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—— Abstract

Classical online bipartite matching problem and its generalizations are central algorithmic op-
timization problems. The second related line of research is in the area of algorithmic mechanism
design, referring to the broad class of house allocation or assignment problems. We introduce a
single framework that unifies and generalizes these two streams of models. Our generalizations
allow for arbitrary matroid constraints or knapsack constraints at every object in the allocation
problem. We design and analyze approximation algorithms and truthful mechanisms for this
framework. Our algorithms have best possible approximation guarantees for most of the special
instantiations of this framework, and are strong generalizations of the previous known results.
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1 Introduction

Classic online bipartite matching is one of the central algorithmic optimization problems.
Since the seminal paper of Karp, Vazirani and Vazirani [21], there have been new developments
and generalizations of this model [4, 14, 20]. A related line of research is within algorithmic
mechanism design for a broad class of house allocation/assignment problems [1, 7, 18, 19, 27].
House Allocation (HA) problem is a model of assigning indivisible objects to agents, where
each agent with a preference order over a subset of objects requires at most one object and
payments are not allowed. HA and its generalizations have wide real life applications such as
Campus Housing Allocation [12], Student-project Allocation [2], Machine-job Assignment [9].
Our goal is to unify these two streams of models into a single algorithmic framework.

In classic HA, agents’ preferences over objects are strict. In many situations, it is more
suitable to allow the agent to express indifferences or ties among objects [25]. For example,
in Campus Housing Allocation, each student may provide some features (e.g., separate
bathroom) of dormitories, and he is indifferent between dormitories with same features.
Besides, other optimality criteria for the allocation are also desired, like Pareto optimality.
An allocation p is Pareto optimal if there is no other allocation u’ such that no agent is worse
off in p/ and at least one agent is strictly better in x' compared to u. Moreover, the agents
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are strategic (selfish) players who may not reveal their preference orders truthfully unless
they can not get better by misreports. Thus, designing truthful mechanisms is a central issue
in mechanism design for HA. A mechanism is truthful (in dominant strategies) if no agent
can get better off by misreporting his preference, independent from other agents’ reports.
In real world applications, not all the agents can be guaranteed to be matched since the
set of their acceptable objects is a subset of all the objects and there may not be enough
objects. Thus, designing algorithms to match as many agents as possible is also a much
desired objective. This can be quantified by the approximation ratio between the sizes of the
optimal matching and the matching obtained by the algorithm, preserving truthfulness and
Pareto optimality. In addition, different agents may have different weights or priorities, and
in this case, the ratio is between the weights of the optimal weighted matching and the output
matching. Krysta et al. [22] initiated the study of designing truthful and Pareto optimal
mechanisms for HA with good approximation ratios. They present a tight deterministic 2-
approximation, truthful and Pareto optimal mechanism, and a randomized _“5-approximate,
universally truthful and Pareto optimal mechanism. In their setting, each object can be
allocated to at most one agent. Can we generalize their results to more general settings?

A simple generalization, called generalized HA, allows each object a to be allocated to at
most a given number, b, € N, of agents. We observe that all the results in [22] can easily
be applied to this generalization. Let us create b, copies of each object a, and replace a in
each agent’s preference order by these b, copies in the same indifference class as a. By this
modification, called modified HA, each copy of each object is allowed to be allocated to at
most one agent. Each feasible allocation of the generalized HA can be modified to a feasible
solution to the modified HA, and vice versa. The mechanism in [22], which is Pareto optimal
and truthful for the modified HA, is also Pareto optimal and truthful for the generalized HA.

We study here as our framework, two further natural generalizations of the HA problem:
Matroid House Allocation Problem (MHA) and Knapsack House Allocation Problem (KHA).
Consider the following more realistic application of HA to the Campus Housing Allocation
problem. A university has many dormitories, and each student submits a preference order
over dormitories to the university. Besides this, some students may have further requirements
about their dormitories which should be fulfilled, e.g., one may require that the room should
have an independent bathroom or be far from the kitchen. Thus, for each dormitory a,
viewed as an object, and each student 4, the rooms in a satisfying the requirements of i are
a subset of all the rooms in a. Hence, all the feasible sets of students allocated to a form
a transversal matroid (see definition in Section 2) of dormitory a. Our first generalization
of HA is based on this application, where each object in HA is associated with a (possibly
different) matroid and can be allocated to any number of agents in the ground set (which
is the set of agents) of the matroid. The set of agents allocated to each object forms an
independent set of its matroid. We call this generalization the Matroid House Allocation
Problem (MHA). We can show that MHA includes as special cases all the online bipartite
matching models [4, 14, 20, 21] ([20] if fixed vertices are used at most once) mentioned earlier.

The second generalization is as follows: each agent (or job) i is associated with a capacity
¢iq for each object (machine) a, and each object a is associated with a capacity C,. As
before, each object can be allocated to multiple agents, but the total capacity of the agents
allocated to a does not exceed its capacity (i.e., >, ¢ia < Cq). We call this generalization
the Knapsack House Allocation Problem (KHA). An interesting application of KHA is Job
Scheduling Markets [9]. Our main results are the following:

1. We present a tight, deterministic, truthful and Pareto optimal mechanism (TMHA) for
MHA with the approximation ratio of 2, where agents have weights and ties.
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2. Based on TMHA, a randomized, universally truthful and Pareto optimal mechanism
(RTMHA) is presented. We prove that RTMHA is an —%;-approximation mechanism
for MHA where agents have weights and ties. Note, truthful O(1)-approximation is
impossible if each agent has different weights over objects [17, 3]. 1. and 2. are strong

generalizations of the results in [22], and are obtained with completely new techniques.

