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Abstract
We introduce a new decomposition of a graphs into quasi-4-connected components, where we call
a graph quasi-4-connected if it is 3-connected and it only has separations of order 3 that separate
a single vertex from the rest of the graph. Moreover, we give a cubic time algorithm computing
the decomposition of a given graph.

Our decomposition into quasi-4-connected components refines the well-known decomposi-
tions of graphs into biconnected and triconnected components. We relate our decomposition
to Robertson and Seymour’s theory of tangles by establishing a correspondence between the
quasi-4-connected components of a graph and its tangles of order 4.
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1 Introduction

Decompositions of graphs into their connected, biconnected and triconnected components
are fundamental in structural graph theory, and they also belong to the basic toolbox
of algorithmic graph theory. The existence of such decompositions goes back to work of
MacLane [12] from the 1930s (also see Tutte [21]). In the 1970s, Hopcroft and Tarjan [10, 20]
showed that the decompositions can be computed in linear time.

In modern terms, the decompositions into biconnected and triconnected components are
best described as tree decompositions. To state the decomposition theorems and also our
main result, a few technical definitions are unavoidable. Recall that a tree decomposition of a
graph G is a pair (T, β), where T is a tree and β a mapping that associates a set β(t) ⊆ V (G),
called the bag at t, with every node t of the tree T (subject to certain conditions; see
Section 2). The adhesion of the decomposition is the maximum of the sizes |β(t) ∩ β(u)| for
tree edges tu, which intuitively is the order of the separations of the decomposition. Now
the decomposition into biconnected components can be phrased as follows: every graph G
has a tree decomposition (T, β) of adhesion at most 1 such that for all tree nodes t the
induced subgraph G[β(t)] is either 2-connected or a complete graph of order at most 2.
The decomposition into triconnected components is more complicated, mainly because the
triconnected components of a graph are no longer induced subgraphs, but just topological
subgraphs. We say that the torso of a set X ⊆ V (G) of vertices of a graph G is the
graph GJXK obtained from the induced subgraph G[X] by adding edges vw for all distinct
v, w ∈ X such that there is a connected component C of G \ X with v, w ∈ N(C), the
neighbourhood of C in G. For example, the torso of the set X = {x1, . . . , x4} in the graph G
shown in Figure 1(a) is the complete graph on X. Now the decomposition into triconnected
components can be phrased as follows: every graph G has a tree decomposition (T, β) of
adhesion at most 2 such that for all tree nodes t the torso GJβ(t)K is a topological subgraph
of G that is either 3-connected or a complete graph of order at most 3.
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Figure 1 A graph and its decomposition into triconnected components.

Figure 2 Hexagonal grids of radius 2 and 3.

How about decompositions into 4-connected components, or k-connected components
for k ≥ 4? At least in the clean form of the above decomposition theorems, they simply do
not exist. Consider, for example, a hexagonal grid (see Figure 2). Even though the grid
is not 4-connected, and it does not even have a nontrivial 4-connected subgraph, there is
no good way of decomposing it in a tree-like fashion by separations of order 3. In fact, the
only separations of the grid of order 3 are those splitting off a single vertex. If we ignore
such separations, we may view the whole grid as one highly connected region. Let us call
a graph G quasi-4-connected if it is 3-connected and for all separations (Y, S, Z) of order 3
(that is, |S| = 3 and Y, S, Z form a partition of V (G) and there are no edges between Y and
Z), either |Y | ≤ 1 or |Z| ≤ 1. Surprisingly, with this mild relaxation of 4-connectivity we get
a nice decomposition theorem along the lines of the decompositions into biconnected and
triconnected components.

I Theorem 1 (Decomposition Theorem). Every graph G has a tree decomposition (T, β) of
adhesion at most 3 such that for all tree nodes t the torso GJβ(t)K is a minor of G that is
either quasi-4-connected or a complete graph of order at most 4.

Furthermore, this decomposition can be computed in cubic time.

The decomposition is not unique, but the isomorphism types of the quasi-4-connected
components into which we decompose are.

There have been earlier generalisations of the decomposition of graphs into triconnected
components. The most prominent of these are Robertson and Seymour’s tangles [17],
which play an important role in the structure theory for graphs with excluded minors [16].
Intuitively, a tangle of order k describes a “k-connected region” in a graph by “pointing to
it”, that is, by assigning a direction to each separation of order less than k in such a way
that “most” of the region described by the tangle is on the side the separation is directed
towards. It is known that the tangles of orders 1, 2, 3 are in one-to-one correspondence to
the connected, biconnected and triconnected components of a graph [17, 8]. We establish a
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similar correspondence between the tangles of order 4 and the quasi-4-connected components.
This is our second main theorem, which I think is interesting in its own right, but which is
also essential for the proof of Theorem 1. We defer the precise technical statement of this
Correspondence Theorem to Section 4 (Theorem 4).

This paper grew out of my work on descriptive complexity theory for graph classes with
excluded minors [6, 5], and this may also serve as an illustration of potential applications of
our Decomposition Theorem. Separations of order 3 play a special, but somewhat annoying
role in the main structure theorems for graph classes with excluded minors such as the
“Flat Grid Theorem” of [18] and the structure theorem of [19], and the theorems simplify
for quasi-4-connected graphs. In [5] I exploited some of the main ideas underlying our
Decomposition Theorem to obtain such simplifications in the context of logical definability,
and I believe the Decomposition Theorem proved here may turn out to be similarly useful in
an algorithmic context.1

Due to space limitations, I had to omit many proof details, examples, and remarks from
this conference version of the paper. They can be found in the full version [7] (available on
arXiv).

