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Abstract
We examine the computational complexity of approximately counting the list H-colourings of a
graph. We discover a natural graph-theoretic trichotomy based on the structure of the graph H.
If H is an irreflexive bipartite graph or a reflexive complete graph then counting list H-colourings
is trivially in polynomial time. Otherwise, if H is an irreflexive bipartite permutation graph or
a reflexive proper interval graph then approximately counting list H-colourings is equivalent to
#BIS, the problem of approximately counting independent sets in a bipartite graph. This is
a well-studied problem which is believed to be of intermediate complexity – it is believed that
it does not have an FPRAS, but that it is not as difficult as approximating the most difficult
counting problems in #P. For every other graph H, approximately counting list H-colourings
is complete for #P with respect to approximation-preserving reductions (so there is no FPRAS
unless NP = RP). Two pleasing features of the trichotomy are (i) it has a natural formulation in
terms of hereditary graph classes, and (ii) the proof is largely self-contained and does not require
any universal algebra (unlike similar dichotomies in the weighted case). We are able to extend
the hardness results to the bounded-degree setting, showing that all hardness results apply to
input graphs with maximum degree at most 6.
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1 Overview

We study the complexity of approximately counting the list H-colourings of a graph. List
H-colourings generalise H-colourings in the same way that list colourings generalise proper
vertex colourings. Fix an undirected graph H, which may have loops but not parallel edges.
Given a graph G, an H-colouring of G is a homomorphism from G to H – that is, a mapping
σ : V (G)→ V (H) such that, for all u, v ∈ V (G), {u, v} ∈ E(G) implies {σ(u), σ(v)} ∈ E(H).
If we identify the vertex set V (H) with a set Q = {1, 2, . . . , q} of “colours”, then we can
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46:2 A Complexity Trichotomy for Approximately Counting List H-Colourings

think of the mapping σ as specifying a colouring of the vertices G, and we can interpret the
graph H as specifying the allowed colour adjacencies: adjacent vertices in G can be assigned
colours i and j, if and only if vertices i and j are adjacent in H.

Now consider the graph G together with a collection of sets S = {Sv ⊆ Q : v ∈ V (G)}
specifying allowed colours at each of the vertices. A list H-colouring of (G,S) is an H-
colouring σ of G satisfying σ(v) ∈ Sv, for all v ∈ V . In the literature, the set Sv is referred to
as the “list” of allowed colours at vertex v, but there is no implied ordering on the elements
of Sv – Sv is just a set of allowed colours.

Suppose that H is a reflexive graph (i.e., a graph in which each vertex has a loop). Feder
and Hell [4] considered the complexity of determining whether a list H-colouring exists, given
an input (G,S). They showed that the problem is in FP if H is an interval graph, and that
it is NP-complete, otherwise. Feder, Hell and Huang [5] studied the same problem in the
case where H is irreflexive (i.e., H has no loops). They showed that the problem is in FP
if H is a circular arc graph of clique covering number two (which is the same as being the
complement of an interval bigraph [12]), and that it is NP-hard, otherwise. Finally, Feder,
Hell and Huang [6] generalised this result to obtain a dichotomy for all H. They introduced
a new class of graphs, called bi-arc graphs, and showed that the problem is in FP if H is a
bi-arc graph, and NP-complete, otherwise.

We are concerned with the computational complexity of counting list H-colourings.
Specifically we are interested in how the complexity of the following computational problem
depends on H.

Name #List-H-Col.
Instance A graph G and a collection of colour sets S = {Sv ⊆ Q : v ∈ V (G)}, where

Q = V (H).
Output The number of list H-colourings of (G,S).

Note that it is of no importance whether we allow or disallow loops in G – a loop at vertex
v ∈ V (G) can be encoded within the set Sv – so we adopt the convention that G is loop-free.
As in the case of the decision problem, H is a parameter of the problem – it does not
form part of the problem instance. Sometimes we obtain sharper results by introducing an
additional parameter ∆, which is an upper bound on the degrees of the vertices of G. Thus
#List-H-Col(∆) is the special case of #List-H-Col in which the graph G has degree at
most ∆. Although #List-H-Col and #List-H-Col(∆) are the main objects of study in
this paper, we occasionally need to discuss the more basic versions of these problems without
lists.

Name #H-Col.
Instance A graph G.
Output The number of H-colourings of G.

Once again, #H-Col(∆) is the special case of #H-Col in which the degree of G is at most ∆.
To illustrate the definitions, let K ′2 be the first graph illustrated in Figure 1, consisting
of two connected vertices with a loop on vertex 2. #K ′2-Col is the problem of counting
independent sets in a graph since the vertices mapped to colour 1 by any homomorphism
form an independent set. Let K3 be the complete irreflexive graph on three vertices. Then
#K3-Col is the problem of counting the proper 3-colourings of a graph.