3. A universally truthful, Pareto optimal mechanism for KHA with a (4, 2)-approximation
(4-approximation ratio, violating each knapsack constraint by a factor 2) for parallel
machines (objects) (¢;o = ¢;, for any object a) when weights and ties are allowed ((4,1)-
approximation without ties). For general KHA with weights and ties, we observe that [11]
implies a universally truthful O(1)-approximate mechanism (but not Pareto optimal).

4. Our mechanism RTMHA applied to the online weighted matroid bipartite matching prob-
lem and the online matroid job recruitment problem, implies tight

—“-approximations.
Technical Contributions. We present a generic approach to design deterministic truthful
and Pareto optimal mechanisms for MHA and KHA when agents’ preferences include ties,
by reducing mechanism design to algorithm design of the underlying graph (i.e., calling
the algorithm of finding maximum cardinality matching on an auxiliary graph as a black
box). The mechanism RTMHA for MHA shares in spirit the same idea as Random SDMT

€
e—1
setting is much more general than [22], thus a completely different analysis is needed. We

split the analysis of RTMHA into three parts, and its starting point is based on the charging
map method (extended to matroid constraints), widely used for matching problems [4, 10].

mechanism in [22]. The main difficulty lies in the analysis of its

-approximation. Our new

First, for unweighted agents without ties, we show that the symmetric difference between
a matching p” output by TMHA under an order 7 of all agents and the matching ;"¢ output
by TMHA under order 7_; with agent i absent, is an alternating path starting from ¢. This
characterization implies that, for each object a € A, the agents S,(7) matched to a under u”
and agents S, (7—;) matched to @ under p"-¢ satisfy a nice exchange property: if some agent
can be added to S, (7) then he can also be added to S, (7—;) obeying the matroid constraint.

When preferences have ties, we say that two matchings are equivalent if the matched
agents are the same and the matched objects of the same agent are in the same indifference
class of that agent. The second part of our analysis, for unweighted agents with ties, shows a
similar characterization between the equivalence class CL(p™) (all matchings equivalent to
matching p”) and the class CL(u™#). That is, there exists an injective map from CL(u") to
CL(p™%) such that the symmetric difference of each matching in CL(p™) with its image in
CL(u™7) is an alternating path. This lets us reduce the problem for agents with ties to that
with agents without ties. We believe this technique will find further applications to analyze
mechanisms for agents with ties in ordinal settings, which may simplify the proofs. For
example, with this technique, we greatly simplify the proof for weighted agents with ties and
objects with uniform matroid constraints in [22], where they use a different technique based

on trading graphs. Based on this characterization we prove the important Injectivity Lemma,;
efl
Thirdly, for the most general setting of weighted agents with ties, we carefully utilize the

previous injectivity lemma, proving a strengthened version of such a lemma (see Lemma 13).

it can be used to show the -approximation for unweighted agents with ties directly.

Based on this lemma, we show that there exists an injective map from marginal ‘bad’ events
to ‘good’ events, which suffices for the analysis of the final approximation ratio.

Related Work. Random Serial Dictator (RSD) [1] and Probabilistic Serial (PS) [7] are two
paradigmatic randomized mechanisms for HA. Krysta et al. [22] generalize RSD mechanism
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to HA with ties and obtain a tight 2-approximate deterministic truthful and Pareto optimal
mechanism for weighted agents and an —“;-approximate universally truthful, Pareto optimal

mechanism. They show that no universally truthful, Pareto optimal mechanism can have
18

13°
bound on the approximation ratio is

approximation better than and if the mechanism is additionally non-bossy, the lower

e
e—1"
strict preferences and thus has best possible approximation ratio in this sense. Bogomolnaia

and Moulin [8] show the same ratio —45 also for PS. Recently, [17, 3] establish an O(y/n)

bound of RSD (w.r.t. the optimal social welfare) when agents have cardinal values (with

Our random mechanism is non-bossy for agents with

arbitrary weights on the objects) over all the objects and show that no truthful in expectation
mechanism can have approximation better than Q(4/n). We obtain constant approximation
ratios when the agents are weighted. This lower bound Q(1/n) implies that we cannot obtain
similar results when agents have different weights over objects. Tight deterministic truthful
mechanisms for weighted matching markets were proposed by Dughmi and Ghosh [15].
(M)HA is related to online bipartite matching problem (OBM) as follows. If each agent
in HA ranks his desired objects in the order that precisely follows the arrival order of objects
in the OBM, the two problems are equivalent, as emphasized in [6, 22]. Karp et al. [21]
initialize the study of OBM and provide a RANKING algorithm with a tight approximation
ratio —%. Aggarwal et al. [4] are the first to study the weighted version of OBM (WOBM)
when the fixed vertices have weights (or priorities). They use the charging map approach and
prove that the ratio _%; also holds. Recently, the analysis of WOBM has been unified into

1
the primal-dual framework by Devanur et al. [14]. There are further generalizations of the

online bipartite matching model, e.g., [10, 23, 24]. Matroid HA has an online interpretation,
which is loosely related to the Matroid Secretary Problem introduced by Babaioff et al. [5].

Organization. Section 2 contains preliminaries, and Section 3 presents our deterministic
mechanism for MHA. We develop a randomized mechanism for MHA in Section 4. Its analysis
is divided into three subsections: 4.1 for unweighted agents without ties, 4.2 for unweighted
agents with ties, 4.3 for weighted agents with ties. Applications of our mechanisms for MHA
and our results for KHA will be published in the the full version of the paper.