1.1 Related work
It was shown in [17, 1] that for every k, every graph admits a canonical decomposition into
its tangles of order k. Related to this is the decomposition into so-called (k−1)-blocks due to
[3]. An important difference between these results and ours, or rather an additional feature
of our decomposition, is that the pieces of our decomposition are quasi-4-connected graphs
in their own right and can be dealt with separately (for example in an algorithmic context),
whereas tangles of order 4 or 3-blocks are only defined relative to the surrounding graph.

In [15, 14], a notion of k-edge connected component is considered. It is similar to the
(k − 1)-blocks, but with respect to edge connectivity.

On the algorithmic side, it was shown in [9] that the decomposition of a graph into its
tangles of order k can be computed in time nO(k). I believe that our techniques can be used
to improve this to cubic time for k = 4.

There is a different line of work on “k-connected components” that, as far as I can see, is
unrelated to ours. There, k-connected components are simply defined as maximal k-connected
subgraphs (see, for example, [13]). This leads to completely different decompositions. For
example, a graph of maximum degree 3 will only have trivial 4-connected components in this
framework. However, what I see as the crucial difference between our form of decomposition
and this line of work is that we get tree decompositions. This is important for typical
dynamic-programming or divide-and-conquer algorithms on the decomposition.

2 Preliminaries

We assume basic knowledge of graph theory and refer the reader to [4] for background. Our
notation is standard, let us just review the most important and frequently used notations.

1 Let me clarify the relation of this work to Chapter 10 of the forthcoming monograph [5]. The basic
ideas are the same, and actually my original motivation for the present paper was to make these ideas
accessible to readers not interested in logic. However, when I started to work on this paper I noticed
the connection to tangles, and it is this connection that provides the right framework and also makes
the decomposition much simpler. On the other hand, the main goal of [5] is to obtain a decomposition
that is definable in fixed-point logic with counting, and the decomposition we obtain here is not. So,
except for some of the basic lemmas underlying the proof of the Correspondence Theorem, the results
are incomparable.

ICALP 2016
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All graphs considered in this paper are finite and simple. The vertex set and edge set of a
graph G are denoted by V (G) and E(G), respectively. The order of G is |G| := |V (G)|. For
a set W ⊆ V (G), we denote the induced subgraph of G with vertex set W by G[W ] and the
induced subgraph with vertex set V (G) \W by G \W . For a vertex v, we denote the set of
neighbours of v in G by NG(v). In this and similar notations, we omit the index G if G is
clear from the context. For a set W ⊆ V (G), we define N(W ) :=

(⋃
v∈W N(v)

)
\W, and

for a subgraph H ⊆ G we let NG(H) := NG(V (H)).
A tree decomposition of a graph G is a pair (T, β), where T is a tree and β : V (T )→ 2V (G)

such that for all v ∈ V (G) the set {t ∈ V (T ) | v ∈ β(t)} is connected in T and for all
vw ∈ E(G) there is a t ∈ V (T ) such that v, w ∈ β(t).

A minor of G is a graph obtained from G by deleting vertices and edges and contracting
edges. A model of H in G consists of a family (Mw)w∈V (H) of mutually disjoint connected
subsets of V (G) and a family (ef )f∈E(H) of edges of G such that for every edge f = ww′ of
H the edge ef has one endvertex in Mw and one endvertex in Mw′ . Then H is a minor of G
if and only if there is a model of H in G. We call the sets Mw, for w ∈ V (H), the branch sets
of the modelM. When reasoning about a model, it is often enough to know the branch sets.

A faithful model of H in G is a model
(
(Mw)w∈V (H), (ef )f∈E(H)

)
such that w ∈Mw for

all w ∈ V (H). We say that H is a faithful minor of G if V (H) ⊆ V (G) and there is a faithful
model of H in G.

Separations of a graph G are usually defined as pairs of subgraphs. However, in this
paper it will be more convenient to view them as partitions of the vertex set. We say that a
separation of G is a triple (Y, S, Z) of (possibly empty) mutually disjoint subsets of V (G)
such that Y ∪ S ∪ Z = V (G) and there is no edge vw ∈ E(G) such that v ∈ Y and w ∈ Z.
The order of the separation (Y, S, Z) is |S|, and the separation is proper if both Y and
Z are nonempty. The set of all separations of G is denoted by Sep(G), and the subset of
all separations of order less than k (at most k, exactly k) by Sep<k(G) (resp. Sep≤k(G),
Sep=k(G)).

A set S ⊆ V (G) is a separator of G of order k := |S|, or a k-separator, if there are two
vertices v, w ∈ V (G) \ S such that there is a path from v to w in G, but no path from v to
w in G \ S. Note that if G is connected then S is a separator if and only if there is a proper
separation (Y, S, Z) of G.

A graph G is k-connected if |G| > k and G has no proper (k − 1)-separation.
A subset X ⊆ V (G) of the vertex set of a graph G is k-inseparable if |X| > k and there

is no separation (Y, S, Z) of G of order at most k such that X ∩ Y 6= ∅ and X ∩ Z 6= ∅.

