
Online Semidefinite Programming∗

Noa Elad1, Satyen Kale2, and Joseph (Seffi) Naor3

1 Computer Science Dept., Technion, Haifa, Israel
noako@cs.technion.ac.il

2 Yahoo Research, New York, NY, USA
satyen@yahoo-inc.com

3 Computer Science Dept., Technion, Haifa, Israel
naor@cs.technion.ac.il

Abstract
We consider semidefinite programming through the lens of online algorithms – what happens
if not all input is given at once, but rather iteratively? In what way does it make sense for a
semidefinite program to be revealed? We answer these questions by defining a model for online
semidefinite programming. This model can be viewed as a generalization of online covering-
packing linear programs, and it also captures interesting problems from quantum information
theory. We design an online algorithm for semidefinite programming, utilizing the online primal-
dual method, achieving a competitive ratio of O (logn), where n is the number of matrices in the
primal semidefinite program. We also design an algorithm for semidefinite programming with
box constraints, achieving a competitive ratio of O (logF ∗), where F ∗ is a sparsity measure of
the semidefinite program. We conclude with an online randomized rounding procedure.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases online algorithms, semidefinite programming, primal-dual

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.40

1 Introduction

The study of online algorithms is a major theme in computer science. In contrast to an
algorithm that receives all its input at once, an online algorithm receives its input in an
iterative manner, and must make irrevocable decisions after receiving each part of the input.
An online algorithm is evaluated based on the ratio between its cost and the optimal offline
cost, that is, the cost which could have been achieved had the entire input sequence been
known in advance. The worst-case bound on this ratio is called the competitive ratio of the
algorithm. Competitive analysis of online algorithms is a very active area of research and
the last twenty five years have witnessed many exciting new results. For a broad study of
online algorithms, see [2, 3].

Online set cover is a classical online problem; elements arrive one by one, specifying which
sets they belong to, and each element must be covered upon arrival. Once a set is chosen
to the cover it cannot be removed later on, and its cost is accumulated into the final cost.
The objective is to minimize the total cost of the chosen sets. A natural extension is online
fractional set cover, where sets are associated with fractional values, and for each element
the sum of the fractions of the sets containing it is at least 1. Irrevocability is expressed by
requiring the fractional values to be monotonically non-decreasing during the online steps.

∗ This work was partially supported by ISF grant 1585/15 and BSF grant 2014414.

EA
T

C
S

© Noa Elad, Satyen Kale, and Joseph (Seffi) Naor;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 40; pp. 40:1–40:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.40
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Online Semidefinite Programming

Set cover further generalizes into general covering problems. In this setting, an element is
not simply contained in a set, but rather a non-negative weight ae,S is associated with each
element-set pair. This is actually equivalent to a linear program where the entries of the
constraint matrix are all non-negative. The objective function is also non-negative. Covering
problems arise naturally in many settings, e.g., graph optimization problems, facility location
and paging. The dual problem of covering is packing which also captures an important family
of combinatorial problems, e.g., flow, routing, matchings, and combinatorial auctions.

The online primal-dual method is a powerful algorithmic technique that has proved
to be extremely useful for a wide variety of problems in the area of online algorithms,
serving as an important unifying design methodology. In general, suppose that an online
problem can be formulated as a linear program, such that requests correspond to linear
constraints. The online nature of the problem translates into the constraint matrix being
exposed row by row, while the dual program is updated by adding a new dual variable. The
idea behind the primal-dual method is to use both primal and dual programs and construct
(simultaneously) feasible solutions for both of them, while maintaining some relationship
between their corresponding objective functions. Then, using weak duality, it is easy to
bound the competitive factor of the primal solution.

For online covering-packing linear programs, the non-negativity of the constraint matrix
facilitates the design of elegant online primal-dual algorithms. This approach has been
amazingly successful in both unifying previously known results, as well as resolving several
important open questions in competitive analysis. This includes, among others, the classic ski
rental problem, the online set-cover problem, paging and weighted paging, graph optimization
problems, the dynamic TCP-acknowledgement problem, various routing problems, load
balancing, machine scheduling, ad auctions, and more. Please refer for more details to a
survey on the covering-packing approach to online algorithms [3].

We explore in this work semidefinite programming in the context of online problems. A
symmetric matrix A ∈ Rm×m is said to be positive semidefinite, i.e., A < 0, if for every
vector v ∈ Rm, it holds that vtAv ≥ 0. A semidefinite program has a constraint requiring
that a matrix of variables X = (xi,j) is positive semidefinite. Such constraints correspond
to an unbounded number of linear constraints, since X < 0 is equivalent to a family of
linear constraints: ∀v ∈ Rn vtXv =

∑
vivjxij ≥ 0. This greatly extends our ability to

express complex problems, since semidefinite programs can be tailored more specifically,
thus decreasing integrality gaps of linear relaxations of combinatorial problems and yielding
tighter approximation factors. In their seminal work, Goemans and Williamson [4] used
a semidefinite programming relaxation for max cut in undirected graphs, obtaining an
approximation factor of 0.878, dramatically improving over the straightforward factor of 0.5.

