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Abstract
Non-malleable codes, introduced by Dziembowski, Pietrzak, and Wichs (ICS ’10) provide the
guarantee that if a codeword c of a message m, is modified by a tampering function f to c′, then
c′ either decodes to m or to “something unrelated” to m. In recent literature, a lot of focus
has been on explicitly constructing such codes against a large and natural class of tampering
functions such as split-state model in which the tampering function operates on different parts
of the codeword independently.

In this work, we consider a stronger adversarial model called block-wise tampering model, in
which we allow tampering to depend on more than one block: if a codeword consists of two blocks
c = (c1, c2), then the first tampering function f1 could produce a tampered part c′1 = f1(c1) and
the second tampering function f2 could produce c′2 = f2(c1, c2) depending on both c2 and c1. The
notion similarly extends to multiple blocks where tampering of block ci could happen with the
knowledge of all cj for j ≤ i. We argue this is a natural notion where, for example, the blocks are
sent one by one and the adversary must send the tampered block before it gets the next block.

A little thought reveals that it is impossible to construct such codes that are non-malleable
(in the standard sense) against such a powerful adversary: indeed, upon receiving the last block,
an adversary could decode the entire codeword and then can tamper depending on the message.
In light of this impossibility, we consider a natural relaxation called non-malleable codes with
replacement which requires the adversary to produce not only related but also a valid codeword
in order to succeed. Unfortunately, we show that even this relaxed definition is not achievable in
the information-theoretic setting (i.e., when the tampering functions can be unbounded) which
implies that we must turn our attention towards computationally bounded adversaries.

As our main result, we show how to construct a block-wise non-malleable code (BNMC) from
sub-exponentially hard one-way permutations. We provide an interesting connection between
BNMC and non-malleable commitments. We show that any BNMC can be converted into a non-
malleable (w.r.t. opening) commitment scheme. Our techniques, quite surprisingly, give rise to a
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31:2 Block-Wise Non-Malleable Codes

non-malleable commitment scheme (secure against so-called synchronizing adversaries), in which
only the committer sends messages. We believe this result to be of independent interest. In the
other direction, we show that any non-interactive non-malleable (w.r.t. opening) commitment
can be used to construct BNMC only with 2 blocks. Unfortunately, such commitment scheme
exists only under highly non-standard assumptions (adaptive one-way functions) and hence can
not substitute our main construction.

1998 ACM Subject Classification E.2 Public key cryptosystems

Keywords and phrases Non-malleable codes, Non-malleable commitments, Block-wise Tamper-
ing, Complexity-leveraging

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.31

1 Introduction

Non-malleable codes. Error correcting codes allow a message m to be encoded into a
codeword c, such that m can always recovered even from a tampered codeword c′, only if
the tampering is done in a specific way. More formally, the class of tampering functions,
Ffrac, tolerated by traditional error correction codes are ones that erase or modify only a
constant fraction of the codeword c. In particular, no guarantees are provided on the output
of the decoding algorithm when the tampering function f /∈ Ffrac. A more relaxed notion,
error detecting codes, allow the decoder to also output a special symbol ⊥, when m is
unrecoverable from c′, but here too, the codes can not tolerate simple tampering functions
f ∈ Fconst where Fconst contains all constant functions1. To address this shortcoming of error
correction/detection codes, Dziembowski, Pietrzak, and Wichs [12], introduced a more flexible
notion of non-malleable codes (NMC). Informally, an encoding scheme Code := (Enc,Dec)
is a NMC against a class of tampering functions, F , if the following holds: the decoded
message m′ = Dec(c′) is either equal to the original message m or is completely unrelated to
m, when c′ = f(Enc(m)) for some f ∈ F . In general, NMC cannot exist for the set of all
tampering functions Fall. To see this, observe that a tampering function that simply runs the
decode algorithm to retrieve m, and then encodes a message related to m, trivially defeats
the requirement above. However, somewhat surprisingly, Dziembowski et al. [12] showed the
(probabilistic) existence of a NMC against a function family, Falmost, that is only slightly
smaller than the set of all functions. They also constructed an efficient NMC against the
class of tampering functions, Fbit, that can tamper each bit of the codeword independently.
NMC has found important applications in tamper-resilient cryptography [12, 21, 13, 14].

Split-state Tampering. Arguably, one of the strongest class of tampering functions for which
explicit constructions of NMC are known, is in the so called split-state model. Informally, a
split-state model with ` states has the following attributes: (i) the codeword is assumed to be
partitioned into `-disjoint blocks (c1, · · · , c`), and (ii) the class of tampering functions, F`split,
consists of all the functions (f1, · · · , f`) where fi operates independently on ci2. Dziembowski
et al. [12] gave a construction of a NMC against the tampering class F2

split in the random oracle

1 In particular if f always outputs some valid codeword c′, then it is impossible to detect the error. For
some cryptographic application like protecting against memory tampering attack this is too restrictive.