3 Tangles

Let G be a graph. Deviating from Robertson and Seymour’s [17] original definition, we define
tangles as families of separations of the vertex set (as we defined them in Section 2) rather
than separations viewed as pairs of graphs or partitions of the edge set. (We show that the two
notions are equivalent in the full version [7].) A G-tangle of order k is a family T ⊆ Sep<k(G)
of separations of G of order less than k satisfying the following conditions.

(T.1) For all separations (Y, S, Z) ∈ Sep<k(G) either (Y, S, Z) ∈ T or (Z, S, Y ) ∈ T .

(T.2) If (Y1, S1, Z1), (Y2, S2, Z2), (Y3, S3, Z3) ∈ T then either Z1 ∩ Z2 ∩ Z3 6= ∅ or there is
an edge e ∈ E(G) that has an endvertex in each Zi.

(T.3) If (Y, S, Z) ∈ T then Z 6= ∅.
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For background on tangles and examples, I refer the reader to [17, 8].
Let G be a graph. We define a partial order � on Sep(G) by letting

(Y, S, Z) � (Y ′, S′, Z ′) :⇐⇒ S ∪ Z ⊂ S′ ∪ Z ′ or
(
S ∪ Z = S′ ∪ Z ′ and S ⊆ S′

)
. (1)

For a G-tangle T , we let Tmin be the set of minimal elements of T with respect to the partial
order �. The minimal elements of a tangle will play an important role later. It can be shown
that if (Y, S, Z) ∈ Tmin then Z is connected in G and S = N(Z).

It is shown in [17, 8] that the tangles of order at most 3 are in one-to-one correspondence
to the connected, biconnected, and triconnected components of a graph. The following
characterisation of the triconnected components motivates our definition of quasi-4-connected
regions in the next section.

I Proposition 2. Let G be a graph and R ⊆ V (G). The the following are equivalent.
1. R is an inclusionwise maximal subset of G such that GJRK is 3-connected and a topological

subgraph of G.
2. GJRK is 3-connected and a topological subgraph of G, and for every connected component

C of G \R we have |N(C)| ≤ 2.

We call sets R satisfying the conditions of this proposition the triconnected regions of a
graph and the graphs GJRK the triconnected components.

We can “lift” a tangle from a minor of a graph to the original graph. Let G be a graph,
H a minor of G, and M a model of H in G, say, with branch sets (Mw)w∈V (H). For a
separation (Y, S, Z) ∈ Sep(G), theM-projection of (Y, S, Z) to H is the triple πM(Y, S, Z) =
(Y ′, S′, Z ′) of subsets of V (H) defined by Y ′ :=

{
w ∈ V (H)

∣∣ V (Mw) ⊆ Y
}
, S′ :=

{
w ∈

V (H)
∣∣ V (Mw)∩S 6= ∅}, Z ′ :=

{
w ∈ V (H)

∣∣ V (Mw) ⊆ Z
}
. It is easy to see that (Y ′, S′, Z ′)

is a separation of H of order |S′| ≤ |S|.

I Lemma 3 ([17]). Let G be a graph, H a minor of G, andM a model of H in G. Let T ′
be an H-tangle of order k. Then the set T of all separations (Y, S, Z) ∈ Sep<k(G) such that
πM(Y, S, Z) ∈ T ′ is a G-tangle of order k.

We call T be the lifting of T ′ to G with respect to the modelM. Clearly, the lifting may
depend on the model. This is even the case if we only consider faithful minors and models.

4 Tangles of Order 4

Let us now look at tangles of order 4. We restrict our attention to 3-connected graphs. This
is natural; in the full version of the paper we also give a formal justification that we can do
this without loss of generality. For the rest of this section, we assume that G is a 3-connected
graph.

The main result of this section is a correspondence between tangles of order 4 and what
we will call quasi-4-connected regions of a graph. This correspondence holds for all but a
small number of exceptional regions, which we shall completely characterise. We first state
the theorem; the necessary definitions follow.

I Theorem 4 (Correspondence Theorem). With every non-exceptional quasi-4-connected
region R of G we can associate a G-tangle TR of order 4 and with every G-tangle T of order 4
a non-exceptional quasi-4-connected region RT such that T = TRT .

We shall call the torsos GJRT K for the G-tangles of order 4 the quasi-4-connected
components of G.

ICALP 2016
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Figure 3 The exceptional quasi-4-connected graphs.

In general, the mapping R 7→ TR is not injective; the mapping T 7→ RT is (otherwise the
theorem could not hold). The mapping R 7→ TR is canonical (or isomorphism invariant).
This means that for any two graphs G,G′ and regions R,R′, if f is an isomorphism from G

to G′ that maps R to R′ then f also maps TR to TR′ . The mapping T 7→ RT is not canonical.
However, the mapping from T to the quasi-4-connected component GJRT K, viewed as an
abstract graph, is.

We can only give a very high-level outline of the proof of the Correspondence Theorem.

4.1 Quasi-4-Connected Graphs and Regions
Recall from the introduction that a graph G is quasi-4-connected if G is 3-connected and for
all separations (Y, S, Z) ∈ Sep=3(G), either |Y | ≤ 1 or |Z| ≤ 1. A quasi-4-connected graph
G is exceptional if it is isomorphic to a subgraph of one of the graphs TH +3 or TR+3 shown
in Figure 3.

