ′, it is straightforward to see that

distT ′(u, v) =
(
distφ0(T ′)(φ0(u), φ0(v)) mod (2V)

)
+ V distφ1(T ′)(φ1(u), φ1(v)). (3)

We can now apply the leaf distance labeling scheme σ to T and obtain a label for each
leaf node in T . In particular, the pair of leaves (φ0(v), φ1(v)) corresponding to a node v in
T ′ will receive a pair of labels. We use this pair to label v in T ′, whereby we have obtained a
labeling of the leaves in T ′ with labels from S(x). Using the formula in (3) we can construct
a decoder that can compute the distance between two nodes in T ′ using these labels alone,
and hence we have obtained a leaf distance labeling scheme for (h− 1, V 2, a2)-trees using
only labels from S(x) as desired. J

I Lemma 8. For all h ≥ 1 and W ≥ 2, g(h,W, a) ≥ Wh/2

ah(h−1)/4 .

Proof. The proof is by induction on h. For h = 1 we note that an (0,W, a)-tree has only one
node, so that g(0,W 2/a2, a2) = 1. Lemma 7 therefore yields g(1,W, a)2 ≥ W from which

S. Alstrup, E. B. Halvorsen, I. L Gørtz, and E. Porat 132:11

it follows that g(1,W, a) ≥
√
W . The lemma therefore holds for h = 1. Now let h > 1 and

assume that the lemma holds for h− 1. Lemma 7 and the induction hypothesis now yield

g(h,W, a)2 ≥ Wg(h− 1,W 2/a2, a2) ≥ W
(W 2/a2)(h−1)/2

a2(h−1)(h−2)/4 = Wh

ah(h−1)/2

from which it follows that g(h,W, a) ≥ Wh/2

ah(h−1)/4 as desired. J

The previous lemma implies that any (leaf and hence also ordinary) distance labeling
scheme for (h,W, a)-trees must have labels with worst-case length at least h

2 (logW −
h−1

2 log a) = 1
2h logW − 1

4h
2 log a + 1

4h log a. Since the number of nodes in such a tree
is n = 3 · 2h − 2, it follows that h = log(n+ 2)− log 3, and hence that logn− 2 ≤ h ≤ logn
for sufficiently large n. From this we see that the worst case label length is at least

1
2 logn logW − 1

4 logn(logn− 1) log a− logW − 1
2 log a.

In the case where a = 1, we retrieve the bound of 1
2 logn logW − logW obtained in [38]. It

seems that larger values of a only makes the above result weaker, but the the real strength
of the above becomes apparent when we switch to the unweighted version of (h,W, a)-trees,
in which we replace weighted edges by paths of similar lengths. Note that a distance
labeling scheme for the family of unweighted (h,W, a)-trees can be used as a distance labeling
scheme for the weighted (h,W, a)-trees, and hence any lower bound in the weighted version
automatcially becomes a lower bound in the unweighted version.

The number of nodes n in an unweighted (h,W, a)-tree is upper bounded by

n ≤ 2W + 2 · 2W/a+ 22 · 2W/a2 + · · ·+ 2h−1 · 2W/ah−1 + 1

In the case a = 2, we get n ≤ 2Wh+ 1.

I Theorem 9. Any distance labeling scheme for unweighted (h,W, 2)-trees, and hence also
for general trees, has a worst-case label size of at least 1

4 log2 n−O(logn).

Proof. Choose the largest integer h with 2 · 2hh + 1 ≤ n, and note that we must have
h ≥ logn−O(log logn). Set W = 2h and consider the family of (h,W, 2)-trees, which is a
subfamily of the family of trees with n nodes. From Lemma 8 it therefore follows that the
worst-case label length is

1
2h logW − 1

4h
2 + 1

4h = 1
4h

2 + 1
4h = 1

4 log2 n+ 1
4 logn−O(log logn). J

6 Approximate distances in trees

In this section we present a (1 + ε)-stretch distance labeling schemes with labels of size
O(logn).

I Theorem 10. For constant ε > 0, (1 + ε) stretch distance labeling schemes for trees use
Θ(logn) bits.

