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Abstract
In the voter model, each node of a graph has an opinion, and in every round each node chooses
independently a random neighbour and adopts its opinion. We are interested in the consensus
time, which is the first point in time where all nodes have the same opinion. We consider
dynamic graphs in which the edges are rewired in every round (by an adversary) giving rise
to the graph sequence G1, G2, . . . , where we assume that Gi has conductance at least φi. We
assume that the degrees of nodes don’t change over time as one can show that the consensus
time can become super-exponential otherwise. In the case of a sequence of d-regular graphs, we
obtain asymptotically tight results. Even for some static graphs, such as the cycle, our results
improve the state of the art. Here we show that the expected number of rounds until all nodes
have the same opinion is bounded by O(m/(dmin ·φ)), for any graph with m edges, conductance
φ, and degrees at least dmin. In addition, we consider a biased dynamic voter model, where each
opinion i is associated with a probability Pi, and when a node chooses a neighbour with that
opinion, it adopts opinion i with probability Pi (otherwise the node keeps its current opinion).
We show for any regular dynamic graph, that if there is an ε > 0 difference between the highest
and second highest opinion probabilities, and at least Ω(logn) nodes have initially the opinion
with the highest probability, then all nodes adopt w.h.p. that opinion. We obtain a bound on
the convergence time, which becomes O(logn/φ) for static graphs.
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1 Introduction

In this paper, we investigate the spread of opinions in a connected and undirected graph
using the voter model. The standard voter model works in synchronous rounds and is defined
as follows. At the beginning, every node has one opinion from the set {0, . . . , n− 1}, and
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in every round, each node chooses one of its neighbours uniformly at random and adopts
its opinion. In this model, one is usually interested in the consensus time and the fixation
probability. The consensus time is the number of rounds it takes until all nodes have the same
opinion. The fixation probability of opinion i is the probability that this opinion prevails,
meaning that all other opinions vanish. This probability is known to be proportional to the
sum of the degrees of the nodes starting with opinion i [13, 22].

The voter model is the dual of the coalescing random walk model which can be described
as follows. Initially, there is a pebble on every node of the graph. In every round, every
pebble chooses a neighbour uniformly at random and moves to that node. Whenever two or
more pebbles meet at the same node, they are merged into a single pebble which continues
performing a random walk. The process terminates when only one pebble remains. The
time it takes until only one pebble remains is called coalescing time. It is known that the
coalescing time for a graph G equals the consensus time of the voter model on G when
initially each node has a distinct opinion [2, 19].

In this paper we consider the voter model and a biased variant where the opinions have
different popularity. We express the consensus time as a function of the graph conductance φ.

We assume a dynamic graph model where the edges of the graph can be rewired by an
adversary in every round, as long as the adversary respects the given degree sequence and the
given conductance for all generated graphs. We show that consensus is reached with constant
probability after τ rounds, where τ is the first round such that the sum of conductances up
to round τ is at least m/dmin, where m is the number of edges. For static graphs the above
bound simplifies to O(m/(dmin · φ)), where dmin is the minimum degree.

For the biased model we assume a regular dynamic graph G. Similar to [19, 16] the
opinions have a popularity, which is expressed as a probability with which nodes adopt
opinions. Again, every node chooses one of its neighbours uniformly at random, but this
time it adopts the neighbour’s opinion with a probability that equals the popularity of this
opinion (otherwise the node keeps its current opinion). We assume that the popularity of
the most popular opinion is 1, and every other opinion has a popularity of at most 1 − ε
(for an arbitrarily small but constant ε > 0). We also assume that at least Ω(logn) nodes
start with the most popular opinion. Then we show that the most popular opinion prevails
w.h.p.1 after τ rounds, where τ is the first round such that the sum of conductances up to
round τ is of order O(logn). For static graphs the above bound simplifies as follows: the
most popular opinion prevails w.h.p. in O(logn/φ) rounds, if at least Ω(logn) nodes start
with that opinion.

1.1 Related work
A sequential version of the voter model was introduced in [14] and can be described as
follows. In every round, a single node is chosen uniformly at random and this node changes
its opinion to that of a random neighbour. The authors of [14] study infinite grid graphs.
This was generalised to arbitrary graphs in [9] where it is shown among other things that
the probability for opinion i to prevail is proportional to the sum of the degrees of the nodes
having opinion i at the beginning of the process.

The standard voter model was first analysed in [13]. The authors of [13] bound the
expected coalescing time (and thus the expected consensus time) in terms of the expected
meeting time tmeet of two random walks and show a bound of O(tmeet · logn) = O(n3 logn).

1 An event happens with high probability (w.h.p.) if its probability is at least 1 − 1/n.
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Note that the meeting time is an obvious lower bound on the coalescing time, and thus
a lower bound on the consensus time when all nodes have distinct opinions initially. The
authors of [4] provide an improved upper bound of O

( 1
1−λ2

(log4 n + ρ)
)
on the expected

coalescing time for any graph G, where λ2 is the second eigenvalue of the transition matrix
of a random walk on G, and ρ =

(∑
u∈V (G) d(u)

)2
/
∑
u∈V (G) d

2(u) is the ratio of the square
of the sum of node degrees over the sum of the squared degrees. The value of ρ ranges from
Θ(1), for the star graph, to n, for regular graphs.

