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Abstract
Span programs are a model of computation that have been used to design quantum algorithms,
mainly in the query model. It is known that for any decision problem, there exists a span
program that leads to an algorithm with optimal quantum query complexity, however finding
such an algorithm is generally challenging. In this work, we consider new ways of designing
quantum algorithms using span programs. We show how any span program that decides a
problem f can also be used to decide “property testing” versions of the function f , or more
generally, approximate a quantity called the span program witness size, which is some property
of the input related to f . For example, using our techniques, the span program for OR, which can
be used to design an optimal algorithm for the OR function, can also be used to design optimal
algorithms for: threshold functions, in which we want to decide if the Hamming weight of a string
is above a threshold, or far below, given the promise that one of these is true; and approximate
counting, in which we want to estimate the Hamming weight of the input up to some desired
accuracy. We achieve these results by relaxing the requirement that 1-inputs hit some target
exactly in the span program, which could potentially make design of span programs significantly
easier. In addition, we give an exposition of span program structure, which increases the general
understanding of this important model. One implication of this is alternative algorithms for
estimating the witness size when the phase gap of a certain unitary can be lower bounded. We
show how to lower bound this phase gap in certain cases.

As an application, we give the first upper bounds in the adjacency query model on the
quantum time complexity of estimating the effective resistance between s and t, Rs,t(G). For this
problem we obtain Õ( 1

ε3/2n
√
Rs,t(G)), using O(logn) space. In addition, when µ is a lower bound

on λ2(G), by our phase gap lower bound, we can obtain an upper bound of Õ
(

1
εn
√
Rs,t(G)/µ

)
for estimating effective resistance, also using O(logn) space.
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1 Introduction

Span programs are a model of computation first used to study logspace complexity [13], and
more recently, introduced to the study of quantum algorithms in [20]. They are of immense
theoretical importance, having been used to show that the general adversary bound gives a
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12:2 Approximate Span Programs

tight lower bound on the quantum query complexity of any decision problem [18, 19]. As a
means of designing quantum algorithms, it is known that for any decision problem, there exists
a span-program-based algorithm with asymptotically optimal quantum query complexity,
but this fact alone gives no indication of how to find such an algorithm. Despite the relative
difficulty in designing quantum algorithms this way, there are many applications, including
formula evaluation [20, 19], a number of algorithms based on the learning graph framework [3],
st-connectivity [5] and k-distinctness [2]. Although generally quantum algorithms designed
via span programs can only be analyzed in terms of their query complexity, in some cases
their time complexity can also be analyzed, as is the case with the quantum algorithm for
st-connectivity. In the case of the quantum algorithm for k-distinctness, the ideas used in
designing the span program could be turned into a quantum algorithm for 3-distinctness
with time complexity matching its query complexity up to logarithmic factors [4].

In this work, we consider new ways of designing quantum algorithms via span programs.
Consider Grover’s quantum search algorithm, which, on input x ∈ {0, 1}n, decides if there is
some i ∈ [n] such that xi = 1 using only O(

√
n) quantum operations [10]. The ideas behind

this algorithm have been used in innumerable contexts, but in particular, a careful analysis
of the ideas behind Grover’s algorithm led to algorithms for similar problems, including a
class of threshold functions: given x ∈ {0, 1}n, decide if |x| ≥ t or |x| < εt, where |x| denotes
the Hamming weight; and approximate counting: given x ∈ {0, 1}n, output an estimate of
|x| to some desired accuracy. The results in this paper offer the possibility of obtaining
analogous results for any span program. That is, given a span program for some problem
f , our results show that one can obtain, not only an algorithm for f , but algorithms for a
related class of threshold functions, as well as an algorithm for estimating a quantity called
the span program witness size, which is analogous to |x| in the above example (and is in fact
exactly 1/|x| in the span program for the OR function — see Section 2.3).

We give several new means of constructing quantum algorithms from span programs.
Roughly speaking, a span program can be turned into a quantum algorithm that decides
between two types of inputs: those that “hit” a certain “target vector”, and those that don’t.
We show how to turn a span program into an algorithm that decides between inputs that get
“close to” the target vector, and those that don’t. Whereas traditionally a span program has
been associated with some decision problem, this allows us to now associate, with one span
program, a whole class of threshold problems.

In addition, for any span program P , we can construct a quantum algorithm that estimates
the positive witness size, w+(x), to accuracy ε in 1

ε3/2

√
w+(x)W̃− queries, where W̃− is the

approximate negative witness complexity of P . This construction is useful whenever we can
construct a span program for which w+(x) corresponds to some function we care to estimate,
as is the case with the span program for OR, in which w+(x) = 1

|x| , or the span from for
st-connectivity, in which w+(G) = 1

2Rs,t(G), where G is a graph, and Rs,t(G) is the effective
resistance between s and t in G. We show similar results for estimating the negative witness
size as well.

Our analysis of the structure of span programs increases the theoretical understanding of
this important model. One implication of this is alternative algorithms for estimating the
witness size when the phase gap (or spectral gap) of a certain unitary associated with the
span program can be lower bounded. This is in contrast to previous span program algorithms,
including those mentioned in the previous paragraph, which have all relied on effective
spectral gap analysis. We show how the phase gap can be lower bounded by σmax(A)

σmin(A(x)) , where
A and A(x) are linear operators associated with the span program and some input x, and
σmin and σmax are the smallest and largest nonzero singular values.
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In addition, our exposition highlights the relationship between span programs and
estimating the size of the smallest solution to a linear system, which is a problem solved by
Harrow, Hassidim and Lloyd in [11]. It is not yet clear if this relationship can lead to new
algorithms, but it is an interesting direction for future work.