Proof. As in the case of exact distances, we will create labels of size O(logn) bits that
contain the extended NCA labels from Lemma 5 as well as distroot. We will also be using the
formula in (1). However we can not afford to store exact distance to each apex ancestor. Even
directly storing an 2-approximate distance to each apex ancestor would require logn log logn
bits. Instead we show how to compactly represent all the (1 + ε)-approximate distances to

ICALP 2016

132:12 Distance Labeling Schemes for Trees

light ancestors for a node using a total of O(logn) bits, and show how to use this to obtain a
(1 + 2ε)-approximation.

Let w = nca(u, v) and assume w 6∈ {u, v}, since otherwise we can compute the exact
distance using only distroot. Suppose we know a (1 + ε)-approximation α of dist(w, v) for
some ε ≥ 0. That is,

dist(w, v) ≤ α ≤ (1 + ε) dist(w, v). (4)

Define d̃ = distroot(u)− distroot(v) + 2α. First we show that d̃ is a (1 + 2ε)-approximation
of dist(u, v). Next we show how to represent all the (1 + ε)-approximate distances to light
ancestors for a node using a total of O(logn) bits. Together with formula (1), these two
facts prove that we can compute (1 + 2ε)-stretch distances between any pair of nodes with
labels of size O(logn). To prove the theorem, we can then simple replace ε by 1

2ε.
To see that d̃ is a (1 + 2ε)-approximation of dist(u, v), first note that

d̃ = distroot(u)− distroot(v) + 2α ≥ distroot(u)− distroot(v) + 2 dist(w, v) = dist(u, v).

For the other inequality, note that

d̃ = distroot(u)− distroot(v) + 2α
≤ distroot(u)− distroot(v) + 2(1 + ε) dist(w, v)
= distroot(u)− (distroot(v)− dist(w, v)) + (1 + 2ε) dist(w, v)
= distroot(u)− distroot(w) + (1 + 2ε) dist(w, v)
= dist(u,w) + (1 + 2ε) dist(w, v)
≤ (1 + 2ε) (dist(u,w) + dist(w, v))
= (1 + 2ε) dist(u, v) .

It now only remains to show that we can compactly store all the approximate distances
α to light ancestors using O(logn) bits space.

We use a heavy light path decomposition of the tree. For each node v we can save a 2
approximate distance to all its k proper light ancestors as follows. Let S be a binary string
initially with k zeros. Before each 0 we now insert 1s such that, if we have j 1s in total
from the beginning of S and to the i’th 0, then the distance to the ith light ancestor a of v
satisfies that 2j−1 ≤ dist(v, a) ≤ 2j . This is the same as traversing the tree bottom-up from
v and, for each light node encountered on the way, adding a 0 and each time the distance
doubles adding a 1. The number of 0s equal the number of light nodes which is at most
logn, and the number of 1s is also limited by logn since n is the maximum distance in the
tree. In total the length of S is at most 2 logn.

Using the O(logn) bits label from Lemma 5 we can tell if one node is an ancestor of
another, and if not which one has a light ancestor a that is a child of their nearest common
ancestor w. In addition, we can determine the total number i of light ancestors up to a. This
means that we can compute j, and hence the 2-approximation j − 1, as the number of 1’s in
S until the i’th 0.

We have now obtained a 2-approximation with labels of size O(logn). We can improve
this to a (1 + ε)-approximation by setting a 1 in S each time the distance increases with
1 + ε rather than 2. This will increase the label size with a constant factor 1

log(1+ε) .
This proves that there is a (1 + ε)-stretch distance labeling scheme with O(logn) bit

label length. To complete the proof of the theorem, we note that, given any (1 + ε)-stretch
distance scheme, we can always distinguish nodes (since identical nodes have distance 0),
which means that we always need at least n different labels, and hence labels of size at least
logn bits. J

S. Alstrup, E. B. Halvorsen, I. L Gørtz, and E. Porat 132:13

References
1 S. Abiteboul, S. Alstrup, H. Kaplan, T. Milo, and T. Rauhe. Compact labeling

scheme for ancestor queries. SIAM J. Comput., 35(6):1295–1309, 2006. doi:10.1137/
S0097539703437211.

2 S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling schemes for ancestor queries.
In Proc. of the 12th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
547–556, 2001.

3 N. Alon, F .R. K. Chung, and R. L. Graham. Routing permutations on graphs via matchings.
In Proc. of the 25th Annual ACM Symp. on the Theory of Computing (STOC), pages 583–
591, 1993.