The authors of [20, 2, 19] investigate coalescing random walks in a continuous setting
where the movement of the pebbles are modelled by independent Poisson processes with a
rate of 1. In [2], it is shown a lower bound of Ω(m/dmax) and an upper bound of O(thit · logn)
for the expected coalescing time. Here m is the number of edges in the graph, dmax is
the maximum degree, and thit is the (expected) hitting time. In [23], it is shown that the
expected coalescing time is bounded by O(thit).

In[19] the authors consider the biased voter model in the continuous setting and two
opinions. They show that for d-dimensional lattices the probability for the less popular
opinion to prevail is exponentially small. In [16], it is shown that in this setting the expected
consensus time is exponential for the line.

The authors of [5] consider a modification of the standard voter model with two opinions,
which they call two-sample voting. In every round, each node chooses two of its neighbours
randomly and adopts their opinion only if they both agree. For regular graphs and random
regular graphs, it is shown that two-sample voting has a consensus time of O(logn) if the
initial imbalance between the nodes having the two opinions is large enough. There are
several other works on the setting where every node contacts in every round two or more
neighbours before adapting its opinion [1, 7, 6, 10].

There are several other models which are related to the voter model, most notably the
Moran process and rumor spreading in the phone call model. In the case of the Moran
process, a population resides on the vertices of a graph. The initial population consists
of one mutant with fitness r and the rest of the nodes are non-mutants with fitness 1. In
every round, a node is chosen at random with probability proportional to its fitness. This
node then reproduces by placing a copy of itself on a randomly chosen neighbour, replacing
the individual that was there. The main quantities of interest are the probability that the
mutant occupies the whole graph (fixation) or vanishes (extinction), together with the time
before either of the two states is reached (absorption time). There are several publications
considering the fixation probabilities [15, 21, 8].

Rumor spreading in the phone call model works as follows. Every node v opens a channel
to a randomly chosen neighbour u. The channel can be used for transmissions in both
directions. A transmission from v to u is called push transmission and a transmission from u

to v is called pull. There is a vast amount of papers analysing rumor spreading on different
graphs. The result that is most relevant to ours is that broadcasting of a message in the
whole network is completed in O(logn/φ) rounds w.h.p, where φ is the conductance (see
Section 1.2 for a definition) of the network. In [12], the authors study rumor spreading in
dynamic networks, where the edges in every round are distributed by an adaptive adversary.
They show that broadcasting terminates w.h.p. in a round t if the sum of conductances up
to round t is of order logn. Here, the sequence of graphs G1, G2, . . . have the same vertex
set of size n, but possibly distinct edge sets. The authors assume that the degrees and the
conductance may change over time. We refer the reader to the next section for a discussion of
the differences. Dynamic graphs have received ample attention in various areas [3, 17, 24, 18].
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1.2 Model and New Results

In this paper we show results for the standard voter model and biased voter model in dynamic
graphs. Our protocols work in synchronous steps. The consensus time T is defined at the
first time step at which all nodes have the same opinion.

Standard Voter Model

Our first result concerns the standard voter model in dynamic graphs. Our protocol works
as follows. In every synchronous time step every node chooses a neighbour u.a.r. and adopts
its opinion with probability 1/2.2

We assume that the dynamic graphs G = G1, G2, . . . are generated by an adversary. We
assume that each graph has n nodes and the nodes are numbered from 1 to n. The sequence
of conductances φ1, φ2, . . . is given in advance, as well as a degree sequence d1, d2, . . . , dn.
The adversary is now allowed to create every graph Gi by redistributing the edges of the
graph. The constraints are that each graph Gi has to have conductance φi and node j
has to have degree dj (the degrees of the nodes do not change over time). Note that the
sequence of the conductances is fixed and, hence, cannot be regarded as a random variable
in the following. For the redistribution of the edges we assume that the adversary knows the
distribution of all opinions during all previous rounds.

Note that our model for dynamic graphs is motivated by the model presented in [12].
They allow the adversary to determine the edge set at every round, without having to respect
the node degrees and conductances.

We show (Observation 1) that, allowing the adversary to change the node degrees over time
can results in super-exponential voting time. Since this changes the behaviour significantly,
we assume that the degrees of nodes are fixed. Furthermore, in contrary to [12], we assume
that (bounds on) the conductance of (the graph at any time step) are fixed/given beforehand.
Whether one can obtain the same results, if the conductance of the graph is determined by
an adaptive adversary remains an open question. The reason we consider an adversarial
dynamic graph model is in order to understand how the voting time can be influenced in the
worst-case. Another interesting model would be to assume that in every round the nodes are
connected to random neighbours. One obstacle to such a model seems to be to guarantee that
neighbours are chosen u.a.r. and the degrees of nodes do not change. For the case of regular
random dynamic graphs our techniques easily carry over since the graph will have constant
conductance w.h.p. in any such round since the graph is essentially a random regular graph
in every round.

For the (adversarial) dynamic model we show the following result bounding the consensus
time T .