An immediate application of our results is a quantum algorithm for estimating the effective
resistance between two vertices in a graph, Rs,t(G). This example is immediate, because
in [5], a span program for st-connectivity was presented, in which the positive witness size
corresponds to Rs,t(G). The results of [5], combined with our new span program algorithms,
immediately yield an upper bound of Õ( 1

ε3/2n
√
Rs,t(G)) for estimating the effective resistance

to relative accuracy ε. This upper bound also holds for time complexity, due to the time
complexity analysis of [5]. Using our new spectral analysis techniques, we are also able to get
an often better upper bound of Õ

(
1
εn
√
Rs,t(G)/µ

)
, on the time complexity of estimating

effective resistance, where µ is a lower bound on λ2(G), the second smallest eigenvalue of the
Laplacian. Both algorithms use O(logn) space. We also show that a linear dependence on n
is necessary, so our results cannot be significantly improved.

These are the first quantum algorithms for this problem in the adjacency query model.
Previous quantum algorithms have been in the edge-list model for d-regular graphs [22].
These results can be naively extended to the adjacency query model by simulating an edge
query with

√
n/d adjacency queries, using quantum search, which gives an upper bound of

Õ
(
d3/2

Φ2ε

√
n/d

)
queries, where Φ is the conductance of the input graph. Our upper bounds

improve on this in many cases, including, but not limited to, d-regular graphs with d > 4
√
n,

and furthermore, our results do not assume the input graph is regular. Classically, the effective
resistance can be computed exactly by inverting the Laplacian, which costs O(m) = O(n2),
where m is the number of edges in the input graph.

1.1 Preliminaries
To begin, we fix notation. For vector spaces V and W , we let L(V,W ) denote the set of linear
operators from V to W . For any operator A ∈ L(V,W ), we denote by colA the columnspace,
rowA the rowspace, and kerA the kernel of A. σmin(A) and σmax(A) denote the smallest and
largest non-zero singular values, respectively. A+ denotes the Moore-Penrose pseudo-inverse.

The algorithms in this paper solve either decision problems, or estimation problems.
For f : X ⊆ [q]n → {0, 1}, we say that an algorithm decides f with bounded error if for
any x ∈ X, with probability at least 2/3, the algorithm outputs f(x) on input x. For
f : X ⊆ [q]n → R≥0, we say that an algorithm estimates f to relative accuracy ε with
bounded error if for any x ∈ X, with probability at least 2/3, on input x the algorithm
outputs f̃ such that |f(x)− f̃ | ≤ εf(x). In both cases, using 2/3 is without loss of generality:
any algorithm with success probability bounded above 1/2 by a constant can be amplified to
success probability arbitrarily close to 1 by taking the median of the outputs of a constant
number of repetitions of the algorithm. We generally omit the description “with bounded
error”, as all of our algorithms have bounded error.

All algorithms presented in this paper are based on the following structure. We have some
initial state |φ0〉, and some unitary operator U , and we want to estimate ‖Π0|φ0〉‖, where
Π0 is the orthogonal projector onto the 1-eigenspace of U . The first step in this process is a
quantum algorithm that estimates, in a new register, the phase of U applied to the input
state.

I Theorem 1 (Phase Estimation [14, 9]). Let U =
∑m
j=1 e

iθj |ψj〉〈ψj | be the spectral decom-
position of a unitary, with θ1, . . . , θm ∈ (−π, π]. For any Θ ∈ (0, π) and ε ∈ (0, 1), there
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exists a quantum algorithm that makes O
( 1

Θ log 1
ε

)
controlled calls to U and, on input |ψj〉,

outputs a state |ψj〉|ω〉 such that if θj = 0, then |ω〉 = |0〉, and if |θj | ≥ Θ, |〈0|ω〉|2 ≤ ε. If U
acts on s qubits, the algorithm uses O(s+ log 1

Θ ) space.

The precision needed to isolate Π0|φ0〉 depends on the smallest nonzero phase of U , the
phase gap.

I Definition 2 (Phase Gap). Let {eiθj}j∈S be the eigenvalues of a unitary operator U , with
{θj}j∈S ⊂ (−π, π]. Then the phase gap of U is ∆(U) := min{|θj | : θj 6= 0}.

In order to estimate ‖Π0|φ0〉‖2, given a state |0〉Π0|φ0〉+ |1〉(I−Π0)|φ0〉, we use the following.

I Theorem 3 (Amplitude Estimation [7]). Let A be a quantum algorithm that outputs√
p(x)|0〉|Ψx(0)〉+

√
1− p(x)|1〉|Ψx(1)〉 on input x. Then there exists a quantum algorithm

that estimates p(x) to precision ε using O
(

1
ε

1√
p(x)

)
calls to A.

If we know the amplitude is either ≤ p0 or ≥ p1 for some p0 < p1, then we can use
amplitude estimation to distinguish between these two cases.