4 S. Alstrup, P. Bille, and T. Rauhe. Labeling schemes for small distances in trees. In Proc.
of the 14th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 689–698,
2003. URL: http://dl.acm.org/citation.cfm?id=644108.644220.

5 S. Alstrup, P. Bille, and T. Rauhe. Labeling schemes for small distances in trees.
SIAM J. Discrete Math., 19(2):448–462, 2005. See also SODA’03. doi:10.1137/
S0895480103433409.

6 S. Alstrup, S. Dahlgaard, and M. B. T. Knudsen. Optimal induced universal graphs and
labeling schemes for trees. In Proc. 56th Annual Symp. on Foundations of Computer Science
(FOCS), 2015.

7 S. Alstrup, C. Gavoile, E. B. Halvorsen, and H. Petersen. Simpler, faster and shorter
labels for distances in graphs. In Proc. of the 27th Annual ACM-SIAM Symp. on Discrete
Algorithms (SODA), 2016.

8 S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors: A survey and
a new algorithm for a distributed environment. Theory of Computing Systems, 37(3):441–
456, 2004. doi:10.1007/s00224-004-1155-5.

9 S. Alstrup, E. B. Halvorsen, and K. G. Larsen. Near-optimal labeling schemes for nearest
common ancestors. In Proc. of the 25th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 972–982, 2014. doi:10.1137/1.9781611973402.72.

10 S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Direct routing on trees. In Proc. of
the 9th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 342–349, 1998.

11 S. Alstrup, H. Kaplan, M. Thorup, and U. Zwick. Adjacency labeling schemes and induced-
universal graphs. In Proc. of the 47th Annual ACM Symp. on Theory of Computing (STOC),
2015.

12 S. Alstrup and T. Rauhe. Improved labeling schemes for ancestor queries. In Proc. of the
13th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), 2002.

13 S. Alstrup and T. Rauhe. Small induced-universal graphs and compact implicit graph
representations. In Proc. 43rd Annual Symp. on Foundations of Computer Science (FOCS),
pages 53–62, 2002.

14 F. Bazzaro and C. Gavoille. Localized and compact data-structure for comparability graphs.
Discrete Mathematics, 309(11):3465–3484, 2009. doi:10.1016/j.disc.2007.12.091.

15 N. Bonichon, C. Gavoille, and A. Labourel. Short labels by traversal and jumping. In
Structural Information and Communication Complexity, pages 143–156. Springer, 2006.
Include proof for binary trees and caterpillars.

16 M. A. Breuer. Coding the vertexes of a graph. IEEE Trans. on Information Theory,
IT–12:148–153, 1966.

17 M. A. Breuer and J. Folkman. An unexpected result on coding vertices of a graph. J. of
Mathemathical analysis and applications, 20:583–600, 1967.

18 V. D. Chepoi, F. F. Dragan, B. Estellon, M. Habib, and Y. Vaxès. Diameters, centers, and
approximating trees of delta-hyperbolic geodesic spaces and graphs. In 24st Annual ACM

ICALP 2016

http://dx.doi.org/10.1137/S0097539703437211
http://dx.doi.org/10.1137/S0097539703437211
http://dl.acm.org/citation.cfm?id=644108.644220
http://dx.doi.org/10.1137/S0895480103433409
http://dx.doi.org/10.1137/S0895480103433409
http://dx.doi.org/10.1007/s00224-004-1155-5
http://dx.doi.org/10.1137/1.9781611973402.72
http://dx.doi.org/10.1016/j.disc.2007.12.091

132:14 Distance Labeling Schemes for Trees

Symp. on Computational Geometry (SoCG), pages 59–68, 2008. doi:10.1145/1377676.
1377687.

19 V. D. Chepoi, F. F. Dragan, and Y. Vaxès. Distance and routing labeling schemes for
non-positively curved plane graphs. J. of Algorithms, 61(2):60–88, 2006. doi:10.1016/j.
jalgor.2004.07.011.

20 F. R. K. Chung. Universal graphs and induced-universal graphs. J. of Graph Theory,
14(4):443–454, 1990.

21 E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic XML trees. SIAM J. Comput.,
39(5):2048–2074, 2010. doi:10.1137/070687633.