1.1 Results
We study here further extensions of the successful online primal-dual method and linear
programming relaxations for online problems to the realm of semidefinite programming.
We define the problem of semidefinite covering-packing, which is a semidefinite program in
which all coefficients are non-negative. For matrix coefficients, such as those in constraints
of the form A • X ≤ c, the coefficient matrix A is positive-semidefinite. This problem
arises in several natural settings, e.g., quantum hypergraph covering, studied by [1], is a
semidefinite covering problem with all matrices restricted to the range [0, I]. Our work
extends semidefinite covering-packing to an online setting. For example, our extension
captures the online covering problem as a special case, in which all matrices are diagonal.

We design an online primal-dual algorithm with competitive ratio O(logn) for the semi-
definite covering-packing setting, where n denotes the number of matrices (e.g., corresponding

N. Elad, S Kale, and J. Naor 40:3

to sets in the case of set cover). This is called our general algorithm (Section 3). We then
consider in Section 4 a class of semidefinite covering-packing problems with box constraints
on the variables. We design a primal-dual algorithm with an improved bound of O (logF ∗),
where F ∗ is a sparsity parameter coinciding with the maximum row-sparsity D of the con-
straint matrix in the linear case. This bound can be compared to the O(logD)-competitive
algorithm known for covering in the linear case [3, 5].

In Section 5 we design an online randomized rounding procedure, which is applicable to
both of our algorithms, while adding a factor of O (R (logm+ logn)) to the solution, where
m is the dimension of the matrices and R is a bound on the largest eigenvalue of each matrix.
Our randomized rounding uses a general matrix Chernoff bound due to Tropp [6], which
is based on and improves slightly the novel matrix Chernoff bound developed by Ahlswede
and Winter [1]. In a way, our algorithm is an online variation to Wigderson and Xiaos’s [7]
randomized rounding algorithm for integer semidefinite programming.

Techniques. Our algorithms and proofs strongly utilize the online primal-dual technique,
thus taking advantage of semidefinite weak duality and the fact that semidefinite programming
is defined over a cone. Additionally, we use the fact that a semidefinite constraint of the
form A < B can be expressed as an infinite number of linear constraints, each corresponding
to a projection onto a vector v satisfying vTAv ≥ vTBv.

The heart of our general algorithm is an update step: when considering a primal semi-
definite constraint, it is either already satisfied (and then we are done), or there exists a
matrix (in fact, many) which is a witness to the violation of the primal constraint, also
inducing a linear constraint which is violated. The witness matrix is then used for updating
the primal constraint, and for the direction in which we are going to make dual progress.
Once the witness matrix is determined, our update rule becomes quite similar to the update
rule in the linear case [3]. An important difference though is that, while only a finite number
of (linear) constraints needs to be satisfied in the linear case, now we need to satisfy a
semidefinite constraint, equivalent to infinitely many linear constraints. We address this issue
by over-satisfying constraints, so as to ensure that we make enough progress for our choice
of witness matrix, thus bounding the number of steps needed. Without this over-satisfaction,
we might only make infinitesimal progress, and it is not clear if the algorithm ever terminates.

For box constraints, we define the sparsity of an online semidefinite program, a measure
capturing the potential to overshoot when solving a sub-problem of a semidefinite program.
While the definition also coincides with the notion of row-sparsity for linear programs, it is
not a simple extension, but rather one which is tailored to a very specific observation about
our update rule; each subset of the variables defines such a subproblem when those variables
are saturated (i.e. their value equals the upper bound). In this situation we want to choose
a good progress direction, so that we do not over-satisfy the semidefinite constraint. The
progress direction turns out to have the property that, when projecting the problem onto
that direction, minimizes the ratio between the uncovered coefficients and the remainder
which is left to cover. This proves to be very useful in bounding the primal-dual ratio, and
also in allowing the algorithm to make meaningful progress.

2 Our Model and Definitions

Throughout this paper, all matrices are square, symmetric, real, and have dimension m.
Given two matrices A, B, their Frobenius product, denoted A • B, is defined as A • B =∑
i,j Ai,jBi,j = tr

(
ATB

)
. This is equivalent to standard inner product if the matrices are

ICALP 2016

40:4 Online Semidefinite Programming

treated as vectors in Rm2 . For any vector v ∈ Rn, it is easy to check that the following useful
identity holds: A •

(
vvT

)
= vTAv =

∑
i.j vivjAi,j .

The eigenvalues of a matrix A are λ1 (A) ≥ λ2 (A) ≥ · · · ≥ λm (A). For a matrix A and
vector v, the Rayleigh quotient is defined as vTAv

vT v
and has the property λm (A) ≤ vTAv

vT v
≤

λ1 (A). A symmetric matrix A is said to be positive-semidefinite (p.s.d.), denoted A < 0, if
all its eigenvalues are non-negative. This induces a partial order over Rm×m, where A < B

if and only if A−B < 0.
Asemidefinite minimization program in standard form and its dual program are:

min
∑n
i=1 cixi maxB • Y

s.t.
∑n
i=1Aixi < B s.t. ∀i ∈ [n] Ai • Y ≤ ci

∀i ∈ [n] xi ≥ 0 Y < 0
.