2 Note that the class Fbit can be viewed as Fn
split, where n is the length of the codeword c.
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model. Constructions of NMC against F2
split are now known both in the computational [21]3

and information-theoretic settings [2, 7, 11]. Recently, Chattopadhyay and Zuckerman [6]
gave an explicit information-theoretic NMC against F10

split and Aggarwal et al. [1] showed how
to construct explicit information-theoretic NMC against F2

split.

Going beyond split-state: Block-wise Tampering. A severe restriction of the split-state
model is that every block of the codeword can only be tampered independently of all other
blocks. In particular fi modifies ci with absolutely no knowledge about cj , for any j 6= i.
In this work, we address this restriction by allowing modification of each block depending
on more than one-block. In particular, each ci can be modified in any arbitrary way based
on the first i blocks (c1, . . . , ci). Such a code is called block-wise NMC. More formally a
code is called a block-wise NMC if it is a NMC against the class of tampering functions
F`block: a set of functions (f1, · · · , f`) ∈ F`block if each fi modify ci to some c′i depending on
the first i-blocks. We also consider a stronger class of functions where the tampering can be
done in any order. In particular fi can modify any cj depending on any i blocks. A natural
scenario is a synchronous streaming model when the blocks are coming in one by one and
the adversary on the channel sends across each modified blocks before the next block arrives.

NMC for F`
block is impossible. One can see that it is impossible to construct NMC against

F`block (for any `): consider a tampering function, where the first `−1 functions, (f1, . . . , f`−1)
are identity functions and the function f` (which gets the entire codeword as input) simply
decodes the message and depending on the message, keeps it the same or overwrites it to
something “invalid” (i.e., the modified codeword decodes to ⊥). Note that, in this case the
distribution of the (decoding of the) tampered codeword will indeed depend on the message,
thereby violating non-malleability. In particular, such a tampering attack makes the decoder
output ⊥ with a probability distribution that depends on the input message. Therefore, we
seek for a natural relaxation of the traditional definition of NMC such that it is achievable for
the class F`block and at the same time sufficient for interesting applications. In particular, we
show that such relaxed NMC is sufficient to construct a simple non-malleable commitment
scheme in a black-box manner. We note that the traditional application to tamper-resilient
cryptography does not work with the relaxed version for obvious reason..

NMC with replacement (NMCwR). Essentially in the above attack the adversary breaks
non-malleability by making the codeword “invalid”. So, we take the most natural direction
to relax the definition, in that the adversary is considered to be successful only if it produces
some valid and related codeword via tampering. In particular, the adversary may selectively
“destroy” a codeword depending upon the message we encode, however we show that in
some sense, this is the “only attack” it can perform. Intuitively the guarantee provided
by such an encoding scheme is that any adversary, by tampering with some encoded data
can not produce a related encoded data without destroying it. However, formalizing such
intuition turns out to be non-trivial. We take inspiration from the literature of non-malleable
commitment w.r.t. replacement (introduced by Goyal [16]) and formalize such a relaxation
by introducing an algorithm (possibly inefficient) called replacer which comes into play only
when the tampered codeword is invalid, and in that case it replaces the ⊥ by “anything” of
his choice. Essentially, the idea is that if the invalidity depends on the input message (like

3 In the computational setting, the functions fi are assumed to run in polynomial time.
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31:4 Block-Wise Non-Malleable Codes

described in the above attack) then the replacer would rectify the output to remove such
dependency. We call the new notion non-malleable codes with replacement (NMCwR).

1.1 Our results

In this paper we explore the properties, constructions and applications of NMCwR with
respect to the class of block-wise tampering functions F`block. We call such code block-wise
non-malleable codes (BNMC). Below we provide an overview of the results presented in this
paper.

Information theoretic impossibility. Similar to the notion of continuous non-malleable
codes [13](CNMC), any BNMC must possess a uniqueness property (a slightly different one
than CNMC). For two blocks, uniqueness means that there can not exists two different valid
codewords of the form (c1, c2) and (c1, c′2) which decodes to different messages, i.e., for every
valid code c1, there is a unique decoding. If not, then an attack similar to the CNMC is
possible without making the codeword invalid – the adversary can always tampers the first
block to c1 and depending on the message (since f2 gets the entire codeword) tampers to
one of c2 or c′2 hence making the output distribution depend on the message. Consequently,
just like CNMC, an information theoretic impossibility is evident with the only difference
that in the setting of CNMC, the functions are unbounded, and, therefore (for two blocks)
the function f1 can derive the unique message corresponding to c1 by brute-force and thus
break the scheme. We show the following in the full version [4].

I Theorem 1. It is impossible to construct an information-theoretic BNMC.

Henceforth, in this paper we focus on constructing BNMC based on computational assump-
tions. We stress that even we are in the computationally bounded setting, we do not put any
restriction on the efficiency of the replacer. In particular, the replacer is allowed to run in
super-polynomial (or even exponential) time. In fact, later in this paper, we often encounter
a replacer which runs in exponential time. Nonetheless, we must restrict the reduction to be
probabilistic polynomial time (PPT). We are indeed able to overcome this technical hurdle
by constructing such “efficient” reductions which can correctly simulate behavior of “highly
inefficient” replacers.