22 B. Courcelle and R. Vanicat. Query efficient implementation of graphs of bounded clique-
width. Discrete Applied Mathematics, 131:129–150, 2003. doi:10.1016/S0166-218X(02)
00421-3.

23 L. J. Cowen. Compact routing with minimum stretch. J. of Algorithms, 38:170–183, 2001.
See also SODA’91.

24 Y. Dodis, M. Pǎtraşcu, and M. Thorup. Changing base without losing space. In Proc. of
the 42nd Annual ACM Symp. on Theory of Computing (STOC), pages 593–602, 2010.

25 T. Eilam, C. Gavoille, and D. Peleg. Compact routing schemes with low stretch factor. J.
of Algorithms, 46(2):97–114, 2003. doi:10.1016/S0196-6774(03)00002-6.

26 M. Elkin, A. Filtser, and O. Neiman. Prioritized metric structures and embedding. In Proc.
of the 47th Annual ACM Symp. on Theory of Computing (STOC), pages 489–498, 2015.

27 A. Farzan and J. I. Munro. Succinct encoding of arbitrary graphs. Theoretical Computer
Science, 513:38–52, 2013. doi:10.1016/j.tcs.2013.09.031.

28 A. Farzan and J. I. Munro. A uniform paradigm to succinctly encode various families of
trees. Algorithmica, 68(1):16–40, 2014. doi:10.1007/s00453-012-9664-0.

29 P. Fraigniaud and A. Korman. On randomized representations of graphs using short labels.
In Proc. of the 21st Annual Symp. on Parallelism in Algorithms and Architectures (SPAA),
pages 131–137, 2009. doi:10.1145/1583991.1584031.

30 P. Fraigniaud and A. Korman. Compact ancestry labeling schemes for XML trees. In Proc.
of the 21st annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 458–466,
2010.

31 P. Fraigniaud and A. Korman. An optimal ancestry scheme and small universal posets. In
Proc. of the 42nd Annual ACM Symp. on Theory of Computing (STOC), pages 611–620,
2010. doi:10.1145/1806689.1806773.

32 C. Gavoille, M. Katz, N. Katz, C. Paul, and D. Peleg. Approximate distance labeling
schemes. In Proc. of the 9th Annual European Symp. on Algorithms (ESA), pages 476–488,
2001.

33 C. Gavoille and A. Labourel. Distributed relationship schemes for trees. In 18th Inter-
national Symp. on Algorithms and Computation (ISAAC), pages 728–738, 2007. doi:
10.1007/978-3-540-77120-3_63.

34 C. Gavoille and A. Labourel. On local representation of distances in trees. In Proc. of the
26th Annual ACM Symp. on Principles of Distributed Computing (PODC), pages 352–353,
2007. doi:10.1145/1281100.1281169.

35 C. Gavoille and O. Ly. Distance labeling in hyperbolic graphs. In 16th Annual International
Symp. on Algorithms and Computation (ISAAC), pages 1071–1079, 2005. doi:10.1007/
11602613_106.

36 C. Gavoille and C. Paul. Distance labeling scheme and split decomposition. Discrete
Mathematics, 273(1-3):115–130, 2003.

37 C. Gavoille and C. Paul. Optimal distance labeling for interval graphs and related graphs
families. SIAM J. Discrete Math., 22(3):1239–1258, 2008. doi:10.1137/050635006.

http://dx.doi.org/10.1145/1377676.1377687
http://dx.doi.org/10.1145/1377676.1377687
http://dx.doi.org/10.1016/j.jalgor.2004.07.011
http://dx.doi.org/10.1016/j.jalgor.2004.07.011
http://dx.doi.org/10.1137/070687633
http://dx.doi.org/10.1016/S0166-218X(02)00421-3
http://dx.doi.org/10.1016/S0166-218X(02)00421-3
http://dx.doi.org/10.1016/S0196-6774(03)00002-6
http://dx.doi.org/10.1016/j.tcs.2013.09.031
http://dx.doi.org/10.1007/s00453-012-9664-0
http://dx.doi.org/10.1145/1583991.1584031
http://dx.doi.org/10.1145/1806689.1806773
http://dx.doi.org/10.1007/978-3-540-77120-3_63
http://dx.doi.org/10.1007/978-3-540-77120-3_63
http://dx.doi.org/10.1145/1281100.1281169
http://dx.doi.org/10.1007/11602613_106
http://dx.doi.org/10.1007/11602613_106
http://dx.doi.org/10.1137/050635006

S. Alstrup, E. B. Halvorsen, I. L Gørtz, and E. Porat 132:15

38 C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. In Proc. of
the 12th Annual ACM-SIAM Symp. on Discrete algorithms (SODA), pages 210–219, 2001.
URL: http://dl.acm.org/citation.cfm?id=365411.365447.