The computational complexity of computing exact solutions to #H-Col and #H-Col(∆)
was determined by Dyer and Greenhill [3]. Dyer and Greenhill showed that #H-Col is in
FP if H is a complete reflexive graph or a complete bipartite irreflexive graph, and #H-Col
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is #P-complete otherwise. Their dichotomy also extends to the bounded-degree setting. In
particular, they showed that if H is not a complete reflexive graph or a complete bipartite
irreflexive graph then there is an integer ∆H such that, for all ∆ ≥ ∆H , #H-Col(∆) is
#P-complete.

Since the polynomial-time cases in Dyer and Greenhill’s dichotomy clearly remain solvable
in polynomial-time in the presence of lists, their dichotomy for #H-Col carries over to
#List-H-Col without change. In other words, there is no difference between the complexity
of #H-Col and #List-H-Col as far as exact computation is concerned. However, this
situation changes if we consider approximate counting, and this is the phenomenon that we
explore in this paper.

With a view to reaching the statement of the main results as quickly as possible, we
defer precise definitions of the relevant concepts to Section 2, and provide only indications
here. From graph theory we import a couple of well studied hereditary graph classes, namely
bipartite permutation graphs and proper interval graphs. These classes each have several
equivalent characterisations, and we give two of these, namely, excluded subgraph and matrix
characterisations, in Section 2. It is sometimes useful to restrict the definition of proper
interval graphs to simple graphs. However, in this paper, as in [4], we consider reflexive
proper interval graphs.

From complexity theory we need the definitions of a Fully Polynomial Randomised
Approximation Scheme (FPRAS), of approximation-preserving (AP-) reducibility, and of the
counting problems #SAT and #BIS. An FPRAS is a randomised algorithm that produces
approximate solutions within specified relative error with high probability in polynomial time.
An AP-reduction from problem Π to problem Π′ is a randomised Turing reduction that yields
close approximations to Π when provided with close approximations to Π′. It meshes with
the definition of an FPRAS in the sense that the existence of an FPRAS for Π′ implies the
existence of an FPRAS for Π. The problem of counting satisfying assignments of a Boolean
formula is denoted by #SAT. Every counting problem in #P is AP-reducible to #SAT, so
#SAT is said to be complete for #P with respect to AP-reductions. It is known that there
is no FPRAS for #SAT unless RP = NP. The problem of counting independent sets in
a bipartite graph is denoted by #BIS. The problem #BIS appears to be of intermediate
complexity: there is no known FPRAS for #BIS (and it is generally believed that none
exists) but there is no known AP-reduction from #SAT to #BIS. Indeed, #BIS is complete
with respect to AP-reductions for a complexity class #RHΠ1 which is discussed further in
the full version.

We say that a problem Π is #SAT-hard if there is an AP-reduction from #SAT to Π, that
it is #SAT-easy if there is an AP-reduction from Π to #SAT, and that it is #SAT-equivalent
if both are true. Note that all of these labels are about the difficulty of approximately
solving Π, not about the difficulty of exactly solving it. Similarly, Π is said to be #BIS-hard
if there is an AP-reduction from #BIS to Π, #BIS-easy if there is an AP-reduction from Π
to #BIS, and #BIS-equivalent if there are both.

Our main result is a trichotomy for the complexity of approximating #List-H-Col.

I Theorem 1. Suppose that H is a connected undirected graph (possibly with loops).
(i) If H is an irreflexive complete bipartite graph or a reflexive complete graph then

#List-H-Col is in FP.
(ii) Otherwise, if H is an irreflexive bipartite permutation graph or a reflexive proper interval

graph then #List-H-Col is #BIS-equivalent.
(iii) Otherwise, #List-H-Col is #SAT-equivalent.

I Remarks. 1. The assumption that H is connected is made without loss of generality,
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Figure 1 K′2, 2-wrench and P ∗3 .

since the complexity of #List-H-Col is determined by the maximum complexity of
#List-H ′-Col over all connected components H ′ of H.

2. Part (ii) of Theorem 2 can be strengthened. For the graphs H covered by this part of the
theorem, #List-H-Col is actually complete for the complexity class #RHΠ1. See the
full version for a definition of #RHΠ1 and a proof of membership of #List-H-Col in
#RHΠ1.

Theorem 1 also extends to the bounded-degree case.

I Theorem 2. Suppose that H is a connected undirected graph (possibly with loops).
(i) If H is an irreflexive complete bipartite graph or a reflexive complete graph then, for all

∆, #List-H-Col(∆) is in FP.
(ii) Otherwise, if H is an irreflexive bipartite permutation graph or a reflexive proper interval

graph then, for all ∆ ≥ 6, #List-H-Col(∆) is #BIS-equivalent.
(iii) Otherwise, for all ∆ ≥ 6, #List-H-Col(∆) is #SAT-equivalent. Further, if H is

reflexive or irreflexive, #List-H-Col(∆) is #SAT-equivalent for ∆ ≥ 3.

I Remarks.
1. The condition ∆ ≥ 6 is necessary for any hardness result that holds for all graphs H. In

particular, there is a graph H that is not an irreflexive complete bipartite graph or a
reflexive complete graph but for which #List-H-Col(∆) has an FPTAS. An example is
the graph H = K ′2 for which Weitz’s self-avoiding walk algorithm [22] gives an FPTAS
for #List-H-Col(∆) for ∆ ≤ 5.