Connection to Non-malleable Commitment. Since BNMC satisfies a definition weaker
(that is NMC with replacement) than the traditional NMC, it is not possible to use such
a code to build a tamper-resilient compiler as described in [12, 21] for obvious reason. In
fact, it is nevertheless impossible to protect a system against memory tampering attack
(see [8, 15, 18] for formal expositions on such attack) against any block-wise tampering.
However we are able to show connections with non-malleable commitment with respect to
opening (NMCom). To the best of our knowledge this is the first attempt to bridge these
two non-malleability notions4.

4 In a recent work, Agrawal et al. [3] showed how to use NMC to construct non-malleable string-
commitment from non-malleable bit-commitment. In their work, NMC is used as a tool, and, no
relations are shown between non-malleable commitments and NMC. Recently, another work by Goyal et
al. [17] constructs round-optimal NMCom from split-state NMC, the full version of which appears after
the first version of this work.
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1. Given an `-block BNMC we can construct (in a black-box way) a simple (`− 1) round
commitment protocol which is non-malleable with respect to opening (against synchron-
izing adversaries) as follows: the committer sends the block ci in the i-th round and
sends the last block c` as the opening. The receiver sends only acknowledgements after
receiving each message. The non-malleability essentially follows from the non-malleability
of the underlying BNMC and the perfect binding follows from the uniqueness property
described above. To best of our knowledge, this is the first NMCom protocol where the
receiver is not required to send any message (e.g. challenge) except for acknowledgement.

I Theorem 2. Suppose there is an `-block BNMC. Then there is a (`− 1) round perfectly
binding non-malleable commitment scheme with respect to opening against a synchronizing
man-in-the-middle adversary.

2. We also show that from any non-interactive NMCom one can easily construct an BNMC
even for only ` = 2 blocks (i.e. optimal for F`block). Unfortunately, the only assumptions un-
der which we know how to construct such commitments are either in the (non-tamperable)
CRS model [9] or under the highly non-standard assumption of adaptive one-way func-
tions [22]. Evidently this construction can not substitute our main construction which is
based on much more standard assumption like sub-exponentially hard OWP.

I Theorem 3. Suppose there is a perfectly binding non-interactive non-malleable commitment
scheme (w.r.t. opening) whose input is a k-bit message and output is an n-bit commitment.
Then there is a 2-block BNMC.

Combining Theorem 2 and Theorem 3, we can conclude that when ` = 2 the NMCom and
BNMC are equivalent. The details of these results are elaborated in the full version [4].

Constructing BNMC. As the main result we provide a construction of BNMC from a
standard assumption in the plain model. Precisely, we show that, for any arbitrary constant
ϕ > 0, how to construct a BNMC against F`block for ` = O(κ2+ϕ) (where κ is the security
parameter). The security (i.e. non-malleability) of the construction is based on “sub-
exponentially” hard one-way permutations which says that there exists one-way permutations
(OWP) which are “hard-to-invert” even against an adversary running in sub-exponential
time, precisely in time O(2κs) such that κs = O(κε/2) for some 0 < ε < 1. In particular, our
construction uses any perfectly binding commitment scheme that is computationally hiding
against such sub-exponential adversary (and this primitive can be constructed from the
above assumption). The key technical challenge, as remarked earlier, is that BNMC is not an
interactive primitive that allows bi-directional communication. This limitation renders the
previously proposed techniques for designing non-malleable protocols inherently unusable.
This is because these previous techniques are based on having “challenge-response” rounds
similar to the type also used in designing zero-knowledge protocols. Thus, techniques like
rewinding the sender are not useful in this setting at all: since there are no receiver messages,
one would end up with the same transcript every time. Thus, apriori, it seems unclear what
advantage one could get by having multiple blocks. Our final construction is quite clean
and in fact, also gives arguably one of the simplest known constructions of non-malleable
commitments. We show the following theorem.

I Theorem 4. Assume the existence of sub-exponentially hard one-way permutations. Then
for any ϕ > 0 of our choice, and any message length k ∈ N, there exists an explicit
construction of `-block BNMC of codeword length n = O(kκ6+ϕ), where ` = O(κ2+ϕ).

We give an overview of the construction used to prove Theorem 4 in Section 1.2.
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31:6 Block-Wise Non-Malleable Codes

Strong BNMC. Additionally, we also consider a strictly stronger model of tampering:
assume any permutation π : [`]→ [`] chosen by the adversary. Then each function fi takes
i blocks (cπ(1), . . . , cπ(i)) as input and modifies the π(i)-th block. We call this family of
function strong block-wise and denote it by F`s-block. We also provide a definition of strong
BNMC which is essentially an explicit presentation of NMCwR for F`s-block. We provide an
unconditional generic transformation to construct strong BNMC from any BNMC which,
along with the earlier results imply that any construction of BNMC can be transformed to a
strong BNMC (with some blow up in the length of codeword). We show the following, the
details of which appears in the full version [4].

