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Abstract
Conditional lower bounds for dynamic graph problems has received a great deal of attention in
recent years. While many results are now known for the fully-dynamic case and such bounds often
imply worst-case bounds for the partially dynamic setting, it seems much more difficult to prove
amortized bounds for incremental and decremental algorithms. In this paper we consider partially
dynamic versions of three classic problems in graph theory. Based on popular conjectures we
show that:

No algorithm with amortized update time O(n1−ε) exists for incremental or decremental max-
imum cardinality bipartite matching. This significantly improves on the O(m1/2−ε) bound
for sparse graphs of Henzinger et al. [STOC’15] and O(n1/3−ε) bound of Kopelowitz, Pettie
and Porat1. Our linear bound also appears more natural. In addition, the result we present
separates the node-addition model from the edge insertion model, as an algorithm with total
update time O(m

√
n) exists for the former by Bosek et al. [FOCS’14].

No algorithm with amortized update time O(m1−ε) exists for incremental or decremental
maximum flow in directed and weighted sparse graphs. No such lower bound was known
for partially dynamic maximum flow previously. Furthermore no algorithm with amortized
update time O(n1−ε) exists for directed and unweighted graphs or undirected and weighted
graphs.
No algorithm with amortized update time O(n1/2−ε) exists for incremental or decremental
(4/3 − ε′)-approximating the diameter of an unweighted graph. We also show a slightly
stronger bound if node additions are allowed. The result is then extended to the static case,
where we show that no O((n

√
m)1−ε) algorithm exists. We also extend the result to the

case when an additive error is allowed in the approximation. While our bounds are weaker
than the already known bounds of Roditty and Vassilevska Williams [STOC’13], it is based
on a weaker conjecture of Abboud et al. [STOC’15] and is the first known reduction from
the 3SUM and APSP problems to diameter. Showing an equivalence between APSP and
diameter is a major open problem in this area (Abboud et al. [SODA’15]), and thus showing
even a weak connection in this direction is of interest.
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1 Introduction

Arguably one of the most important goals of computer science is to understand the complexity
of natural computational problems. For many such problems we know of polynomial time
algorithms, but getting matching unconditional lower bounds seem far beyond the scope of our
current techniques. Therefore a recent and very active line of research at top-level conferences
concerns itself with hardness results in the class P [26, 6, 8, 17, 21, 3, 14, 4, 13, 12, 10, 2, 1].
Such results are obtained by reducing from classic problems like 3SUM, APSP and CNF-
SAT, for which there exist very popular conjectures about the running time. We call such
a hardness result a conditional lower bound (CLB) as it is based (conditioned) on the
truthfulness of some popular conjecture. The main goal of CLBs is to explain barriers in
algorithm development and provide “warning signs” that improving an algorithm for some
problem has major and surprising consequences for a classic problem like the ones mentioned
above, which researchers have worked on for decades, and trying to do so may be ill-advised.

One particular area that has received a lot of attention from this perspective is dynamic
graph problems [29, 26, 6, 8, 17, 21]. In dynamic graph problems we are asked to maintain
some property about a graph such as reachability or shortest paths distances as the graph
undergoes changes (typically edge insertions and deletions). One may also consider the
partially dynamic cases where only edge insertions are allowed (incremental) or edge deletions
(decremental) or cases where node insertion and deletion is allowed. Several conditional lower
bounds are known for both partially and fully dynamic problems such as shortest paths
[29, 17], maximum bipartite matching [6, 17, 21], maximum flow [8], reachability [26, 6, 17],
and many more.

1.1 Difficulties of partially dynamic
Most of the research on CLBs for dynamic graph problems has been focused on the fully
dynamic case, however such results do not translate well into CLBs for incremental or
decremental algorithms. A typical reduction works by 1) building a structured base graph,
2) for each element in some subset of the input perform a series of insertions and queries
to decide whether this element is in a possible solution, 3) perform a series of deletions
returning the graph to its base state. From a partially dynamic perspective we may use the
above procedure to get similar worst-case bounds, by keeping track of the data structure
state and simulating step 3 by rolling back the insertions, however this kills any hope of good
amortized bounds. As noted in [6, 17, 21] it seems more difficult to obtain good bounds in
this case, and specialized reductions are often needed.