This pair of programs satisfies weak duality, e.g. every feasible solution of the primal problem
is an upper bound on the dual problem and vice versa. This can readily be seen as follows.
Let x and Y be feasible solutions for the primal and dual problems, respectively. Then

n∑
i=1

cixi ≥
n∑
i=1

(Ai • Y)xi =
(

n∑
i=1

Aixi

)
• Y ≥ B • Y.

The first inequality follows since xi ≥ 0 for all i ∈ [n], and Ai •Y ≤ ci. The second inequality
is due to

∑n
i=1Aixi < B and Y < 0.

We sometimes use the shorthand Ax to denote the matrix
∑n
i=1Aixi, that is, A : Rn →

Rm×m is a linear function defined as A (x) =
∑n
i=1Aixi.

2.1 Our Model
We define a semidefinite covering problem as a semidefinite program in which all scalar
coefficients are non-negative (ci ≥ 0), and all matrix coefficients are positive semidefinite
(Ai < 0, B < 0). We can view the matrix B as being “covered”, and the matrices Ai as the
“covering” matrices. The variable xi specifies “how much” of Ai is used to cover B.

We further define as online semidefinite covering problem as a semidefinite covering
problem in which the covered matrix B is revealed in an online fashion, i.e., in each online
step t a new matrix Bt is revealed as the matrix which must be covered, and the following
relation holds: Bt < Bt−1. The irrevocability property is expressed by the requirement that
each variable xi cannot be decreased at any point of time, and is only allowed to increase (or
stay unchanged). In each step t the semidefinite constraint Ax < Bt must be satisfied.

In the dual online semidefinite packing problem, the objective function B • Y is revealed
online, while the constraints Ai •Y ≤ ci are known in advance. The monotonicity is captured
by allowing the variable matrix Y to only increase, e.g. Yt < Yt−1.

Set Cover and Linear Covering-Packing as a Special Case. When all matrices Ai and
Bt are diagonal, the constraint

∑n
i=1Aixi < Bt defines m linear constraints – one for every

diagonal element
∑n
i=1 (Ai)j,j xi < (Bt)j,j . This is because a diagonal matrix D is p.s.d. if

and only if all of its diagonal entries are non-negative. Thus, revealing parts of the matrix B
is equivalent to revealing new linear constraints. We assume without loss of generality that
the linear constraints are revealed one row at a time, meaning that we reduced the primal
problem to an instance of online fractional covering. Specifically, if all the diagonal entries
are either 0 or 1, the problem then becomes online set cover. In the dual problem, since Y
is only multiplied by diagonal matrices, only its diagonal is taking a part in the program,
therefore the dual problem also becomes equivalent to online fractional packing.

N. Elad, S Kale, and J. Naor 40:5

3 The General Algorithm

In this section we provide an algorithm for the problem of online semidefinite covering, as
defined in the previous section:

min
∑n
i=1 cixi maxBt • Y

s.t.
∑n
i=1Aixi < Bt s.t. ∀i ∈ [n] Ai • Y ≤ ci

∀i ∈ [n] xi ≥ 0 Y < 0
.

In each online step t a new matrix Bt is revealed, satisfying Bt < Bt−1. Our algorithm must
then increase the variables xi, incurring an additional cost of ci∆xi, such that the updated
covering constraint

∑n
i=1Aixi < Bt is satisfied.

3.1 Intuition

Our algorithm performs a sort of binary search on the optimal value of the primal problem.
For a certain guess α, we either find a primal solution whose value does not exceed α, or
find a dual solution whose value is at least α/O (logn). By doubling our guess each time, we
are able to mitigate the cost of failed guesses and only lose a factor of 2 in total. Each guess
α defines a phase, which may extend over many online steps. During a phase, the primal
solution’s value is always less than α, and when the phase ends, the dual solution’s value is
at least α/O (logn).

We maintain monotonicity within each phase by only increasing the primal and dual
variables. Monotonicity is maintained between phases by setting each variable to be the sum
(or the maximum) of its values in the previous phases. We note that the optimal value of the
primal problem in each online step can only increase (or at least not change).

The idea behind the algorithm’s update step is the following. Either the primal constraint
Ax < Bt is already satisfied (and then we are done), or there exists a matrix V < 0 such that
Ax • V < Bt • V (by observing that C < 0 if and only if for every matrix V < 0, C • V ≥ 0).
The requirement that trV = 1 is a simple scaling constraint, which can be achieved by setting
V ′ = V/tr (V). We can think of the matrix V as a witness to the violation of the primal
constraint; it induces a linear constraint Ax • V ≥ Bt • V which is violated. We use the
witness as the direction in which we make dual progress, and increase the primal according
to the relation we wish to maintain between the primal and dual solutions, until the linear
constraint Ax • V ≥ Bt • V is satisfied. Specifically, the rate at which xi is increased is
proportional to Ai • V , which makes sense, since this is the coefficient of xi in the linear
constraint Ax • V =

∑n
i=1Ai • V xi ≥ Bt • V .