I Corollary 4 (Amplitude Gap). Let A be a quantum algorithm that, on input x, outputs√
p(x)|0〉|Ψx(0)〉 +

√
1− p(x)|1〉|Ψx(1)〉. For any 0 ≤ p0 < p1 ≤ 1, we can distinguish

between the cases p(x) ≥ p1 and p(x) ≤ p0 with bounded error using O
( √

p1
p1−p0

)
calls to A.

In order to make use of phase estimation, we will need to analyze the spectrum of a
particular unitary, which, in our case, consists of a pair of reflections. The following lemma
first appeared in this form in [15]:

I Lemma 5 (Effective Spectral Gap Lemma). Let U = (2ΠA − I)(2ΠB − I) be the product of
two reflections, and let ΠΘ be the orthogonal projector onto span{|u〉 : U |u〉 = eiθ|u〉, |θ| ≤ Θ}.
Then if ΠA|u〉 = 0, ‖ΠΘΠB |u〉‖ ≤ Θ

2 ‖|u〉‖.

The following theorem was first used in the context of quantum algorithms by Szegedy [21]:

I Theorem 6 ([21]). Let U = (2ΠA − I)(2ΠB − I) be a unitary on a space H containing
A = span{|ψ1〉, . . . , |ψa〉} and B = span{|φ1〉, . . . , |φb〉}. Let ΠA =

∑a
i=1 |ψi〉〈ψi| and

ΠB =
∑b
i=1 |φi〉〈φi| be the orthogonal projectors onto these spaces. Let D = ΠAΠB be the

discriminant of U , and suppose it has singular value decomposition
∑r
j=1 cos θj |αj〉〈βj |, with

θj ∈ [0, π2 ]. Then the spectrum of U is {e±2iθj}j . The 1-eigenspace of U is (A∩B)⊕(A⊥∩B⊥)
and the (−1)-eigenspace is (A ∩B⊥)⊕ (A⊥ ∩B).

Let ΛA =
∑a
j=1 |ψj〉〈j| and ΛB =

∑b
j=1 |φj〉〈j|. We note that in the original statement

of Theorem 6, the discriminant is defined D′ = Λ†AΛB . However it is easy to see that D′ and
D have the same singular values: if D′ =

∑
i σi|vi〉〈ui| is a singular value decomposition of

D′, then D =
∑
i σiΛA|vi〉〈ui|Λ

†
B is a singular value decomposition of D, since ΛA acts as

an isometry on the columns of D′, and ΛB acts as an isometry on the rows of D′.
The following corollary to Theorem 6 will be useful in the analysis of several algorithms.

I Corollary 7 (Phase Gap and Discriminant). Let D be the discriminant of a unitary U =
(2ΠA − I)(2ΠB − I). Then ∆(−U) ≥ 2σmin(D).
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2 Approximate Span Programs

2.1 Span Programs and Decision Problems
In this section, we review the concept of span programs, and their use in quantum algorithms.

I Definition 8 (Span Program). A span program P = (H,V, τ, A) on [q]n consists of
1. finite-dimensional inner product spaces H = H1 ⊕ · · · ⊕Hn ⊕Htrue ⊕Hfalse, and {Hj,a ⊆

Hj}j∈[n],a∈[q] such that Hj,1 + · · ·+Hj,q = Hj ,
2. a vector space V ,
3. a target vector τ ∈ V , and
4. a linear operator A ∈ L(H,V ).
To each string x ∈ [q]n, we associate a subspace H(x) := H1,x1 ⊕ · · · ⊕Hn,xn

⊕Htrue.

Although our notation in Definition 8 deviates from previous span program definitions,
the only difference in the substance of the definition is that the spaces Hj,a and Hj,b for
a 6= b need not be orthogonal in our definition. This has the effect of removing log q factors
in the equivalence between span programs and the dual adversary bound (for details see
[12, Sec. 7.1]). The spaces Htrue and Hfalse can be useful for designing a span program, but
are never required, since we can always add an (n + 1)th variable, set xn+1 = 1, and let
Hn+1,0 = Hfalse and Hn+1,1 = Htrue.

A span program on [q]n partitions [q]n into two sets: positive inputs, which we call P1,
and negative inputs, which we call P0. The importance of this partition stems from the fact
that a span program may be converted into a quantum algorithm for deciding this partition
in the quantum query model [18, 19]. Thus, if one can construct a span program whose
partition of [q]n corresponds to a problem one wants to solve, an algorithm follows. In order
to describe how a span program partitions [q]n and the query complexity of the resulting
algorithm, we need the concept of positive and negative witnesses and witness size.

I Definition 9 (Positive and Negative Witness). Fix a span program P on [q]n, and a string
x ∈ [q]n. We say that |w〉 is a positive witness for x in P if |w〉 ∈ H(x), and A|w〉 = τ . We
define the positive witness size of x as:

w+(x, P ) = w+(x) = min{‖|w〉‖2 : |w〉 ∈ H(x), A|w〉 = τ},

if there exists a positive witness for x, and w+(x) =∞ else. We say that ω ∈ L(V,R) is a
negative witness for x in P if ωAΠH(x) = 0 and ωτ = 1. We define the negative witness size
of x as:

w−(x, P ) = w−(x) = min{‖ωA‖2 : ω ∈ L(V,R), ωAΠH(x) = 0, ωτ = 1},

if there exists a negative witness, and w−(x) =∞ otherwise. If w+(x) is finite, we say that
x is positive (with respect to P ), and if w−(x) is finite, we say that x is negative. We let
P1 denote the set of positive inputs, and P0 the set of negative inputs for P . Note that for
every x ∈ [q]n, exactly one of w−(x) and w+(x) is finite; that is, (P0, P1) partitions [q]n.