2 Preliminaries

Let N = {1,2,--- ,n1} be a set of ny agents and A a set of ny objects; n = ny + na. Let
[i] ={1,2,--- ,i}. Each agent ¢ € N finds a subset of objects acceptable and has a preference
ordering, not necessarily strict, over these objects.

We write a; =; as if agent i strictly prefers object a; to object ag, and a; ~; ag if i is
indifferent between a; and as. We use a; =; as to denote that i weakly prefers a; to as,
i.e., either a; >; as or a; ~; as. In some cases a weight w; is associated with each agent 1,
representing ¢’s priority or importance; let W = (wq, wa, ..., wy, ). If we are in an unweighted
setting then w; = 1 for each 1.

Each agent’s acceptable objects are divided into indifference classes: he is indifferent
between the objects in the same class and has a strict preference ordering over these classes.
For each agent 1, let C’,i, 1 < k < ng, be the kth indifference class (tie), of i; assume that
Cl=0,Vq,1 < q<ny,if C{ =0 for some | € [ny]. Let L(i) = (C| =3 C5 = --- =; Ci,) be
the preference list of i. We write a € L(7) if a appears in L(i) (i finds a acceptable). Let
L= (LQ1),L(2), - ,L(ny)) and L(—i) = (L(1),...,L(i —1),L(i + 1),..., L(n1)).

A matroid is a pair M = (X,T), where X is a ground set and Z C 2% (each Y € T is
called independent set) satisfying properties: (1) [non-emptiness| § € Z; (2) [heredity]



P. Krysta and J. Zhang

IfYeZand ZCY, then Z € Z; (3) [exchange] If Z,Y € T and |Z]| > |Y|, then there is
z € Z\Y such that YU {z} € Z. A base of M is an independent set with maximum size. By
(3), any maximal independent set is a base. For any S C X, let 7x((S) be the maximum size
of an independent set contained in S; r (X)) is called the rank of M. A matroid M = (X,7)
is called an ¢-uniform matroid if ¥ C X is independent if and only if |[Y| < ¢. A direct sum
of uniform matroids (not necessarily with the same rank) is called a partition matroid. Given
a set X and a family F = {X;}?_; of subsets of X, a set T C X is called a transversal set of
X if there is an injective map f: T — F s.t. ¢ € f(z), for any « € T. The matroid (X,Z),
with Z = {T'|T'is a transversal set of X}, is called a transversal matroid.

In Matroid HA (MHA), we have a matroid M, = (N,Z,) on agent set N, for each object
a € [ng]. A (feasible) matching (or b-matching) p is an allocation (subset of N x A) assigning
at most one object to each agent i! such that, for each object a, the set of agents who are

assigned a is an independent set of M, (multiple agents may be allocated the same object).

If (¢, a) € p, agent i and object a are matched together. If (i,a) € p for some a, we say that i
is matched, and unmatched otherwise. The definitions of matched (unmatched) for an object
are analogous. If i € N is matched, pu(é) denotes the object matched to i. If object a is
matched, p~1(a) denotes the set of agents matched to a. Two matchings u, u’ are equivalent
(denoted p ~ p') if in these two matchings, the matched agents are the same and the matched
objects for each agent are in the same indifference class of this agent, i.e., u(i) ~; u'(i),
allowing () ~; (), for any ¢ € N. Let CL(p) be the class of all matchings equivalent to p. For
two sets B and C, we sometimes use B+ C (B —C, resp.) to denote BUC (B\C, resp.), and
sometimes write a set {x} simply as z. Let II denote the set of all permutations of agents.

In what follows, we will consider the undirected graph G = (V, E) where V = (N U A)
and E = {(i,a),i € N,a € L(#)}. We also use £ to denote a matching (a feasible matching

for MHA) in G. The size of a matching p is equal to the number of agents matched under pu.

In the presence of weights, the weight of a matching is equal to the sum of the weights of the
matched agents. For any subset E' C E, define E!, = {u] (u,v) € E'}, for any v € V. An
instance of MHA is denoted by I = (N, A, L, (Mg)q, W). We drop W and (M,), and write
I = (N, A, L, M) if agents are unweighted. Let ZM 74 denote the set of all possible instances
of MHA. For two given matchings g1, o, we will use pu; @ ps to denote the symmetric
difference with respect to their sets of edges. An alternating path in G, w.r.t. a matching pq,
is a path that consists of edges that alternately belong to u; and do not belong to pu;.

A matching p is Pareto optimal if there is no other matching under which some agent is
strictly better off while none is worse off, w.r.t. their preferences. Formally, p is Pareto optimal
if there is no other matching p’ such that (i) p'(i) =; p(i) for all ¢ € N, and (ii) p'(i') =4 p(i')
for some 7" € N. Given an order o € II, a matching p is strictly lexicographically o-better
than a matching 4’ if there exists a k € [ny] such that pu(o(i)) ~,) ¢/(0(i)), i € [k — 1] and
(o (k) =ok) ' (o(k)). A matching p is called a lexicographically o-maximal matching if
there does not exist a matching p’ such that p’ is strictly lexicographically o-better than
matching p. Note, if p is lexicographically o-maximal, then p must be Pareto optimal.