I Theorem 1 (upper bound). Consider the Standard Voter model and in the dynamic graph
model. Assume κ ≤ n opinions are arbitrarily distributed over the nodes of G1. Let φt be
a lower bound on the conductance at time step t. Let b > 0 be a suitable chosen constant.
Then, with a probability of 1/2 we have that T ≤ min{τ, τ ′}, where
(i) τ is the first round so that

∑τ
t=1 φt ≥ b ·m/dmin. (part 1)

(ii) τ ′ is the first round so that
∑τ ′

t=1 φ
2
t ≥ b · n logn. (part 2)

For static graphs (Gi+1 = Gi for all i), we have T ≤ min{m/(dmin · φ), n logn/φ2}.

2 The factor of 1/2 ensures that the process converges on bipartite graphs.
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For static d-regular graphs, where the graph doesn’t change over time, the above bound
becomes O(n/φ), which is tight when either φ or d are constants (see Observation 2).
Theorem 1 gives the first tight bounds for cycles and circulant graphs Ckn (node i is adjacent
to the nodes i ± 1, . . . , i ± k mod n) with degree 2k (k constant). For these graphs the
consensus time is Θ(n2), which matches our upper bound from Theorem 1.3 For a comparison
with the results of [4] note that φ2 ≤ 1− λ2 ≤ 2φ. In particular, for the cycle φ = 1/n and
1/(1− λ2) = Θ(1/n2). Hence, for this graph, our bound is by a factor of n smaller. Note
that, due to the duality between the voter model and coalescing random walks, the result
also holds for the coalescing time. In contrast to [4, 5], the above result is shown using a
potential function argument, whereas the authors of [4, 5] show their results for coalescing
random walks and fixed graphs. The advantage of analysing the process directly is, that our
techniques allow us to obtain the results for the dynamic setting.

The next result shows that the bound of Theorem 1 is asymptotically tight if the adversary
is allowed to change the node degrees over time.

I Theorem 2 (lower bound). Consider the Standard Voter model in the dynamic graph model.
Assume that κ ≤ n opinions are arbitrarily distributed over the nodes of G1. Let φt be an
upper bound on the conductance at time step t. Let b > 0 be a suitable constant and assume
τ ′′ is the first round such that

∑τ ′′

t=1 φt ≥ bn. Then, with a probability of at least 1/2, there
are still nodes with different opinions in Gτ ′′ .

Biased Voter Model

In the biased voter model we again assume that there are κ ≤ n distinct opinions initially. For
0 ≤ i ≤ κ−1, opinion i has popularity αi and we assume that α0 = 1 > α1 ≥ α2 ≥ . . . ≥ ακ−1.
We call opinion 0 the preferred opinion. The process works as follows. In every round, every
node chooses a neighbour uniformly at random and adopts its opinion i with probability αi.

We assume that the dynamic d-regular graphs G = G1, G2, . . . are generated by an
adversary. We assume that the sequence of φt is given in advance, where φi is a lower bound
on the conductance of Gi. The adversary is now allowed to create the sequence of graphs by
redistributing the edges of the graph in every step. The constraints are that each graph Gi
has n nodes and has to have conductance at least φi. Note that we assume that the sequence
of the conductances is fixed and, hence, it is not a random variable in the following.

The following result shows that consensus is reached considerably faster in the biased
voter model, as long as the bias 1− α1 is bounded away from 0, and at least a logarithmic
number of nodes have the preferred opinion initially.

I Theorem 3. Consider the Biased Voter model in the dynamic regular graph model. Assume
κ ≤ n opinions are arbitrarily distributed over the nodes of G1. Let φt be a lower bound on
the conductance at time step t. Assume that α1 ≤ 1 − ε, for an arbitrary small constant
ε > 0. Assume the initial number of nodes with the preferred opinion is at least c logn, for
some constant c = c(α1). Then the preferred opinion prevails w.h.p. in at most τ ′′′ steps,
where τ ′′′ is the first round so that

∑τ ′′′

t=1 φt ≥ b logn, for some constant b. For static graphs
(Gi+1 = Gi for all i), we have w.h.p. T = O(logn/φ).

3 The lower bound of Ω(n2) follows from the fact that two coalescing random walks starting on opposite
sites of a cycle require in expectation time Ω(n2) to meet.

ICALP 2016
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The assumption on the initial size of the preferred opinion is crucial for the time bound
T = O(logn/φ), in the sense that there are instances where the expected consensus time is
at least T = Ω(n/φ) if the size of the preferred opinion is small.4

The rumor spreading process can be viewed as an instance of the biased voter model
with two opinions having popularity 1 and 0, respectively. However, the techniques used
for the analysis of rumor spreading do not extend to the voter model. This is due to the
fact that rumor spreading is a progressive process, where nodes can change their opinion
only once, from “uninformed” to “informed”, whereas they can change their opinions over
and over again in the case of the voter model. Note that the above bound is the same as
the bound for rumor spreading of [11] (although the latter bound holds for general graphs,
rather than just for regular ones). Hence, our above bound is tight for regular graphs with
conductance φ, since the rumor spreading lower bound of Ω(logn/φ) is also a lower bound
for biased voting in our model.