1.2 Bounds under weaker assumptions
While proving higher lower bounds is the main goal of CLBs, a simultaneous goal is to prove
similar CLBs under weaker assumptions, thus lending more credibility to the belief that
a problem is difficult or even impossible. Several recent papers concerns themselves with
this be either replacing a conjecture with a weaker version as done by Abboud et al. in [4]
or by showing similar reductions under several conjectures [32, 5, 7, 8, 17]. As an example
Abboud, Vassilevska Williams, and Yu [8] showed that 3SUM, APSP and CNF-SAT can
all be reduced to the same problem of finding triangles in a node-colored graph and showed
several interesting results based on the following conjecture:

I Conjecture 1 ([8]). At least one of the following is true:
1. There is no algorithm for the 3-SUM problem running in O(n2−ε) for any ε > 0.
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2. There is no algorithm for the APSP problem on weighted graphs running in O(n3−ε) for
any ε > 0.

3. For every δ > 0 there is an integer k ≥ 3 such that k-SAT on n variables and O(n)
clauses cannot be solved in 2(1−δ)n poly(n) time.

The third item in Conjecture 1 is what is known as the strong exponential time hypothesis
(SETH) [18] and the O(n) bound on the number of clauses follows from the sparsification
lemma of Impagliazzo, Paturi, and Zane [19].

1.3 Our results
In this paper we consider three of the perhaps most classic problems in graph theory, namely
maximum flow, maximum bipartite matching and diameter in the partially dynamic setting.
For maximum flow and maximum bipartite matching we show new, stronger, and more
natural conditional lower bounds. For diameter we show a new reduction from Conjecture 1
to both the partially dynamic version of diameter and, perhaps more interestingly, the static
case. This is the first known connection from APSP and 3SUM to diameter in graphs and
addresses one of the main open problems in the area as stated in [3].

Maximum bipartite matching. In dynamic maximum cardinality bipartite matching we
wish to maintain the size of a maximum matching in a dynamic graph G. One can trivially
do this in O(m) time by finding an augmenting path. Sankowski [30] gave a fully dynamic
algorithm with update time O(n1.495) by using fast matrix multiplication. In the incremental
setting, one may consider a node-addition version in which the right-hand side of the bipartite
graph is given and the left-hand side arrives one node at a time with all its incident edges.
In this model Bosek et al. [11] gave an algorithm with total running time of O(m

√
n).

From a hardness perspective, Abboud and Vassilevska Williams [6] gave reductions from
3SUM, triangle detection and boolean matrix multiplication to fully-dynamic maximum
cardinality bipartite matching. In particular, they showed that a O(n2−ε) algorithm would
imply a faster combinatorial boolean matrix multiplication algorithm. Their reductions,
however, only imply worst-case bounds in the case of partially dynamic algorithms. This
was addressed by Kopelowitz, Pettie and Porat [21] who revisited Pǎtraşcu’s reductions
from [26] and showed that any O(n1/3−ε) algorithm for incremental MCM would imply a
truly subquadratic algorithm for 3SUM. They also showed the same result for O(n0.39−ε)
algorithms when node insertions are allowed. Subsequently, in an online version of [17], it
was shown how to obtain a CLB of O(m1/2−ε) in sparse graphs by reducing from the online
matrix-vector multiplication (OMv) problem.

In this paper we show the following theorem:

I Theorem 2. There is no algorithm for solving incremental (or decremental) maximum
cardinality bipartite matching with amortized time O(n1−ε) per insertion (or deletion) and
O(n2−ε) time per query unless the OMv conjecture of [17] is false.

One thing to note about Theorem 2 is that it separates the node-addition model from the
edge-insertion model as it implies a total running time of O(mn1−o(1)) in contrast to the
O(m

√
n) running time of the algorithm from [11]. Furthermore, the reduction used to prove

Theorem 2 also rules out any efficient incremental (or decremental) approximation algorithm
that works by ruling out the existence of short augmenting paths. Ruling out such paths is a
popular way of ensuring a good approximation ratio [25].