Let MMHA denote the set of all possible matchings. A deterministic mechanism ¢ maps
an instance of MHA to a matching, i.e., ¢ : TZMHA 5 MMHA Tet R: MMHA 5 [0,1] be a
probability distribution over possible matchings (a random matching), i.e., > pEMMHA R(u) =
1. A randomized mechanism ¢ is a mapping from ZMHA to a distribution over possible
matchings, i.e., ¢ : ZMHA — Rand( MMHA) where Rand(M™MHA) is the set of all random

! Note that if agents are allowed to receive more than one object, the model becomes a many-to-many
matching and the preference spaces of agents are much more complicated, which is not studied here.
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matchings. A deterministic (randomized, resp.) mechanism is Pareto optimal if it returns a
Pareto optimal matching (a distribution over Pareto optimal matchings, resp.).

Agents’ preferences are private knowledge and they may prefer not to reveal their
preferences truthfully if it is not in their best interests, for a given mechanism. A deterministic
mechanism is truthful (in dominant strategies) if agents always find it in their best interests
to declare their preferences truthfully, no matter what other agents declare, i.e., for every 4
and every possible declared list L'(3) for i, ¢(L(7), L(—1%)) =; ¢(L' (i), L(—1)), VL(7), L(—1).
A randomized mechanism ¢ is universally truthful if it is a probability distribution over
deterministic truthful mechanisms. Let w(¢(I)) be the (expected) weight of the (random)
matching output by ¢ on instance I € ZMHA and w(I) be the weight of a maximum weight
Pareto optimal matching in I. The approzimation ratio of ¢ is defined as maxjczmma %

For any agent i, define a matroid on agent i as M; = (A,Z;), with Z; = {S|S C
A and |S] < 1}. We define two useful matroids on edge set E. Let M = (E,T), where, for
any ' C E, E' € 7 if and only if E! € Z,, for any a € A. Let M’ = (E,Z'), where, for
any B/ C E, E' € T’ if and only if E! € Z;, for any ¢ € N. Note, M’ is a partition matroid.
Also, an allocation E’ C E is feasible for MHA if and only if £’ € ZNZ’, meaning that E’
is an independent set in both M’ and M. Hence, our objective is to design (universally)
truthful, Pareto optimal mechanisms to find an edge set that is independent in both M’ and
M, such that its size (or weight for weighted agents) is maximized. Edmonds [16] provides
an algorithm to compute a maximum independent set that is independent for two matroids.

» Proposition 1 ([16, 13]). Given two matroids M' = (X,I') and M? = (X,Z?), there
is a matroid intersection algorithm AM! for computing a mazimum cardinality common
independent set S € T' N 12, terminating in polynomial time T(|X|) < O(|S]?|X|Qtest),
where Q¢! is the time needed to test if a given set is independent.

We assume for simplicity that the test time Q'*** = O(1), and we omit it in the rest of the
paper. We also need a fact from exchange theory between two bases of a matroid.

» Proposition 2 (Corollary 39.12a [26]). For a matroid M = (X,Z) and By, B2 € T with
|B1| = | Ba|, there exists a bijection f: By—Bs — Ba—DBj s.t. Vo € By— By, Bi—z+f(z) € T.

3 Deterministic Mechanism for MHA

We introduce TMHA, a truthful and Pareto optimal mechanism, that generalizes SDMT-1
[22] to the case where sets allocated to the objects are independent sets of matroids. Let
I=(N,A, L, M) be an instance of MHA, and o € II (w.l.o.g., 0(i) =i for i € N). TMHA,
given in Algorithm 1, proceeds in n, phases, each phase corresponds to one iteration of the
for loop. Notice, at any stage of TMHA, (i,a) € E if and only if either agent 4 is matched in
wand a ~; p(i) or TMHA is at phase 4, examining the indifference class that contains a.

» Observation 3. At the end of phase i of TMHA, if agent i is assigned no object then he
will be assigned no object when TMHA terminates. If i is provisionally assigned an object a,
then he will be allocated an object in the same indifference class as a in the final matching.

By Observation 3, different tie breaking rules lead to equivalent produced matchings.

» Theorem 4. Given an order o € Il of agents, the matching generated by TMHA is a
lezicographically o-mazimal matching, thus, also Pareto optimal.

TMHA is truthful, no matter which matching is selected in each phase of the mechanism:
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Algorithm 1: Truthful Mechanism for MHA (TMHA)

Input: Agents N; Objects A; Preference list profile L; Matroids (M,),; Order o
Output: Matching p

1 Let G=(NUAE), E< 0, u« 0.

2 for each agent i € N in the order of o do

3 Let £+ 1

4 Step (*): if C} # () then

5 E + EU{(i,a) : a € C}}; // all new edges are non-matching edges
6 Run AM! on G and obtain a maximum cardinality matching p’

7 if || = |p] + 1 then

8 L modify p to u'; // i must be provisionally allocated some a € C} and (i, a)

is now a matching edge

9 else
10 LE<—E\{(i,a):aECé};€<—€—|—l;GotoStep(*)

11 Return p; //each matched agent is allocated his matched object

» Theorem 5. The mechanism TMHA is truthful.

We now show a bound on the time complexity of TMHA. Let v denote the size of the largest
indifference class for a given instance I.

» Theorem 6. TMHA terminates in time O(n3y).

Any Pareto optimal matching is at least half the size of a maximum size such matching
[9]. Thus, TMHA achieves approximation ratio 2 with respect to the maximum cardinality
matching. We show that, when agents are assigned arbitrary weights, TMHA is 2-approximate
(w.r.t. maximum weight Pareto optimal matching) if the order o is by non-increasing agents’
weights, breaking ties arbitrarily. The bound is tight since no deterministic truthful mechanism
can achieve an approximation ratio better than 2 even if ry, = 1, for any a € A, see [22].