2 Analysis of the Voter Model

In this section we show the upper and lower bound for the standard voter model. We begin
with some definitions. Let G = (V,E). For a fixed set S ⊆ V we define cut(S, V \ S) to be
the set of edges between the sets S ⊆ V and V \ S and let λu be the number of neighbours
of u in V \ S. Let vol(S) =

∑
u∈S du. The conductance of G is defined as

φ = φ(G) = min
{∑

u∈U
λu

vol(U)
: U ⊂ V with 0 < vol(U) ≤ m

}
.

We note 1/n2 ≤ φ ≤ 1. We denote by v(i)
t the set of nodes that have opinion i after the first

t rounds and t ≥ 0. If we refer to the random variable we use V (i)
t instead.

First we show Theorem 1 for κ = 2 (two opinions), which we call 0 and 1 in the following.
Then we generalise the result to an arbitrary number of opinions. We model the system with
a Markov chain Mt≥0 = (V (0)

t , V
(1)
t )t≥0.

Let st denote the set having the smaller volume, i.e., st = v
(0)
t if vol(v(0)

t ) ≤ vol(v(1)
t ),

and st = v
(1)
t otherwise. Note that we use st, v(0)

t and v(1)
t whenever the state at time t is

fixed, and St, V (0)
t and V (1)

t for the corresponding random variables. For u ∈ v(0)
t , λu,t is the

number of neighbours of u in V \ v1(t) and for u ∈ v(1)
t , λu,t is the number of neighbours of

u in V \ v(0)
t ; du is the degree of u (the degrees do not change over time).

To analyse the process we use a potential function. Simply using the volume of nodes
sharing the same opinion as the potential function will not work. It is easy to calculate that
the expected volume of nodes with a given opinion does not change in one step. Instead, we
use a convex function on the number of nodes with the minority opinion. We define

Ψ(St) =
√
vol(St).

In Lemma 4 we first calculate the one-step potential drop of Ψ(St). Then we show that
every opinion either prevails or vanishes once the sum of conductances is proportional to the
volume of nodes having that opinion (see Lemma 5), which we use later to prove Part 1 of
Theorem 1. Additionally, Lemma 4 is used to prove Lemma 7 which allows us to prove Part
2 of Theorem 1.

4 Consider a 3-regular graph and n opinions where all other α1 = α2 = · · · = αn−1 = 1/2. The preferred
opinion vanishes with constant probability and the bound for the standard voter model of Observation 2
applies.
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I Lemma 4. Assume st 6= ∅ and κ = 2. Then

E[Ψ(St+1) | St = st] ≤ Ψ(st)−
∑
u∈V λu,t · du

32 · (Ψ(st))3 .

Proof. W.l.o.g. we assume that opinion 0 is the minority opinion, i.e. 0 < vol(V (0)
t ) ≤

vol(V (1)
t ). To simplify the notation we omit the index t in this proof and write v(0) instead

of vt(0), v(1) for V \ v(0)
t , and λu instead of λu,t. Hence, st = v(0) and Ψ(st) =

√
vol(v(0)).

Note that for t = 0 we have vol(v(0)) = Ψ(st)2. Furthermore, we fix St = st in the following
(and condition on it). We define m as the number of edges. Then we have

E[Ψ(St+1)−Ψ(st) | St = st] = E[
√

vol(St+1)−
√
vol(st)]

= E
[√

min
{
vol(V (0)

t+1),m− vol(V (0)
t+1)

}
−
√
vol(st)

]

≤ E
[√

vol(V (0)
t+1)−

√
vol(v(0))

]
(1)

Now we define

Xu =


du w.p. λu

2·du if u ∈ v
(1)

−du w.p. λu
2·du if u ∈ v

(0)

0 otherwise

and ∆ =
∑
u∈V Xu. Note that we have ∆ = vol(V (0)

t+1)− vol(v(0)) and

E
[√

vol(V (0)
t+1)−

√
vol(v(0))

]
= E

[√
vol(v(0)) + ∆−

√
vol(v(0))

]
= E

[√
vol(v(0))

(√
1 + ∆

vol(v(0))
− 1
)]

= Ψ(st) ·E[
√

1 + ∆/Ψ(st)2 − 1].

Unfortunately we cannot bound Ψ(st) ·E[
√

1 + ∆/Ψ(st)2−1] directly. Instead, we define
a family of random variables which is closely related to Xu.

Yu =


λu w.p. 1

2 if u ∈ v(1)

−du w.p. λu
2·du if u ∈ v(0)

0 otherwise

Similarly, we define ∆′ =
∑
u∈V Y (u). Note that |E[Yu]| = λu/2 for both u ∈ v(1) and

u ∈ v(0). In the full version we show that E[
√

1 + ∆/Ψ(st)2] ≤ E[
√

1 + ∆′/Ψ(st)2], which
results in E[Ψ(St+1) − Ψ(st) | St = st] ≤ Ψ(st) · E[

√
1 + ∆′/Ψ(st)2 − 1] From the Taylor

expansion
√

1 + x ≤ 1 + x
2 −

x2

8 + x3

16 , x ≥ −1 it follows that

E[Ψ(St+1)−Ψ(st) | St = st] ≤ Ψ(st) ·E
[ ∆′

2Ψ(st)2 − (∆′)2

8Ψ(st)4 + (∆′)3

16Ψ(st)6

]
.