I Theorem 5. Let G be a quasi-4-connected graph. Then G has a tangle of order 4 if and
only if it is not exceptional. Furthermore, if G has a tangle of order 4, it has exactly one
such tangle, which consists of all separations (Y, S, Z) ∈ Sep<4(G) such that |Y | < |Z|.

A quasi-4-connected region of G is a subset R ⊆ V (G) satisfying the following condi-
tions.

(Q.1) GJRK is a faithful minor of G.

(Q.2) GJRK is quasi-4-connected.

(Q.3) For every connected component C of G \R it holds that N(C) = 3.

While conditions (Q.1) and (Q.2) are, to some extent, natural, condition (Q.3) may seem less
so. It is a (weak) maximality condition: if R′ ⊃ R such that GJR′K is quasi-4-connected, then
R′ \R contains at most one vertex of every connected component C of G\R (unless |R| = 4);
otherwise N(C) would be separator of GJR′K witnessing that it is not quasi-4-connected.
Conditions (Q.1)–(Q.3) are motivated by the characterisation of the triconnected components
given in Proposition 2(2). The reason for choosing these conditions instead of adding some
maximality condition is simply that they work best in combination with tangles and for the
Decomposition Theorem; it is condition (Q.3) which guarantees that our decomposition will
have adhesion 3.

Let R be a quasi-4-connected region of G. If GJRK is a non-exceptional quasi-4-connected
graph, then it has a unique tangle of order 4, and using Lemma 3, we can lift this tangle to a
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G-tangle of order 4. It can be proved that the lifted tangle does not depend on the model of
GJRK in G, as long as it is faithful. In this case we let TR (of the Correspondence Theorem)
be this lifted tangle.

However, sometimes we can even associate a tangle with a quasi-4-connected region R if
GJRK is exceptional. A non-exceptional extension of R is a graph Ĥ satisfying the following
conditions.

(X.1) Ĥ is a faithful minor of G.

(X.2) Ĥ is non-exceptional quasi-4-connected.

(X.3) R ⊆ V (Ĥ), and for each connected component C of G\R we have |V (Ĥ)∩V (C)| ≤ 1.

(X.4) Subject to (X.1)–(X.3), V (Ĥ) is inclusionwise minimal.

We call the region R non-exceptional if it has a non-exceptional extension. Note that if GJRK
is a non-exceptional quasi-4-connected graph, then GJRK is a non-exceptional extension of R.

If GJRK is exceptional and Ĥ is a non-exceptional extension of R, then there is a unique
Ĥ-tangle T̂ of order 4. Let I be a faithful image of Ĥ in G. Using Lemma 3, we can lift this
tangle to a G-tangle T (Ĥ, I) of order 4. It turns out that this tangle neither depends on the
choice of Ĥ nor on the choice of I. We let TR := T (Ĥ, I).

4.2 The Region of a Tangle
The goal of this section is to define the mapping T 7→ RT from G-tangles of order 4 to
quasi-4-connected regions. This is much more difficult than defining the mapping R 7→ TR;
technically it is clearly the most difficult part of the paper. We can only give the basic idea
here. We fix a G-tangle T of order 4 for the rest of the section.

We call two separations (Y1, S1, Z1), (Y2, S2, Z2) ∈ Sep(G) orthogonal if (Y1 ∪ S1) ∩ (Y2 ∪
S2) ⊆ S1 ∩ S2. It is not hard to show that the minimal separations of a tangle of order 3
in a graph are mutually orthogonal. The minimal separations of a tangle of order 4 are
not necessarily orthogonal, but the next lemma shows that they can only “cross” in a very
restricted way.

I Lemma 6 (Crossing Lemma). Let (Y1, S1, Z1), (Y2, S2, Z2) ∈ Tmin be distinct. Then either
(Y1, S1, Z1) and (Y2, S2, Z2) are orthogonal or Y1 ∩ Y2 = ∅ and S1 ∩ S2 = ∅ and there is an
edge s1s2 ∈ E(G) such that for i = 1, 2 we have Si ∩ Y3−i = {si}.

In the latter case, we call the edge s1s2 the crossedge of (Y1, S1, Z1) and (Y2, S2, Z2).

We call a proper separation (Y, S, Z) ∈ Sep=3(G) degenerate if |Y | = 1 and S is an
independent set of G. It can be shown that if (Y, S, Z) is non-degenerate then GJZK is a
faithful minor of G. We call a crossedge e of separations (Y1, S1, Z1), (Y2, S2, Z2) ∈ Tmin
non-degenerate if the two separations are non-degenerate. The key to our proof is the
following lemma (which is actually easy to prove).

I Lemma 7 (Crossedge Independence Lemma2). The set of non-degenerate crossedges is a
matching of G.

Let e1, . . . , em be the non-degenerate crossedges of T , and suppose that ei = si
1s

i
2. We

contract all these edges to their endvertex si
1. The order of the contractions is irrelevant

2 Actually, this is only a corollary to what we call the “Crossedge Independence Lemma” in the full
version [7].

ICALP 2016
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because the edges form a matching. Up to isomorphism, it is also irrelevant whether we
contract ei to si

1 or si
2. Let G(m) be the resulting graph. We show that G(m) is still

3-connected and has a tangle T (m) of order 4 such that T is the lifting of T (m) to G.
Furthermore, T (m) has no non-degenerate crossedges. Hence the non-degenerate separations
in T (m)

min are mutually orthogonal. We let

RT := V (G(m)) \
⋃

(Y,S,Z)∈T (m)
min

non-degenerate

Y. (2)

We show that RT is a non-exceptional quasi-4-connected region of G and that T = TRT .