ICALP 2016
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Maximum flow. Single-source single-sink maximum flow (st Max-Flow) is one of the most
classic problems in graph theory. In recent years there have been several breakthrough results
for st maximum flow using the powerful tools of Laplacian system solvers and interior point
methods [24, 31, 20, 22]. These algorithms seem to take near-line time in practice, and the
limits of our current analysis might be the bottleneck in proving such upper bounds. Proving
super-linear conditional lower bounds for this problem may thus be difficult if not impossible.
Therefore, Abboud et al. [8] considered different variants of the problem such as single-source
maximum flow and ST maximum flow. They also showed that any algorithm solving the
fully-dynamic version of st maximum flow with amortized update and query time O(n1−ε)
for any ε > 0 would refute Conjecture 1. Finally, we note that it is possible to modify the
m1−o(1) CLB for fully dynamic #SSR of Abboud and Vassilevska Williams [6] to obtain a
m1−o(1) CLB for fully-dynamic st max-flow in sparse graphs.

In this paper we show that even in the incremental and decremental case st maximum
flow exhibit the same kind of CLB, but based solely on SETH. This is summarized in the
following theorem:

I Theorem 3. There is no algorithm for solving incremental (or decremental) max st flow
on a weighted and directed graph with n nodes and Õ(n) edges with amortized time O(m1−ε)
per operation for any ε > 0 unless SETH is false.

Our bound shows that we cannot hope to get incremental maximum flow in offline time as
is the case for other problems. We note that the above result only holds for directed and
weighted graphs. We show similar results for other types of graphs:

I Theorem 4. There is no algorithm for solving incremental (or decremental) max st flow
on unweighted directed graphs or weighted undirected graphs on n nodes with amortized time
O(n1−ε) per operation for any ε > 0 unless the OMv conjecture is false.

This result follows directly from Theorem 2 by using textbook reductions from maximum
bipartite matching to directed flow (see e.g. [15]) and from directed flow to undirected flow
(see e.g. [23]).

Diameter. The diameter problem asks us to compute the longest shortest-path distance
in a graph G. Efficiently computing or approximating the diameter is a basic problem
in graphs [3, 9, 14, 16, 28]. One can trivially compute the diameter in the same time as
computing APSP, however in general no better algorithm is known. It remains a major open
problem whether a reduction exists in the other direction [3] – that is, can we compute all
distances in the same time as the longest? One can, however, approximate the diameter
faster. Roditty and Vassilevska Williams [28] showed how to compute a 3/2-approximation in
time Õ(m

√
n) randomized, and Chechik et al. [14] showed how to obtain the same guarantee

deterministically in time Õ(min(m3/2,mn2/3)). More recently, it was shown by Cairo, Grossi
and Rizzi [13] how to obtain a (2− 1

2k )-approximation in time Õ(mn
1
k+1 ). From a hardness

perspective it is known that any algorithm able to distinguish between diameter 3 and 2 in
time O(m2−ε) for sparse graphs would refute SETH [28]. Chechik et al. [14] showed that
approximating within a 4/3− ε factor with additive error β = O(mδ) in time O(m2−2δ−ε′)
for sparse graphs would also refute SETH, and this bound was improved in [13] to rule
out any 3/2 − ε approximation with the same additive error and time bounds based on
SETH (also for sparse graphs). From the perspective of dynamic algorithms Abboud and
Vassilevska Williams [6] showed that any algorithm for 4/3− ε-approximating the diameter
in a fully dynamic graph with amortized update time O(m2−ε′) would refute SETH. We also
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note, that the above static reductions rules out any O(m1−ε′) amortized update time for
incremental algorithms.