We note that for technical reasons that help simplify the analysis we actually over-satisfy
the above linear constraint, i.e. we continue increasing until Ax • V ≥ 2Bt • V . This is
necessary to ensure that we make enough progress for each choice of V , thus bounding the
number of steps needed. Without this requirement, we might make infinitesimal progress for
each V , and it is not clear if the algorithm will finish its execution, since there are infinitely
many choice of V possible. It turns our that this over-satisfaction only contributes a factor
of 2 to the competitive ratio.

There are many possible choices of progress direction V . One natural choice is V =
vvT , where v is a unit eigenvector corresponding to the smallest eigenvalue of (Ax−Bt).
Since Ax − Bt 6< 0, its smallest eigenvalue λn is negative, therefore (Ax−Bt) • V =
vT (Ax−Bt) v = λn < 0 as required.

ICALP 2016

40:6 Online Semidefinite Programming

3.2 Algorithm Description
In each phase r we search for a primal solution with cost at most α (r). Whenever the primal
cost exceeds α (r), a new phase starts and α (r + 1)← 2α (r) is doubled. In each new phase
we “forget” about the values of the primal and dual variables from the previous phase, but
we do account for their cost in the analysis. That is, in each phase r, new variables xr,i, Y r
are introduced; however, since the variables are required to be monotonically non-decreasing,
each variable xi is actually set to

∑
r xr,i, and the dual variable is also set to

∑
r Yr.

Let OPTt be the optimal value of the primal problem in phase t. After the first constraint
matrix B1 is introduced, we set the first lower-bound: α (1) ← minni=1

citrB1
trAi

. Note that
α (1) ≤ OPT1 ≤ OPTt, for all t, because the matrix Y0 =

(
minni=1

ci

trAi

)
I is a feasible

solution for the dual problem and its cost is Y0 • B1 = α (1). In the beginning of each
phase, we initialize Y = 0, xi = α(r)

2nci
. Algorithm 2 describes the phase scheme. Algorithm 1

describes the execution during a single online step t, within a single phase r. Algorithm 1
uses an auxiliary variable δ, the measure of progress by which we update all other variables.

Algorithm 1 Primal-Dual Algorithm for step t within phase r
Input: current solutions x, Y , current limit α. Output: updated values for x, Y .
While Ax 6< Bt:
1. Let V be a density matrix (V < 0, trV = 1) such that Ax • V < Bt • V .
2. While Ax • V < 2Bt • V and

∑n
i=1 cixi < α:

a. Set δ = 0 initially, and increase it in a continuous manner.
b. Increase Y continuously by adding V δ to it.
c. Increase x continuously by setting:

xi = α

2nci
exp

(
log 2n
ci

Ai • Y
)
.

Algorithm 2 Phase Scheme
Initialize r = 1, α (0) = minni=1

citrB1
2trAi

.
For t = 1, 2, . . . :
1. Let α (r) = 2α (r − 1), Yr = 0, xr,i = α(r)

2nci
for i = 1, . . . , n.

2. Run Algorithm 1 on xr, Yr, α (r).
3. If

∑
cixr,i ≥ α (r), then update r ← r + 1 and go to step 1.

4. Return solutions
∑
r xr,i,

∑
r Yr.

I Theorem 1.
The scheme generates a feasible primal solution with a competitive ratio of O (logn).
The scheme generates a dual solution with competitive ratio of O (logn), and each
constraint is violated by a factor of at most O

(
log logn+ log OPTt

α(1)

)
.

The scheme terminates, and its runtime is O
(
n
(

log logn+ log OPTt

α(1)

))
Before we prove the theorem, we establish some assisting claims. Let X (r) and Y (r)

be the values of the primal and dual solutions, respectively, generated in the r-th phase.
We say that the r-th phase is finished if the condition in step 3 of Algorithm 2 holds, i.e.∑
cixr,i ≥ α (r).

N. Elad, S Kale, and J. Naor 40:7

I Lemma 2. For each finished phase r, Y (r) ≥ α (r) /4 log 2n.

Proof. In the beginning of phase r, we have xi = α(r)
2nci

, therefore X (r) = α(r)
2 . The dual

cost is zero. When the phase ends, X (r) ≥ α (r). The proof is completed by showing that
at every point in Algorithm 1, we have ∂X(r)

∂δ ≤ 2 log 2n∂Y (r)
∂δ . To show this, we have

∂X (r)
∂δ

= ∂

∂δ

(
n∑
i=1

cixi

)
=

n∑
i=1

ci
∂xi
∂δ

=
n∑
i=1

ci
∂

∂δ

(
α (r)
2nci

exp
(

log 2n
ci

Ai • (Y + δV)
))

=
n∑
i=1

ci
log 2n
ci

(Ai • V) α (r)
2nci

exp
(

log 2n
ci

Ai • (Y + δV)
)

=
n∑
i=1

log 2n (Ai • V)xi = log 2n
(

n∑
i=1

Aixi

)
• V

= log 2nAx • V ≤ 2 log 2nBt • V = 2 log 2n∂Y (r)
∂δ

.