39 C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. J. of Algorithms,
53(1):85–112, 2004. See also SODA’01. doi:10.1016/j.jalgor.2004.05.002.

40 R. L. Graham and H. O. Pollak. On embedding graphs in squashed cubes. In Lecture Notes
in Mathematics, volume 303. Springer-Verlag, 1972.

41 A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-distortion
embeddings. In 44th Annual Symp. on Foundations of Computer Science (FOCS), pages
534–543, 2003. doi:10.1109/SFCS.2003.1238226.

42 A. Gupta, A. Kumar, and R. Rastogi. Traveling with a pez dispenser (or, routing issues in
mpls). SIAM J. on Computing, 34(2):453–474, 2005. See also FOCS’01.

43 E. B. Halvorsen. Labeling schemes for trees – overview and new results. Master’s thesis,
University of Copenhagen, 2013. Available at http://esben.bistruphalvorsen.dk.

44 S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. SIAM J. Disc.
Math., pages 596–603, 1992. See also STOC’88.

45 M. Kao, X. Li, and W. Wang. Average case analysis for tree labelling schemes. Theor.
Comput. Sci., 378(3):271–291, 2007. doi:10.1016/j.tcs.2007.02.066.

46 H. Kaplan and T. Milo. Short and simple labels for distances and other functions. In 7nd
Work. on Algo. and Data Struc., 2001.

47 H. Kaplan, T. Milo, and R. Shabo. A comparison of labeling schemes for ancestor queries.
In Proc. of the 13th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), 2002.

48 M. Katz, N. A. Katz, A. Korman, and D. Peleg. Labeling schemes for flow and con-
nectivity. SIAM J. Comput., 34(1):23–40, 2004. See also SODA’02. doi:10.1137/
S0097539703433912.

49 A. Korman. Labeling schemes for vertex connectivity. ACM Trans. Algorithms, 6(2):39:1–
39:10, 2010. doi:10.1145/1721837.1721855.

50 A. Korman and S. Kutten. Labeling schemes with queries. CoRR, abs/cs/0609163, 2006.
URL: http://arxiv.org/abs/cs/0609163.

51 A. Korman and S. Kutten. Labeling schemes with queries. In SIROCCO, pages 109–123,
2007.

52 A. Korman and D. Peleg. Labeling schemes for weighted dynamic trees. Inf. Comput.,
205(12):1721–1740, 2007. doi:10.1016/j.ic.2007.08.004.

53 R. Krauthgamer and J. R. Lee. Algorithms on negatively curved spaces. In 47th Annual
Symp. on Foundations of Computer Science (FOCS), pages 119–132, 2006. doi:10.1109/
FOCS.2006.9.

54 F. T. Leighton. Methods for message routing in parallel machines. In Proc. of the 24
Annual ACM Symp. on the Theory of Computing (STOC), pages 77–96, 1992.

55 M. Mitzenmacher. Constant time per edge is optimal on rooted tree networks. In Proc.
of the 8th Annual ACM Symp. on parallel algorithms and Architectures (SPAA’96), pages
162–169, 1996.

56 J. W. Moon. On minimal n-universal graphs. Proc. of the Glasgow Mathematical Associ-
ation, 7(1):32–33, 1965.

57 J. H. Müller. Local structure in graph classes. PhD thesis, Georgia Institute of Technology,
1988.

58 J. I. Munro, R. Raman, V. Raman, and S. Srinivasa Rao. Succinct representations of
permutations and functions. Theor. Comput. Sci., 438:74–88, 2012. doi:10.1016/j.tcs.
2012.03.005.