We note that all the reductions mentioned above are based on SETH. Similar to the
work of [8, 4] we seek to replace this assumption by a weaker one. In this paper we show the
first reduction from 3SUM and APSP to the diameter problem. That is, we show that a
fast algorithm for approximating the diameter implies a faster algorithm for the APSP and
3SUM problems. The bounds we achieve are not as strong as the known bounds based on
SETH [28, 14, 13], however they are based on a weaker conjecture and hold even if SETH
turns out to be false, thus giving more credibility to the difficulty of the problem. For the
partially dynamic case we show the following theorem:

I Theorem 5. There exists no incremental (or decremental) algorithm that approximates
the diameter of an unweighted graph within a factor of 4/3− ε running in amortized time
O(n1/2−ε′) for any ε, ε′ > 0 unless Conjecture 1 is false. Furthermore, if we allow node
insertions in the incremental case the bound is O(n0.618−ε′).

In order to achieve the result for node insertions, we use the technique of Kopelowitz et
al. [21] leveraging rollback with our standard incremental bound. By doing this we obtain a
graph with fewer nodes and thus a better bound. More interestingly, we are able to generalize
our results from the incremental case to the following result for static graphs:

I Theorem 6. There exists no static 4/3− ε approximation to the diameter on unweighted
graphs running in O((n

√
m)1−ε′) time for any ε, ε′ > 0 and any number of edges m unless

Conjecture 1 is false.

As mentioned, this is the first known reduction from APSP to diameter and shows at least
some weak connection in this direction. An interesting property of Theorem 6 is that it
holds for any m as a function of n and thus an algorithm need not exist for all m. As a
corollary of Theorem 6 we see that no algorithm can (4/3− ε)-approximate the diameter of
static unweighted graph in time O(n2−ε′) for any ε, ε′ unless Conjecture 1 is false. This is
reminiscent of the bounds from [28, 14, 13], however not quite as strong as it does not hold
for sparse graphs, for which we get a bound of O(m3/2−ε′).

Similar to [14, 13] we also extend the above bound to the case of (4/3−ε)-approximations
with additive error O(mδ). We show the following

I Corollary 7. There exists no static 4/3 − ε approximation with additive error O(mδ)
with running time O(m 3

2 (1−δ)−ε′) or incremental/decremental algorithm with amortized time
O(m 1

2−
3δ
2 −ε

′) for any ε, ε′ > 0 unless Conjecture 1 is false.

1.4 A note on the decremental results and preprocessing

We will in general only describe the reductions in the incremental case and note that the
decremental results are obtained by removing the edges in the reverse order of insertions.
This requires an assumption on the beginning graph, and we will thus assume any suitable
graph on Õ(n) edges in the sparse case and the complete graph in the dense case.

Furthermore, we do not assume that any of the algorithms are allowed to preprocess the
graph. It is often an assumption in the design of amortized partially dynamic algorithms
that one starts with the empty (or complete) graph in order for the analysis to work. Thus,
our results hold for this case.

ICALP 2016
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2 Preliminaries

Notation. Throughout the paper we assume that matrices are boolean. Thus the output of
a vector-matrix-vector multiplication will always be a single bit. We use [n] to denote the
set {0, . . . , n− 1}.

Online vector-matrix-vector multiplication. We will consider the online vector-matrix-
vector multiplication problem of [17]:

IDefinition 8 (OuMv problem [17]). LetM be a binary n×nmatrix than can be preprocessed.
After preprocessing n vector pairs (u1, v1), . . . , (un, vn) arrive one at a time and the task is
to compute (ui)TMvi before being presented with the i+ 1th vector pair for every i.

In [17] they showed that the OMv problem can be reduced to the OuMv problem. They
also came up with the following conjecture:

I Conjecture 9 ([17]). There is no algorithm for the OMv problem (and thus the OuMv
problem) running in time O(n3−ε) for any ε > 0.

Triangle collection. We will also consider the triangle collection problem of [8]:

I Definition 10 (Triangle collection [8]). Given a node-colored graph G, is it true that for
every triplet of colors a, b, c there exists a triangle (u, v, w) in G where u has color a, v has
color b and w has color c?