For a decision problem f : X ⊆ [q]n → {0, 1}, we say that P decides f if f−1(0) ⊆ P0 and
f−1(1) ⊆ P1. In that case, we can use P to construct a quantum algorithm that decides f .

I Theorem 10 ([18]). Fix f : X ⊆ [q]n → {0, 1}, and let P be a span program on [q]n that
decides f . Let W+(f, P ) = maxx∈f−1(1) w+(x, P ) and W−(f, P ) = maxx∈f−1(0) w−(x, P ).
Then there exists a quantum algorithm that decides f using O(

√
W+(f, P )W−(f, P )) queries.

ICALP 2016
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We call
√
W+(f, P )W−(f, P ) the complexity of P . It is known that for any decision

problem, there exists a span program whose complexity is equal, up to constants, to its
query complexity [18, 19] ([12, Sec. 7.1] removes log factors in this statement), however, it is
generally a difficult task to find such an optimal span program.

2.2 Span Programs and Approximate Decision Problems
Consider a span program P and x ∈ P0. Suppose there is some |w〉 ∈ H(x) such that A|w〉
comes extremely close to τ . We might say that x is very close to being in P1. If all vectors
in H(y) for y ∈ P0 \ {x} are very far from τ , it might be slightly more natural to consider
the partition (P0 \ {x}, P1 ∪ {x}) rather than (P0, P1).

As further motivation, we mention a construction of Reichardt [18, Sec. 3 of full version]
that takes any quantum query algorithm with one-sided error, and converts it into a span
program whose complexity matches the query complexity of the algorithm. The target of
the span program is the vector |1, 0̄〉, which corresponds to a quantum state with a 1 in the
answer register and 0s elsewhere. If an algorithm has no error on 1-inputs, it can be modified
so that it always ends in exactly this state, by uncomputing all but the answer register. An
algorithm with two-sided error cannot be turned into a span program using this construction,
because there is error in the final state. This is intuitively in opposition to the evidence
that span programs characterize bounded (two-sided) error quantum query complexity. The
exactness required by span programs seems to contrast the spirit of non-exact quantum
algorithms.

This motivates us to consider the positive error of an input, or how close it comes to
being positive. Since there is no meaningful notion of distance in V , we consider closeness
in H.

I Definition 11 (Positive Error). For any span program P on [q]n, and x ∈ [q]n, we define
the positive error of x in P as:

e+(x) = e+(x, P ) := min
{∥∥ΠH(x)⊥ |w〉

∥∥2 : A|w〉 = τ
}
.

Note that e+(x, P ) = 0 if and only if x ∈ P1. Any |w〉 such that
∥∥ΠH(x)⊥ |w〉

∥∥2 = e+(x) is
called a min-error positive witness for x in P . We define

w̃+(x) = w̃+(x, P ) := min
{
‖|w〉‖2 : A|w〉 = τ,

∥∥ΠH(x)⊥ |w〉
∥∥2 = e+(x)

}
.

A min-error positive witness that also minimizes ‖|w〉‖2 is called an optimal min-error positive
witness for x.

Note that if x ∈ P1, then e+(x) = 0. In that case, a min-error positive witness for x is
just a positive witness, and w̃+(x) = w+(x).

We can define a similar notion for positive inputs, to measure their closeness to being
negative.

I Definition 12 (Negative Error). For any span program P on [q]n and x ∈ [q]n, we define
the negative error of x in P as:

e−(x) = e−(x, P ) := min
{∥∥ωAΠH(x)

∥∥2 : ω(τ) = 1
}
.

Again, e−(x, P ) = 0 if and only if x ∈ P0. Any ω such that
∥∥ωAΠH(x)

∥∥2 = e−(x, P ) is called
a min-error negative witness for x in P . We define

w̃−(x) = w̃−(x, P ) := min
{
‖ωA‖2 : ω(τ) = 1,

∥∥ωAΠH(x)
∥∥2 = e−(x, P )

}
.
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A min-error negative witness that also minimizes ‖ωA‖2 is called an optimal min-error
negative witness for x.

It turns out that the notion of span program error has a very nice characterization as
exactly the reciprocal of the witness size. We prove in the full version (Theorems 2.10 and
2.11):

∀x ∈ P0, w−(x) = 1
e+(x) , and ∀x ∈ P1, w+(x) = 1

e−(x) .