It remains to bound E[∆′], E[(∆′)2], and E[(∆′)3].

E[∆′]: We have E[∆′] =
∑
u∈V E[Yu] =

∑
u∈v(1)

λu
2 −

∑
v∈v(0)

λv
2 = 0, where the last

equality holds since
∑
u∈v(1) λu and

∑
u∈v(1) λu both count the number of edges crossing

the cut between v(0) and v(1).

ICALP 2016
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E[(∆′)2]: since E[(Yu)2] = (λu)2/2 for u ∈ v(1) and E[(Yu)2] = −du · λu/2 for u ∈ v(0)

we have

E[(∆′)2] =
∑
u∈V

Var[Yu] + (E[Yu])2 =
∑
u∈V

Var[Yu] + 0 =
∑
u∈V

(E[(Yu)2]− (E[Yu])2)

=
∑
u∈v(0)

(E[(Yu)2]− (E[Yu])2) +
∑
u∈v(1)

(E[(Yu)2]− (E[Yu])2)

=
∑
u∈v(0)

λudu
2 −

∑
u∈v(0)

λ2
u

4 +
∑
u∈v(1)

λ2
u

4 ≥
∑
u∈v(0)

λudu
4 . (2)

E[∆′3]: In the full version we show that E[∆′3] =
∑
u∈V

(
E[(Yu)3]− 3 E[(Yu)2] ·E[Yu] +

2 E[Yu]3
)
. Note that E[(Yu)3] = 1

2 (λu)3 for u ∈ v(1) and E[(Yu)3] = − 1
2λu · (du)2 for

u ∈ v(0). Hence,

E[∆′3] =
∑
u∈v(0)

(
−1

2λu · (du)2 + 3
4(λu)2 · du −

1
4λ

3
u

)

+
∑
u∈v(1)

(
1
2(λu)3 − 3

4(λu)3 + 1
4(λu)3

)
≤ 0, (3)

where the first sum is bounded by 0 because λu ≤ du.

Combining all the above estimations we get

E[Ψ(St+1)−Ψ(st) | St = st] ≤ Ψ(st) ·E
[

∆′

2Ψ(st)2 −
∆′2

8Ψ(st)4 + ∆′3

16Ψ(st)6

]
≤ −

∑
u∈v(0) λudu

32Ψ(st)3 .

This completes the proof of Lemma 4. J

2.1 Part 1 of Theorem 1.
Using Lemma 4 we show that a given opinion either prevails or vanishes with constant
probability as soon as the sum of φt is proportional to the volume of the nodes having that
opinion.

I Lemma 5. Assume that st̂ is fixed for an arbitrary (t̂ ≥ 0) and κ = 2.
Let τ∗ = min

{
t′ :
∑t′

i=t̂ φi ≥ 129 · vol(st̂)/dmin
}
. Then Pr

(
T ≤ τ∗ + t̂

)
≥ 1/2.

In particular, if the graph is static with conductance φ, then Pr
(
T ≤ 129·vol(st̂)

φ·dmin + t̂
)
≥ 1/2.

Proof. From the definition of Ψ(st) and φt it follows for all t that Ψ(st)2 =
∑
u∈v(0) du =

vol(v(0)) and φt ≤
∑
u∈v(0) λu,t/vol(v(0)). Hence, Ψ(st)2 · φt · dmin ≤

∑
u∈v(0) λu,t · du.

Together with Lemma 4 we derive for st 6= ∅

E[Ψ(St+1) | St = st] ≤ Ψ(st)−
∑
u∈V λu,t · du

32 · (Ψ(st))3 ≤ Ψ(st)−
dmin · φt
32 ·Ψ(st)

. (4)

Recall that T = mint{St = ∅}. In the following we use the expression T > t to denote the
event st 6= ∅. Using the law of total probability we get

E[Ψ(St+1)|T > t] = E
[
Ψ(St)−

dmin · φt
32 ·Ψ(St)

∣∣∣T > t

]
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and using Jensen’s inequality we get

E[Ψ(St+1) | T > t] = E[Ψ(St) | T > t]−E
[
dmin · φt
32 ·Ψ(St)

| T > t

]
≤ E[Ψ(St) | T > t]− dmin · φt

32 ·E[Ψ(St)· | T > t] .

Since E[Ψ(St) | T ≤ t] = 0 we have

E[Ψ(St)] = E[Ψ(St) | T > t] · Pr[T > t] + E[Ψ(St) | T ≤ t] · Pr[T ≤ t]
= E[Ψ(St) | T > t] · Pr[T > t] + 0.

Hence,

E[Ψ(St+1)]
Pr (T > t) ≤

E[Ψ(St)]
Pr (T > t) −

dmin · φt · Pr (T > t)
32 E[Ψ(St)]

and

E[Ψ(St+1)] ≤ E[Ψ(St)]−
dmin · φt · (Pr (T > t))2

32 E[Ψ(St)]
.

Let t∗ = min{t : Pr(T > t) < 1/2}. In the following we use contradiction to show

t∗ ≤ max{t :
∑

t̂≤t<t∗
φt ≤ 128 · vol(st̂)/dmin}.