5 Decomposition into Quasi-4-Connected Components

With the Correspondence Theorem at hand, it is now relatively easy to prove the Decompos-
ition Theorem 1.

I Theorem 8. Let G be a 3-connected graph. Then G has a tree decomposition (T, β) of
adhesion at most 3 such that for all t ∈ V (T ), the torso GJβ(t)K is either a complete graph
K3 or K4 or a quasi-4-connected component of G.

Furthermore, such a decomposition can be computed in time O(n2(n+m)).

Here, and throughout this section, we denote the numbers of vertices and edges of the
input graph G of our algorithms by n and m, respectively.

The Decomposition Theorem 1 follows by combining the decomposition of Theorem 8
with the standard decomposition of a graph into its triconnected components.

The proof of Theorem 8 requires some preparation. For the rest of this section, we assume
that G is a 3-connected graph. Let (Y, S, Z) ∈ Sep=3(G) be non-degenerate. A split vertex
of (Y, S, Z) is a vertex z ∈ Z such that for every connected component C of G \ (S ∪ {z}) it
holds that |N(C)| = 3.

I Lemma 9. Let (Y0, S0, Z0) ∈ Sep=3(G) be a non-degenerate proper separation such that Z0
is connected and (Y0, S0, Z0) has no split vertex. Then the set T (Y0, S0, Z0) of all separations
(Y, S, Z) ∈ Sep<4(G) such that either Z0 ⊆ Z or |Z ∩S0| > |Y ∩S0| is a G-tangle of order 4.

Proof. Let T := T (Y0, S0, Z0). To see that T satisfies (T.1), let (Y, S, Z) ∈ Sep<4(G). If
S ⊆ Y0 ∪ S0, then the connected set Z0 is either a subset of Z or of Y , and thus either
(Y, S, Z) ∈ T or (Z, S, Y ) ∈ T . Suppose next that |S ∩Z0| = 1. Let z be the unique vertex in
S ∩Z0. Then z is not a split vertex of (Y0, S0, Z0), and hence there is a connected component
C of G \ (S0 ∪ {z}) such that N(C) = S0 ∪ {z}. Then V (C) ⊆ Z0, because z ∈ Z0, and thus
V (C) ∩ S = ∅. It follows that either V (C) ⊆ Y or V (C) ⊆ Z. Without loss of generality
we may assume that V (C) ⊆ Z. As S0 ⊆ N(C), this implies S0 \ S ⊆ Z. As S0 \ S 6= ∅, it
follows that (Y, S, Z) ∈ T . Finally, suppose that |S ∩ Z0| ≥ 2. If S ∩ S0 = ∅, then either
|Z ∩ S0| ≥ 2 or |Y ∩ S0| ≥ 2, and thus either (Y, S, Z) ∈ T or (Z, S, Y ) ∈ T . If |S ∩ S0| = 1,
then S ∩ Y0 = ∅, and as G is 3-connected and Y0 6= ∅, the vertices in S0 \ S belong to the
same connected component of G \ S. Hence either both are in Z or both are in Y , and again
it follows that either (Y, S, Z) ∈ T or (Z, S, Y ) ∈ T .

Observe next that |V (G)| ≥ 6, because |Y0| ≥ 1 and |S0| = 3 and |Z0| ≥ 2 (otherwise the
unique vertex in Z0 would be a split vertex).

I Claim 10. For all (Y, S, Z) ∈ T we have |S ∪ Z| ≥ 4.
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Proof. It follows from the definition of T that Z 6= ∅. If Y = ∅, then |S ∪ Z| = |V (G)| ≥ 6.
Otherwise, (Y, S, Z) is a proper separation and thus |S| = 3, which implies |S ∪ Z| ≥ 4. J

The claim implies that T satisfies (T.3).
To prove that T satisfies (T.2), let (Yi, Si, Zi) ∈ T for i = 1, 2, 3. Suppose for contradiction

Z1 ∩ Z2 ∩ Z3 = ∅ and that there is no edge that has an endvertex in each Zi.

I Claim 11. For distinct i, j, k ∈ [3] and x ∈ V (G), if x ∈ Zi ∩ Zj then x ∈ Yk.

Proof. We have x 6∈ Zk, because Zi∩Zj∩Zk = ∅. Suppose that x ∈ Sk, and let z ∈ N(x)∩Zk.
Such a z exists, because Zk 6= ∅ and N(Zk) ⊆ Sk, and as |Sk| ≤ 3 and G is 3-connected, this
implies N(Zk) = Sk. But the edge xz has an endvertex in every Zi, which contradicts our
assumption that no such edge exists. J

Case 1: There is an i ∈ [3] such that Si ⊆ Y0 ∪ S0. Without loss of generality, we may
assume that i = 1 and (Y1, S1, Z1) = (Y0, S0, Z0). We may further assume that Si 6⊆ Y0 ∪ S0
for i = 2, 3. Then |Zi ∩ S0| > |Yi ∩ S0|.