I Theorem 5. If there is an `-block BNMC with codeword length n, then there is an (`)-block
SBNMC with codeword length Θ(`n).

1.2 Overview of our techniques
We now give a brief overview of our main construction of BNMC along with intuition as to
why it works. The detailed construction is provided in Sec. 3.

First fix a parameter µ (such that µ = O(κ2+ϕ) for any arbitrary constant ϕ > 0 of
our choice where κ is the security parameter) such that we encode a message m using
` = (2µ+ 1)-blocks of codeword for some parameter µ . At a very high level, our encoding
is as follows. Let us first fix some index (or tag) for the encoder i ∈ [µ]. The encoder then
chooses a perfectly binding commitment scheme COM.

Let COMκs(·) and COMκ(·) denote that COM is computationally hidden with respect to
security parameters κs and κ respectively, where κs is as mentioned above. The encoder then
computes commitments to the message using COMκs and COMκ. The first 2µ blocks of the
encoding of m are blocks of all zeroes, except for block i and block (2µ− i) which are the
commitments COMκ and COMκs , respectively. The (2µ+ 1)th block of the encoding contains
the openings to COMκs and COMκ. The decoding algorithm checks if (i) all the openings
are consistent with the commitments and (ii) the messages committed are equal. Now, for a
moment, assume that adversary’s index i′ is not equal to i (this can be removed later on).
Then if i′ < i, then the adversary has to output its first commitment without seeing the first
commitment in the input codeword (rather only seeing on the string of zeros). Thus, the first
commitment in the output is independent of the first commitment in the input. Moreover,
our definition (NMCwR) puts the additional restriction that the adversary has to output a
valid codeword in order to succeed. Combining one can see that the output codeword, if
valid, must contain a message independent of the message encoded in the input. On the
other hand, if i′ > i, then the second commitment of the adversary has to be independent of
the second commitment in the input. In this case, we rely on complexity leveraging to prove
non-malleability. Using this key-observation one can prove the non-malleability except in
one case: when the index chosen by the adversary i′ is equal to i. To prevent mauling in
this case we use one-time signatures. The encoder signs the entire codeword using i as a
public-key and thus leaving the adversary either to forge the signature or change the index.
However, one problem still remains. To use i as a public-key we need it to be sufficiently
long, in particular for a concrete instance of such OTS (we consider variant of Lamport [19])
the length needed to be O(κ2+ϕ) for any arbitrary constant ϕ > 0 of our choice. But note
that, we have i ∈ [µ] and ` = 2µ + 1. Trying to set the size of the index |i| = log(µ) to
even Ω(k) would result in an “inefficient” construction with ` = 2Ω(k) blocks which is not
acceptable. We solve this problem by using a “well-known” technique from non-malleable
commitment, so-called DDN-XOR trick. Through that, it is possible to use a long tag of
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size t = O(κ2+ϕ) keeping the number of blocks also O(κ2+ϕ) just by computing t shares
(XOR’s) of messages and and applying the above construction independently on the shares.
So, our final construction would require a one-time signature which works with a public-key
of bit-length µ = O(κ2+ϕ).

2 Definitions

We introduce the “relaxed” definition of non-malleable codes which is same as the NMC
except there is a so-called replacer Rf which is an “all powerful” algorithm and comes into
play only when the modified codeword is invalid (i.e. decodes to ⊥). In that case, the replacer
may replace the ⊥ by any message in the message space or the symbol same?. (The replacer
can also keep the ⊥ in case when it not harmful (i.e. does not depend on the input) e.g. when
the tampering function always tampers to something invalid). Since the idea of replacer is
similar in spirit with the notion of non-malleable commitment with replacement as introduced
in [16] we call this relaxed version non-malleable codes with replacement (NMCwR in short).
We present the formal definition below.

I Definition 6 (Non-malleable codes with replacement). Let Code = (Enc,Dec) be an (k, n)-
encoding scheme. Let F be some family of tampering functions. Then Code is called
(k, n)-non-malleable code with replacement (NMCwR) if for every f ∈ F there exists an
algorithm called the replacer Rf such that for any pair of messages m0,m1 ∈ {0, 1}k,
TampWRfm0

≈ TampWRfm1
, where for any m ∈ {0, 1}k, TampWRfm is defined as

TampWRfm ≡


c← Enc(m); c′ ← f(c);

If c′ = c set m′ := same? else m′ ← Dec(c′)
If m′ = ⊥ then m′ := Rf (c) ; Output: m′

 ,

where the randomness is over the encoding function Enc.

I Remark. Here, and everywhere in this section, the indistinguishability depends on the
setting (information theoretic or computational). However, we emphasize that even if we are
in the computationally bounded scenario, where the adversary is PPT, we do not restrict
the replacer to be a PPT algorithm. This assumption is justified because the replacer is
required only to establish the meaningfulness of the definition without affecting the natural
intuition. Intuitively the purpose of the replacer is to relax the traditional notion in a way
such that the tampering function is allowed to distinguish the tampering experiments, albeit
only by making the codeword invalid. Nonetheless in the computational setting all the other
algorithms involved as well as the the tampering functions are required to be PPT.