The last inequality holds since we only increase δ while Ax • V < 2Bt • V . J

I Lemma 3. The dual solution generated during each phase is feasible.

Proof. Consider the i-th dual constraint of the form Ai • Y ≤ ci. Since we are in the r-th
phase, the current primal solution’s value is at most α (r), therefore the value of xi can be at
most α(r)

ci
. Thus:

α (r)
2nci

exp
(

log 2n
ci

Ai • Y
)

= xi ≤
α (r)
ci

.

Simplifying, we get that Ai • Y ≤ ci. The final dual constraint Y < 0 is satisfied since Y is
the sum of p.s.d matrices δV . J

I Lemma 4. The total cost of the primal solutions generated from the first phase until the
r-th phase is less than 2α (r).

Proof. We bound the total cost paid by the online algorithm. The total primal cost in the
r-th phase is at most α (r). Since the ratio between α (k) and α (k − 1) is 2, we get that the
total cost until the r-th phase is at most

∑r
k=1 α (k) = α (r)

∑r
k=1

1
2k−1 ≤ 2α (r). J

I Lemma 5. If the algorithm stops during a certain phase, then x is feasible.

Proof. The algorithm stops only when Ax < Bt. Also, x ≥ 0 throughout the entire run of
the algorithm, since we only increase each xi from an initially positive value α(r)

2nci
> 0. J

I Lemma 6. The number of iterations (= choices of V) in each phase is at most n+ 1.

Proof. Consider any iteration in Algorithm 1 for which the while loop terminates because
Ax • V ≥ 2Bt • V . In the beginning of the while loop, we have Ax • V < Bt • V . This
implies that at least one xi was doubled during the iteration. Now, xi ≥ α(r)

2nci
, therefore

each iteration increases the primal value by at least cixi ≥ α(r)
2n . Since the primal value

is α(r)
2 in the beginning of the phase, after n such choices of V it must reach α (r) and

the phase will be finished. Accounting for the possibly one extra iteration when the while
loop terminates because the condition

∑
i cixi ≥ α is satisfied, the number of iterations is

bounded by n+ 1. J

ICALP 2016

40:8 Online Semidefinite Programming

I Lemma 7. The number of phases reached by step t is bounded by O
(

log logn+ log OPTt

α(1)

)
.

Proof. Let R > 1 be the current phase. Then

α (1) 2R−2 = α (R− 1) ≤ 4 log (2n)Y (R− 1) ≤ 4 log (2n)OPTt

⇒ R ≤ 2 + log
(

2 log (2n) OPTt
α (1)

)
= O

(
log logn+ log OPTt

α (1)

)
.

The first inequality above follows by Lemma 2, and the second because Y (R− 1) is a feasible
solution by Lemma 3. J

Proof of Theorem 1. Suppose the online scheme terminates within R phases. Note that if
R = 1 then since X (1) ≤ α (1) ≤ OPT1 and x is feasible (from Lemma 5)), we must have
exactly reached the end of the phase, i.e. X = α (1) = OPT1, Y ≥ OPT1

log 2n , and Y is also
feasible (from Lemma 3). From now on assume R > 1.

By Lemma 5, the primal solution is feasible. The total primal cost is bounded by:

total primal cost ≤ 2α (R) = 4α (R− 1) ≤ 16 log 2nY (R− 1) ≤ 16 log (2n)OPTt.

The first inequality is by Lemma 4, the second by Lemma 2, and the last one by Lemma 3.
By Lemma 3, the dual solution in each phase is feasible. Summing up over R phases and
using the bound for R from Lemma 7, we get that the dual solution is violated up to
R ≤ O

(
log logn+ log OPTt

α(1)

)
. The total dual cost is bounded by:

total dual cost =
R∑
r=1

Y (r) ≥ Y (R− 1) ≥ α (R− 1)
4 log 2n = α (R)

8 log 2n ≥
X (R)
8 log 2n ≥

OPTt
8 log 2n.

The second inequality is by Lemma 2 and the last one by Lemma 5.
The runtime and termination of the scheme follow immediately from Lemmas 6 and 7.

J

4 Box Constraints

In this section we introduce box constraints to our program, i.e. every variable xi is now
limited to a bounded range 0 ≤ xi ≤ ui. Surprisingly, these bounds allows us to achieve
approximation factors which do not depend on n, the number of matrices in the primal
problem, but rather on a natural property of the program which we call the sparsity. Without
loss of generality, we can assume ui = 1 by replacing Ai with A′i = uiAi, and ci with
c′i = uici. We note that this assumption does alter the sparsity of the program. Our
primal-dual problems with box constraints are the following:

min
∑n
i=1 cixi maxBt • Y −

∑n
i=1 zi

s.t.
∑n
i=1Aixi < Bt s.t. ∀i ∈ [n] Ai • Y − zi ≤ ci

∀i ∈ [n] 0 ≤ xi ≤ 1 Y < 0, z ≥ 0
.