2. In general, the lowest value of the degree bound ∆ such that #List-H-Col(∆) is
computationally hard depends on the particular graph H.

Proof of Theorems 1 and 2. Part (i) is trivial. Part (ii) follows from Lemmas 13 and 14.
Part (iii) follows from Lemmas 7, 9, and 11. J

The most obvious issue raised by our theorems is the computational complexity of
approximately counting H-colourings (in the absence of lists). This question was extensively
studied by Kelk [14] and others, and appears much harder to resolve, even when there are no
degree bounds. It is known [7] that #H-Col is #BIS-hard for every connected undirected
graph H that is neither an irreflexive bipartite permutation graph nor a reflexive proper
interval graph. It is not known for which connected H the problem is #BIS-easy and for
which it is #SAT-equivalent, and whether one or the other always holds. In fact, there are
specific graphs H, two of them with as few as four vertices, for which the complexity of
#H-Col is unresolved. It is far from clear that a trichotomy should be expected, and in
fact there may exist an infinite sequences (Ht) of graphs for which #Ht-Col is reducible to
#Ht+1-Col but not vice versa. Some partial results and speculations can be found in [14].

As we noted, #H-Col and #List-H-Col have the same complexity as regards exact
computation. However, for approximate computation they are different, assuming (as is
widely believed) that there is no AP-reduction from #SAT to #BIS. An example is provided
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by the 2-wrench (see Figure 1). It is known [2, Theorem 21] that #2-wrench-Col is
#BIS-equivalent, but we know from Theorem 1 that the list version #List-2-wrench-Col
is #SAT-equivalent since the 2-wrench is neither irreflexive nor reflexive. One way to see
that #List-2-wrench-Col is #SAT-equivalent is to note that the 2-wrench contains K ′2
as an induced subgraph, and that this induced subgraph can be “extracted” using the list
constraints Sv = {1, 2}, for all v ∈ V (G). But #List-K ′2-Col is already known to be
#SAT-equivalent [2, Theorem 1]. Indeed, systematic techniques for extracting hard induced
subgraphs form the main theme of the paper. It is for this reason that the theory of hereditary
graph classes comes into play, just as in [6].

Another recent research direction, at least in the unbounded-degree case, is towards
weighted versions of list colouring. Here, the graph H is augmented by edge-weights,
specifying for each pair of colours i, j, the cost of assigning i and j to adjacent vertices in G.
The computational complexity of obtaining approximate solutions was studied by Chen, Dyer,
Goldberg, Jerrum, Lu, McQuillan and Richerby [1], and by Goldberg and Jerrum [11]. There
is a trichotomy for the case in which the input has no degree bound, but this is obtained
in a context where individual spins at vertices are weighted and not just the interactions
between pairs of adjacent spins. In this paper we have restricted the class of problems under
consideration to ones having 0,1-weights on interactions, but at the same time we have
restricted the problem instances to ones having 0,1-weights on individual spins. So we have
a different tradeoff and the results from the references that we have just discussed do not
carry across, even in the unbounded-degree setting. Indeed, towards the end of the paper,
in Section 5, we give an example to show that Theorem 1 is not simply the restriction of
earlier results to 0,1-interactions (not merely because the proofs differ, but, in a stronger
sense, because the results themselves are different).

Two things are appealing about our theorems. First, unlike the weighted classification
theorems [1], here the truth is pleasingly simple. The trichotomies for #List-H-Col and
#List-H-Col(∆) have a simple, natural formulation in terms of hereditary graph classes.
Second, the proofs of the theorems are largely self-contained. The proofs do not rely on earlier
works such as [1], which require multimorphisms and other deep results from universal algebra.
The proof of Theorem 1 is self-contained apart from some very elementary and well-known
starting points, which are collected together in Lemma 6. The proof of Theorem 2 is similarly
self-contained, though it additionally relies on recent results [18, 8] about approximating the
partition function of the anti-ferromagnetic Ising model on bounded degree graphs (these are
also contained in Lemma 6).

2 Complexity- and graph-theoretic preliminaries

As the complexity of computing exact solutions of #List-H-Col is well understood, we
focus on the complexity of computing approximations. The framework for this has already
been explained in many papers, so we provide an informal description only here and direct
the reader to Dyer, Goldberg, Greenhill and Jerrum [2] for precise definitions.

The standard notion of efficient approximation algorithm is that of a Fully Polynomial
Randomised Approximation Scheme (or FPRAS). This is a randomised algorithm that is
required to produce a solution within relative error specified by a tolerance ε > 0, in time
polynomial in the instance size and ε−1. Evidence for the non-existence of an FPRAS for a
problem Π can be obtained through Approximation-Preserving (or AP-) reductions. These
are randomised polynomial-time Turing reductions that preserve (closely enough) the error
tolerance. The set of problems that have an FPRAS is closed under AP-reducibility.