Some intuitions. We first provide some intuition behind why the above definition is mean-
ingful. For every adversary, there is guaranteed to exist another adversary which always
tampers in the same way as the original adversary, except, when the original adversary
were to output an invalid codeword. In that case, the new adversary may employ any other
(PPT) strategy. However when the original adversary outputs an invalid codeword, (in many
applications) it could be considered as aborting or failing in those cases. Hence, our new
adversary could be seen as strictly more powerful than the original one. However as the
definition guarantee, the new adversary actually obeys the standard non-malleable code
guarantee. Thus, in many scenarios, we believe the above weaker notion may be sufficient.
Indeed, as shown in [16], the corresponding weaker notion for non-malleable commitments
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31:8 Block-Wise Non-Malleable Codes

(called non-malleability w.r.t. replacement) turns out to be sufficient for several applications
including for obtaining constant round multi-party computation.

We now give the syntactic definition of block-wise encoding scheme.

I Definition 7 (Block-wise encoding scheme). Let Code = (Enc,Dec) be an (k, n)-encoding
scheme. Then it is called an (`, k, n)-block-wise encoding scheme if each string output by Enc
is an `-tuple: (c1, . . . , c`) where |ci| = ni, with

∑`
i=1 ni = n. Also let νi =

∑i
j=1 ni.

Next we define a property of such block-wise encoding scheme called reveal index, that
will be useful later on.

I Definition 8 (Reveal Index). Let Code = (Enc,Dec) be an (`, k, n)-block-wise encoding
scheme. Then Code is said to have reveal index η if η − 1 ∈ [`] is the largest index for which
the following condition holds: For all pair of messages m0,m1 ∈ {0, 1}k if (c(0)

1 , . . . , c
(0)
` )←

Enc(m0) and (c(1)
1 , . . . , c

(1)
` )← Enc(m1) then (c(1)

1 , . . . , c
(1)
η−1) ≈ (c(1)

1 , . . . , c
(1)
η−1).

I Remark. This definition formalizes the fact that, for any encoding scheme, there is an
index η which reveals some information about the encoded message for the first time in the
sequence and the sequence (c1, . . . , cη−1) before that does not reveal anything about the
encoded message. Obviously η ≤ ` for any block-wise encoding scheme.

Finally, we present our main definition of a block-wise non-malleable encoding scheme
which is essentially an explicit presentation of NMCwR for the class F`block.

I Definition 9 (Block-wise non-malleable codes). Let Code = (Enc,Dec) be an (`, k, n)-block-
wise encoding scheme. Let f = (f1, . . . , f`) be any tuple of functions specified as follows:
∀i ∈ [`], fi : {0, 1}νi → {0, 1}ni . Then Code is called an (`, k, n)-block-wise non-malleable
code (BNMC in short) if, for any such tuple f , there exists a replacer Rf , such that, for any
pair of messages (m0,m1) ∈ {0, 1}k, the following holds: BLTampf

m0
≈ BLTampf

m1
. where

BLTampf
m for any m ∈ {0, 1}k is defined as:

BLTampf
m =


c = (c1, . . . , c`)← Enc(m);

∀i ∈ [`] : c′i = fi(c1, · · · , ci); Let c′ = (c′1, . . . , c′`);
If c′ = c then set m′ := same?; Else decode m′ ← Dec(c′1, . . . , c′`);

If m′ = ⊥ then m′ ← Rf (c1, . . . , c`); Output m′

 .

I Remark. Our notion of block-wise non-malleable codes is identical to the notion of look-
ahead non-malleable codes defined in the concurrent and independent work of Aggarwal et
al. [1]. We choose to use the term block-wise as it is more appropriate in our setting.

3 Our Construction

In this section, we provide our main construction of a BNMC based on sub-exponentially
hard one-way permutations. We construct the encoding scheme in three steps:
(i) In Sec 3.1 we begin by constructing a weaker BNMC that we call tag-based block-wise

non-malleable encoding scheme (TBNMC). In such a code, every codeword has a tag
associated with it and the tampering function must change the tag of a codeword in
order to successfully maul a codeword. In other words, we allow an adversary to create
a related codeword only when the tag remains the same. The tag used here is an index
of the block and hence is only of size log(κ).

(ii) Then in Sec. 3.2 we use a technique, commonly known as the DDN-XOR trick [10], to
construct a tag-based BNMC with tags of length poly(κ).
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(iii) Finally in Sec. 3.3 we construct an BNMC which achieves Def. 9, by using the public
key of a one-time signature scheme as the tag of the above code, and by signing the
entire codeword using the corresponding signing key.

3.1 Tag-based non-malleability
In this section we diverge from our original definition and construct an encoding scheme
which meets a weaker definition of non-malleability, called tag-based non-malleability.

