
Subexponential Time Algorithms for Embedding
H-Minor Free Graphs
Hans L. Bodlaender1, Jesper Nederlof∗2, and
Tom C. van der Zanden3

1 Department of Computer Science, Utrecht University, Utrecht,
The Netherlands; and
Department of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven, The Netherlands
H.L.Bodlaender@uu.nl

2 Department of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven, The Netherlands
J.Nederlof@tue.nl

3 Department of Computer Science, Utrecht University, Utrecht,
The Netherlands
T.C.vanderZanden@uu.nl

Abstract
We establish the complexity of several graph embedding problems: Subgraph Isomorphism,
Graph Minor, Induced Subgraph and Induced Minor, when restricted to H-minor free
graphs. In each of these problems, we are given a pattern graph P and a host graph G, and
want to determine whether P is a subgraph (minor, induced subgraph or induced minor) of G.
We show that, for any fixed graph H and ε > 0, if P is H-Minor Free and G has treewidth tw,
(induced) subgraph can be solved 2O(kεtw+k/ log k)nO(1) time and (induced) minor can be solved
in 2O(kεtw+tw log tw+k/ log k)nO(1) time, where k = |V (P)|.

We also show that this is optimal, in the sense that the existence of an algorithm for one of
these problems running in 2o(n/ logn) time would contradict the Exponential Time Hypothesis.
This solves an open problem on the complexity of Subgraph Isomorphism for planar graphs.

The key algorithmic insight is that dynamic programming approaches can be sped up by
identifying isomorphic connected components in the pattern graph. This technique seems widely
applicable, and it appears that there is a relatively unexplored class of problems that share a
similar upper and lower bound.

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases subgraph isomorphism, graph minors, subexponential time

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.9

1 Introduction

We study several problems related to recognizing a pattern graph P as substructure of a host
graph G: Subgraph Isomorphism, Induced Subgraph, Graph Minor and Induced
Minor. We consider the case in which P excludes a specific minor H, ε > 0 is a constant
and give algorithms parameterized by the treewidth tw of G and the number of vertices k of

∗ This work was done while the second author was visiting the Simons Institute for the Theory of
Computing.

EA
T

C
S

© Hans L. Bodlaender, Jesper Nederlof, and Tom C. van der Zanden;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Subexponential Time Algorithms for Embedding H-Minor Free Graphs

P . Specifically, we show that for any ε > 0 and graph H, if P is H-minor free and G has
treewidth tw, (induced) subgraph can be solved 2O(kεtw+k/ log k)nO(1) time and (induced)
minor can be solved in 2O(kεtw+tw log tw+k/ log k)nO(1) time.

The k/ log k dependence in the exponent is optimal: we present lower bounds based on
the Exponential Time Hypothesis, showing that all these problems can not be solved in time
2o(n/ logn), even when P is a tree and G is connected and series-parallel (and thus planar).
Our lower bound answers a question of Marx [24] negatively: assuming the ETH, there is no
2O(
√
k)nO(1) algorithm for subgraph isomorphism on planar graphs. This result is surprising,

since for many problems on planar graphs a square root does appear in the exponent.
As an important special case of our result, we show that subgraph isomorphism can be

solved in time 2O(kε
√
n+k/ log k) on H-Minor Free graphs (which includes planar, bounded-

treewidth and bounded-genus graphs). Our result can be combined with a recent result of
Fomin et al. [17] to show that subgraph isomorphism can be solved in 2O(k/ log k)nO(1) if P is
connected and G is apex-minor free, which our lower bound shows is optimal (under ETH).

Subgraph isomorphism has received considerable attention in the literature. Results
include polynomially solvable cases, such as recognizing a fixed pattern in planar graphs
[13, 15], biconnected outerplanar graphs [22], graphs of log-bounded fragmentation [20] and
graphs of bounded genus [10] and certain subclasses of graphs of bounded treewidth [26],
exact algorithms [30], lower bounds [19, 11, 28] and results on parameterized complexity [25].

For a pattern graph P of treewidth t, subgraph isomorphism is solvable in 2O(k)nO(t)

time using the color-coding technique [3]. If the host graph is planar, subgraph isomorphism
can be solved in 2O(k)n time [13]. In general graphs, subgraph isomorphism can be solved in
2O(n logn) time and, assuming the ETH, this is tight [16].

Graph minor problems are also of interest, especially in the light of Robertson and
Seymour’s seminal work on graph minor theory (see e.g. [29]) and the recent development
of bidimensionality theory [12]. Many graph properties can be tested by checking for the
inclusion of some minor. Testing whether a graph G contains a fixed minor P can be done in
O(n3) time [27], this was recently improved to O(n2) [21]. However, the dependence on n is
superexponential in a strong sense. Testing whether a graph P is a minor of a planar graph
G can be done in 2O(k)nO(1) time [1], which is only single-exponential. Our lower bound
shows this running time can not be improved to 2o(k/ log k), assuming ETH. Our algorithms
are subexponential in k, but (in contrast to [1, 21]) superpolynomial in n. This is to our
knowledge the first subexponential minor testing algorithm (for a non-trivial class of graphs).

Our algorithms are based on dynamic programming on tree decompositions. In particular,
we use dynamic programming on the host graph and store correspondences to vertices in
the pattern graph. The key algorithmic insight is that this correspondence may or may not
use certain connected components of the pattern graph (that remain after removing some
separator vertices). Instead of storing for each component whether it is used or not, we
identify isomorphic connected components and store only the number of times each is used.