59 M. Pǎtraşcu. Succincter. In Proc. 49th Annual Symp. on Foundations of Computer Science
(FOCS), pages 305–313, 2008.

ICALP 2016

http://dl.acm.org/citation.cfm?id=365411.365447
http://dx.doi.org/10.1016/j.jalgor.2004.05.002
http://dx.doi.org/10.1109/SFCS.2003.1238226
http://esben.bistruphalvorsen.dk
http://dx.doi.org/10.1016/j.tcs.2007.02.066
http://dx.doi.org/10.1137/S0097539703433912
http://dx.doi.org/10.1137/S0097539703433912
http://dx.doi.org/10.1145/1721837.1721855
http://arxiv.org/abs/cs/0609163
http://dx.doi.org/10.1016/j.ic.2007.08.004
http://dx.doi.org/10.1109/FOCS.2006.9
http://dx.doi.org/10.1109/FOCS.2006.9
http://dx.doi.org/10.1016/j.tcs.2012.03.005
http://dx.doi.org/10.1016/j.tcs.2012.03.005

132:16 Distance Labeling Schemes for Trees

60 D. Peleg. Informative labeling schemes for graphs. In Proc. 25th Symp. on Mathematical
Foundations of Computer Science, pages 579–588, 2000.

61 D. Peleg. Proximity-preserving labeling schemes. J. Graph Theory, 33(3):167–176, 2000.
62 N. Santoro and R. Khatib. Labeling and implicit routing in networks. The computer J.,

28:5–8, 1985.
63 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. of Computer and

System Sciences, 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.
64 J. P. Spinrad. Efficient Graph Representations, volume 19 of Fields Institute Monographs.

AMS, 2003.
65 K. Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In Proc.

of the 36th Annual ACM Symp. on Theory of Computing (STOC), pages 281–290, 2004.
doi:10.1145/1007352.1007399.

66 M. Tang, J. Yang, and G. Zhang. A compact distance labeling scheme for trees of small
depths. In International Conference on Scalable Computing and Communications / Eighth
International Conference on Embedded Computing, ScalCom-EmbeddedCom, pages 455–458,
2009. doi:10.1109/EmbeddedCom-ScalCom.2009.87.

67 M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
J. ACM, 51(6):993–1024, 2004. See also FOCS’01. doi:10.1145/1039488.1039493.

68 M. Thorup and U. Zwick. Compact routing schemes. In Proc. of the 13th Annual ACM
Symp. on Parallel Algorithms and Architectures, SPAA’01, pages 1–10, 2001. doi:10.1145/
378580.378581.

69 M. Thorup and U. Zwick. Approximate distance oracles. J. of the ACM, 52(1):1–24, 2005.
See also STOC’01.

70 O. Weimann and D. Peleg. A note on exact distance labeling. Inf. Process. Lett.,
111(14):671–673, 2011. doi:10.1016/j.ipl.2011.04.006.

71 Wikipedia. Implicit graph – wikipedia, the free encyclopedia, 2013. [Online; accessed
15-February-2014]. URL: http://en.wikipedia.org/w/index.php?title=Implicit_
graph&oldid=585232203.

72 P. M. Winkler. Proof of the squashed cube conjecture. Combinatorica, 3(1):135–139, 1983.
doi:10.1007/BF02579350.

73 L. Zhang. Optimal bounds for matching routing on trees. In Proc. of the 8th Annual
ACM-SIAM Symposium on discrete algorithms (SODA), pages 445–453, 1997.

http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1145/1007352.1007399
http://dx.doi.org/10.1109/EmbeddedCom-ScalCom.2009.87
http://dx.doi.org/10.1145/1039488.1039493
http://dx.doi.org/10.1145/378580.378581
http://dx.doi.org/10.1145/378580.378581
http://dx.doi.org/10.1016/j.ipl.2011.04.006
http://en.wikipedia.org/w/index.php?title=Implicit_graph&oldid=585232203
http://en.wikipedia.org/w/index.php?title=Implicit_graph&oldid=585232203
http://dx.doi.org/10.1007/BF02579350

	Introduction
	Related work
	Second order terms for labeling schemes are theoretically well studied
	Labeling schemes in various settings and applications

	Preliminaries
	Distances on weighted paths
	Upper Bound
	Lower bound

	Distances in caterpillars
	Upper bound
	Lower bound

	Exact distances in trees
	Upper bound
	Lower bound

	Approximate distances in trees