» Theorem 7. TMHA achieves a 2-approzimation w.r.t. the size of a mazximum weight
Pareto optimal matching, if agents are ordered in o by non-increasing order of their weights.

4 Randomized Mechanism for MHA

We now present a universally truthful, Pareto optimal mechanism for Matroid House Alloca-
tion Problem (see Algorithm 2, where g(y) = €¥~!). When the matroid for each object is a
uniform matroid with rank one, Algorithm 2 reduces to SDMT-1 from [22]. The analysis of
RTMHA will be gradually developed in the following three subsections for various settings.
We will start with the simplest setting of unweighted agents without ties (Subsection 4.1),
then proceed to the setting of unweighted agents with ties (Subsection 4.2), and, finally,
weighted agents with ties (Subsection 4.3). The next subsection builds on the previous one.
If the weights are agents’ private data with no over-bidding assumption, Algorithm 2 is
universally truthful (w.r.t. preferences and weights) and Pareto optimal as well [22].

4.1 Unweighted Agents without Ties

We will show now that RTMHA achieves _“5-approximation for unweighted agents without

ties. Note that the order of RTMHA for unweighted agents is just the uniform random order
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Algorithm 2: Random Truthful Mechanism for MHA (RTMHA)
Input: Agents N; Objects A; Preference list profile L; Matroids (M,,)q; Weights W
Output: Matching

1 for each agent i € N do

L Pick Y; € [0, 1] uniformly at random;

N

3 Sort agents in decreasing order of w;(1 — g(Y;)) (break ties in favor of smaller index);
4 Run TMHA according to above order;
5 Return the matching;

of agents. Our technique is based on a charging map method (extended by us to matroids),
which is widely used in analyzing the approximation ratio for matching problems [4, 10].
We assume here that agents’ preferences are strict: |CF| <1, for i € [n1], j € [n2]. Recall,
each object a is associated with a matroid M, = (N,Z,). We present a characterization of
1" @ pu—i, where u” and p"- are the matchings obtained by TMHA under the order 7 of
agents and 7_; (7 with ¢ absent), respectively. We first prove a useful lemma.
Lemma 8 shows exchange properties between two independent sets of a matroid and their

switching sets. Let Ty = {i},45,--- 1.} and T} = {i1, 42, ,ix} be two sets of size k with
different elements (orders of elements in Ty and T}, are fixed). We define the switching sets
Ty, £ € [k — 1] between Ty and Ty, as Ty = {i1,42, -+ ,ig, iy, 1, - iy}, £ € [k —1]. (Lemma 8
is used in the proof of Lemma 10 with elements being agents.)

» Lemma 8. Let M = (X,Z) be a matroid and S € I. Let Ty = {i},45,,---,9;,} € X
and Ty = {i1,d2, -+ ,ix} € X and their switching sets Ty = {i1, i, ,ig, Ty, Jirt €T,

¢ € [k—1]. Suppose S+Ty € I, for any £ =0,1,--- k. We also have S+ {i1,--- ,is,%)} ¢ T,
for any £ € [k]. Then, for any element j (which is not in S + Ty + T},

(i) if S+Tx+j€ZL then S+ T+ j€Z;

(i) if S+To+j ¢ then S+ T+ j ¢ I (contrapositive proposition of (i)).

Proof. For (i), by the exchange property of matroids, there exists a y € Ty + j such that
S+To+y € Z. Ity # j, suppose y = iy for some € € [k]. Then we have T' = S+{iy,--- ,ig} €T
(from S+ Ty € Z) and T" = S + {3}, ,i},i} € T (from S+ Ty +y € Z). Then by the
exchange property of matroids, there exists ¢y’ € 7" — T such that T+’ € Z. Let 3y = i), for
some ¢’ < {. Consequently, S + {i1,i2,--- ,i¢,i)} € Z, which leads to a contradiction. <«

» Remark. Although in Lemma 8 we require two initial sets with the same cardinality,
we can relax the requirement to allow them to have different cardinalities. Namely, let
To = {i},ih,---,8},} and Ty, = {i1,42,--- ik} with &' < k (the orders of elements in
two sets are fixed). The switching sets Ty, ¢ € [k'] between Ty and Ty are defined as:
Ty = {i1, i, yig, 0py g, 505 ), £ € [K' = 1], and Tpr = T}. Lemma 8 still holds.

Given 7 € II, let p™ be the matching obtained by TMHA under 7, and let S, (7) be the
set of agents matched to a € A by TMHA. Let, for any t € [n1], SL(7) C Sa(7) be the top
t agents in S, (1), i.e., SL(7) = {i € Sa(7)|771(i) < t}. Then S,(r) = S7 (7). Let 7_; be
order 7 after removing agent i from 7. Similarly, define S!(7_;) and S,(7_;) = S™~(7_;).
When we say “under 77, we mean the process of running TMHA under order 7. For any a € A,
let F; = S(tz(T—i) N SZ(T)' Tg = SZ(T—i) - SZ(T) = {iy, iy, 7i2a7;/£+1’ i h K= |T(§|
Let T} = St (1) — SL(7—;) = {ir,d2, -+ ,iesiet1, - s ik}, k= |T}|. We will show in the next
lemma that k € {k’, k' + 1}, for any ¢ € [n;] and a € [n3]. Note that this includes the case
k' =0 (in a sense that Property P (i)-(iv) below trivially holds). The orders in T} and T}
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both follow order 7. We have the switching sets T} = {iy, i, ,i¢, i), 1, - i} } between
T} and T}, ¢ € [k’ — 1], and T}, = T{. We finally define Property P as follows.