ICALP 2016



46:6 A Complexity Trichotomy for Approximately Counting List H-Colourings

Every problem in #P is AP-reducible to #SAT, so #SAT is complete for #P with respect
to AP-reductions. The same is true of the counting version of any NP-complete decision
problem. It is known that these problems do not have an FPRAS unless RP = NP. On the
other hand, using the bisection technique of Valiant and Vazirani [20, Corollary 3.6], we know
that #SAT can be approximated (in the FPRAS sense) by a polynomial-time probabilistic
Turing machine equipped with an oracle for the decision problem SAT.

In the statement and proofs of our theorems we refer to two hereditary graph classes.
A class of undirected graphs is said to be hereditary if it is closed under taking induced
subgraphs. The classes of bipartite permutation graphs and proper interval graphs have been
widely studied and many equivalent characterisations of them are known. We are concerned
with the excluded subgraph and matrix characterisations.

A graph is a bipartite permutation graph if and only if it contains none of the following
as an induced subgraph: X3, X2, T2 or a cycle C` of length ` not equal to four. (Refer to
Figure 2 for specifications of X3, X2 and T2.) This characterisation was noted by Köhler [15],
who observed that it follows from an excluded subgraph characterisation of Gallai [9, 10].
The argument is given by Hell and Huang [12], in the proof of their Theorem 3.4, in particular
parts (iv) and (vi).

A graph is a proper interval graph if and only if it contains none of the following as
an induced subgraph: the claw, the net, S3 or a cycle C` of length ` at least four. (Refer
to Figure 3 for specifications of the claw, the net and S3.) This characterisation is due
to Wegner [21] and Roberts [17], and is stated is by Jackowski [13] as his Theorem 1.4,
specifically the equivalence of (i) and (iii). In this context, note that a chordal graph is one
that contains no induced cycles of length other than three.

The two graph classes also have matrix characterisations. Say that a 0,1-matrix A =
(Ai,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m) has staircase form if the 1s in each row are contiguous and the
following condition is satisfied: letting αi = min{j : Ai,j = 1} and βi = max{j : Ai,j = 1},
we require that the sequences (αi) and (βi) are non-decreasing. It is automatic that the
columns share the contiguity and monotonicity properties, so the property of having staircase
form is in fact invariant under matrix transposition.

A graph is a bipartite permutation graph if the rows and columns of its biadjacency matrix
can be (independently) permuted so that the resulting biadjacency matrix has staircase form.
This characterisation is presented by Spinrad, Brandstädt and Stewart [19], specifically the
equivalence of (i) and (ii) in their Theorem 1.

A graph is a proper interval graph if the rows and columns of its adjacency matrix can be
(simultaneously) permuted so that the resulting adjacency matrix has staircase form. This
fact comes directly from the characterisation of proper interval graphs that gives the class its
name, namely, that they are graphs which have an interval intersection model in which no
interval is a proper subset of another. The ordering of intervals by left endpoint (which is the
same as the ordering by right endpoint) gives the required permutation of rows and columns.

As we mentioned in Section 1, an appealing feature of our theorems is that our proofs are
largely self-contained. The only pre-requisites for the proof are complexity results classifying
some very well-known approximation problems. These are collected in Lemma 6, which
is proved in the full version. For this, we will use the graph K ′2 defined in Section 1 (see
Figure 1), the path P4 of length three (with four vertices) and the problem #1p1nSat of
counting the satisfying assignments of a CNF formula in which each clause has at most one
negated literal and at most one unnegated literal. We will also use the following definition.
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I Definition 4. Let 0 < λ < 1 be a rational number and let ∆ be a positive integer. Define
Name AntiFerroIsingλ(∆).
Instance A graph G of maximum degree at most ∆.
Output The partition function of the antiferromagnetic Ising model with parameter λ evalu-

ated on instance G, i.e., Zλ(G) =
∑
σ:V→{±1}

∏
{u,v}∈E(G) λ

δ(σ(u),σ(v)), where δ(i, j) is 1
if i = j and 0 otherwise.

I Lemma 6. The following problems are #SAT-equivalent: #K ′2-Col(∆) for any ∆ ≥ 6,
and AntiFerroIsingλ(∆) for any ∆ ≥ 3 and 0 < λ < (∆− 2)/∆. The following problems
are #BIS-equivalent: #P4-Col(∆) for ∆ ≥ 6 and #1p1nSat.

3 #SAT-equivalence

The aim of this section is to establish the #SAT-equivalence parts of Theorems 1 and 2.

I Lemma 7. Suppose that H is a connected undirected graph. If H is neither reflexive nor ir-
reflexive then, for all ∆ ≥ 6, #List-H-Col(∆) is #SAT-equivalent. Hence, #List-H-Col
is #SAT-equivalent.