In [20], the authors give an algorithm for subgraph isomorphism, which runs in polynomial
time for a host graph of bounded treewidth and a pattern graph of log-bounded fragmentation
(i.e. removing a separator decomposes the graph into at most logarithmically many connected
components). This is achieved using a similar dynamic programming technique, which (in
general) uses time exponential in the number of connected components that remain after
removing a separator. By assuming the number of connected components (fragmentation)
is logarithmic, the authors obtain a polynomial time algorithm. In contrast, we consider a
graph class where fragmentation is unbounded, but the number of non-isomorphic connected
components is small. This leads to subexponential algorithms.

H. L. Bodlaender, J. Nederlof, and T. C. van der Zanden 9:3

This paper builds on techniques due to Bodlaender, Nederlof and van Rooij [7, 9]. They
give a 2O(n/ logn)-time algorithm for finding tree decompositions with few bags and a matching
lower bound (based on the Exponential Time Hypothesis), and a 2O(n/ logn) algorithm for
determining whether a given k-colored graph is a subgraph of a properly colored interval
graph. These earlier papers, coupled with our results, suggest that this technique may have
many more applications, and that there exists a larger class of problems sharing this upper
and lower bound.

2 Preliminaries

Graphs. Given a graph G, we let V (G) denote its vertex set and E(G) its edge set.
Given X ⊆ V (G), let G[X] denote the subgraph of G induced by X and use shorthand
E(X) = E(G[X]). Let Nb(v) denote the neighbourhood of v, that is, the vertices adjacent
to v. For a set of vertices S, let Nb(S) = ∪v∈SNb(v) \ S. Let CC(G) denote the set of the
connected components of G. Given X ⊆ V (G), we write as shorthand CC(X) = CC(G[X]).

Functions. Given a function f : A→ B, we let f−1(b) = {a ∈ A | f(a) = b}. Depending on
the context, we may also let f−1(b) denote (if it exists) the unique a ∈ A so that f(a) = b.
We say g : A → B is a restriction of f : A′ → B′ if A ⊆ A′ and B ⊆ B′ and for all a ∈ A,
g(a) = f(a). We say g is an extension of f if f is a restriction of g.

Isomorphism. We say a graph P is isomorphic to a graph G if there is a bijection f :
V (P) → V (G) so that (u, v) ∈ E(P) ⇐⇒ (f(u), f(v)) ∈ E(G). We say a graph P is a
subgraph of G if we can obtain a graph isomorphic to P by deleting edges and or vertices
from G, and we say P is an induced subgraph if we can obtain it by deleting only vertices.

Contractions, minors. We say a graph G′ is obtained from G by contracting edge (u, v), if
G′ is obtained from G by replacing vertices u, v with a new vertex w which is made adjacent
to all vertices in Nb(u)∪Nb(v). A graph G′ is a minor of G if a graph isomorphic to G′ can
be obtained from G by contractions and deleting vertices and/or edges. G′ is an induced
minor if we can obtain it by contractions and deleting vertices (but not edges).

Tree decompositions. A tree decomposition of a graph G is a rooted tree T with for every
vertex i ∈ V (T) a bag Xi ⊆ V (G), such that ∪i∈V (T)Xi = V (G), for all (u, v) ∈ E(G) there
is an i ∈ V (T) so that {u, v} ⊆ Xi and for all v ∈ V (G), T [{i ∈ V (T) | v ∈ Xi}] is connected.
The width of a tree decomposition is maxi∈V (T) |Xi|− 1 and the treewidth of a graph G is the
minimum width over all tree decompositions of G. For a node t ∈ T , we let G[t] denote the
subgraph of G induced by the vertices contained in the bags of the subtree of T rooted at t.

To simplify our algorithms, we assume that a tree decomposition is given in nice form,
where each node is of one of four types:

Leaf: A leaf node is a leaf i ∈ T , and |Xi| = 1.
Introduce: An introduce node is a node i ∈ T that has exactly one child j ∈ T , and Xi

differs from Xj only by the inclusion of one additional vertex.
Forget: An introduce node is a node i ∈ T that has exactly one child j ∈ T , and Xi

differs from Xj only by the removal of one vertex.
Join: A join node is a node i ∈ T with exactly two children j, k ∈ T , so that Xi = Xj =
Xk.

ICALP 2016

9:4 Subexponential Time Algorithms for Embedding H-Minor Free Graphs

A tree decomposition can be converted to a nice tree decomposition of the same width
and of linear size in linear time [5].

3 Algorithmic Results

We begin by describing our algorithm for subgraph isomorphism, which is based on dynamic
programming on a tree decomposition T of the host graph G. The algorithm is somewhat
similar to that of Hajiaghayi et al. [20] for subgraph isomorphism on log-bounded fragmenta-
tion graphs, and we use similar notions of (extensible) partial solutions and characteristic
of a partial solution (Section 3.1). Our main contribution is the canonization technique
(Section 3.2) and its analysis (Section 3.3), which gives the subexponential running time.

3.1 An algorithm for Subgraph Isomorphism
I Definition 1 ((Extensible) Partial Solution). For a given node t ∈ T of the tree decomposition
of G, a partial solution (relative to t) is a triple (G′, P ′, φ) where G′ is a subgraph of G[t],
P ′ is an induced subgraph of P and φ : V (G′)→ V (P ′) is an isomorphism from G′ to P ′.

Say that a partial solution (G′, P ′, φ) relative to t is extensible if there exists an extension
of φ, ψ : V (G′′) → V (P) which is an isomorphism from a subgraph G′′ of G to P where
V (G′′) ∩ V (G[t]) = V (G′).