By Claim 11 we have Z2 ∩ Z3 ∩ S0 = Z2 ∩ Z3 ∩ S1 = ∅. Thus for some i ∈ {2, 3}
|Zi ∩ S0| < 2. Without loss of generality we assume |Z2 ∩ S0| < 2. Then |Y2 ∩ S0| = ∅ and
thus |S2 ∩S0| = 2. Since S2 6⊆ Y0 ∪S0, we have |S2 ∩Z0| = 1. As the vertex in S2 ∩Z0 is not
a split vertex, there is a connected component C of G \ (S0 ∪ S2) such that N(C) = S0 ∪ S2.
Then V (C) ⊆ Z0 ∩ Z2 = Z1 ∩ Z2. Now let v ∈ Z3 ∩ S0, and let w ∈ V (C) be adjacent to v.
Then the edge vw has an endvertex in each Zi.

Case 2: |Si∩Z0| 6= ∅ for all i ∈ [3]. Then |Zi∩S0| > |Yi∩S0|. If |Zi∩Zj∩S0| = ∅ for all
i 6= j, then |Zi ∩S0| = 1 and thus |Yi ∩S0| = 0 for all i. Thus |Si ∩S0| = 2 and |Si ∩ Y0| = ∅,
because Si 6⊆ S0 ∪ Y0. But this implies Y0 ⊆ Z1 ∩ Z2 ∩ Z3, which is a contradiction.

Hence without loss of generality we may assume that Z1∩Z2∩S0 6= ∅. Let s ∈ Z1∩Z2∩S0.
Then by Claim 11, s ∈ Y3. Then |Y3 ∩ S0| ≥ 1, and this implies |Z3 ∩ S0| ≥ 2. Let
s′, s′′ ∈ Z3 ∩ S0. Then S0 = {s, s′, s′′}.

If |S3∩Z0| ≤ 1, there is a connected component C of G\(S0∪S3) such thatN(C) = S0∪S3.
But then there is a path from s ∈ Y3 to s′ ∈ Z3 in G \ S3, which is impossible. Hence
|S3 ∩ Z0| ≥ 2.

Thus |S3∩Y0| ≤ 1. Since G is a 3-connected and Y0 6= ∅, there is a path from s to {s′, s′′}
with all internal vertices in Y0. Hence |Y0∩S3| = 1, and the unique vertex y ∈ Y0∩S3 separates
s ∈ Y3 from {s′, s′′} ⊆ Z3 in the graph G[Y0 ∪ S0]. Then ss′, ss′′ 6∈ E(G). Furthermore,
sy ∈ E(G) and y is the only neighbour of s in Y0 ∪ S0, because otherwise {y, s} would be
separator of G. By Claim 11 and because y ∈ S3, we have y 6∈ Z1 ∩ Z2. Say, y 6∈ Z2. Then
y ∈ S2, because y is adjacent to s ∈ Z2. As S2 6⊆ Y0 ∪ S0, it now follows that s′ and s′′ are
not both in S2. As |Z2 ∩ S0| > |Y2 ∩ S2|, one of these vertices, say, s′ is in Z2.

By Claim 11, s′ ∈ Z2 ∩ Z3 implies s′ ∈ Y1. Arguing as above with (Y1, S1, Z1) instead
of (Y3, S3, Z3), we see that Z1 ∩ S0 = {s, s′′} and |S1 ∩ Z0| = 2 and |S1 ∩ Y0| = 1, and the
unique vertex y′ ∈ S1 ∩ Y0 separates s′ from s, s′′ in G. Furthermore, s′s, s′s′′ 6∈ E(G), and
s′y′ ∈ E(G) and y′ is the only neighbour of s′ in Y0 ∪ S0.

Now we have s′′ ∈ Z1 ∩ Z3, and again by the same argument we see that s′′ ∈ Y2 and
Z2 ∩ S0 = {s, s′} and |S2 ∩ Z0| = 2 and |S2 ∩ Y0| = 1 and the unique vertex y′′ ∈ S1 ∩ Y0
separates s′ from s, s′′ in G. Furthermore, s′′s, s′′s′ 6∈ E(G), and s′′y′′ ∈ E(G) and y′′ is the
only neighbour of s′′ in Y0 ∪ S0.

Let us rename the vertices s, s′, s′′ to s12, s23, s13 and the vertices y, y′, y′′ to y12, y23, y13.
Then for distinct i, j, k we have sij ∈ S0 ∩ Zi ∩ Zj ∩ Yk and Sk ∩ Y0 = {yij} and N(sij) ∩
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8:10 Quasi-4-Connected Components

(Y0 ∪ S0) = {yij}. Note that this implies that S0 = {s12, s13, s23} is an independent set.
Moreover, Y0 \ {yij} ⊆ Zk, because all y ∈ Y0 \ {yij} are reachable in G[Y0 ∪ S0] \ {yij} by a
path from {sik, sjk} ⊆ Zk.

As the separation (Y0, S0, Z0) is non-degenerate and S0 is an independent set, we have
|Y0| > 1. Since N(S0) = {y12, y23, y13} and N(yij) ∩ S0 = {sij} and G is 3-connected, it is
easy to see that this implies that the vertices yij are mutually distinct. Now let e = vw be
an arbitrary edge of G[Y0]. Such an edge exists, and it has an endvertex in each Zk. Again,
this is a contradiction. J

LetW,X ⊆ V (G). Then a (W,X)-separation is a separation (Y, S, Z) such thatW ⊆ Y ∪S
and X ⊆ Z ∪ S. It is proper if W ∩ Y 6= ∅ and X ∩ Z 6= ∅. A (proper) (W,X)-separation
(Y, S, Z) is minimum if its order is minimal, that is, there is no (proper) (W,X)-separation
(Y ′, S′, Z ′) such that |S′| < |S|. It is leftmost minimum if it is minimum and, subject to
this condition, Y is inclusionwise minimal. It can be shown by a standard submodularity
argument that there always is a unique leftmost minimum (W,X)-separation. There is not
necessarily a unique leftmost minimum proper (W,X)-separation, but the number of such
separations is (polynomially) bounded in terms of k.