Proof. Let ∆ ≥ 6. Since H is connected, it must contain K ′2 as an induced subgraph.
So #K ′2-Col(∆) is AP-reducible to #List-H-Col(∆). By Lemma 6, #K ′2-Col(∆) is
#SAT-equivalent. J

The gadgets that we use in our reductions in the upcoming lemmas are of a particularly
simple kind, namely paths.1 Let the vertex set of the L-vertex path be {1, 2, . . . , L}, where
the vertices are numbered according to their position on the path. The end vertices 1 and L
are terminals, which make connections with the rest of the construction. For each vertex
1 ≤ k ≤ L there is a set of allowed colours Sk. We can describe a gadget by specifying L and
specifying the sets (S1, S2, . . . , SL). In our application, each set Si has cardinality 2, and
S1 = SL.

Fix a connected graph H (note that H may have loops). Our strategy for proving that
#List-H-Col(∆) is #SAT-equivalent is to find a gadget ({i1, j1}, {i2, j2}, . . . , {iL, jL})
such that
(i) the sequence (i1, . . . , iL) is a path in H, and likewise (j1, . . . , jL);
(ii) it is never the case that both {ik, jk+1} ∈ E(H) and {jk, ik+1} ∈ E(H); and
(iii) i1 = jL and j1 = iL.
If we achieve these conditions then, as we shall see, the colours at the terminals will be negat-
ively correlated, and from there we will be able to encode instances of AntiFerroIsingλ(∆)
for some integer ∆ ≥ 3 and λ ∈ (0, ∆−2

∆ ), and this is #SAT-equivalent (Lemma 6). Note
that although the ordering of elements within the sets Si is irrelevant to the workings of the
gadget, we write the pairs in a specific order to bring out the path structure that we have
just described.

Fix H and let A = AH be the adjacency matrix of H. Denote by A(i,j),(i′,j′) the 2× 2
submatrix of A indexed by rows i and j and columns i′ and j′. We regard the indices in the
notation A(i,j),(i′,j′) as ordered; thus the first row of this 2× 2 matrix comes from row i of A
and the second from row j.

1 We were also able to make use of path gadgets in [11], though, as noted (see Section 1) the results
unfortunately do not carry over to our setting. Here the use of structural graph theory makes the
discovery of such gadgets pleasingly straightforward.

ICALP 2016
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Figure 2 X3, X2 and T2.

Given a gadget, i.e., sequence ({i1, j1}, {i2, j2}, . . . , {iL, jL}), consider the product of
2× 2 submatrices of A:

D′ = A(i1,j1),(i2,j2)A(i2,j2),(i3,j3) · · ·A(iL−1,jL−1),(iL,jL). (1)

If conditions (i)–(iii) for gadget construction are satisfied then each of the 2× 2 matrices in
the product has 1s on the diagonal; also, all of them have at least one off-diagonal entry that
is 0. Thus, each matrix has determinant 1, from which it follows that detD′ = 1.

Now consider the matrix D that is obtained by swapping the two columns of D′. This
swap rectifies the “twist” that occurs in the passage from (i1, j1) to (iL, jL) = (j1, i1), but it
also flips the sign of the determinant, leaving detD = −1. Let r = i1 = jL and s = j1 = iL.
The matrix D can be interpreted as giving the number of list H-colourings of the gadget when
the k’th vertex of the gadget (for k ∈ {1, . . . , L} is assigned the list {ik, jk}, so the terminals
are restricted to colours in {r, s}. Thus the entry in the first row and column of D is the
number of colourings with both terminals receiving colour r, the entry in the first row and
second column is the number of colourings with terminal 1 receiving colour r and terminal L
receiving colour s, the entry in the second row and first column is the number of colourings
with terminal 1 receiving colour s and terminal L receiving colour r and finally the entry in
the second row and second column is the number of colourings with both terminals receiving
colour s. We call D = D(Γ) the interaction matrix associated with the gadget Γ. Since
detD < 0 the gadget provides a negative correlation between the colours at the terminals,
which, as we will see, will allow a reduction from AntiFerroIsingλ(∆).

In the full version, Lemma 8 first applies the technique to get the #SAT-equivalences
in the unbounded-degree case. For these arguments, we intentionally keep the construction
of the gadgets as simple as possible. While this would also lead to a value of ∆ such
that #List-H-Col(∆) is #SAT-equivalent, the value of ∆ would be much larger than 6.
Nevertheless, we are able to refine the constructions to obtain the bounded-degree results of
Theorem 2. Lemma 9 here combines Lemmas 8 and 9 of the full version and illustrates the
key ideas.

I Lemma 9. Suppose that H is a connected undirected graph. If H is irreflexive but it is not
a bipartite permutation graph, then for all ∆ ≥ 3, #List-H-Col(∆) is #SAT-equivalent
(so #List-H-Col is also #SAT-equivalent).

Proof (One Case). Graphs that are not bipartite permutation graphs contain one of the
following as an induced subgraph: X3, X2, T2, or a cycle of length other than 4. (Refer to
Figure 2.) Here we present the case X3. The remaining cases are similar and can be found
in the full version.

We first show that the unbounded problem #List-X3-Col is #SAT-equivalent. The
gadget in this case is Γ =

(
{1, 2}, {4, 7}, {3, 6}, {4, 5}, {2, 1}

)
. The conditions (i)–(iii) for
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gadget construction are easy to check. Explicit calculation using (1) yields

D′ = A(1,2),(4,7)A(4,7),(3,6)A(3,6),(4,5)A(4,5),(2,1) = ( 1 0
1 1 )( 1 1

0 1 )( 1 0
1 1 )( 1 1

0 1 ) = ( 2 3
3 5 ).