To facilitate dynamic programming, at node t of the tree decomposition we only consider
partial solutions (G′, P ′, φ) which might be extensible (i.e. we attempt to rule out non-
extensible solutions). Note that in a partial solution we have already decided on how the
vertices in G[t] are used, and the extension only makes decisions about vertices not in G[t].
Instead of dealing with partial solutions directly, our algorithm works with characteristics of
partial solutions:

I Definition 2 (Characteristic of a Partial Solution). The characteristic (f, S) of a partial
solution (G′, P ′, φ) relative to a node t ∈ T is a function f : Xt → V (P) ∪ {�}, together
with a subset S ⊆ V (P) \ f(Xt), so that:

for all v ∈ V (G′) ∩Xt, f(v) = φ(v) and f(v) = � otherwise,
f is injective, except that it may map multiple elements to �,
S = V (P ′) \ φ(Xt).

The following easy observation justifies restricting our attention to characteristics of
partial solutions:

I Lemma 3 (Equivalent to Lemma 10, [20]). If two partial solutions have the same charac-
teristic, either both are extensible or neither is extensible.

I Lemma 4. If (f, S) is the characteristic of an extensible partial solution (G′, P ′, φ) relative
to a node t ∈ T , then S is a union of connected components of P [V (P) \ f(Xt)].

Proof (due to Hajiaghayi et al. [20]). Suppose there exist adjacent vertices v1, v2 ∈ V (P)\
φ(Xt) and v1 ∈ V (P ′), v2 6∈ V (P ′). Then it is never possible to find a preimage u for v2 in
an extension of (G′, P ′, φ): we require that u 6∈ V (G[t]), but all vertices adjacent to φ−1(v1)
are contained in V (G[t]). J

The latter fact will be key to achieving the subexponential running time. The requirement
that S is a union of connected components also appears in the definition of ‘good pair’ in
Bodlaender et al. [7]. We show how to compute the characteristics of partial solutions in

H. L. Bodlaender, J. Nederlof, and T. C. van der Zanden 9:5

Procedure 1 Leaf case: computes the partial solution characteristics for a leaf bag t ∈ T ,
with Xt = {v}.

1: let R = ∅
2: for each u ∈ V (P) ∪ {�} do
3: let f : Xt → V (P) ∪ {�} be the function so that f(v) = u

4: let R = R ∪ {(f, ∅)}
5: end for
6: filter R
7: return R

Procedure 2 Introduce case: introduces a vertex v into a bag Xt.
1: let R be the set of partial solution characteristics for t
2: let R′ = ∅
3: for each (f, S) ∈ R and each u ∈ V (P) \ (f(Xt) ∪ S) ∪ {�} do
4: if u = � or for all w ∈ Nb(u) ∩ f(Xt), (v, f−1(w)) ∈ E(G) then
5: let f ′ : Xt ∪ {v} → V (P) ∪ {�} be the extension of f so that f(v) = u

6: let R′ = R′ ∪ {(f ′, S)}
7: end if
8: end for
9: filter R′

10: return R′

Procedure 3 Forget case: forgets a vertex v from a bag Xt.
1: let R be the set of partial solution characteristics for t
2: let R′ = ∅
3: for each (f, S) ∈ R do
4: let f ′ be the restriction of f to Xt \ {v}
5: if f(v) = � or f(v) is not adjacent to any vertex of V (P) \ (f(Xt) ∪ S) then
6: let R′ = R′ ∪ {(f ′, S ∪ {f(v)} \ {�})}
7: end if
8: end for
9: filter R′

10: return R′

Procedure 4 Join case: combines the partial solution characteristics for two bags Xs = Xt.
1: let R be the set of partial solution characteristics for s
2: let T be the set of partial solution characteristics for t
3: let R′ = ∅
4: for each (f, S) ∈ R and each (g,Q) ∈ T do
5: if f = g and S ∩Q = ∅ then
6: let R′ = R′ ∪ {(f, S ∪Q)}
7: end if
8: end for
9: filter R′

10: return R′

ICALP 2016

9:6 Subexponential Time Algorithms for Embedding H-Minor Free Graphs

a bottom-up fashion, so that we can tell whether G has a subgraph isomorphic to P by
examining the characteristics of the root bag. We proceed by giving pseudocode for the leaf,
introduce, forget and join cases and argue for their correctness.

The correctness of Procedure 1 is self-evident, as we simply enumerate all the possibilities
for f (which means guessing a vertex in P to map v to). We will give details of the filter
procedure in the next section, for now it suffices to treat the pseudocode as if this call were
not present.

Procedure 2 extends existing partial solutions by choosing a vertex to map v to. To
ensure we obtain valid characteristics of partial solutions, we check that for any edge incident
to v in P [S ∪ f(Xt)] there is a corresponding edge in G. Because S is a union of connected
components of G[V (P) \ f(Xt)], f(v) can not be adjacent to any vertex in S, and thus
it suffices to check adjacency only against vertices in f(Xt). Then S remains a union of
connected components since the removal of a vertex can only further disconnect S. Note
that u is chosen so that f remains injective.

Procedure 3 discards any solutions that would result in S not remaining the union of
connected components that we require after forgetting a vertex (note that this means we
keep only partial solutions were we have already chosen preimages for all of the neighbours
of the image of the vertex being forgotten).

Finally, consider Procedure 4. Because (as a basic property of nice tree decompositions)
V (H[i]) ∩ V (H[j]) = Xi, we obtain an injective function if and only if S ∩R = ∅. We can
therefore merge two partial solutions if they map the vertices of Xt = Xs in the same way
and S ∩ R = ∅. Note that we do indeed create all possible partial solutions in this way:
given a partial solution, we can split it into partial solutions for the left and right subtrees
since (as there are no edges between the internal vertices of the left and right subtrees) a
connected component of S must be covered entirely by either the left or right subtree.