We define the tag to be always the first block of any codeword. A tag-based BNMC
(TBNMC for short) is defined exactly as the same way as BNMC with the only difference
that whenever the tag of the tampered codeword is equal to the tag of the original codeword,
then the tampering experiment outputs same? even if there is any other modification. Clearly
this is strictly weaker than BNMC. Please see the full version [4] for a formal definition.

Now we construct an encoding scheme which satisfies this weaker definition based on
sub-exponentially hard OWP. The proof uses complexity leveraging which essentially forces
us to assume sub-exponential hardness as opposed to standard (super-poly) hardness.

We assume that sub-exponentially hard OWP exist that are considered to be hard to
break even if the adversary is allowed to run in sub-exponential time, namely in O(2κs) such
that κs = κε/2 (recall that κ is the security parameter) for some constant ε ∈ (0, 1). The
proof crucially relies on this as it uses one level of complexity leveraging. In particular, while
reducing to such OWP, we assume that the adversary (the reduction in this case) is unable
to break the one-way permutation (the hiding of a commitment scheme in this case) even
when it is allowed to run in time O(2κs) (but in time o(2κ)).

We use a non-interactive commitment, Com, that is perfectly binding. We write Comκs

and Comκ to denote the commitment scheme has computational hiding with the security
parameters κs and κ, respectively. In particular, Comκ is a computationally hiding com-
mitment scheme even against an adversary running in O(2κs) time. Suppose that such
commitment scheme, on input some bit-string of length k ∈ N, outputs commitments of
length p(κ, k) where p(·) : N×N→ N is a fixed polynomial (determined by the specifications
of the commitment scheme) in security parameter. We stress that such commitments can be
constructed from sub-exponentially hard one-way permutations.

First we give a brief overview of the construction. Let µ ∈ N be a parameter. We will
now construct a TBNMC with ` blocks where ` = 2µ+ 2. For now, assume ` to be a even
number. Now for any tag tg ∈ [µ] we construct the encoding scheme as follows: we put
strings of 0 in all the blocks except the four “special” blocks: the first block is set to tg, the
(tg + 1)-th block is set to the “bigger” commitment Comκ(m), the (`− tg)-th block is set to
the “smaller” commitment Comκs(m) and the `-th (and final) block is set to the openings
of the commitments. Now, for odd `, one can just append one dummy block (string of 0’s)
right before the final block. So, without loss of generality we would assume ` to be even in
this section. The detail construction is presented in Fig. 1. Note that here the blocks are of
different length. However, it is easy to convert the code with equal block-length by padding
additional zeros. We keep it without such padding for simplicity. Also, note that, from the
computational hiding property of the commitment scheme, it follows that the construction
has reveal index ` = 2µ+ 2 for any PPT adversary.

The following theorem states that the construction is a TBNMC. The proof can be found
in the full version [4].

I Theorem 10. Let µ ∈ N be some parameter. Assume that sub-exponentially hard one-
way-permutations exists. Then, for any tag tg ∈ [µ] and any k ∈ N, the encoding scheme
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TCode = (TEnc,TDec) described in Fig. 1 is a (tg, `, k, n)-TBNMC against all PPT adversary
such that n = O(k + µ · p) and ` = 2µ+ 2.

3.2 Non-malleability amplification
In this section we extend our construction to an efficient construction which can support
larger tags. This extension is similar to a well-known phenomenon, namely non-malleability
amplification [20], in the non-malleable commitment literature using the DDN-XOR trick [10].

3.2.1 One-many non-malleability
Towards that, we first show that the construction given in Fig. 1 already satisfies a stronger
notion, which we call one-many tag-based non-malleability (OMTBC). This definition (we
refer to the full version [4] for a formal definition), informally states that an adversary that
is able to tamper a single codeword of m, cannot even come up with a set of codewords such
that one of them is related to m. In particular, each function fi in the tuple f = (f1, . . . , f`)
has much larger range than the domain and produces many c′is together with the knowledge
of the first i blocks of the input codeword.5 Our next theorem shows that our construction
(Fig. 1) achieves this stronger definition.

I Theorem 11. Let µ, t ∈ N be some parameter. Assume that sub-exponentially hard one-
way-permutations exists. Then, for any tag tg ∈ [µ] and any k ∈ N the (tg, `, k, n)-TBC
TCode = (TEnc,TDec) described in Fig. 1 is an (t, tg, `, k, n)-one-many tag-based BNMC
against all PPT adversary such that n = O(k + µ · p) and ` = 2µ+ 2.