I Lemma 12. Let k ≥ 1. Then there is a linear time algorithm that, given a graph G and
sets W,X ⊆ V (G), decides if there is a proper (W,X)-separation of order at most k, and if
there is computes the set of all leftmost minimum proper (W,X)-separations.

Let us say that a separation (Y0, S0, Z0) ∈ Sep=3(G) defines a tangle if (Y0, S0, Z0) is
non-degenerate and Z0 is connected in G and (Y0, S0, Z0) has no split vertex. Then the
tangle defined by (Y0, S0, Z0) is T (Y0, S0, Z0) (of Lemma 9).

I Lemma 13. There is an algorithm that, given a 3-connected graph G and a separation
(Y0, S0, Z0) of G of order 3 defining the tangle T = T (Y0, S0, Z0), computes the set of all
non-degenerate separations in Tmin and the set of all non-degenerate crossedges of T in time
O(n(n+m)).

Proof. We show how to compute the set Tmin; then we can easily filter out the non-degenerate
separations.

Let x ∈ Z0. Observe that if (Z, S, Y ) is a proper (S0, {x})-separation of order at most
3, then (Y, S, Z) ∈ T . This follows immediately from the definition of T . It implies the
following equivalence for every separation (Y, S, Z) of G of order 3.
1. (Y, S, Z) ∈ Tmin and (Y, S, Z) does not cross (Y0, S0, Z0).
2. There is an x ∈ Z0 such that (Z, S, Y ) is a leftmost minimum proper (S0, {x})-separation.
We can use this equivalence to compute the set of all (Y, S, Z) ∈ Tmin such that (Y, S, Z)
does not cross (Y0, S0, Z0) (repeatedly applying the algorithm of Lemma 12 to all x ∈ Z0).
Note that the equivalence also gives us a linear bound on the number of such (Y, S, Z).

It remains to deal with the (Y, S, Z) ∈ Tmin crossing (Y0, S0, Z0). For each s ∈ S0 that
has a unique neighbour y ∈ Y0 ∪ S0, the edge sy may be a crossedge. This gives us at most
three potential crossedges, and we deal with them separately. So let s ∈ S and y ∈ Y0 such
that N(s) ∩ (Y0 ∩ S0) = {y}. Then for every separation (Y, S, Z) ∈ Sep=3(G) the following
are equivalent.
3. y ∈ S and

(
Z ∩ (S0 ∪ Z0), S ∩ (S0 ∪ Z0), Y ∩ (S0 ∪ Z0)

)
is a leftmost minimum proper

(S \ {s}, {s})-separation in the graph G[S0 ∪ Z0].
4. (Y, S, Z) ∈ Tmin and (Y, S, Z) crosses (Y0, S0, Z0) with crossedge ys.
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To see this, note that (3) implies that |S ∩ Z0| = 2, because (Y0, S0, Z0) has no split vertex.
The equivalence between (3) and (4) allows us to compute the remaining separations in Tmin.

As we have an overall linear bound on the number of separations in Tmin, we can easily
compute the set of non-degenerate crossedges. J

Let us a call a 3-separator S of G degenerate if there is a connected component C of
G \ S such that the separation (G \ (S ∪ V (C)), S, V (C)) is degenerate. It is easy to see that
this is the case if and only if S is an independent set and G \ S has exactly two connected
components, one of which has order 1.

I Lemma 14. There is an a algorithm that, given a 3-connected graph G, decides if G has
a non-degenerate 3-separator and computes one if there is in time O(n2(n+m)).

Proof. We first test if there is an S ⊆ V (G) such that |S| = 3 and all connected components
of G \ S have order 1. In this case, S is a non-degenerate 3-separator if |G| ≥ 6 or if |G| ≥ 5
and S is not an independent set.

In the following, we assume that for every S ⊆ V (G) such that |S| = 3 there is at least one
connected components C of G\S such that |C| ≥ 2. Now suppose that S is a non-degenerate
3-separator of G. Let Y be the vertex set of a connected component of G of size |Y | ≥ 2,
and let Z := V (G) \ (S ∪ Y ). Let y ∈ Y and z ∈ Z.

Then there is a leftmost minimum proper ({y}, {z})-separation (Y ′, S′, Z ′) with Y ′∪S′ ⊆
Y ∪ S, because (Y, S, Z) is a minimum proper ({y}, {z})-separation. The separator S′ is
non-degenerate unless Y ′ = {y} and S′ is an independent set. Then S′ = N(y). However, in
this case there is a leftmost minimum proper (S′, {z}) separation (Y ′′, S′′, Z ′′) such that S′′
is non-degenerate. To see this, let y′ ∈ N(y) ∩ Y . Then there is a proper leftmost minimum
(S′, {z}) separation (Y ′′, S′′, Z ′′) with y, y′ ∈ Y ′′ and Y ′′ ∪ S′′ ⊆ Y ∪ S, because (Y, S, Z)
is a minimum proper (S′, {z}) separation with y, y′ ∈ Y . The set S′′ is a non-degenerate
3-separator.