These procedures, applied bottom-up on the tree decomposition, give an algorithm that
decides subgraph isomorphism. Note that if one exists, a solution can be reconstructed from
the characteristics.

3.2 Reducing the number of partial solutions using isomorphism tests
In this section, we show how adapt the algorithm from the previous section to achieve the
claimed running time bound. This involves a careful analysis of the number of characteristics,
and using isomorphism tests to reduce this number. Currently, if the connected components
of S are small (e.g., O(1) vertices each) then their number is large (e.g., Ω(n) components)
and thus in the worst case we have 2Ω(n) partial solutions. However, if there are many small
connected components many will necessarily be isomorphic to each other (since there are
only few isomorphism classes of small connected components) and we can thus reduce the
number of characteristics by identifying isomorphic connected components:

I Definition 5 (Partial Solution Characteristic Isomorphism). Given a bag t ∈ T , two charac-
teristics of partial solutions (f, S), (g,R) for t are isomorphic if:

f = g,
there is a bijection h : CC(S)→ CC(R),
for all connected components c ∈ CC(S), c and h(c) are isomorphic when all vertices
v ∈ c vertices are labelled with Nb(v) ∩ f(Xt) (i.e. the set of vertices of f(Xt) to which
v is adjacent).

Clearly, the algorithm given in the previous section remains correct even if after each
procedure we remove duplicate isomorphic characteristics. To this end, we modify the join

H. L. Bodlaender, J. Nederlof, and T. C. van der Zanden 9:7

Procedure 5 Connected Component Canonization: Computes a canonical representation
for a union of connected components S ⊆ V (P) \ f(Xt)

1: let S′ be the union of the large connected components of S
2: let Q = ∅
3: for each small connected component s of S do
4: compute the canonical representation r of s when each v ∈ V (s) is labelled with
Nb(v) ∩ f(Xt)

5: let Q = Q ∪ {r}
6: end for
7: Sort S′ and Q lexicographically
8: return (S′, Q)

Procedure 7 Filtering Procedure: Filters a set of partial solution characteristics R to
remove duplicates

1: compute the canonical representation CS for every (f, S) ∈ R using Procedure 5
2: sort R first by f , then by CS in lexicographical order
3: loop over R, removing all but one of each group of isomorphic partial solutions
4: return R

case (Procedure 4): the disjointness check S ∩Q = ∅ should be replaced with a check that if
P [V (P) \ f(Xt)] contains NP (y) connected components of isomorphism class y, and P [S]
(resp. P [Q]) contains NS(y) (resp. NQ(y)) connected components of isomorphism class y,
then NS(y) +NQ(y) ≤ NP (y). Similarly, the statement S ∪Q needs to be changed to, if the
union is not disjoint, replace connected components that occur more than once with other
connected components of the same isomorphism class (so as to make the union disjoint while
preserving the total number of components of the same type).

Call a connected component small if it has at most c log k vertices, and large otherwise.
We let c > 0 be a constant that depends only on |V (H)| and ε. We do not state our choice
of c explicitly, but in our analysis we will assume it is “small enough”.

For a small connected component s, we label each of its vertices by the subset of vertices
of f(Xt) to which it is adjacent. We then compute a canonical representation of this labeled
component, for example by considering all permutations of its vertices, and choosing the
permutation that results in the lexicographically smallest representation. Note that since we
only canonize the small connected components using such a trivial canonization algorithm
does not affect the running time of our algorithm, as (c log k)! is only slightly superpolynomial.

Procedure 5 computes a canonical representation of a partial solution. It requires that
we have some predefined ordering of the vertices of G. The canonization procedure 5 allows
us to define the filter procedure (Procedure 6).

Traditionally, a canonization is a function that maps non-isomorphic graphs to distinct
strings, and isomorphic graphs to identical strings. We use this term slightly more loosely, as
our canonization procedure 5 may map isomorphic graphs to distinct strings since it only
canonizes the small connected components. Thus, Procedure 6 may not remove all duplicate
isomorphic partial solutions. However, we will show that it removes enough of them.

ICALP 2016

9:8 Subexponential Time Algorithms for Embedding H-Minor Free Graphs

3.3 Bounding the number of non-isomorphic partial solutions

In this section, we analyse the number of non-isomorphic partial solutions, and show that
the algorithm given in the previous section indeed achieves the stated time bound. In the
following, let ε > 0 and let G be a graph of treewidth at most tw. Furthermore, suppose
that P is H-minor free for some fixed graph H.

Recall that a partial solution for a node t ∈ T of the tree decomposition consists of
f : Xt → V (P) ∪ {�} and a subset S ⊆ V (P) \ f(Xt), which is a union of connected
components of the subgraph induced by S ⊆ V (P) \ f(Xt). The number of choices for f is
at most (k + 1)|Xt| = 2O(tw log k). We now proceed to bound the number of cases for S.

We distinguish between connected components of V (P) \ f(Xt) of which there are “few”,
and connected components of V (P) \ f(Xt) of which there can be “many”, but few non-
isomorphic ones. For some constant c, we say a component is small if it has at most c log k
vertices, and large otherwise. The large connected components are amongst the few, since
there are at most k/(c log k) components with at least c log k vertices. For each of these
components, we store explicitly whether or not it is contained in S. They contribute a factor
of 2O(k/ log k) to the number of cases. For the small connected components, we will show a
partition into the “few” (which we treat similarly to the large connected components), and
into the “many, but few non-isomorphic” (for which we store, for each isomorphism class,
the number of components from that isomorphism class contained in S).