This is a very nice state of affairs, for a number of reasons. It allows us two ways of thinking
about approximate span programs: in terms of how small the error is, or how large the
witness size is. That is, we can say that an input x ∈ P0 is almost positive either because its
positive error is small, or equivalently, because its negative witness size is large. In general,
we can think of P as not only partitioning P into (P0, P1), but inducing an ordering on [q]n
from most negative — smallest negative witness, or equivalently, largest positive error —
to most positive — smallest positive witness, or equivalently, largest negative error. For
example, on the domain {x(1), . . . , x(6)} ⊂ [q]n, P might induce the following ordering:

x(1) x(2) x(3) x(4) x(5) x(6)

increasing positive error/
decreasing negative witness size

increasing negative error/
decreasing positive witness size

The inputs {x(1), x(2), x(3)} are in P0, and w−(x(1)) < w−(x(2)) < w−(x(3)) (although it is
generally possible for two inputs to have the same witness size). The inputs {x(4), x(5), x(6)}
are in P1, and w+(x(4)) > w+(x(5)) > w+(x(6)). The span program exactly decides the
partition ({x(1), x(2), x(3)}, {x(4), x(5), x(6)}), but we say it approximates any partition that
respects the ordering. If we obtain a partition by drawing a line somewhere on the left
side, for example ({x(1), x(2)}, {x(3), x(4), x(5), x(6)}), we say P negatively approximates the
function corresponding to that partition, whereas if we obtain a partition by drawing a
line on the right side, for example ({x(1), x(2), x(3), x(4), x(5)}, {x(6)}), we say P positively
approximates the function.

I Definition 13 (Functions Approximately Associated with P ). Let P be a span program
on [q]n, and f : X ⊆ [q]n → {0, 1} a decision problem. For any λ ∈ (0, 1), we say that
P positively λ-approximates f if f−1(1) ⊆ P1, and for all x ∈ f−1(0), either x ∈ P0,
or w+(x, P ) ≥ 1

λW+(f, P ), where W+(f, P ) := maxx∈f−1(1) w+(x, P ). We say that P
negatively λ-approximates f if f−1(0) ⊆ P0, and for all x ∈ f−1(1), either x ∈ P1, or
w−(x, P ) ≥ 1

λW−(f, P ), where W−(f, P ) := maxx∈f−1(0) w−(x, P ). If P decides f exactly,
then both conditions hold for any value of λ, and so we can say that P 0-approximates f .

This allows us to consider a much broader class of functions associated with a particular
span program. This association is useful, because as with the standard notion of association
between a function f and a span program, if a function is approximated by a span program,
we can convert the span program into a quantum algorithm that decides f using a number
of queries related to the witness sizes. Specifically, we get the following theorem.

I Theorem 14 (Approximate Span Program Decision Algorithms). Fix f : X ⊆ [q]n → {0, 1},
and let P be a span program that positively λ-approximates f . Define

W+ = W+(f, P ) := max
x∈f−1(1)

w+(x, P ) and W̃− = W̃−(f, P ) := max
x∈f−1(0)

w̃−(x, P ).

ICALP 2016
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There is a quantum algorithm that decides f with bounded error in O

(√
W+W̃−

(1−λ)3/2 log 1
1−λ

)
queries. Similarly, let P be a span program that negatively λ-approximates f . Define

W− = W−(f, P ) := max
x∈f−1(0)

w−(x, P ) and W̃+ = W̃+(f, P ) := max
x∈f−1(1)

w̃+(x, P ).

There is a quantum algorithm that decides f with bounded error in O

(√
W−W̃+

(1−λ)3/2 log 1
1−λ

)
queries.

With the ability to distinguish between different witness sizes, we can obtain algorithms
for estimating the witness size.

I Theorem 15 (Witness Size Estimation Algorithm). Fix f : X ⊆ [q]n → R≥0. Let P be
a span program such that for all x ∈ X, f(x) = w+(x, P ) and define W̃− = W̃−(f, P ) =
maxx∈X w̃−(x, P ). There exists a quantum algorithm that estimates f to accuracy ε in

Õ

(
1

ε3/2

√
w+(x)W̃−

)
queries. Similarly, let P be a span program such that for all x ∈ X,

f(x) = w−(x, P ) and define W̃+ = W̃+(f, P ) = maxx∈X w̃+(x, P ). Then there exists a

quantum algorithm that estimates f to accuracy ε in Õ
(

1
ε3/2

√
w−(x)W̃+

)
queries.

Proofs of Theorem 14 and 15 can be found in the full version (Theorems 2.7 and 2.8), but
we give a high-level outline here. As in the case of algorithms previously constructed from
span programs, our algorithms will consist of phase estimation of a unitary on H, applied to
some initial state. Unlike previous applications, we will use |w0〉 = A+τ (discussed more in
full version, Section 2.4), as the initial state. This state is independent of the input, and so
can be generated with 0 queries. For negative span program algorithms, where we want to
decide a function negatively approximated by P , we will use a unitary U(P, x), defined as
follows:

U(P, x) := (2ΠkerA − I)(2ΠH(x) − I).

This is similar to the unitary used in previous span program algorithms. Note that (2ΠkerA−I)
is input-independent, and so can be implemented in 0 queries. However, in order to analyze
the time complexity of a span program algorithm, this reflection must be implemented (as
we are able to do for our applications, following [5]). The reflection (2ΠH(x) − I) depends on
the input, but requires only two queries to implement.

For positive span program algorithms, where we want to decide a function positively
approximated by P , or estimate the positive witness size, we will use a slightly different
unitary, U ′(P, x).

In order to show how these unitaries can be used to distinguish between inputs with small
negative (resp. positive) witnesses, and those that only have large negative (resp. positive)
witnesses, we analyze the overlap of the initial state, |w0〉 with the 1-eigenspace of U(P, x)
(resp. U ′(P, x)) in terms of the witness size. Specifically, we show that the overlap of |w0〉
with the 1-eigenspace of U(P, x) is exactly 1

w−(x,P ) (full version, Lemma 3.3), and the overlap
of |w0〉 with the 1-eigenspace of U ′(P, x) is exactly 1

w+(x,P ) (full version, Lemma 3.5). We
can then use phase estimation, followed by amplitude estimation, to estimate the witness
size.