4.1 Sparsity
The sparsity of a semidefinite program is defined as:

F ∗ = max
t

max
S⊆[n]

min
V<0:

(
Bt−
∑

i∈S
Ai

)
•V >0

∑
i/∈S Ai • V(

Bt −
∑
i∈S Ai

)
• V

.

N. Elad, S Kale, and J. Naor 40:9

This quantity can be viewed as follows. If we saturate all variables in S, then
∑
i∈S Ai is

the coverage we get from the saturated variables, and Bt −
∑
i∈S Ai is the remainder that

we still need to cover.
∑
i/∈S Ai is the total coverage potential of the unsaturated variables.

We project both of these matrices,
∑
i/∈S Ai and Bt −

∑
i∈S Ai, onto some witness V , and

take the ratio
∑

i /∈S
Ai•V(

Bt−
∑

i∈S
Ai

)
•V

. This is the ratio by which we “over-cover” the remainder

Bt−
∑
i∈S Ai if we use up all non-saturated variables. It turns out that F ∗ ≥ 1. We actually

use a relaxed version of F ∗ which may yield an even better result:

F = max
t,S occuring in the algorithm

min
V<0:

(
Bt−
∑

i∈S
Ai

)
•V >0

∑
i/∈S Ai • V(

Bt −
∑
i∈S Ai

)
• V

.

Here, the maximum is taken only over each online step t and the corresponding set of
saturated variables S at step t. For fixed t, S, we can compute the minimum value of this
ratio (and a minimizer V) very efficiently, see Lemma 8 below for details. Although we
show that F ≤ F ∗, we still phrase our results using F ∗, since F ∗ only depends on the given
program, while F also depends on the specific choices made by the algorithm. We note
that it is not necessarily the case that F ∗ ≤ n, thus it would only make sense to use this
parameter if the specifics of the problem can guarantee a better bound on F ∗ than n.

To further illustrate the meaning of F ∗, it is useful to consider the set cover problem. As
discussed earlier, set cover is obtained when all matrices Ai and Bt are diagonal, and having
only entries from {0, 1} on the diagonal. To analyze F ∗ in this case, it is sufficient to observe
witness matrices V of the form Ej,j (any other witness is simply a convex combination of
these). Then

∑
i/∈S Ai • V and

∑
i∈S Ai • V are equal to the number of non-saturated and

saturated sets which contain element j respectively; and Bt • V is 1 if element j needs to
be covered and 0 otherwise. Clearly the only way in which

(
Bt −

∑
i∈S Ai

)
• V > 0, is if

element j needs to be covered and none of the sets containing it are saturated. Then, the
expression

∑
i /∈S

Ai•V(
Bt−
∑

i∈S
Ai

)
•V

is exactly the number of sets containing j. Thus, F ∗ in this

case is exactly the maximum number of sets that an element is contained in (taken over the
elements which the algorithm is required to cover). This matches the notion of row sparsity
of a linear program, and clearly in this case F ∗ ≤ n.

I Lemma 8. Let N be a positive semidefinite matrix and D be a symmetric matrix. Then
the minimum value of the ratio N•V

D•V such that V � 0 and D • V > 0 is equal to the smallest
non-negative root of the polynomial equation det(N − λD) = 0.

Proof. Let V be an optimal solution. Since V � 0, we can express it as V =
∑
` v`v

T
` for

some vectors v`. Since N � 0, we have N • v`vT` ≥ 0. Then we claim that D • v`vT` ≥ 0;
otherwise, we could drop v`vT` from the sum forming V and decrease the ratio. Next, note that
N•V
D•V =

∑
`
N•v`v

T
`∑

`
D•v`vT

`

≥ min`
{
N•v`v

T
`

D•v`vT
`

}
, and so we conclude that there is a rank 1 minimizer.

Let this minimizer be V = vvT for some vector v. The minimum ratio is then obtained by
minimizing vTNv subject to vTDv = 1. The Karush-Kuhn-Tucker conditions imply that the
optimal vector v satisfies the generalized eigenvalue equation, Nv = λDv for some constant
λ (the generalized eigenvalue). Note that N•vvT

D•vvT = λ. Since we require vTDv = 1, and
vTNv ≥ 0, only non-negative values of λ are admissible. Since the generalized eigenvalues λ
are roots of the polynomial equation det (N − λD) = 0, and we conclude that the minimum
value of the ratio is the smallest non-negative root of this polynomial equation. J

ICALP 2016

40:10 Online Semidefinite Programming

4.2 Algorithm Description
We now describe an algorithm for semidefinite covering-packing with box constraints. We
denote by S the set of indices i of saturated primal variables xi, i.e. variables which have
reached their upper bound: S = {i|xi = 1}. We use the following notations for simplicity:
AS̄x =

∑
i/∈S Aixi, and ASx =

∑
i∈S Ai (note that in the second notation, we omit the xi’s

because they are all saturated, so are equal to 1). We use an auxiliary variable δ, which is
the measure of progress by which we update all other variables.