I Claim. For a given node t and function f : Xt → V (P), there are at most O(kε/2tw)
isomorphism classes of small connected components.

Proof. For a (small) connected component x ∈ CC(V (P) \ f(Xt)), its isomorphism class
is determined by the isomorphism class of x itself, and the adjacency of vertices v ∈ x to
vertices in f(Xt). Since |x| ≤ c log k and P is H-minor free, there exists a constant CH > 1
so that there are at most 2CH ·c log k cases for the isomorphism class of x itself (see [4]).

What remains is to bound the number of cases for adjacency of x to Xt. In this specific
case, Nb(x) denotes the set of vertices of Xt to which x is incident, that is, v ∈ Nb(x) if and
only if v ∈ Xt and there exists a vertex u ∈ x so that (u, v) ∈ E(P). Using the following
lemma, we further divide the small connected components into two cases: the components
with a large neighbourhood, and the components with a small neighbourhood.

I Lemma 6 (Gajarskỳ et al., special case of Lemma 3 of [18]). Let H be a fixed graph. Then
there exists a constant d (depending on H), so that if G = (A,B,E) is H-minor free and
bipartite, there are at most

O(|A|) vertices in B with degree greater than d,
O(|A|) subsets A′ ⊆ A such that A′ = Nb(u) for some u ∈ B.

Taking A = Xt, deleting the edges between vertices in Xt and contracting every connected
component x ∈ CC(V (P) \ f(Xt)) to a single vertex in B, the lemma states that there are at
most O(tw) components with |Nb(x)| > d and that the components with |Nb(x)| ≤ d have
at most O(tw) distinct neighbourhoods in Xt.

For the connected components x ∈ CC(V (P)\f(Xt)) with |Nb(x)| ≤ d, we have 2CH ·c log k

cases for the isomorphism class of x, O(tw) cases for Nb(x) and for every vertex of x, at
most 2d cases for incidence to Nb(x). We thus have at most 2Ch·c log k · O(tw) · (2d)c log k

isomorphism classes for x ∈ CC(S) with Nb(x) ≤ d. For sufficiently small c > 0, the
asymptotic complexity is O(kε/2tw). J

H. L. Bodlaender, J. Nederlof, and T. C. van der Zanden 9:9

Since of each component there can be most k occurrences in S, the total number of cases
for storing the multiplicity of each class of components is (k + 1)O(kε/2tw) = 2O(kε/2tw log k) =
2O(kεtw).

We now have all the results we need to finish the analysis. Storing the multiplicities
of the small connected components gives 2O(kεtw) cases, while storing the subset of large
connected components explicitly contributes 2O(k/ log k) cases. A partial solution is further
characterized by f , for which there are only 2O(tw log k) cases. For a given node t of the tree
decomposition, there are thus at most 2O(kεtw+k/ log k) partial solutions.

Finally, we can compute a 5-approximate tree-decomposition of G in time exponential in
tw [6], perform dynamic programming as described in Procedures 1-6 to obtain:

I Theorem 7. For any graph H and ε > 0, Subgraph Isomorphism can be solved in time
2O(kεtw+k/ log k)nO(1) if the host graph has treewidth tw and the pattern graph is H-minor
free.

3.4 Adaptation to other problems
In this section, we discuss how our algorithm for Subgraph Isomorphism can be adapted
to Induced Subgraph and (Induced) Minor. We begin by describing the graph minor
case, then give a brief note on how to adapt both algorithms for the induced case. Some
details are omitted from this extended abstract.

Note that P is a minor of G if and only if we have a function f : V (G)→ V (P) ∪ {�},
such that

for all v ∈ V (P), f−1(v) is non-empty, and induces a connected subgraph of G,
for all (v, w) ∈ E(P), there are x ∈ f−1(v) and y ∈ f−1(w) with (x, y) ∈ E(G).

Vertices that are deleted are mapped to �, otherwise f(v) gives the vertex that v is contracted
to. Call such a function a solution for the Graph Minor problem.

If we restrict such solutions to a subgraph G[t], we obtain the notion of partial solution:

I Definition 8 (Partial Solution (Graph Minor)). Given a node t ∈ T of the tree decomposition
of G, a partial solution for the Graph Minor problem relative to a node t is a function
f : V (G[t])→ V (P) ∪ {�}, such that
1. For each v ∈ V (P), at least one of the following three cases holds:

a. each connected component of G[t][f−1(v)] contains at least one vertex from Xt,
b. G[t][f−1(v)] has one connected component,
c. f−1(v) is empty.

2. For all (v, w) ∈ E(P), at least one of the following cases holds:
a. Some vertex of f−1(v) is adjacent to some vertex of f−1(w) in G[t],
b. f−1(v) ∩Xt 6= ∅ and f−1(w) ∩Xt 6= ∅,
c. f−1(v) ∩Xt 6= ∅ and f−1(w) = ∅,
d. f−1(w) ∩Xt 6= ∅ and f−1(v) = ∅.
e. f−1(w) = ∅ and f−1(v) = ∅.

Intuitively, in 1) we require that the preimage of v can still be made connected (a), is already
connected (b) or has not been assigned yet (c), and in 2) we require that the edge (v, w) is
already covered (a), can still be covered (b,c,d,e).