Thus we can find a non-degenerate 3-separator as follows. For all pairs y, z of distinct
vertices, we compute all leftmost minimum proper ({y}, {z})-separations (Y ′, S′, Z ′) and
check if there is one such that S′ is a non-degenerate 3-separator. If y has degree 3 and
S′ := N(y) is an independent set, we also compute all leftmost minimum proper (S′, {z})
separations (Y ′′, S′′, Z ′′) and check if S′′ is a non-degenerate 3-separator. J

Proof of Theorem 8. If G has no non-degenerate 3-separator, then G is quasi-4-connected,
and we return the trivial tree decomposition with a one-node tree. In the following, we
assume that G has at least one non-degenerate 3-separator.

We view the tree T in the tree decomposition as directed with all edges pointing away
from the root, and we denote the descendant order in the tree by E. With each (directed)
edge e = (s, t) of the tree we associate a separation sep(s, t) = (Y, S, Z) of order 3 such that
Z is connected in G and S = β(t) ∩ β(s) and S ∪ Z =

⋃
uDt β(u).

We build the tree decomposition iteratively starting from the root r of the tree. We pick
an arbitrary non-degenerate 3-separator Sr of G and let β(r) := Sr. For every connected
component C of G \ Sr we create a child t of r, and we let sep(r, t) := (V (G) \ (Sr ∪
V (C)), Sr, V (C)).

At every step of the construction, we pick a leaf t of the current tree such that β(t) is not
yet defined. Let s be the parent of t and sep(s, t) = (Y0, S0, Z0).

Case 1: |Z0| ≤ 1. Then |S0 ∪Z0| ≤ 4, and we let β(t) := S0 ∪Z0. The node t will remain
a leaf of the final tree.
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Case 2: |Z0| > 1 and (Y0, S0, Z0) has a split vertex z0 ∈ Z0. Then we let β(t) :=
S0 ∪ {z0}. For every connected component C of G \ (S0 ∪ {z0}) with V (C) ⊆ Z0 we create a
child u of t and let sep(t, u) := (V (G) \ (N(C) ∪ V (C)), N(C), V (C)).

Case 3: |Z0| > 1 and (Y0, S0, Z0) has no split vertex. Let T = T (Y0, S0, Z0) be the
G-tangle of Lemma 9. Note that (Y0, S0, Z0) ∈ Tmin. Let RT be the quasi-4-connected region
associated with T . When contracting the non-degenerate crossedges that involve S0, we
make sure that we contract them to their endvertices in S0. Then S0 ⊆ RT and Y0 ∩RT = ∅.
We let β(t) := RT .

For every connected component C of G \RT we create a child u of t and let sep(t, u) :=
(V (G) \ (N(C) ∪ V (C)), N(C), V (C)).

The completes the description of our construction. We need to describe a time O(n2(n+
m))-algorithm implementing it. By Lemma 14, we can compute a non-degenerate 3-separator
Sr (for the root r) within this time if there is one.

Now we show that we can handle every step of the construction in time O(n(n+m)). So
let t be a leaf of the current tree, s its parent, and (Y0, S0, Z0) := sep(s, t). Case 1 is easy.
For Case 2, we need to compute all connected components of G \ (S0 ∪ {z}) for all z ∈ Z0,
which we can do in time O(n(n+m)). For Case 3, we need to compute Tmin and RT for the
tangle T = T (Y0, S0, Z0), and Lemma 13 allows us to do this. J

Note that the results of Section 4, in particular the Correspondence Theorem 4, are used
in Case 3 of the proof of Theorem 8 (and this is the only place in the proof where they are
used).

I Remark. Let (T, β) be tree decomposition of G into quasi-4-connected components. The
G-tangles of order 4 are associated with all nodes t such that either |β(t)| ≥ 5 or |β(t)| = 4 and
for each subset S ⊆ β(t) of size |S| = 3 there is a neighbour u of t such that β(u) ∩ β(t) = S.
In the second case, the neighbours of t allow us to find a non-exceptional extension of the
quasi-4-connected region β(t).

6 Conclusions

Relaxing 4-connectedness, we introduce the notion of quasi-4-connectedness of graphs and
prove that every graph has a decomposition into quasi-4-connected components. We show
that the quasi-4-connected components correspond to the tangles of order 4, putting our result
in the context of recent work on tangles and decompositions [1, 2, 3, 9, 11, 17]. Furthermore,
we prove that our decomposition can be computed in cubic time. Although we do not explore
this in the present paper, I believe that the decomposition may turn out to be a useful
algorithmic tool, just like the decomposition into 3-connected components (though maybe
not quite as broadly applicable).

The most obvious question is whether our result has a generalisation to “quasi-k-connected
components”, whatever they may be, for k ≥ 5. I am skeptical, because we exploit many
special properties of separators of order 3 here, most importantly the limited way in which
they can cross. However, our decomposition is not a straightforward generalisation of the
decomposition into 3-connected components either, and it may well be that new ideas lead
to perfectly nice decompositions of higher order.

Finally, in particular when thinking of applications, it would be desirable to have a
decomposition algorithm working in quadratic or even in linear time. I see no fundamental
obstructions to the existence of such an algorithm.
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