Algorithm 3 Primal-Dual Algorithm For Box Constraints
Initialize x = 0, z = 0, Y = 0.
Upon arrival of a new constraint matrix Bt, while Ax 6< Bt:
1. Let V be a density matrix (V < 0, trV = 1) such that Ax • V < Bt • V , minimizing the

ratio
∑

i /∈S
Ai•V

Bt•V−
∑

i∈S
Ai•V

.

2. Update F = max
{
F,

∑
i /∈S

Ai•V

Bt•V−
∑

i∈S
Ai•V

}
.

3. While AS̄x • V < 2 [Bt • V −ASx • V]:
a. Set δ = 0 initially, and increase it in a continuous manner.
b. Increase Y continuously by adding V δ to it.
c. For every i such that xi = 1, increase zi continuously at rate Ai • V δ.
d. Update x continuously by setting:

xi = max
{
xi,

1
F

(
exp

(
log (F + 1)

ci
(Ai • Y − zi)

)
− 1
)}

.

I Theorem 9. The algorithm produces a feasible primal solution with a competitive ratio of
O (logF ∗), and a feasible dual solution with a competitive ratio of O (logF ∗).

The proof is omitted due to space constraints.

5 Rounding

In this section, we discuss the integer version of online semidefinite programming, and how
our results in the previous sections can be rounded to an integer solution.

5.1 Changing the Framework
An integer semidefinite program is the following:

min
∑n
i=1 cix̂i

s.t.
∑n
i=1Aix̂i < I

∀i ∈ [n] x̂i ∈ Nn
.

Note the different notation for integer variables x̂i as opposed to real-valued variables xi of
the previous sections. Also note that we now restrict the covered matrix to be the identity
matrix I. This is a necessity for our rounding scheme. To justify why this is not any different
from the general setting, we invoke some linear algebra. First, assume that B is of full rank
(and, of course, p.s.d.). Then B is congruent to I, by some invertible matrix X such that

N. Elad, S Kale, and J. Naor 40:11

XTBX = I. Now
∑n
i=1Aix̂i < B if and only if

∑n
i=1X

TAiXx̂i < XTBX = I. We can
change the matrices A′i = XTAiX so as to arrive at the formulation above.

However, restricting B to be of full rank throughout the entire online algorithm does
not make much sense. To overcome this, we change the framework to allow the dimension
m of the matrices to increase over time. Let mt be the dimension of the online problem at
step t. Then, in step t+ 1, the dimension of the matrices may increase to mt + 1 (or may
stay mt). The covering matrices A(t+1)

i must contain A(t)
i as their top-left submatrix, and

they must be p.s.d., i.e. A(t+1)
i < 0. The covered matrix B(t+1) must also be p.s.d., and

its top-left submatrix of dimension mt must be greater than or equal to B(t) in the p.s.d.
partial ordering. The online integer semidefinite program is therefore:

min
∑n
i=1 cix̂i

s.t.
∑n
i=1A

(t)
i x̂i < B(t)

∀i ∈ [n] x̂i ∈ Nn
,

where A(t)
i , B(t) ∈ Rmt×mt , and B(t) is of full rank for all t.

Under these assumptions, it can be verified that our algorithms from Sections 3 and 4 still
work (for real-valued solutions xi ∈ Rn). For Section 3, it is important to note that OPTt
indeed increases with t. The proof of the next lemma is omitted due to space constraints.

I Lemma 10. With the above assumptions, OPTt ≤ OPTt+1.

Another consideration when discussing rounding is scale – if A1 = (M) and B = (1)
(matrices of dimension 1), then the optimum fractional solution is x1 = 1

M but the optimum
integer solution is 1, which costs M times the fractional solution. Therefore we must assume
some kind of bound on the covering matrices (we use λ1 (Ai) ≤ R), and we will be paying for
this bound in our competitive ratio. As demonstrated by this example, this is unavoidable.

5.2 A Randomized Rounding Algorithm

We use a simple randomized rounding scheme. We run the algorithm described in Section 31
to maintain a fractional solution x(t), and we round that solution to an integer solution x̂(t),
so that Ex̂(t) = ρtx

(t), where ρt is an approximation factor (see algorithm for exact definition),
which we adjust as the dimension of the matrices grows. We then use the feasibility of x(t) to
show that w.h.p. x̂(t) is also feasible. The rounding is done as follows: whenever a variable
xi increases from x

(t−1)
i to x(t)

i , we add 1 to x̂i with probability ρtx(t)
i − ρt−1x

(t−1)
i . Since

mt and x(t) can only increase with t, so can ρt and thus ρtx(t)
i − ρt−1x

(t−1)
i is non-negative.

To make sure that this value is always ≤ 1, we can simply break up the increase in xi into
smaller steps. This is expressed formally in algorithm 4.