There are then two possibilities for bounding the required precision of phase estimation,
which also tells us the number of times we will need to call U(P, x) (resp. U ′(P, x)), and
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therefore, the query complexity of the algorithm. Similar to previous span program algorithms
we use the effective spectral gap lemma to show that the overlap of |w0〉 with eiθ-eigenspaces
of U(P, x) (resp. U ′(P, x)) is not too large for small θ (full version, Lemmas 3.2 and 3.4).
This leads to Theorem 14 and Theorem 15.

The second way to bound the required precision of phase estimation is to lower bound the
phase gap of U(P, x) (resp. U ′(P, x)), which may be very difficult in general. However, by
relating the phase gap of U(P, x) (resp. U ′(P, x)) to the spectrum of A and A(x) = AΠH(x)
in a novel way, we show how to lower bound the phase gap in some cases, which may give
better results. This leads to the following theorem.

I Theorem 16 (Witness Size Estimation Algorithm Using Real Phase Gap). We say that a
span program is normalized if ‖A+τ‖ = 1. Any span program can be normalized by scaling τ .

Fix f : X ⊆ [q]n → R≥0 and let P = (H,V, τ, A) be a normalized span program on [q]n
such that for all x ∈ X, f(x) = w+(x, P ) (resp. f(x) = w−(x)). If κ ≥ σmax(A)

σmin(AΠH(x)) for all
x ∈ X, then the quantum query complexity of estimating f(x) to relative accuracy ε is at
most Õ

(√
f(x)κ/ε

)
.

In particular, in our application to effective resistance, it is not difficult to bound the
phase gap in this way, which leads to an improved upper bound.

2.3 Example

To illustrate how these ideas might be useful, we will give a brief example of how a span
program that leads to an algorithm for the OR function can be combined with our results to
additionally give algorithms for threshold functions and approximate counting. We define a
span program P on {0, 1}n as follows:

V = R, τ = 1, Hi = Hi,1 = span{|i〉}, Hi,0 = {0}, A =
n∑
i=1
〈i|.

So we have H = span{|i〉 : i ∈ [n]} and H(x) = span{|i〉 : xi = 1}. It’s not difficult to see
that P decides OR. In particular, we can see that the optimal positive witness for any x
such that |x| > 0 is |wx〉 =

∑
i:xi=1

1
|x| |i〉. The only linear function ω : R→ R that maps τ

to 1 is the identity, and indeed, this is a negative witness for the string 0̄ = 0 . . . 0, since
H(0̄) = {0}, and so ωAΠH(0̄) = 0.

Let λ ∈ (0, 1), t ∈ [n], and let f be a threshold function defined by f(x) = 1 if |x| ≥ t and
f(x) = 0 if |x| ≤ λt, with the promise that one of these conditions holds. Note that if f(x) = 1,
then w+(x) = ‖|wx〉‖2 = 1

|x| ≤
1
t , so W+(f, P ) = 1

t . On the other hand, if f(x) = 0, then
w+(x) = 1

|x| ≥
1
λt = 1

λW+(f, P ), so P positively λ-approximates f . The only approximate
negative witness is ω the identity, so we have W̃− = ‖ωA‖2 = ‖A‖2 = n. By Theorem 14,
there is a quantum algorithm for f with query complexity 1

(1−λ)3/2

√
W+W̃− = 1

(1−λ)3/2

√
n/t.

Furthermore, since w+(x) = 1
|x| , by Theorem 15, we can estimate 1

|x| to relative accuracy
ε, and therefore we can estimate |x| to relative accuracy 2ε, in quantum query complexity

1
ε3/2

√
n/|x|.

These upper bounds do not have optimal scaling in ε, as the actual quantum query com-
plexities of these problems are 1

1−λ
√
n/t and 1

ε

√
n/|x| [6, 7, 1], however, using Theorem 16,

the optimal query complexities can be recovered.

ICALP 2016
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3 Applications

In this section, we will demonstrate how to apply Theorem 15 and 16 to get new quantum
algorithms. Specifically, we will give upper bounds of Õ(n

√
Rs,t/ε

3/2) and Õ(n
√
Rs,t/λ2/ε)

on the time complexity of estimating the effective resistance, Rs,t, between two vertices, s
and t, in a graph. Unlike previous upper bounds, we study this problem in the adjacency
model.

A unit flow from s to t in G is a real-valued function θ on the directed edges
→
E(G) =

{(u, v) : {u, v} ∈ E(G)} such that:
1. for all (u, v) ∈

→
E, θ(u, v) = −θ(v, u);

2. for all u ∈ [n] \ {s, t},
∑
v∈Γ(u) θ(u, v) = 0, where Γ(u) = {v ∈ [n] : {u, v} ∈ E}; and

3.
∑
u∈Γ(s) θ(s, u) =

∑
u∈Γ(t) θ(u, t) = 1.

Let F be the set of unit flows from s to t in G. The effective resistance from s to t in G is
defined:

Rs,t(G) = min
θ∈F

∑
{u,v}∈E(G)

θ(u, v)2.