In fact, we will consider the more structured triangle collection* (TC*) problem which
they also used in [8]

IDefinition 11 (Triangle collection* [8]). Let n,∆, p be parameters and letG be an undirected
node-colored tripartite graph with partitions A,B,C. Let G be any graph with the following
structure:

Each partition has its own n colors and we denote these by the numbers of [n] for each
partition.
A contains nodes of the form aij , where i ∈ [n] is the color of the node and j ∈ [∆].
B and C contains nodes of the form bij,x and cij,x where i ∈ [n] is the color of the node
and j ∈ [∆], x ∈ [p].

And the edges of G are as follows:
For each i, i′ ∈ [n] and j ∈ [∆] there is an edge from aij to bi

′

j,x for exactly one x. Similarly
there is an edge from aij to ci

′

j,y for exactly one y (note that y and x need not be the same
for the same j and i′).
There may be an edge between nodes bij,x and ci′j′,y only if j = j′.

We ask the following question: Does there exist a triple of colors (one color per partition)
such that G does not contain a triangle with these colors?

In [8] it was shown that this problem does not have a truly subcubic algorithm unless
Conjecture 1 is false.

It will be important that the reductions from these problems to TC* hold even when ∆
and p are bounded by polylog(n).
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Figure 1 Reduction to incremental maximum matching.

3 Incremental maximum matching

We will reduce from the OuMv problem of Definition 8. Observe that the OuMv problem is
equivalent to the following statement: For each vector pair ui, vi determine whether indices
j, k exist, such that uij = vik = Mjk = 1. In order to model this as an incremental maximum
matching problem we construct the following graph: Create 6 copies of 2n nodes and name
these S,A,B,C,D, T . Partition A into n pairs of nodes a`1, ar1, . . . , a`n, arn. Do the same for
S,B,C,D, T . Add the edges (a`i , ari ) for each i and do the same for B,C,D. Now for each i, j
add the edge (bri , c`j) if Mij = 1. Observe that this graph has a unique maximum matching
each (`, r) pair. Observe also that the graph is bipartite. Now we do the following n phases –
one for each ui, vi vector pair.
1. For each j such that uij = 1 add the edge (ari , b`j).
2. For each j such that vij = 1 add the edge (crj , d`i).
3. Add the edges (sri , a`i) and (dri , t`i).
4. Query the size of a maximum matching.
5. Add the edges (s`i , sri ) and (t`i , tri ).
This is illustrated in Figure 1.

I Lemma 12. Let the setting be as above and let the phases be numbered 0, 1, . . . , n − 1.
Then the size of the maximum matching during the ith phase is exactly 4n + 2i + 1 if the
resulting vector-matrix-vector product is 1 and 4n+ 2i otherwise.

Proof. Note that prior to any of the i phases the size of the maximum matching is exactly
4n + 2i, which is also a perfect matching of the graph induced by the edges. To see this
observe that each s`0, . . . , s`i−1 must be matched to its corresponding sr0, . . . , sri−1, and this is
the only edge incident to the `-nodes. As a consequence of this, each a`j must be matched
with arj , and so on.

Now consider the ith phase. Adding any edge (ari , b`j) or (crj , d`i) cannot increase the size
of the maximum matching, as the size of the subgraph induced by the edges of the graph
does not increase – i.e. all nodes with edges incident to them are already matched.

Assume that adding the edges (sri , a`i) and (t`i , dri ) increases the matching. The matching
can increase by at most 1, as only two more nodes can be matched. Furthermore the matching
must now contain edges as follows

(sri , a`i), (ari , b`j), (brj , c`k), (crk, d`x), (drx, t`y) .

Now observe that each t`y for y < i must be matched to try, as the right nodes have no other
incident edges and all nodes have to be matched for the size of the matching to increase.

ICALP 2016
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Thus we must have y = i in the list above, but this means that we have exactly found a pair
j, k such that uij = vik = Mjk = 1 and the vector-matrix-vector product is thus 1.

Conversely, assume that the vector-matrix-vector product is 1, then such an index pair
j, k must exist and we can find the following matching of size 4n+ 2i+ 1: Match the edges

(sri , a`i), (ari , b`j), (brj , c`k), (crk, d`i), (dri , t`i) .