Swapping the columns of D′ yields the interaction matrix D = ( 3 2
5 3 ). As we explained

earlier, detD = −1. Obtaining a matrix D with negative determinant is moving in the
right direction, but in order to encode antiferromagnetic Ising we ideally want the matrix
D = (Di,j) to also satisfy D1,1 = D2,2 and D1,2 = D2,1. Observe that the graph X3 has an
automorphism of order two, π = (1, 2)(5, 7), that transposes vertices 1 and 2, which are the
terminals of the gadget Γ. Consider the gadget obtained from Γ by letting π act on the
colour sets, namely

Γπ =
(
{π(1), π(2)}, {π(4), π(7)}, {π(3), π(6)}, {π(4), π(5)}, {π(2), π(1)}

)
=
(
{2, 1}, {4, 5}, {3, 6}, {4, 7}, {1, 2}

)
,

The interaction matrix Dπ = ( 3 5
2 3 ) corresponding to Γπ is the same as D, except that the

rows and columns are swapped. Placing Γ and Γπ in parallel, identifying the terminals,
yields a composite gadget Γ∗ whose interaction matrix is D∗ =

(
D1,1D2,2 D1,2D2,1
D2,1D1,2 D2,2D1,1

)
= ( 9 10

10 9 ).
Note that the gadget Γ∗ has maximum degree 2 (this observation will be important for the
bounded-degree case). Also, detD∗ = D2

1,1D
2
2,2−D2

1,2D
2
2,1 = (D1,1D2,2+D1,2D2,1) detD < 0.

So we have an AP-reduction from AntiFerroIsingλ with λ = D1,1D2,2/(D1,2D2,1) to
#List-H-Col: given an instance G of AntiFerroIsingλ, simply replace each edge {u, v}
of G with a copy of the gadget Γ∗, identifying the two terminals of Γ∗ with the vertices
u and v, respectively. (Since Γ∗ is symmetric, it does not matter which is u and which
is v.) The problem AntiFerroIsingλ is #SAT-equivalent by Lemma 6. So for this case
(H = X3), we have λ = 9

10 .
We next show that, for ∆ ≥ 3, #List-X3-Col(∆) is #SAT-equivalent. The smallest

∆ such that AntiFerroIsing 9
10

(∆) is #SAT-equivalent is ∆ = 21, so the argument above
would only give that #List-X3-Col(∆) is #SAT-equivalent for ∆ ≥ 21 (in fact, ∆ ≥ 2 ·21 =
42, since the terminals of Γ∗ have degree 2). To improve this, we will implement thickenings
of the gadget Γ∗ using carefully chosen list colourings to keep the degree of the gadget small.
More precisely, for integer t ≥ 0, we will construct inductively gadgets Γ∗t such that:
(i) The allowed colours of the terminals of Γ∗t will be {1, 2} for odd t and {5, 7} for even t.
(ii) The two terminals of Γ∗t will each have degree 1, and all other vertices of Γ∗t will have

degree at most 3.
(iii) The interaction matrix of Γ∗t will be D∗t =

(
92t

102t

102t
92t

)
.

By taking t sufficiently large, the reduction above, using Γ∗t as gadget instead of Γ∗, yields
that #List-X3-Col(∆) is #SAT-equivalent for ∆ ≥ 3. It remains to build the gadgets Γ∗t .

Γ∗0 is obtained from Γ∗ by connecting each terminal of Γ∗ to a new vertex whose allowed
set of colours is {5, 7} (recall that the allowed colours of the terminals of Γ∗ are in {1, 2}).
The terminals of Γ∗0 are the two new vertices. Γ∗0 clearly satisfies properties (i) and (ii) for
t = 0. To find the interaction matrix of Γ∗0, note that colour 1 is adjacent to colour 5 in X3
but not to colour 7. Similarly, colour 2 is adjacent to colour 7 in X3 but not to colour 5.
Thus, D(Γ∗0) = ( 1 0

0 1 ) ( 9 10
10 9 ) ( 1 0

0 1 ) = D∗0 , proving that Γ∗0 satisfies all properties (i)–(iii), as
desired.

To construct Γ∗t+1 from Γ∗t , take two copies of Γ∗t , place them in parallel, identifying
their terminals in the natural way. Now, analogously to the construction of Γ∗0, connect
each (doubled-up) terminal of Γ∗t to a new vertex whose allowed set of colours is {1, 2} if
t is even and {5, 7} if t is odd. The final graph is the gadget Γ∗t+1 and the new vertices
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Figure 3 The claw, the net and S3.

introduced in the second step of the construction are its terminals. It is clear that Γ∗t+1
satisfies property (i) and, using the fact that Γ∗t satisfies property (ii), we have that Γ∗t+1
satisfies property (ii) as well. Arguing analogously as for Γ∗0, the interaction matrix of Γ∗t+1 is

given by D(Γ∗t+1) = ( 1 0
0 1 )

(
(92t

)2 (102t
)2

(102t
)2 (92t

)2

)
( 1 0

0 1 ) = D∗t+1, where the squared entries account

for the 2-thickening of the gadget Γ∗t . This proves that Γ∗t+1 has property (iii), concluding
the proof for H = X3. The other cases are similar, and are given in the full version (where
more of the general principles are explained). J

The remaining cases of parts (iii) of Theorems 1 and 2 are covered by Lemmas 10 and 11
of the full version, which we combine here.