This quantity gives the resistance of a network of unit resistors described by G, but is also
an interesting quantity for graph theoretic reasons. For instance, the commute time between
s and t, which is the expected number of steps in a random walk starting from s to reach t,
and then return to s, is exactly the product of the number of edges in G, and Rs,t(G) [8].

In the adjacency model, the input is a string x ∈ {0, 1}n×n, representing a graph
Gx = ([n], {{i, j} : xi,j = 1}) (we assume that xi,i = 0 for all i, and xi,j = xj,i for all i, j).
The problem of st-connectivity is the following. Given x ∈ {0, 1}n×n and s, t ∈ [n], decide if
there exists a path from s to t in Gx. A span-program-based algorithm for this problem was
given in [5], with time complexity Õ(n√p), under the promise that, if s and t are connected
in Gx, they are connected by a path of length ≤ p. They use the following span program,
defined on {0, 1}n×n:

H(u,v),0 = {0}, H(u,v),1 = span{|u, v〉}, V = Rn, A =
∑

u,v∈[n]

(|u〉−|v〉)〈u, v|, |τ〉 = |s〉−|t〉.

We have H = span{|u, v〉 : u, v ∈ [n]}, and H(x) = span{|u, v〉 : {u, v} ∈ E(Gx)}. Through-
out this section, P will denote the above span program. We will use this span program to
define algorithms for estimating the effective resistance. Ref. [5] are even able to show how
to efficiently implement a unitary similar to U(P, x), giving a time efficient algorithm. In
the full version, we adapt their proof to our setting, showing that our algorithms are time
efficient as well.

The effective resistance between s and t is related to st-connectivity by the fact that
if s and t are not connected, then Rs,t is undefined (there is no flow from s to t) and if
s and t are connected then Rs,t is related to the number and length of paths from s to t.
In particular, if s and t are connected by a path of length p, then Rs,t(G) ≤ p (take the
unit flow that simply travels along this path). In general, if s and t are connected in G,
then 2

n ≤ Rs,t(G) ≤ n− 1. The span program for st-connectivity is amenable to the task of
estimating the effective resistance due to the following.

I Lemma 17 ([5]). For any graph Gx on [n], x ∈ P1 if and only if s and t are connected,
and in that case, w+(x, P ) = 1

2Rs,t(Gx).

A near immediate consequence of this, combined with Theorem 15, is the following.
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I Theorem 18. There exists a quantum algorithm for estimating Rs,t(Gx) to accuracy ε

with time complexity Õ
(
n
√
Rs,t(Gx)
ε3/2

)
and space complexity O(logn).

By analyzing the spectra of A and A(x), and applying Theorem 16, we can get an
often better algorithm (Theorem 19). The spectral gap of a graph G, denoted λ2(G), is the
second largest eigenvalue (including multiplicity) of the Laplacian of G, which is defined
LG =

∑
u∈[n] du|u〉〈u| −

∑
u∈[n]

∑
v∈Γ(u) |u〉〈v|, where du is the degree of u, and Γ(u) is the

set of neighbours of u. The smallest eigenvalue of LG is 0 for any graph G. A graph G is
connected if and only if λ2(G) > 0. A connected graph G has 2

n2 ≤ λ2(G) ≤ n.
The following theorem is an improvement over Theorem 18 when λ2(G) > ε. In particular,

it is an improvement for all ε when we know that λ2(G) > 1.

I Theorem 19. Let G be a family of graphs such that for all x ∈ G, λ2(Gx) ≥ µ. Let
f : G × [n]× [n]→ R>0 be defined by f(x, s, t) = Rs,t(Gx). There exists a quantum algorithm
for estimating f to relative accuracy ε that has time complexity Õ

(
1
εn
√
Rs,t(Gx)/µ

)
and

space complexity O(logn).

Proof. We will apply Theorem 16. We first compute ‖|w0〉‖2, in order to normalize P .

I Lemma 20. ‖|w0〉‖2 = 1
n .

Proof. Recall that |w0〉 = A+τ . This is the smallest |w0〉 such that A|w0〉 = τ . Since
H(x) = H when Gx is the complete graph, by Lemma 17, we need only compute Rs,t in
the complete graph. It’s simple to verify that the optimal unit st-flow in the complete
graph has 1

n units of flow on every path of the form (s, u, t) for u ∈ [n] \ {s, t}, and 2
n units

of flow on the edge (s, t). Thus, Rs,t(Kn) =
∑
u∈[n]\{s,t} 2(1/n)2 + (2/n)2 = 2/n. Thus

‖|w0〉‖2 = 1
2Rs,t(Kn) = 1

n . J

Next, we compute the following:

I Lemma 21. For any x ∈ G, σmax(A)
σmin(A(x)) =

√
n

λ2(Gx) ≤
√

n
µ , so κ(f) ≤

√
n
µ .

Proof. Let Lx denote the Laplacian of Gx. We have:

A(x)A(x)T =
∑
u∈[n]

∑
v∈Γ(u)

(|u〉−|v〉)(〈u|−〈v|) = 2
∑
u∈[n]

du|u〉〈u|−2
∑
u∈[n]

∑
v∈Γ(u)

|u〉〈v| = 2Lx.