3.2.2 Using DDN-XOR trick
In this section we use the DDN-XOR trick to construct an “efficient” TBNMC with “large”
tags. Let us start with some intuitions. The construction uses any OMTBC (called “inner
code” in the following) with “small” tag in a black-box way. The basic idea is as follows:
let the “big” tag TG be t-bit long. Then compute t shares of message m just using XOR’s
i.e. (m1, . . . ,mt) which is nothing but a t-out-of-t secret sharing. Then encode each mj with
the inner code using j‖TG[j] (which is of O(log(t))-size) as tag. Finally put the encodings
in increasing order of j (from 1 to t). The first block of the final codeword is, by definition
the tag TG. the second block would consist of the first t blocks of inner codes in order and
so on. The key-intuitions why the construction works are as follows. In order to break the
tag-based non-malleability of the final encoding (called “outer code” within this sub-section),
the adversary must produce a valid codeword with different“big” tag T̃G 6= TG. In that case,
evidently, there must exist at least one index j ∈ [t] where the “small” tags differ t̃gj 6= tgj .
Moreover notice that, the adversary can’t copy tgj to any other position than j as that
would result in an invalid codeword. Therefore tgj = j‖TG[j] is different from all the “small
tags” of the tampered inner codewords. Then we reduce to the one-many non-malleability of
the inner code in first such position (say j?). In particular, if the adversary tampers with
the j?-th inner code, then by one-many non-malleability of the “inner code” no tampering

5 We note that Chattopadhyay et al. [5] introduced the notion of one-many non-malleable code which is
in turn built on continuous non-malleable code [13](CNMC). It is important not to confuse this notion
with CNMC where the adversary chooses each subsequent tampering function after observing the result
of the previous tamperings.
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Parameters: Let Comκs takes a k-bit message as input and us-bit randomness to produce
a vs-bit commitment and Comκ takes a message of the same length, but randomness of
u-bit to produce a v-bit commitmenta. Let tg ∈ [µ] be the tag of the encoding scheme
for some µ ∈ N. We define a (tg, `, k, n)-block-wise encoding scheme where ` = 2µ+ 2
and n = k + us + u+ µ(vs + v) + blogµc+ 1 as follows:

Encoding TEnc(m): The encoder gets a message m ∈ {0, 1}k as input and do as follows:
1. Initialize: Choose randomnesses rs

$←− {0, 1}us and r $←− {0, 1}u for commitment
scheme. Set the first block c1 := tg.

2. Stage-1: For all i ∈ {2, . . . , µ+ 1}, define the i-th block of codeword ci as follows:

ci :=
{

0v i 6= tg + 1
Comκ(m, r) i = tg + 1

3. Stage-2: For all i ∈ {µ + 2, . . . , 2µ + 1}, define the i-th block of codeword ci as
follows:

ci :=
{

0vs i 6= 2µ+ 2− tg
Comκs(m, rs) i = 2µ+ 2− tg

4. Final stage: Define the last block as the decommitments i.e. the message and the
randomnesses in the order of commitments are sent: c2µ+1 := (m, r, rs).

Decoding TDec(c): On receiving a codeword c parse it as c = (c1, . . . , c2µ+2) such that
|c1| = bµc+ 1, for i ∈ {2, . . . , µ+ 1}, |ci| = v, for i ∈ {µ+ 2, . . . , 2µ+ 1}, |ci| = vs and
for i = 2µ+ 2, |ci| = k + us + u. Then do as follows:
1. Correctness of Structure: First check if the structure is correct: that is if

c1 6= 0 and there are exactly two indexes i1 ∈ {2, . . . , µ + 1}, i2 ∈ {µ + 2, 2µ + 1}
such that:
a. ci1 6= 0v and ci2 6= 0vs .
b. for all other indexes i ∈ {2, . . . , µ+1}\{i1}, ci = 0v and i ∈ {µ+2, . . . , 2µ+1}\{i2},
ci = 0vs .

c. i1 + i2 = 2µ+ 1.
if any of them fails, then the structure of the tampered codeword is incorrect and
therefore output ⊥, else go to the next step.

2. Consistency of commitment: Parse c2µ+2 as (m, r, rs) := c2µ+2 such that |m| = k,
|r| = u and |rs| = us. Then check the validity of the commitment-decommitment pair
(ci1 , (m, r)) and (ci2 , (m, rs)), if any of them are invalid output ⊥, otherwise output
the committed message m.

a We assume |vs|, |v| = poly(κ)

Figure 1 The construction of (tg, `, k, n)-TBNMC for tag size log κ.
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function would not be able to succeed in producing any valid inner codeword that encodes a
value which is “related” to the j?-th original share. Clearly, this implies the entire tampered
outer codeword would have no information about j?-th share which makes the encoded
massage (if valid) completely unrelated to the original message by the property of secret
sharing.

For any tag TG ∈ {0, 1}t we construct a (TG, `′, k′, n′)-TBNMC LCode = (LEnc, LDec)
from a (t, tg, `, k, n)-OMTBC TCode = (TEnc,TDec) for any tg ∈ {0, 1}α such that t =
2α−1 − 1, `′ = `+ 1, k′ = k and n′ = nt as follows.

Encode LEnc(m):
1. Secret-sharing: On receiving an input message m ∈ {0, 1}k′ , first choose (t − 1)

random k′-bit strings (m1, . . . ,mt−1) and then compute mt = m⊕m1 ⊕ · · · ⊕mt−1.
Note that the tuple (m1, . . . ,mt) represents a (t, t)-secret sharing of m.