For all x < i add the edges (s`x, srx) and (t`x, trx) to the matching. For all x 6= i add the edges
(a`x, arx) and (d`x, drx) to the matching. And for all x 6= j and y 6= k add the edges (b`x, brx) and
(c`y, cry) to the matching. This matches all nodes incident to an edge and has size 4n+ 2i+ 1.
This is also exactly the matching illustrated in Figure 1 for i = 1. J

It follows from Lemma 12 that we can solve the OuMv problem correctly via this reduction.
The reduction creates a graph with O(n) nodes and O(n2) edges. We perform O(n2) insertions
and O(n) queries giving the result in Theorem 2

4 Maximum flow

In order to show Theorem 3 we will use a similar graph construction as have been used
numerous times before [27, 28, 14, 6]: First partition the variables of the SAT problem into
two groups A and B of n/2 variables each. For each possible assignment to the variables
in A we create a node in our graph G (and likewise for B). Furthermore, for each clause
of the SAT formula, we create a node as well. We denote the corresponding sets of nodes
by A,B,C. Set N = 2n/2 = |A| = |B|. For each pair of nodes a ∈ A, c ∈ C we add the
directed edge (a, c) with capacity N if the partial assignment a does not satisfy the clause c.
Similarly, for each pair of nodes b ∈ B, c ∈ C we add the directed edge (c, b) with capacity 1
if b does not satisfy c. Finally we add two nodes s, t and add edges (b, t) with capacity 1 for
each b ∈ B.

We now continue in phases with a phase for each a ∈ A. Denote these nodes by
a1, a2, . . . , aN :
1. Add the edge (s, ai) with capacity N .
2. Query the maximum flow between s and t.
3. Add the edge (“shortcut”) (ai, t) with capacity N .

I Lemma 13. Let the setup be as described above. If the st flow returned during any of
the i phases is < i ·N , then the SAT formula is satisfiable. Otherwise the formula is not
satisfiable.

Proof. Observe, that prior to the ith phase, the flow is exactly (i− 1) ·N , as we can use the
paths (s, aj), (aj , t) for each j < i, which has capacity N and exactly (i− 1) ·N flow leaves s.

Now assume that the partial formula corresponding to ai can be completed to a satisfying
assignment. In this case, there must be some node b ∈ B, for which there is no path from ai
to b. This follows because such a path has to go through a node c ∈ C, but then both ai and
b do not satisfy the clause c, which is a contradiction. However, the only way to send flow
from ai to t is through the nodes b ∈ B and thus it is not possible to send all N units of flow
from ai to t.

Now assume that the flow is < i ·N , then there must be some b ∈ B such that there is
no path from ai to b. Otherwise, we could route N units of flow from ai to t via the nodes
of B and the remaining (i− 1) ·N units through the “shortcuts”. It now follows that ai and
b together satisfy all clauses (otherwise there would be a path) and thus the CNF formula is
satisfiable.

Since this is true for all of the i phases, the statement of the lemma follows. J
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As a consequence of Lemma 13 we may use the above procedure to solve the given SAT
problem. By the sparsification lemma of [19] it follows that we can assume the graph has
O(N) nodes and Õ(N) edges and we perform a total of Õ(N) insertions and queries. The
result of Theorem 3 thus follows directly.

5 Diameter

In this section we show how to obtain conditional lower bounds for the problem of approxim-
ating the diameter of an unweighted graph within a factor of 4/3− ε.

5.1 A graph construction

We will first describe the graph structure we use.

IDefinition 14. LetG be an instance of the TC* problem as defined above. We will define the
graph Hγ,k(G). The idea is that Hγ,k(G) “corresponds” to the colors {knγ , . . . , (k+1)nγ−1}
of A. Thus k is a number in [n1−γ ]. The nodes of this graph are as follows:

The nodes B and C of G.
For each color i ∈ {knγ , (k+1)nγ−1} of A we add the nodes ai0, . . . , ain−1 and ti0, . . . , tin−1.
We also add several special nodes: A “master node” u, nγ “skip nodes” vi and three
“connector nodes” w1, w2, w3.