I Theorem 11. The resulting solution’s expected cost is at most O (R (logmt + logn)) times
the cost of the fractional solution.

The proof is omitted due to space constraints.

1 If box constraints are given, we can run the algorithm from Section 4 instead. The only modification to
the rounding is that each variable is increased at most once. The same analysis holds for both cases.

ICALP 2016

40:12 Online Semidefinite Programming

Algorithm 4 Randomized rounding

Let R > 0 be such that λ1 (Ai) ≤ R for all i.
Initialize x̂(0) = 0
For step t = 1, 2, . . . :

Let ρt = 1 + max {8R (log 2mt + logn) , 2}.
Use Algorithms (2) or (3) to compute the fractional solution x(t).
For i = 1, . . . , n:
∗ Let di,t =

⌊
ρtx

(t)
i − ρt−1x

(t−1)
i

⌋
, and δi,t = ρtx

(t)
i − ρt−1x

(t−1)
i − di,t

∗ Let x̂(t)
i,1, . . . , x̂

(t)
i,di,t

= 1.

∗ Let x̂(t)
i,di,t+1 =

{
1 with probability δi,t
0 otherwise

.

∗ return x̂(t)
i = x̂

(t−1)
i + x̂

(t)
i,1 + · · ·+ x̂

(t)
i,di,t+1.

5.3 An Application – Quantum Hypergraph Covering

Quantum hypergraphs originate from the field of quantum information theory. A hypergraph
is a pair (V,E) where E ⊆ 2V . The hypergraph covering problem (finding a collection of
edges covering all vertices) is equivalent to set cover. Let each edge e ∈ E be represented by
a {0, 1} diagonal matrix Ae, where the i-th diagonal entry is 1 if and only if the i-th element
in V belongs to e. The hypergraph covering problem is to find a collection of edges such that∑
e∈cover Ae < I. A quantum hypergraph is a pair (V,E), where each e ∈ E corresponds to a

symmetric matrix Ae of dimension |V |, such that 0 4 Ae 4 I. The difference is that Ae need
not be diagonal or only have {0, 1} eigenvalues. The quantum hypergraph covering problem is
thus the problem of finding a minimum collection of edges in E that satisfy

∑
e∈cover Ae < I.

The fractional quantum hypergraph covering problem is the problem of assigning non-negative
weights xe to each e ∈ E such that

∑
e∈E xeAe < I|V |, while minimizing

∑
e∈E xe.

Ahlswede and Winter [1] used a novel approach to develop a matrix-valued generalization
of the Chernoff inequality. They applied this inequality in the analysis of their randomized
rounding scheme, which takes a fractional quantum hypergraph cover and rounds it to a
quantum hypergraph cover. They showed that this rounding finds a cover which is at most
O (logm) times larger than the minimum cover, where m is the dimension of the matrices
involved. Wigderson and Xiao [7] derandomized this result to provide a deterministic
algorithm for quantum hypergraph covering. Their result also produces an O (logm)-
approximation cover. In addition to the quantum hypergraph covering problem, Wigderson
and Xiao also provided a more general algorithm for integer semidefinite programming.

It is easy to see that the fractional quantum hypergraph covering problem is exactly the
semidefinite covering problem, with the added requirement that all the covering matrices Ae
fall in the range [0, I], and the covered matrix is the identity matrix B = I. When translating
this into an online setting, the most natural approach is to look at the setting presented in
Section 5, where the dimension of the matrices can increase but the covered matrix must
have full rank. The online quantum hypergraph covering problem is thus the problem of
maintaining a monotonically increasing cover while the edges are revealed one dimension at
a time. In this setting, combining algorithms 2 and 4 gives an O (logn logm)-competitive
solution to online quantum hypergraph programming (R = 1 since 0 4 Ae 4 I).

N. Elad, S Kale, and J. Naor 40:13

References
1 Rudolf Ahlswede and Andreas Winter. Strong converse for identification via quantum

channels. Information Theory, IEEE Transactions on, 48(3):569–579, 2002.
2 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. cambridge

university press, 2005.
3 Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and packing.

Mathematics of Operations Research, 34(2):270–286, 2009.
4 Michel X Goemans and David P Williamson. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. Journal of the
ACM (JACM), 42(6):1115–1145, 1995.

5 Anupam Gupta and Viswanath Nagarajan. Approximating sparse covering integer pro-
grams online. In Automata, Languages, and Programming – 39th International Colloquium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, pages 436–448, 2012.

6 Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389–434, 2012.

7 Avi Wigderson and David Xiao. Derandomizing the AW matrix-valued Chernoff bound
using pessimistic estimators and applications, 2006.

ICALP 2016

	Introduction
	Results

	Our Model and Definitions
	Our Model

	The General Algorithm
	Intuition
	Algorithm Description

	Box Constraints
	Sparsity
	Algorithm Description

	Rounding
	Changing the Framework
	A Randomized Rounding Algorithm
	An Application – Quantum Hypergraph Covering