As before, our dynamic programming algorithm uses characteristics of partial solutions:

I Definition 9 (Characteristic of a partial solution (Graph Minor)). Given a node t ∈ T of the
tree decomposition of G and a partial solution for the Graph Minor problem relative to a
node t f : V (G[t])→ V (P) ∪ {�}, the characteristic of f is a tuple (f ′, S,∼, F) such that:

ICALP 2016

9:10 Subexponential Time Algorithms for Embedding H-Minor Free Graphs

1. f ′ is the restriction of f to Xt,
2. S ⊆ V (P) with S = f(V (G[t])) \ (f(Xt) ∪ {�}),
3. ∼ is an equivalence relation on Xt, with v ∼ w, if and only if f(v) = f(w) and there

exists a path from v to w in G[t] such that for all vertices x on this path f(x) = f(v).
4. F ⊆ E(P [f(Xt)]) such that for every (v, w) ∈ E(P [f(Xt)]), it holds that (v, w) ∈ F if

and only if each of the following holds:
a. f−1(v) ∩Xt 6= ∅,
b. f−1(w) ∩Xt 6= ∅,
c. There are x ∈ f−1(v) and y ∈ f−1(w) with (x, y) ∈ E(G[t]).

As before, it is easy to see the equivalence between the existence of a minor, solution,
and partial solution with certain characteristic.

Compared to our approach for subgraph isomorphism, we no longer require f to be
injective – f−1(v) corresponds to the vertices that are contracted to form v. We require
that f−1(v) eventually becomes connected. This can either be achieved inside the bag, be
achieved below the bag (in the tree decomposition), or above the bag. The relation ∼ tracks
which components are already connected by vertices below the bag. Similarly, edges inside
P [f(Xt)] might not have corresponding edges inside G[Xt], but might instead correspond to
edges below or above this bag. The set F stores which edges correspond to edges below the
current bag.

This lemma is the counterpart of Lemma 3 and shows that we can apply dynamic
programming:

I Lemma 10. If partial solutions for the Graph Minor problem f and g have the same
characteristic and are both relative to t, then f can be extended to a solution if and only if g
can be extended to a solution.

The following lemma shows that we can apply our technique of reducing the number of
partial solution characteristics by using isomorphisms:

I Lemma 11. A partial solution for Graph Minor f with characteristic (f ′, S,∼, F) can
be extended to a solution only if S is a union of connected components of G[V (P) \ f(Xt)].

The analysis of the number of cases of f ′ and S remains unchanged. There are at most
(tw)tw = 2O(tw log tw) cases for ∼, and since P is sparse, at most 2O(tw) cases for F .

For the induced cases, only a small modification is needed: it suffices to check in the
introduce case that all neighbours (in Xt) of the vertex being introduced are mapped to
vertices that are adjacent to the image of the introduced vertex and discard the partial
solution otherwise. We thus obtain the following theorem:

I Theorem 12. For any graph H and ε > 0, if the host graph has treewidth tw and the
pattern graph is H-minor free, Subgraph Isomorphism and Induced Subgraph can be
solved in time 2O(kεtw+k/ log k)nO(1) and Graph Minor and Induced Minor can be solved
in time 2O(kεtw+tw log tw+k/ log k)nO(1).

As a direct corollary, we have that Subgraph Isomorphism, Graph Minor, Induced
Subgraph and Induced Minor can be solved in 2O(n0.5+ε+k/ log k) time if the host graph
is H-minor free for some fixed graph H, as H-minor free graphs have treewidth O(

√
n) [2].

Important special cases include planar graphs, graphs of bounded genus, and graphs of
bounded treewidth.

H. L. Bodlaender, J. Nederlof, and T. C. van der Zanden 9:11

(a) Host graph (b) Guest graph

Figure 1 Construction used in the proof of Theorem 14. Host graph (a), representing a string
101001 ∈ A and pattern graph (b), representing strings 000100 ∈ B and 010010 ∈ C. The dashed
lines represent additional paths attached to vertices u and u′.

4 Hardness Results

Both (Induced) Subgraph and (Induced) Minor are known to be NP-complete, even if
P is a tree and G is series-parallel (and thus planar), connected and all but one vertex of P
and G have degree at most 3, by reduction from Three-Dimensional Matching [26].

We obtain our 2o(n/ logn) lower bound by a reduction very similar to the reduction from
Three-Dimensional Matching in [26]. We instead reduce from the String 3-Groups
problem [7]. In the following, given a string s, we let si denote the ith character of s.

String 3-Groups
Instance: Sets A,B,C ⊆ {0, 1}6dlogne+1, |A| = |B| = |C| = n

Question: Do there exist n triples, so that for each chosen triple (a, b, c) ∈ A×B ×C
and for all i, ai + bi + ci ≤ 1 and each element of A,B,C occurs in exactly one triple?

I Theorem 13 ([7], [8]). Assuming the Exponential Time Hypothesis, there is no algorithm
solving String 3-Groups in 2o(n) time.

I Theorem 14. Assuming the Exponential Time Hypothesis, there is no algorithm solving
Subgraph Isomorphism in 2o(n/ logn) time, even when the pattern graph is a tree and the
host graph is connected and series-parallel and in both the host graph and pattern graph, all
vertices but one have maximum degree 3.

Proof. Let A,B,C be an instance of String 3-Groups. We modify the instance by
prepending a 0 to each string in A and B, and a 1 to each string in C. Let m = 6dlogne+ 2.

To construct the host graph G, we take a vertex u. For each a ∈ A we take a path
p1, . . . , pm and a path q1, . . . , qm. We add edges (p1, u) and (q1, u). Whenever ai = 0, we
create a vertex ri and edges (pi, ri), (ri, qi).