For a color i ∈ {knγ , (k+ 1)nγ − 1} we denote the nodes ai0, . . . ain−1 by Ai and the collection
of all Ais by A. We do the same for Ti and T .

The edges of Hγ,k(G) are as follows:
Add the edges between B and C in G.
Connect the node w1 to each node of A and w2.
Connect w2 to each node of B and C as well as w3 and the master node u.
Connect w3 to each node of T .
Connect u to all nodes vi.
For each i ∈ {knγ , (k + 1)nγ − 1} do as follows:

Connect vi to all nodes of T \ Ti and to all nodes of Ai.
For each i′ ∈ [n] and each edge (aij , bi

′

j,x) ∈ G add the edge (aii′ , bi
′

j,x).
For each i′ ∈ [n] and each edge (aij , ci

′

j,x) ∈ G add the edge (ci′j,x, tii′).
An overview of the graph Hγ,k(G) is illustrated in Figure 2 and a more detailed view in
Figure 3.

The idea is that length three paths between Ai and Ti correspond to triangles in G

containing the color i of A. Each of the n nodes in Ai thus correspond to picking a color
from B and each of the n nodes in Ti correspond to picking a color from C. If two such
nodes don’t have a length three path there is no triangle in G of the corresponding triplet of
colors. In this case the connector nodes ensure that there is a length four path between the
nodes. The master and skip nodes ensure that all other nodes have distance at most 3. This
is captured by the following lemma:

I Lemma 15. Let G be an instance to the TC* problem and let Hγ,k(G) be as defined
above. Let i ∈ {knγ , (k + 1)nγ − 1} be a color of A and let α, β ∈ [n] be colors of B and
C respectively. Then the distance from aiα to tiβ in Hγ,k(G) is 3 if the colors i, α, β have a
triangle in G and 4 otherwise.

ICALP 2016
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Figure 2 Diameter structure.

Proof. Assume first that there is a triangle aij , bαj,x, c
β
j,y for some j in G (note that such a

triangle can only occur if j is the same for all the three nodes). In this case there is a path
aiα, b

α
j,x, c

β
j,y, t

i
β in Hγ,k(G) and thus the distance is at most 3. Observe also, that no node is

connected to both Ai and Ti and thus the distance is strictly greater than 2.
Now assume that the distance from aiα to tiβ is 3. Such a path has to go from Ai to B to

C to Ti as any node w`, v` or u either has distance 3 to one of aiα or tiβ or it has distance 2
to both of them. Now consider a shortest path aiα, b, c, tiβ , where b and c are the nodes of B
and C on this path. Clearly the node b must have color α in G as it would not have an edge
to aiα otherwise, and similarly c must have color β in G. Thus the path consists of nodes
aiα, b

α
j,x, c

β
j′,y, t

i
β . Since no edge in G goes between nodes with different j-values we must have

j′ = j. It is now clear that the edge (aiα, bαj,x) corresponds to the edge (aij , bαj,x) in G and
the edge (cβj,y, tiβ) corresponds to the edge (aij , c

β
j,y) in G. Thus, these three nodes form a

triangle of the correct color triple in G. J

Furthermore it is easy to see that the longest distance in Hγ,k(G) is at most 4, thus the
diameter is 4 exactly when one of the corresponding color triplets do not have a triangle in
G and 3 otherwise.

5.2 Dynamic
We will first consider the problem without node additions. For simplicity we only consider
the incremental case and note that the decremental case follows by deleting edges until we
obtain the same graph2.

2 Under the assumption that the algorithm starts with some suitable graph
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Given an instance to the TC* problem we create the graph H1,0(G) (that is, the graph
representing all colors of A). This graph is created by adding edges incrementally and has
Õ(n2) nodes and edges. It follows that an edge insertion must take n1/2−o(1) time unless
Conjecture 1 is false.

Next, we consider the problem with node additions. It was shown in [21] that if we
allow node additions in the problem of incremental maximum matching, it is possible to
show stronger lower bounds by leveraging the amortized running time with the widely used
rollback technique. We here apply the same argument to the problem of incremental diameter
approximation.