» Definition 9. Let E' = {(¢', u7(i')), (¢', n™=(¢")) : ¢/ € N,4’ matched by p™ and p™}.
We say that Property P holds for p” and p™i if: C = ((u” & p™*) N E") U {(¢, (i)}
is an alternating path starting from agent 4 if it is non-empty, and for any a € A, and
te [nl]:

(i) F + T} € I, for any ¢ € [K] ;

(ii) FL+ {i1, - ,ie, i)} ¢ Lo, L € [K);
(iii) For any agent s, if S (7)+s € Z,, then S! (7_;)+s € Z, (or equivalently, S’ (7_;)+s ¢ Z,

implies that S%(7) + s ¢ Z,).

(iv) 7710i) < 771 < 77 (ie) < 7)) < o < 7 M(in) < TN

We are ready to give our characterization lemma in the following.

» Lemma 10. Property P holds for unweighted agents with strict preference orders.

Lemma 10 can be used to directly prove that RTMHA is _%5 + o(1)-approximate for
unweighted agents without ties. Analysis in Subsection 4.2 builds on developments in this

section.

4.2 Unweighted Agents with Ties

When agents have ties without weights, we will present a similar characterization in Lemma 11
(by alternating path) of symmetric differences between the matching obtained by TMHA
under some order 7 of all agents and the matching obtained by TMHA under 7_; when an
agent 4 is absent. We will prove that in any step of the two processes of TMHA under 7 and
under 7_;, there is an injective map from the equivalence class of matchings generated by
TMHA under 7 to the class generated by TMHA under 7_;. This injective map is such that
each pair of the corresponding matchings from these two classes satisfies Property P.

For any t € [ny], let CLt(,uT) denote the equivalence class of matchings equivalent to the
matching found by TMHA under 7 until ¢th iteration. Precisely, if uZ, = {(4, u7(¢)) : 771(i) <
t} is the matching u7 restricted to the first ¢ agents of 7, then: CL'(u™) = {u € G |y ~ puZ,}.
Let CL(p7) = CL™ (7). When we consider the process of running TMHA under 7_;, to
simplify the notation, we consider an equivalent process that runs TMHA under 7 while
imposing the condition that agent 7 is unmatched. Hence, in the following we suppose TMHA
running on 7_; is such an equivalent process. Thus, we have CL'(u™), for any ¢ € [n4].

» Lemma 11. For any t, there exists an injective map f from CL'(u™) to CL'(u™¢) such
that for any p € CLY (™), p and f(p) satisfy Property P.

Proof. The proof is by induction on the iterations of the two processes of TMHA run under
7 and under 7_;. First, note that CL*(u™) = CL®(u™%), for any s < 7 1(i). Thus each
matching from CL*(u™) can be mapped to itself. This shows that if ¢ is unmatched under 7,
the lemma trivially holds. Hence, w.l.o.g., suppose agent i is matched under 7.

Second, for any matching p*t' € CL5*!(u7), there exists a unique matching p* € CL* (")
such that p**tt = p* U {(7(s + 1), u*(7(s + 1)))}, for any s <n; — 1.

We now prove the induction base case for s = 771(i). For any matching p® € CL®(u7),
we define f as f(u®) = p, € CL*(u"#). Now we can see that the symmetric difference of

u® and f(p®) is a single edge and all parts of Property P hold. Hence, the base case is true.

Now suppose the lemma holds for s = k — 1, where k — 1 > 771(4), i.e., we have an
injective function f: CL*'(u7) — CL*!(u7-*) such that for any p € CLF™!(u7), p and
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f(u) satisfy Property P. Let’s see the case s = k < ¢. Let 7 = 7(k) be the kth agent of
7. Consider this new agent j, and any p € CL” (1™=1). Since for any a which is strictly
better than 1u(j), i.e., a >=; p(j), agent j will not be matched to a under y, which means
j+ SEY(u) & I, by part (iii) of Property P, j + SE1(f " (p<k)) & Lo if £~ (<) exists.
Therefore, for any p*7™ € CLF(u™) and p*7+ € CLF(u7) , we will have %7 (§) =<5 pET=i ().
Let b = £/*7(j) and ¢ = %7 (j). Note that for each matching *7 € CL*(u7), we have
M’i’,;l e CL* !(u7); similar property holds for CL*(u7~). Hence, we consider two cases:

Case(i). If b ~; ¢, we define f(u*7) = f(,u’i,:) U (4,b). We can see that f is well defined
since j can be added into Sb(,u}i’;), it also can be added into S’b(f(uli’;)) by Property P
(iii). Second, there is no change for alternating path after j is considered. Third, j will be
added into the set Sy(u*7) N f(Sy(u*7)) and the matched object of the other agents will
not change when compared their matchings under 7 and under 7_;. Thus, Property P holds.
Case (ii). If b <; ¢, by induction hypothesis, Property P (ii), there exists an object b’ ~; ¢
such that j + Sy (“Z;) ¢ T, and j + Sbf(f(,u’;’,:)) € Ty. We know the current alternating
path (up-to iteration k — 1) must be with &’ as its another end point. Hence, b’ is unique.
Otherwise, let d # V' be the end point of the alternating path. Then the switching agent,
i.e., 7, in Property P (ii) for object b’ is not j, and by Property P (i), j + S (,ui,:) €Ty, a
contradiction. Define f(u*7) = f(ui,:) U (4,b"). Now we see that two edges (j,b') € ph7-
and (j,b) € p*™ will be added to the alternating path; thus, Property P holds. The end
point of the alternating path is now object b. The last part of the proof of the induction step
(omitted here) is to show that sets of agents matched to objects b and b’ satisfy Property P
(note that sets of agents matched to other objects do not change). <