I Lemma 11. Suppose that H is a connected undirected graph. If H is a reflexive graph
that is not a proper interval graph, then, for ∆ ≥ 3, #List-H-Col(∆) is #SAT-equivalent
(so #List-H-Col is #SAT-equivalent).

Proof Sketch. The line of argument is similar to those used in Lemma 9. Graphs that are
not proper interval graphs contain one of the following as an induced subgraph: the claw,
the net, S3, or a cycle of length at least four. (Refer to Figure 3 but note that loops are
omitted.) We show that #List-H-Col is #SAT-equivalent when H is any of these (and
the bounded-degree analogue). The details can be found in the full version. J

4 #BIS-equivalence

We now deal with the #BIS-equivalent cases in Theorems 1 and 2.

I Lemma 13. Suppose that H is a connected undirected graph. If H is not a reflexive complete
graph or an irreflexive complete bipartite graph then, for all ∆ ≥ 6, #List-H-Col(∆) is
#BIS-hard. Hence, #List-H-Col is #BIS-hard.

Proof Sketch. In the full version, we show that any graph covered by the lemma contains
one of the following as an induced subgraph: K ′2, P ∗3 , P4 or an odd cycle. These are (at
least) #BIS-hard: by Lemma 6 for K ′2 and P4, by Lemma 12 of the full version for P ∗3 , and
by Lemma 9 for an odd cycle. J

I Lemma 14. Suppose that H is a connected undirected graph. If H is an irreflexive bipartite
permutation graph or a reflexive proper interval graph, then #List-H-Col is #BIS-easy.

Proof Sketch. The reduction is done in a more general weighted setting by Chen, Dyer,
Goldberg, Jerrum, Lu, McQuillan and Richerby [1]: see the proofs of Lemmas 45 and 46
of that article. However, in the current context, we can simplify the reduction significantly
(eliminating the need for multimorphisms and other concepts from universal algebra), and
we can also extract (see the full paper) the slightly stronger statement that #List-H-Col
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is in #RHΠ1. The target problem for our reduction is #1p1nSat which is #BIS-equivalent
by Lemma 6.

We will treat the case where H is an irreflexive bipartite permutation graph. The other
case is similar (as explained in the full version). Without loss of generality, suppose that
H is connected and that its biadjacency matrix B has q1 rows and q2 columns and is in
staircase form. Let A be the adjacency matrix

(
B 0
0 BT

)
, which is formally defined as follows.

Ai,j =


Bi,j , if 1 ≤ i ≤ q1, 1 ≤ j ≤ q2

Bj−q2,i−q1 , if q1 + 1 ≤ i ≤ q1 + q2, q2 + 1 ≤ j ≤ q2 + q1

0, otherwise.

Let q = q1 + q2. For each i ∈ {1, . . . , q}, let αi = min{j : Ai,j = 1} and let βi = max{j :
Ai,j = 1}. Since B is in staircase form, so is A, so the sequences (αi) and (βi) are non-
decreasing. Let r1, . . . , rq be the colours associated with the rows of A and c1, . . . , cq be the
colours associated with the columns of A, in order. Note that {r1, . . . , rq} and {c1, . . . , cq}
are different permutations of the vertices of H,

Suppose that (G,S) is an instance of #List-H-Col. Assume without loss of generality
that G is bipartite. Otherwise, it has no H-colourings. Let V1(G) ∪ V2(G) be the bipartition
of V (G). We will construct an instance Ψ of #1p1nSat such that the number of satisfying
assignments to Ψ is equal to the number of list H-colourings of (G,S).

The variable set of Ψ is x = {xui : u ∈ V (G) and 0 ≤ i ≤ q}. For each vertex u ∈ V (G)
we introduce the clauses (xu0 ) and (¬xuq ). Also, for each j ∈ {1, . . . , q} we introduce the
clause IMP(xuj , xuj−1). Denote by ΨV (x) the formula obtained by taking the conjunction of
all these clauses.

We will interpret the assignment to the variables in x as an assignment σ of colours to
the vertices of G according to the following rule. If u ∈ V1(G) then xui = 1 if and only if
σ(u) = rj for some j > i. If u ∈ V2(G) then xui = 1 if and only if σ(u) = cj for some j > i.
Note that there is a one-to-one correspondence between assignments to x that satisfy the
clauses in ΨV (x) and assignments σ of colours to the vertices of G.