To construct the pattern graph P , we take a vertex u′. For each b ∈ B (resp. each c ∈ C)
we take a path s1, . . . , sm. We add an edge (s1, u

′). Whenever bi = 1 (resp. ci = 1), we
create a vertex ti and an edge (si, ti).

A solution to the String 3-Groups problem and this instance of Subgraph Isomorph-
ism correspond as follows: u is mapped to u′. If (a, b, c) is a triple in a solution to String
3-Groups, then the path s1, . . . , sm corresponding to b can be mapped to the path p1, . . . , pm
corresponding to a, while the path s1, . . . , sm corresponding to c is mapped to the path
q1, . . . , qm. Clearly such a mapping is possible if and only if for each i, at most one of ai, bi
or ci is 1, since the vertex vi only exists if ai = 0 and can be used at most once (by either
the vertex ti corresponding to bi or the vertex ti corresponding to ci).

ICALP 2016

9:12 Subexponential Time Algorithms for Embedding H-Minor Free Graphs

In the reverse direction, note that any subgraph isomorphism must map u to u′ by virtue
of their degrees. Clearly, the paths in H must correspond one-to-one with paths in G. The
correspondence of the paths immediately gives us a partition into triples. The construction
enforces that in each such triple, in each position at most one of the strings has a 1, as
required. Note that since we modified the instance so that each string c ∈ C starts with a
1, no triple will contain more than one string from c and consequently, each triple contains
exactly one string from each of a, b, c.

Since the graph created in the reduction has O(n logn) vertices, and assuming the
Exponential Time Hypothesis there is no 2o(n) algorithm for String 3-Groups, there is
no 2o(n/ logn) time algorithm for Subgraph Isomorphism, even for the graph classes as
claimed in the theorem. J

The proof of Theorem 14 can be adapted to Induced Subgraph by subdividing each
edge (pi, ri) once. Furthermore, the proof also works for (Induced) Graph Minor, since
performing a contraction in H is never beneficial.

I Theorem 15. Assuming the Exponential Time Hypothesis, there is no algorithm solving
Subgraph Isomorphism, Graph Minor, Induced Subgraph and Induced Minor
in 2o(n/ logn) time, even when the pattern graph is a tree and the host graph is connected
and series-parallel and in both the host graph and pattern graph, all vertices but one have
maximum degree 3.

5 Conclusion

We have presented algorithms for (Induced) Subgraph and (Induced) Minor that, by
taking advantage of isomorphic structures in the pattern graph, run in subexponential time
on H-minor free graphs. These algorithms are essentially optimal since we have shown
that the existence of 2o(n/ logn) time algorithms would contradict the Exponential Time
Hypothesis. We have thus settled the (traditional) complexity of these problems on (general)
H-Minor Free graphs.

Our result applies to a wide range of graphs: we require P to be H-Minor Free and G to
have truly sublinear treewidth. Some restriction on G is indeed necessary, since if G is an
arbitrary graph then Hamiltonian path is a special case (in which P is a path) and a 2o(n)

algorithm would contradict the ETH [23].
An interesting open question is whether the parameterized complexity can still be

improved. Perhaps the dependence of the running time on the treewidth of G can be
removed: does there exist an algorithm for subgraph isomorphism on planar graphs running
in 2O(k/ log k)nO(1)? Our result, combined with one due to Fomin et al. [17] implies that the
answer to this question is yes if P is connected and G is apex-minor free, but the problem
remains open otherwise.

We note that our lower bound proof also works for Immersion [14]. However, our
algorithmic technique does not seem to work for immersion. Does the immersion problem
also have a 2O(n/ logn) algorithm, or is a stronger lower bound possible?

Lemma 6 holds for a more general class of graphs, and we believe it may be possible to
extend our result to patterns from a graph class with expansion O(1) or perhaps expansion
O(
√
r). We note that for different graph classes, a tradeoff between the size of the small

connected components and the factor k/ log k in the exponent is possible: it might be possible
to obtain a 2O(n/ log logn)-time algorithm for less restrictive graph classes.

H. L. Bodlaender, J. Nederlof, and T. C. van der Zanden 9:13

Together with the Minimum Size Tree/Path Decomposition problem [7], these problems
are amongst the first for which a 2Θ(n/ logn) upper and lower bound is known. Our work
shows that the techniques from [7] can be adapted to other problems, and we suspect there
may be many more problems for which identifying isomorphic components can speed up
dynamic programming algorithms.

References
1 Isolde Adler, Frederic Dorn, Fedor V. Fomin, Ignasi Sau, and Dimitrios M. Thilikos. Fast

minor testing in planar graphs. Algorithmica, 64(1):69–84, 2012.
2 Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for nonplanar graphs.

Journal of the American Mathematical Society, 3(4):801–808, 1990.
3 Noga Alon, Raphy Yuster, and Uri Zwick. Color-coding: A New Method for Finding

Simple Paths, Cycles and Other Small Subgraphs Within Large Graphs. In Proceedings
of the Twenty-sixth Annual ACM Symposium on Theory of Computing, STOC’94, pages
326–335, New York, NY, USA, 1994. ACM. doi:10.1145/195058.195179.

4 Omid Amini, Fedor V. Fomin, and Saket Saurabh. Counting subgraphs via homomorphisms.
SIAM Journal on Discrete Mathematics, 26(2):695–717, 2012.

5 Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. In Igor Prívara
and Peter Ruz̆ic̆ka, editors, Mathematical Foundations of Computer Science 1997, volume
1295 of Lecture Notes in Computer Science, pages 19–36. Springer Berlin Heidelberg, 1997.
doi:10.1007/BFb0029946.