2. Encode using smaller tag: Then for each j ∈ t, let the j-th “smaller” tag be tgj =
BIT(j)‖TG[j]. Then compute the encoding of mj as: (c1,j , . . . , c`,j)← TEnctgj

(mj).
3. Constructing blocks: Define the tag-block c0 := TG. For all i ∈ [`] define the i-th

block as ci := (ci,1, . . . , ci,t). Output the codeword c = (c0, . . . , c`).
Decode LDec(c):
1. Parsing: On receiving a codeword c, parse it as (c0, . . . , c`) := c such that |c0| = t

and for all i ∈ [`] |ci| = tni. Then, for all i ∈ [`] parse ci as (ci,1, . . . , ci,t) such that for
all j ∈ [t], |ci,j | = ni.

2. Checking Tag consistency: Check if the “bigger” tag is consistent with the
“smaller” tag: c0 = c1,1[α]‖c1,2[α]‖ · · · ‖c1,t[α]. Also check if the positions of the smaller
tags are correct: ∀ j ∈ [t], c1,j [1 . . . (α − 1)] = BIT(j). If any of these fail output ⊥,
otherwise go to the next step.

3. Decoding with smaller tag: For each j ∈ [t] decode each value vj ← TDectgj
(c1,j ,

. . . , c`,j). If any of them is ⊥ then output ⊥. Otherwise, parse each vj as mj and
finally output m = m1 ⊕ · · · ⊕mt.

Formally we show the following theorem. The proof can be found in the full version [4].

I Theorem 12. Let TCode = (TEnc,TDec) be a (t, tg, `, k, n)-OMTBC for any tag tg ∈
{0, 1}α, t = 2α−1 − 1 and k ∈ N. Then for any tag TG ∈ {0, 1}t the above construction
LCode = (LEnc, LDec) is a (TG, `′, k′, n′)-TBNMC for `′ = `+ 1, k′ = k and n′ = nt.

3.3 The full construction by removing tags
Finally we present a transformation to remove tags using one-time signature scheme and a
tag-based code with “large tag” (will be referred to as “inner code” in this section). This is
similar to a standard trick [10] used in the area of non-malleable commitment for the same
purpose. The main idea is to sign the entire codeword and set the public-key as the tag.
This forces the tampering function either to keep the tag same and forge the signature in
order to tamper, otherwise change the tag by producing its own key-pairs and then tamper.
But the “inner code” guarantees that whenever the tag is changed, the tampering would
result in an “unrelated” codeword.

Let TCode = (TEnc,TDec) be an (tg, `, k, n)-TBNMC for any tag tg ∈ {0, 1}t. Let
OTSig = (KGen,Sign,Verify) be a one-time signature scheme with public key pk ∈ {0, 1}t
which takes any km = n− t-bit message to produce a ns-bit signature. Then we construct an
(`, k, n+ ns)-BNMC Code = (Enc,Dec) as follows:
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Encode Enc(m):
1. Generate signature keys: On input message m ∈ {0, 1}k first run the key-

generation algorithm of the signature scheme OTSig to generate a key pair: (pk, sk)←
KGen(1κ).

2. Encode with tag: Run the tag-based encoding scheme with pk as the tag on the
input message m to produce the codeword (c̃1, . . . , c̃`)← TEnc(m). Note that c̃1 = pk.

3. Sign the codeword: Sign the codeword (except the tag) (c̃2, . . . , c̃`) to compute
the signature σ ← Sign(sk, (c̃2, . . . , c̃`)).

4. Output: Set for all i ∈ [` − 1], ci = c̃i and c` = c̃`‖σ. Output the codeword
c = (c1, . . . , c`)

Decode Dec(c1, . . . , c`) :
1. Parse: On input the codeword (c1, . . . , c`), set ∀i ∈ [`− 1], c̃i := ci and parse c` as

(c̃`‖σ) := c` such that |c̃`| = n` and |σ| = ns.
2. Verify signature: Then verify the signature d← Verify (c̃1, (c̃2, . . . , c̃`), σ). If d = 0

(i.e. verification fails) then output ⊥. Otherwise go to the next step.
3. Decode with tag: Decode the codeword as m̃← TDec(c̃1, . . . , c̃`). Output m̃.

Formally, we have the following theorem (see the full version [4] for a formal proof).

I Theorem 13. Let TCode = (TEnc,TDec) be a (tg, `, k, n)-TBNMC for any tag tg ∈ {0, 1}t
and OTSig = (KGen,Sign,Verify) be a one-time signature scheme with public key pk ∈ {0, 1}t
which takes any km = n − t-bit message to produce a ns-bit signature.Then the above
construction Code = (Enc,Dec) is a (`′, k′, n′)-BNMC for `′ = `, k′ = k and n′ = n+ ns.

Theorem 4 now follows by combining Theorem 11, Theorem 12 and Theorem 13 and
instantiating with appropriate parameters.
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