We now introduce further clauses to enforce the constraint on colours received by adjacent
vertices. For each edge {u, v} ∈ E(G) with u ∈ V1(G) and v ∈ V2(G), and for each
i ∈ {1, . . . , q}, we add the clauses IMP(xui−1, x

v
αi−1) and IMP(xvβi

, xui ). Denote by ΨE(x) the
formula obtained by taking the conjunction of all of these clauses.

We next argue that there is a bijection between H-colourings of G and satisfying assign-
ments to ΨV (x) ∧ΨE(x). In one direction, suppose σ is an H-colouring of G. We wish to
show that all clauses in ΨE(x) are satisfied. Consider an edge {u, v} ∈ E(G) with u ∈ V1(G)
and v ∈ V2(G) and the corresponding clause IMP(xui−1, x

v
αi−1). The clause is satisfied unless

xui−1 = 1, so suppose xui−1 = 1. Then by the interpretation of assignments, σ(u) = rj for
some j ≥ i. Since σ is an H-colouring, this implies that σ(v) = ck for some k ≥ αi. But by
the interpretation of assignments, this means that xvαi−1 = 1, so the clause is satisfied. The
argument for the other clause IMP(xvβi

, xui ) coresponding to the edge {u, v} is similar – see
the full version.

In the other direction, suppose ΨV (x)∧ΨE(x) is satisfied. Consider an edge {u, v} ∈ E(G)
with u ∈ V1(G) and v ∈ V2(G) and suppose that σ(u) = ri. In the corresponding assignment
xui−1 = 1 so by the clause IMP(xui−1, x

v
αi−1) we have xvαi−1 = 1 so σ(v) = ck for some k ≥ αi.

In the corresponding assignment xui = 0 so by the clause IMP(xvβi
, xui ), xvβi

= 0, so σ(v) = ck
for some k ≤ βi. We conclude that the colours σ(u) and σ(v) are adjacent in H. This holds
for every edge, so σ is an H-colouring of G.
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Finally, we add clauses to deal with lists. A colour assignment σ(u) = ri with u ∈ V1(G)
is uniquely characterised by xui−1 = 1 and xui = 0. So we can eliminate the possibility of
σ(u) = ri by introducing the clause IMP(xui−1, x

u
i ). A similar clause will forbid a vertex

v ∈ V2(G) to receive colour cj . Let ΨL(x) be the conjunction of all such clauses, arising from
the lists in S. Let Ψ(x) = ΨV (x) ∧ΨE(x) ∧ΨL(x). Then the list H-colourings of (G,S) are
in bijection with the satisfying assignments to Ψ(x), as required J

5 A counterexample

The situation that we have studied in this paper is characterised by having hard interactions
between pairs of adjacent spins (a pair is either allowed or it is disallowed) and hard constraints
on individual spins (again, a spin is either allowed at a particular vertex or it is disallowed).
Our results apply both in the degree-bounded case and in the unbounded-degree case. In the
unbounded case, earlier work treated the situation with weighted interactions and weighted
spins. The characterisations derived in these weighted scenarios (see, e.g. [11, Thm 1]) have
a similar feel to the trichotomy that we have presented in Theorem 1. We may wonder
whether, in the unbounded case, at least, there is a common generalisation. That is, in
the unbounded case, does the trichotomy of [11] survive if weights on spins are replaced by
lists? The answer is no. There are examples of weighted spin systems with just q = 2 spins
whose partition function is #SAT-hard to approximate with vertex weights but efficiently
approximable (in the sense that there is an FPRAS) with lists instead of weights.

Here is one such example. Following Li, Lu and Yin [16], define the interaction matrix
A = (aij : 0 ≤ i, j ≤ 1) by A = ( 0 1

1 2 ), and the partition function associated with an
instance G by ZA(G) =

∑
σ:V (G)→{0,1}

∏
{u,v}∈E(G) aσ(u),σ(v). This is the partition function

of a variant of the independent set model, which instead of defining the interaction between
spin 1 and itself (two vertices that are out of the independent set) to be 1, defines this
interaction weight to be 2.

Li, Lu and Yin [16, Theorem 21] show that Weitz’s self-avoiding walk algorithm [22] gives
an FPTAS for ZA(G). Also, Weitz’s correlation decay algorithm [22] can accommodate lists.
Indeed, the construction of the self-avoiding walk tree relies on being able to “pin” colours at
individual vertices. So the partition function remains easy to approximate (in the sense that
there is an FPTAS) even in the presence of lists. In contrast, the approximation problem
becomes #SAT-hard if arbitrary weights are allowed. Indeed, by weighting spin 0 at each
vertex u ∈ V (G) by 2d(u), where d(u) is the degree of u, we recover the usual independent
set partition function, which is #SAT-equivalent (Lemma 6). (The same fact can be read off
from general results in many papers, including [11, Thm 1].) Thus, even in the unbounded
case, the dichotomies presented in [11, Thm 1] and [1, Thm 6] do not hold with lists in place
of weights. So even in the unbounded-degree case, it was necessary to explicitly analyse
list homomorphisms in order to derive precise characterisations quantifying the problem of
approximately counting these.
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