The goal is again to construct (a subgraph of) H1,0(G) but we do not start with all nodes
in the graph. We will assume that the amortized running time of an insert operation is nα
for some α. The goal is to get a bound on α by expressing the total running time in terms of
α and using the assumption on running time for TC*. We let n̂ denote the current number
of nodes in the graph G. We continue as follows:
1. Insert all nodes of B and C into the dynamic graph. Also insert the nodes w1, w2, w3

and u. We also insert all the edges induced by these nodes in H1,0(G) into the graph.
2. For each color i ∈ [n] of A we do a phase:

We insert the nodes of Ai, Ti, vi into the dynamic graph and all the edges induced by
these nodes and the current state of the dynamic graph in H1,0(G).
Query the diameter of the graph.
Assume we inserted k edges+nodes in this phase. If the total running time of all
these insertions was greater than 2kn̂α we keep the nodes in the graph. Otherwise we
rollback all operations of this phase.

We answer the question of the TC* problem according to whether the diameter was 3 all the
time or not similar to the proof of the case without node additions.

The goal is now to bound α by using the method of [21]. We will do this by carefully
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counting the number of “amortized credit units” the data structure has and using this to
bound the total number of nodes added to the graph (i.e. not rolled back).

Observe that after the first step, we have added Õ(n2) edges to the graph and Õ(n) nodes.
Thus the data structure has at most Õ(n2+α) credit at this point (this happens if almost
all operations were O(1)). Now consider the total time spent by the algorithm. This can
be bounded by Õ(n2 ·Nα) where N is the number of nodes at the end of all phases. This
is the case since N ≥ N0, where N0 = Õ(n) is the number of nodes after the first step and
there are at most Õ(n2) total operations. Note that this would not be the case if we did
not have a bound on the cost of the rolled back operations, but we only rollback the cheap
operations, so this is okay. We wish to express N in terms of n and α in order to express the
total running time in terms of these.

Observe, that every time we keep the added nodes in the graph, the data structure spent
at least twice the amortized cost. Since we started out with Õ(n2+α) credit it must be true
that

N∑
i=N0

iα ≤ cost of non-rollbacked operations = Õ(n2+α) .

The worst case is if N is polynomially larger than N0, and thus
∑N
i=N0

iα = Ω(N1+α).
It follows that N = Õ(n

2+α
1+α ). Thus the total running time is Õ(n2 · n

2+α
1+αα). Now, by

Conjecture 1 we must have 2+α
1+αα = 1− o(1). Solving this for α gives α =

√
5−1
2 < 0.618.

5.3 Static

Proof of Theorem 6. Let G be an instance of the TC* problem with parameters n,∆, p
with ∆ and p bounded by Õ(1) and m = Õ(n2) as in [8].

For a parameter 0 < γ ≤ 1 we create the graphs Hγ,0(G), . . . ,Hγ,n1−γ−1(G) and solve
the diameter problem on these graphs up to a 4/3− ε approximation. This is sufficient to
distinguish between diameters 4 and 3 in all of the graphs. Now, if the diameter is 4 in just
one of the graph we answer that there exists a triplet of colors such that there is no triangle
in G. This follows from Lemma 15.

We note that the graphs Hγ,k(G) each have N = Õ(n1+γ) nodes and M = Õ(n2) edges.
Assume now that that any algorithm approximating the diameter within a factor of 4/3− ε
in time O(N

√
M

1−ε′) = O(n2+γ−ε′) for any ε, ε′ > 0 exists. Since we create n1−γ instances
of the problem this would imply an O(n3−ε′′) algorithm for the TC* problem for some
ε′′ > 0. J

5.4 Additive error

To see Corollary 7 we fix mα and consider TC* on a graph G with N nodes and M = Õ(N2)
edges such that M = m1−α. We then create H1,0(G) and subdivide each edge into mα nodes.
This graph now has m nodes and edges and any algorithm solving 4/3− ε diameter with
additive error O(mα) in time M3/2−ε′ = m

3
2 (1−α)−ε′′ time thus violates Conjecture 1.
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