6 Hans L. Bodlaender, Pal Gronas Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michal Pilipczuk. An O(ckn) 5-approximation algorithm for treewidth. In
Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages
499–508. IEEE, 2013.

7 Hans L. Bodlaender and Jesper Nederlof. Subexponential Time Algorithms for Finding
Small Tree and Path Decompositions. In Algorithms–ESA 2015, pages 179–190. Springer,
2015.

8 Hans L. Bodlaender and Jesper Nederlof. Subexponential time algorithms for finding small
tree and path decompositions. arXiv preprint arXiv:1601.02415, 2016.

9 Hans L. Bodlaender and Johan M.M. Van Rooij. Exact algorithms for intervalizing
colored graphs. In Theory and Practice of Algorithms in (Computer) Systems, pages 45–56.
Springer, 2011.

10 Paul Bonsma. Surface split decompositions and subgraph isomorphism in graphs on sur-
faces. arXiv preprint arXiv:1109.4554, 2011.

11 Marek Cygan, Jakub Pachocki, and Arkadiusz Socała. The hardness of Subgraph Isomorph-
ism. arXiv preprint arXiv:1504.02876, 2015.

12 Erik D. Demaine and MohammadTaghi Hajiaghayi. Bidimensionality: new connections
between FPT algorithms and PTASs. In Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 590–601. Society for Industrial and Applied Math-
ematics, 2005.

13 Frederic Dorn. Planar subgraph isomorphism revisited. arXiv preprint arXiv:0909.4692,
2009.

14 Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Springer Science
& Business Media, 2012.

15 David Eppstein. Subgraph Isomorphism in Planar Graphs and Related Problems. In Pro-
ceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’95,
pages 632–640, Philadelphia, PA, USA, 1995. Society for Industrial and Applied Mathem-
atics.

ICALP 2016

http://dx.doi.org/10.1145/195058.195179
http://dx.doi.org/10.1007/BFb0029946

9:14 Subexponential Time Algorithms for Embedding H-Minor Free Graphs

16 Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, and Ivan Mihajlin.
Tight Bounds for Subgraph Isomorphism and Graph Homomorphism. arXiv preprint
arXiv:1507.03738, 2015.

17 Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and
Saket Saurabh. Subexponential parameterized algorithms for planar and apex-minor-free
graphs via low treewidth pattern covering. arXiv preprint arXiv:1604.05999, 2016.

18 Jakub Gajarskỳ, Petr Hliněnỳ, Jan Obdržálek, Sebastian Ordyniak, Felix Reidl, Peter Ross-
manith, Fernando Sanchez Villaamil, and Somnath Sikdar. Kernelization using structural
parameters on sparse graph classes. In Algorithms–ESA 2013, pages 529–540. Springer,
2013.

19 Arvind Gupta and Naomi Nishimura. The complexity of subgraph isomorphism for classes
of partial k-trees. Theoretical Computer Science, 164(1):287–298, 1996.

20 MohammadTaghi Hajiaghayi and Naomi Nishimura. Subgraph isomorphism, log-bounded
fragmentation, and graphs of (locally) bounded treewidth. Journal of Computer and System
Sciences, 73(5):755–768, 2007.

21 Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. The disjoint paths problem
in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012. doi:
10.1016/j.jctb.2011.07.004.

22 Andrzej Lingas. Subgraph isomorphism for biconnected outerplanar graphs in cubic
time. Theoretical Computer Science, 63(3):295–302, 1989. doi:10.1016/0304-3975(89)
90011-X.

23 Daniel Lokshtanov, Dániel Marx, Saket Saurabh, et al. Lower bounds based on the expo-
nential time hypothesis. Bulletin of the EATCS, (105):41–72, 2011.

24 Dániel Marx. What is next? Future directions in parameterized complexity. In The
Multivariate Algorithmic Revolution and Beyond, pages 469–496. Springer, 2012.

25 Dániel Marx and Michał Pilipczuk. Everything you always wanted to know about the
parameterized complexity of Subgraph Isomorphism (but were afraid to ask). arXiv preprint
arXiv:1307.2187, 2013.

26 Jiří Matoušek and Robin Thomas. On the complexity of finding iso-and other morphisms
for partial k-trees. Discrete Mathematics, 108(1):343–364, 1992.

27 Neil Robertson and Paul D. Seymour. Graph minors. XIII. The Disjoint Paths Problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.
1006.

28 Maciej M. Sysło. The subgraph isomorphism problem for outerplanar graphs. Theoretical
Computer Science, 17(1):91–97, 1982. doi:10.1016/0304-3975(82)90133-5.

29 Dimitrios M. Thilikos. The Multivariate Algorithmic Revolution and Beyond. chapter
Graph Minors and Parameterized Algorithm Design, pages 228–256. Springer-Verlag, Ber-
lin, Heidelberg, 2012.

30 Julian R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM),
23(1):31–42, 1976.

http://dx.doi.org/10.1016/j.jctb.2011.07.004
http://dx.doi.org/10.1016/j.jctb.2011.07.004
http://dx.doi.org/10.1016/0304-3975(89)90011-X
http://dx.doi.org/10.1016/0304-3975(89)90011-X
http://dx.doi.org/10.1006/jctb.1995.1006
http://dx.doi.org/10.1006/jctb.1995.1006
http://dx.doi.org/10.1016/0304-3975(82)90133-5

	Introduction
	Preliminaries
	Algorithmic Results
	An algorithm for Subgraph Isomorphism
	Reducing the number of partial solutions using isomorphism tests
	Bounding the number of non-isomorphic partial solutions
	Adaptation to other problems

	Hardness Results
	Conclusion