Assume the inequality is not satisfied. With t = t∗ − 1 we get

E[Ψ(St∗)] ≤ E[Ψ(St∗−1)]− dmin · φt · (Pr(T > t∗ − 1))2

32 E[Ψ(St∗−1)] ≤ E[Ψ(St∗−1)]− dmin · φt
∗ · (1/4)

32 E[Ψ(St∗−1)] .

Applying this equation iteratively, we obtain

E[Ψ(St∗)] ≤ E[Ψ(St̂)]−
∑

t̂≤t<t∗

dmin · φt · 1/4
32 E[Ψ(St)]

≤ E[Ψ(St̂)]−
dmin ·

∑
t̂≤t<t∗ φt

128 E[Ψ(St̂)]
. (5)

Using the definition of E[Ψ(St̂)] =
√
vol(st̂) and the definition of t∗ we get

E[Ψ(St∗)] <
√
vol(st̂)−

dmin · 128 · vol(st̂)
128 · dmin ·

√
vol(st̂)

=
√
vol(st̂)−

vol(st̂)√
vol(st̂)

= 0.

This is a contradiction since E[Ψ(St∗)] is non-negative.
From the definition of t∗, we obtain Pr

(
T > τ∗ + t̂

)
< 1/2, completing the proof of

Lemma 5. J

Now we are ready to show the first part of the theorem.

Proof of Part 1 of Theorem 1. We divide the τ rounds into phases. Phase i starts at time
τi = min{t :

∑t
j=1 φj ≥ 2i} for i ≥ 0 and ends at τi+1 − 1. Since φj ≤ 1 for all j ≥ 0 we

have τ0 < τ1 < . . . and
∑τi+1
j=τi φj ≥ 1 for i ≥ 0. Let `t be the number of distinct opinions at

the beginning of phase t. Hence, `0 = κ.
We show in Lemma 6 below that the expected number of phases before the number of

opinions drops by a factor of 5/6 is bounded by 6c · vol(V )/(`t · dmin). For i ≥ 1 let Ti be
the number of phases needed so that the number of opinions drops to (5/6)i · `0. Then only
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one opinion remains after log6/5 κ many of these meta-phases. Then, for a suitably chosen
constant b,

E[T ] =
log6/5 κ∑
j=1

E[Tj ] ≤
log6/5 κ−1∑

j=1

6c · vol(V )
`j · dmin

≤
log6/5 κ∑
j=1

6c vol(V )
(5/6)j · `0 · dmin

= b ·m
4 · dmin

.

By Markov inequality, consensus is reached w.p. at least 1/2 after b ·m/(2dmin) phases. By
definition of τ and the definition of the phases, we have that the number of phases up to
time step τ is at least b ·m/(2dmin). Thus, consensus is reached w.p. at least 1/2 after τ
time steps, which finishes the proof. J

I Lemma 6. Fix a phase t and assume c = 129 and `t > 1. The expected number of phases
before the number of opinions drops to 5/6 · `t is bounded by 6c · vol(V )/(`t · dmin).

Proof. Consider a point when there are `′ opinions left, with 5/6 · ` < `′ ≤ `. Among those
`′ opinions, there are at least `′ − `/3 opinions i such that the volume of nodes with opinion
i is at most 3 · vol(V )/`. Let S denote the set of these opinions and let Zi be an indicator
variable which is 1 if opinion i ∈ S vanished after s = 3c ·vol(V )/(` · dmin) phases and Zi = 0
if it prevails. To estimate Zi we consider the process where we have two opinions only. All
nodes with opinion i retain their opinion and all other nodes have opinion 0. It is easy to see
that in both processes the set of nodes with opinion i remains exactly the same. Hence, we
can use Lemma 5 to show that with probability at least 1/2, after s phases opinion i either
vanishes or prevails. Hence,

E [Σj∈SZj ] = Σj∈S E[Zj ] ≥ |S|/2 ≥ (`′ − `/3)/2.

Using Markov’s inequality we get that with probability 1/2 at least (`′ − `/3)/4 opinions
vanish within s phases, and the number of opinions remaining is at most `′ − (`′ − `/3)/4 =
3/4 · `′+ `/12 ≤ 5/6 · `. The expected number of phases until 5/6 · ` opinions can be bounded
by
∑∞
i=1 2−i · s ≤ 2s = 6c·vol(V )

`·dmin . J

2.2 Part 2 of Theorem 1
We first bound the expected potential drop in round t+ 1, i.e., we bound E[Ψ(St+1)−Ψ(st) |
St = st]. This time however, we express the drop as a function which is linear in Ψ(st). This
allows us to bound the expected size of the potential at time τ ′, i.e., E[Ψ(Sτ ′)], directly.
From the expected size of the potential at time τ ′ we derive the desired bound on Pr (T ≤ τ ′).
The proof can be found in the full version.