By Lemma 11, we can suppose w.l.o.g. that there exists a matching in the graph G such
that all the agents are matched. (Otherwise, we can find a maximum matching in graph G and
remove the unmatched agents in this matching and their adjacent edges. After this, Lemma 11
implies that the expected matching size of RTMHA can not increase (because |u| > |f(u)])
and the graph has a matching with all agents matched.) Let u* denote this matching in G.
Given 7, let 7} denote the order obtained from 7 by first removing agent 4 from 7 and then
inserting him into the ¢th position of 7_;, i.e., 7/(i) = t. Now fix ¢t € [n;]. For any 7 € II,

a € A, let Ul(7) be defined as UL(1) = {i € So(u*) | 4is not matched by TMHA under 7} }.
» Lemma 12 (INJECTIVITY LEMMA). [U%(7)| < |S(r)].

Proof. Suppose that |Uf(7)| > |S!(7)|. Then by matroid exchange property, there is an
agent i € U!(7) such that S%(7)+i € Z,. Suppose i is unmatched by TMHA under 7. Since i
is unmatched under 7}, St(7) = S*(7}). However S () +i = Si(r)+i € Z,, implying agent
i will be matched to an object at least as good as a by TMHA under 7/, a contradiction.

Suppose now that agent ¢ is matched by TMHA under 7. Removing agent 4 from 7, we get 7_;.
Then inserting ¢ into the tth position of 7_; we get 7. Since agent 4 is unmatched by TMHA
under 7/, the processes of TMHA under 7} and under 7_; is the same. Let f be the injective
function from CL*(u7) to CL'(u™¢) in Lemma 11. By Property P (iii), SL(7) + i € Z,, then
St(f(r))+i € Z,. Thatis Si(7}) +i € Z,, implying agent ¢ will be matched to an object at
least as good as a by TMHA under 7}. This leads to a contradiction. |

Lemma 12 can be used to directly prove that RTMHA is —%5 + o(1)-approximate for

unweighted agents with ties. Analysis in Subsection 4.3 builds on developments in this

section.
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4.3 Weighted Agents with Ties

Building on Subsection 4.1 and 4.2 we give the proof of the _“5-approximation for weighted

agents with ties. A careful utilization of Lemmas 11 and 12 is needed to obtain a strengthened
version of injectivity lemma (Lemma 13). This lemma helps define an injective function from
marginal ‘bad’ events to ‘good’ events, allowing to prove the ratio. Interestingly, Lemma 11
and primal-dual analysis [22], leads to a significantly simpler proof (compared to [22]) of the

€
e—1
proof is a strong version of the injectivity lemma similar to Lemma 12 to define an injective
map from marginal set  J,~, M; (defined later) to the set 2Ut21 @

Because of weights, we consider the discrete version of the function 1 — g(y) =1 —e¥~!

ratio when each associated matroid is uniform. The main technical ingredient of the

used in the sampling. For every i € N, we will choose an integer ¢ = 7(¢) uniformly at random
from {1,---,k}, where k € N; is a parameter. Let ¢(t) =1 — (1 — £)*~*"!. The random
order of agents follows the decreasing order of w;y(7()), for any i € [n1]. Note, 7 € [r]™
is different from previous subsections (where 7 € II), but we still call it a permutation and
the discrete process is the same as RTMHA when k — co. For each 7 € [k]™, there is a
corresponding order of agents defined above. Hence, when we say ‘under 7’, we mean to run
the above discrete RTMHA (called DRTMHA) under decreasing order of w;3(7(2)), @ € [n1].

Let 7! € [k]™ denote the same order of agents except we set i’s T value to ¢, i.e., 77 (i) =t
and 7/ (k) = 7(k), for any agent k # i. The other notions have the same meaning as before
unless explicitly redefined. Let p* be the maximum weighted matching on G, i.e., the optimal
matching to our problem. Recall, S,(1*) is the set of agents matched to a under p*. Let @y
be the set of all the triples among permutations, 7 values and agents such that the agent
with 7 value ¢ at the current order is matched by TMHA. Precisely,

Qi = {(7,¢,4) |4 is matched by TMHA under rand 7(i) =¢t,4i € N,7 € [k]™ }.

Let R; be the set of all the triples among permutations, ¢ values and agents such that the
agent matched in p* with 7 value at the current order is unmatched. That is:

Ry = {(7,t,4) |4 is unmatched under 7 and 7(¢) = ¢, and 7 is matched in u*, 7 € [k]"*}.

Our goal now is to define an injective map from R; to 2U5StQt. Towards this aim, we
define the marginal (loss) set M;, which is a subset of R; with marginal property, i.e.,
an agent in M; will be matched after decreasing his 7 value by one: M; = {(7,t,i) €
Ry |4 is matched under 7/~ '}. Let My = §. Let OPT = w(u*) be the optimal weight and
B = O—I:T. Let w(@:) denote the total weights of agents for triples in Qu: w(Q:) =
> (rtiyeq, Wi- Similarly, define w(R;) and w(M;). Let z;, = w(@) he the expected weights

gained by DRTMHA on all agents with 7 value ¢, and y; = wéf{t)
of all agents with 7 value ¢. Since each agent appears with 7 equal to t € [x] in DRTMHA

with equal probability %, if Q) C Q! is the set of triples with agents matched in p*, then

the expected marginal loss

wﬁ(TQf) + % = B, for any t € [k]. Therefore,
R
ot 208 > B 1)