Thus, if L denotes the Laplacian of the complete graph, we also have AAT = 2L. Letting
J denote the all ones matrix, we have L = (n − 1)I − (J − I) = nI − J , and since
J = n|u〉〈u| where |u〉 = 1√

n

∑n
i=1 |i〉, if |u1〉, . . . , |un−1〉, |u〉 is any orthonormal basis of Rn,

then L = n
∑n−1
i=1 |ui〉〈ui|+ n|u〉〈u| − n|u〉〈u| =

∑n−1
i=1 n|ui〉〈ui|, so the spectrum of L is 0,

with multiplicity 1, and n with multiplicity n− 1. Thus, the only nonzero singular value of
A is

√
2n = σmax(A). Furthermore, since λ2(Gx) is the smallest nonzero eigenvalue of Lx,

and A(x)A(x)T = 2Lx, σmin(A(x)) =
√

2λ2(Gx). The result follows. J

Finally, by scaling τ to τ
‖A+τ‖ = nτ to get a normalized span program, which has the effect of

scaling all positive witnesses by n, we can apply Theorem 16 to get an algorithm that makes
Õ
(
κ(f)
ε

√
nw+(x, P )

)
= Õ

(
1
ε

√
n/µ

√
nRs,t

)
calls to U ′(P, x). In the full version, we show

that this algorithm has time complexity Õ
(

1
εn
√
Rs,t/µ

)
and space complexity O(logn). J
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Both of our upper bounds have linear dependence on n, and this is optimal (see full
version). Classically, the best known method of estimating the effective resistance is to
compute it, which costs O(m) = O(n2), where m is the number of edges in the graph. This
is accomplished by inverting the Laplacian.

The algorithms from Theorem 18 and 19 are the first quantum algorithms for estimating
the effective resistance in the adjacency model, however, the problem has been studied
previously in the edge-list model [22], where Wang obtains a quantum algorithm with
complexity Õ

(
d3/2 logn
Φ(G)2ε

)
, where Φ(G) ≤ 1 is the conductance (or edge-expansion) of G. In

the edge-list model, the input x ∈ [n][n]×[d] models a d-regular graph (or d-bounded degree
graph) Gx by xu,i = v for some i ∈ [d] whenever {u, v} ∈ E(Gx). Wang requires edge-list
queries to simulate walking on the graph, which requires constructing a superposition over all
neighbours of a given vertex. This type of edge-list query can be simulated by

√
n/d adjacency

queries to a d-regular graph, using quantum search, so Wang’s algorithm can be converted
to an algorithm in the adjacency query model with cost Õ

(
d3/2

Φ(G)2ε

√
n
d

)
. We can compare

our results to this by noticing that Rs,t ≤ 1
λ2(G) [8], implying that our algorithm always runs

in time at most Õ
(

1
ε
n
µ

)
. If G is a connected d-regular graph, then λ2(G) = dδ(G), where

δ(G) is the spectral gap of a random walk on G. By Cheeger inequalities, we have Φ2

2 ≤ δ
[16], so the complexity of the algorithm from Theorem 19 is at most Õ

( 1
ε
n
dδ

)
= Õ

( 1
ε

n
dΦ2

)
,

which is an improvement over the bound of Õ
(

1
ε
d3/2

Φ2

√
n
d

)
= Õ

( 1
ε
d

Φ2

√
n
)
given by naively

adapting Wang’s algorithm to the adjacency model whenever d > 4
√
n. In general our upper

bound may be much better than 1
ε

n
dΦ2 , since the Cheeger inequality is not tight, and Rs,t

can be much smaller than 1
λ2
.

4 Conclusion and Open Problems

We have presented several new techniques for turning span programs into quantum algorithms,
which we hope will have future applications. Specifically, given a span program P , in addition
to algorithms for deciding any function f such that f−1(0) ⊆ P0 and f−1(1) ⊆ P1, we also
show how to get several different algorithms for deciding a number of related threshold
problems, as well as estimating the witness size. In addition to algorithms based on the
standard effective spectral gap lemma, we also show how to get algorithms by analyzing the
real phase gap.

We hope that the importance of this work lies not only in its potential for applications,
but in the improved understanding of the structure and power of span programs. A number
of very important quantum algorithms rely on a similar structure, using phase estimation of
a unitary that depends on the input to distinguish between different types of inputs. Span-
program-based algorithms represent a very general class of such algorithms, making them
not only important to the study of the quantum query model, but to quantum algorithms in
general.

The main avenue for future work is in applications of our techniques to obtain new
quantum algorithms. We stress that any span program for a decision problem can now
be turned into an algorithm for estimating the positive or negative witness size, if these
correspond to some meaningful function, or deciding threshold functions related to the
witness size. A natural source of potential future applications is in the rich area of property
testing problems (for a survey, see [17]).

One final open problem is a possible relationship between estimating the witness size and
the HHL algorithm [11]. The HHL algorithm can be used to estimate ‖M+|u〉‖2, given the
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state |u〉 and access to a row-computable linear operator M . When M = A(x) and |u〉 = τ ,
this quantity is exactly w+(x), so if A(x) is row-computable — that is, there is an efficient
procedure for computing the ith nonzero entry of the jth row of A(x), then HHL gives us yet
another means of estimating the witness size, whose time complexity is known, rather than
only its query complexity. We note that the complexity of HHL depends on σmax(A(x))

σmin(A(x)) , the
condition number of A(x), which is upper bounded by σmax(A)

σmin(A(x)) , upon which the complexity
of some of our algorithms depends as well. We leave further exploration of this connection
for future research.
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