I Lemma 7. Assume κ = 2. We have Pr (T ≤ τ ′) ≥ 1/n2. In particular, if the graph is
static with conductance φ, then Pr

(
T ≤ 96·n logn

φ2

)
≥ 1− 1/n2.

We now prove Part 2 of Theorem 1 which generalises to κ > 2.

Proof of Part 2 of Theorem 1. We define a parameterized version of the consensus time
T . We define T (κ) = min{t : Ψ(St) = 0 : the number of different opinions at time t is κ} for
κ ≤ n. We want to show that Pr(T (κ) ≤ τ ′) ≥ 1− 1/n. From Lemma 7 we have that, that
Pr(T (2) ≤ τ ′) ≥ 1 − 1/n2. We define the 0/1 random variable Zi to be one if opinion i

vanishes or is the only remaining opinion after τ ′ rounds and Zi = 0 otherwise. We have
that Pr(Zi = 1) ≥ 1− 1/n2 for all i ≤ κ. We derive Pr(T (κ) ≤ τ ′) = Pr(∧i≤κZi) ≥ 1− 1/n,
by union bound. This yields the claim. J
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2.3 Lower Bounds
In this section, we give the intuition behind the proof of Theorem 2 and state two additional
observations. Recall that Theorem 2 states that our bound for regular graphs is tight for the
adaptive adversary, even for k = 2. The first observation shows that the expected consensus
time can be super-exponential if the adversary is allowed to change the degree sequence. The
second observation can be regarded as a (weaker) counter part of Theorem 2 showing a lower
bound of Ω(n/φ) for static graphs, assuming that either d or φ is constant.

We now give the intuition behind the proof of Theorem 2 and refer the reader to the
full version for the actual proof. The high level approach is as follows. For every step t we
define an adaptive adversary that chooses Gt+1 after observing V (0)

t and V (1)
t . The adversary

chooses Gt+1 such that the cut between V (0)
t and V (1)

t is of order of Θ(φt · dn). We show
that such a graph exists when the number of nodes in both V (0)

t and V (1)
t is at least of linear

size (in n). By this choice the adversary ensures that the expected potential drop of Ψ(St+1)
at most −cφtd/Ψ(st) for some constant c. Then we use the expected potential drop, together
with the optional stopping theorem, to derive our lower bound.

In the following we observe that if the adversary is allowed to change the degrees, then
the expected consensus time is super-exponential. A proof sketch can be found in the full
version.

I Observation 1. There is a sequence G1 = (V,E1), G2 = (V,E2), . . . be a sequence of
graphs with n nodes, where the edges E1, E2, . . . are distributed by an adaptive adversary,
such that the expected consensus time is at least Ω((n/c)n/c) for some constant c.

The bound of Theorem 1 for static regular graphs of O(n/φ) is tight for regular graphs if
either the degree or the conductance is constant. A proof sketch can be found in the full
version.

I Observation 2. For every n, d ≥ 3, and constant φ, there exists a d-regular graph G with
n nodes and a constant conductance such that the expected consensus time on G is Ω(n).
Furthermore, for every even n, φ > 1/n, and constant d, there exists a (static) d-regular
graph G with Θ(n) nodes and a conductance of Θ(φ) such that the expected consensus time
on G is Ω(n/φ).

3 Analysis of the Biased Voter Model

In this section, we prove Theorem 3. We show that the set St of nodes with the preferred
opinion grows roughly at a rate of 1 + Θ(φt), as long as St has at least logarithmic size. For
the analysis we break each round down into several steps, where exactly one node which has
at least one neighbour in the opposite set is considered. Instead of analysing the growth of
St for every round we consider larger time intervals consisting of a suitably chosen number
of steps. We change the process slightly by assuming that there is always one node with the
preferred opinion to allow for an easier analysis. If all other opinions vanish, then node 1 is
set to opinion 1. Note that this will only increase the runtime of the process. We also assume
that if the preferred opinion vanishes totally, node 1 is set back to the preferred opinion.
This alters the process, but as we show later, this event does not happen w.h.p.

The proof unfolds in the following way. First, we define formally the step sequence S .
Second, we define (Definition 8) a step sequence S to be good if, intuitively speaking, the
preferred opinion grows quickly enough in any sufficiently large subsequence of S . Afterward,
we show that if S is a good step sequence, then the preferred opinion prevails in at most
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τ ′′′ rounds (Lemma 10). Finally, we show that S is indeed a good step sequence w.h.p.
(Lemma 11).

We now give some definitions. Again, we denote by St the random set of nodes that
have the preferred opinion right after the first t rounds, and let S′t = V \ St. For a fixed
time step t we write st and s′t. We define the boundary ∂st as the subset of nodes in s′t
which are adjacent to at least one node from st. We use the symmetric definition for ∂s′t.
For each u ∈ V , let λu,t be the number of edges incident with u crossing the cut cut(st, s′t),
or equivalently, the number of u’s neighbours that have a different opinion than u’s before
round t.