So the expected weight of matching obtained by DRTMHA is Zte[m] x¢. There is a
bijection h : Ry — |J,, Ms. Note, for any (7,t,4) € Ry, if thereis s € [t—1] s.t. (77, s,7) € Qs,
then there is such s that is a unique maximal one. Note, in this case (777!, s 4+ 1,i) € My;.
Define h(r,t,i) = (177!, s + 1,i). Otherwise, define h(r,t,i) = (1},1,i) € My; note that

]
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My = 0. (his well defined.) For any (7, s,7) € M, and some s < ¢, agent ¢ will not be matched
under 7/ since it is unmatched under 7, by Lemma 11 (Property P (iii)). Then (7},t,7) € Ry,
which means h is surjective, i.e., h(7},t,4) = (1, s,i). If h(7,t,i) = h(7',t,i') = (0,5,1") € M,
by definition i = ¢’ =" and 7 = 7/ = ¢!,. Then h is also injective. Hence,

w(R) = Y w(M,) (2)

s<t

For any 7 € [k]™, a € A, let S,(7) be the set of agents matched to a by DRTMHA under .
Let U, (7) be the set of agents in S, (p*) such that changing the 7 of any one of them, e.g., agent
1 € Sy(u*) to some t;, the new triple of 7 together with his new value ¢; and himself belongs
to M;, (Note that for any agent i € S,(1*), if there exists a t; such that (7], t;,i) € M;,,
then ¢; is unique for agent ). Precisely, U, (1) = {i € Sa(u*)| (], :,4) € My, }.

» Lemma 13 (INJECTIVITY LEMMA). There exists an injective function gor: Ua(T) — Sao(T)
such that w(t;) < wpp(7(i")), for any i € Uy(7) and i’ = gqr ().

Proof (Sketch). From map h: R, — J,., My, we know U/ (7) is well defined. Now, for any
i € U(7), by definition, i is unmatched under 7*. Let ¢; denote the position where agent
i sits in the order of agents of DRTMHA under 7}¢ (we call it a position value). We can
partition U!(7) into different groups such that different groups have different position values
¢;’s, and agents in the same group have the same position value. That is, partition set U!(7)
into ng such groups {TS}SG[n3]7 where T, has position value /.

Note that if ¢ is unmatched when his position value is ¢;, then he will remain unmatched
when he is in any position ¢ > ¢;, by Lemma 11 (part (iii) of Property P). We now use
Lemma 12 iteratively on set Ujgs T;, s € [n3] to prove Lemma 13 as follows: suppose we
have constructed a map g, on set |J i<s T} satisfying the property of Lemma 13. Then
by Lemma 12, there exists an injective map fay'': Ujcon Tj — Sut' (1), satisfying the

property of the lemma. Combining the two maps g, and ffi“, we obtain the map on

Uj<ss1 T <

Next we define a map H from (J;c(,; M; to 2Ut€lf”~l 9 6 bound the marginal ‘bad’ events
Usepn) M by ‘good” events (¢, Q: as follows: For any t € [s], (7,t,i) € M,

H(r,t,1) = {(77, 9} Gars (1) | @ = p* (i) and p] = 77 (gar: (1)) and s € [x]}.

Note that for any (7,¢,i) € My, |[H(7,t,i)| = k. Due to the injectivity of g, (Lemma 13),
we will show that the image sets of H are disjoint.

» Lemma 14. For any (1,t,i) € My and (7',t',i') € My, if (1,t,i) # (7',t',i'), then
H(r,t, i) "N H(7',¢',i) = 0.

Proof. Suppose there is a triple (o,s,¢) € H(7,t,4) N H(7',¢',i"). Then there exists a € A
s.t. u*(z) = w* (') = a, by the definition of g,, (since S,(c) N Sy(c) = 0, for any a # b). By
the definition of H, we know that 7 = of and 7/ = o,. Hence, 1,7’ € U,(0) since (7,t,i) € Mj,
(t',t',1") € My. As g4 is an injective function from U, (0) to S4(0), Gao (1) = gus(i'), implies
i=1i. AsT=o!, 7/ =0, there exists a unique ¢ such that (o¢,¢,i) € M,, which gives that

t=1t"and 7 = 0! = 0! = 7/. This shows (7,t,i) = (,t',4'), and thus a contradiction. <

By Lemmas 13 and 14, we have for any (7,t,i) € M, t € [k], and any (o,s,i) €
H(r,t,4), wiyp(t) < wpp(s) and (0,s,i') € Uyc @ Summing over My ¢(t)w(My) =
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(t) < Z(u,s,i')EHN(I\/It)wi/w(s)

Do (rtiyen, Wit . Therefore:
dwmwdn) =Y > wih(t)
t<k t<w (7,t,0)€M;

Dividing both sides of this inequality by ™ implies >, ¥ (t)y, <

< Dot<n 2o, H (M) Wirth(s)

K
Hy Wi (s)

B Z((r,s,i’)ELJtSh

K

< Z(U’S7il)€Ut§~ Q: wi'w(s)

K

_ Ztgn Z(T,t,z')th w;th(t)

| e bw(@Q)

K

Z,SK zap(t)

K

Com-

bining this inequality with (1) and (2), and following a step in the analysis from [4] implies.

» Theorem 15. DRTMHA is universally truthful and has an approzimation ratio —; +O(1)

e—1

for weighted agents with ties and terminates in O(njylogk) time, for any k € N, .
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