We divide each round t into |st|+ |s′t| steps, in every step a single node v from either ∂st
or ∂s′t randomly chooses a neighbour u and adopts its opinion with the corresponding bias.
Note that we assume that v sees u’s opinion referring to the beginning of the round, even if
u was considered before v and changed its opinion in the meantime. It is convenient to label
the steps independently of the round in which they take place. Hence, step i denotes the i-th
step counted from the beginning of the first round. Also ui refers to the node considered in
step i and λi = λui,t. We define the indicator variable oi with oi = 1 if ui has the preferred
opinion and oi = 0 otherwise. Let

Λ(i) =
i∑

j=1
(1− oi) · λi and Λ′(i) =

i∑
j=1

oi · λi .

Unfortunately, the order in which the nodes are considered in a round is important for
our analysis and cannot be arbitrary. Note that such an ordering does not affect the outcome
of the process since the probabilities for a node to switch its opinion only depends on the
distribution of opinions at the beginning of the round.

Intuitively, we order the nodes in st and s′t such that the sum of the degrees of nodes
which are already considered from st and the sum of the degrees of nodes already considered
from s′t differs by at most d, i.e.,

|Λi − Λ′i| ≤ d. (6)

The following rule determines the node to be considered in step j + 1: if Λ(j) ≤ Λ′(j),
then the (not yet considered) node v ∈ ∂st is with smallest identifier is considered. Otherwise
the node v ∈ ∂s′t with the smallest identifier is considered. Note that at the first step i of
any round we have Λi = Λ′i. This guarantees that (6) holds. The step sequence S is now
defined as a sequence of tuples, i.e., S = (u1, Z1), (u2, Z2), . . . , where Zj = 1 if uj changed
its opinion in step j and Zj = 0 otherwise for all j ≥ 1. Observe that when given the initial
assignment and the sequence up to step i, then we know the configuration Ci of the system,
i.e., the opinions of all nodes at step i and in which round step i occurred.

In our analysis we consider the increase in the number of nodes with the preferred opinion
in time intervals which contain a sufficiently large number of steps, instead of considering
one round after the other. The following definitions identify these intervals.

For all i, k ≥ 0 where Ci is fixed, we define the random variable Si,k := min{j : Λj −Λi ≥
k}, which is the first time step such that nodes with a degree-sum of at least k were considered.
Let Ii,k = [i+1, Si,k] be the corresponding interval where we note that the length is a random
variable. We proceed by showing an easy observation proven in the full version.

I Observation 3. The number of steps in the interval Ii,k is at most 2k + 2d, i.e., |Ii,k| ≤
2k + 2d. Furthermore, Λ′(Si,k)− Λ′(i) ≤ k + 2d.
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Fix Ci and let Xi,k be the total number of times during interval Ii,k that a switch from a
non-preferred opinion to the preferred one occurs; and define X ′i,k similarly for the reverse
switches. Finally, we define Yi,k = Xi,k −X ′i,k; thus Yi,k is the increase in number of nodes
that have the preferred opinion during the time interval Ii,k.

Define ` = 132β logn
(1−α1)2 and β′ = 600d

α1·(1−α1)2 . In the following we define a good sequence.

I Definition 8. We call the sequence S of steps good if it has all of the following properties
for all i ≤ T ′ = 2β′ · n. Consider the first T ′ steps of S (fix CT ′). Then,
(a) Y0,T ′ ≥ 2n (the preferred opinion prevails in at most T ′ steps).
(b) Y0,i + |S0| > 1 (the preferred opinion never vanishes).
(c) For any 1 ≤ k ≤ T ′, Yi,k ≥ −` (the number of nodes with the preferred opinion never

drops by `).
(d) For any ` ≤ γ ≤ T ′, Yi,k > γ, where k = γ · β′ (the nodes with the preferred opinion

increase).

This definition allows us to prove in a convenient way that a step sequence S is w.h.p.
good: For each property, we simply consider each (sufficiently large) subsequence S separately
and we show that w.h.p. S has the desired property. We achieve this by using a concentration
bound on Yi,k which we establish in Lemma 9. Afterward, we take a union bound over
all of these subsequences and properties. Using the union bound allows us to show the
desired properties in all subsequences in spite of the emerging dependencies. This is done in
Lemma 10.

We now show the concentration bounds on Yi,k. These bounds rely on the Chernoff-type
bound established in the full version. This Chernoff-type bound shows concentration for
variables having the property that the sum of the conditional probabilities of the variables,
given all previous variables, is always bounded (from above or below) by some b. The bound
might be of general interest and its proof can be found in the full version.

I Lemma 9. Fix configuration Ci. Then,
(a) For k = γ 256d

α1·(1−α1)2 with γ ≥ 1 it holds that Pr (Yi,k < γ) ≤ exp (−γ) .
(b) For k ≥ 0, any b′ = α1 · (k + 2d)/d, and any δ > 0 it holds that

Pr (Yi,k < −(1 + δ)b′) ≤ exp
(

eδ

(1+δ)1+δ

)b′
.

The following two lemmas are proven in the full version.

I Lemma 10. Let S be a step sequence. Then S is good with high probability.

I Lemma 11. If S is a good step sequence, then in at most T ′ time steps, the preferred
opinion prevails and the T ′ time steps occur before round τ ′′′.

Proof of Theorem 3. The claim follows from Lemma 10 together with Lemma 11. J
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