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—— Abstract

We study two fundamental problems in computational geometry: finding the maximum inscribed
ball (MaxIB) inside a bounded polyhedron defined by m hyperplanes, and the minimum enclosing
ball (MinEB) of a set of n points, both in d-dimensional space. We improve the running time of
iterative algorithms on

MaxIB from 5(mda3/53) to 5(md +mvda/e), a speed-up up to 5(\/&042/52), and!
MinEB from O(nd/v/) to 5(nd +nVd/\/€), a speed-up up to 5(\/&)

Our improvements are based on a novel saddle-point optimization framework. We propose a
new algorithm L1L2SPSolver for solving a class of regularized saddle-point problems, and apply
a randomized Hadamard space rotation which is a technique borrowed from compressive sensing.
Interestingly, the motivation of using Hadamard rotation solely comes from our optimization view
but not the original geometry problem: indeed, it is not immediately clear why MaxIB or MinEB,
as a geometric problem, should be easier to solve if we rotate the space by a unitary matrix. We
hope that our optimization perspective sheds lights on solving other geometric problems as well.
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1 Introduction

The goal of this paper is to bridge the fields of optimization and computational geometry
using a simple unified saddle-point framework. As two immediate products of this new
connection, we obtain faster iterative algorithms to approximately solve two fundamental
problems in computational geometry: the maximum inscribed ball problem (MaxIB) and the

* This is an abstract of our full paper at http://arxiv.org/abs/1412.1001 [3]. The first version of this
paper appeared in December 2014 but contains only the smooth convex optimization based algorithms.
The second version of this paper appeared in December 2015 and already contains all the technical

details of this present paper.

1« > 1 is the aspect ratio of the polyhedron. Throughout this paper we use the O notation to hide

logarithm factors such as log m,log d, log a, and log(1/e).
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minimum enclosing ball problem (MinEB). Our methods are composed of simple updating
rules on vectors and therefore do not require geometric operations that are found in classical
algorithms. This is another example of surprisingly good results obtained using optimization
insights following the current trend of theoretical computer science.

In the rest of this introduction, we describe the definitions of the MaxIB and MinEB
problems and review prior work. In the next three sections, we describe our saddle-point
formulation and algorithms for MaxIB and MinEB.

Maximum Inscribed Ball (MaxIB). In the MaxIB problem, we are given a polyhedron P
in R? defined by m halfspaces {Hy, ..., H,,}. Each halfspace H. ;j is characterized by a linear
constraint (A;,x) +b; > 0. As in prior work [20], we assume that P is bounded (so m > d)
and a common point is known to be contained in P — without loss of generality, let it be the
origin O. Let o > 1 be an upper bound on the aspect ratio of P, i.e., the ratio between the
radii of the minimum enclosing ball and the maximum inscribed ball of P, and € > 0 be a
desired error bound.

The goal of MaxIB is to find a point € P such that its minimum distance to all the
bounding hyperplanes H; is at least (1 — €)ropt, Where rop: is the radius of a maximum
inscribed ball of P.

Besides the applications in computational geometry, MaxIB has also been used in the
column generation method [13] and the sphere method [14] for linear programming, and the
central cutting-plane method for convex programming [9].

When the dimension is a constant, the e-kernel technique (see the survey [1]) yields a
linear-time approximation algorithm for MaxIB based on core-set construction. However, its
running time is proportional to =@ In high dimensions, finding the maximum inscribed
ball remains a challenging problem in theoretical computer science and operations research.
Oune can reduce this problem to a linear program [9] and rely on existing LP solvers, however,
the so-obtained algorithm can be too slow for practical purposes (although still in polynomial
time).

In an influential paper, Xie, Snoeyink, and Xu [20] obtained an approximation algorithm
for MaxIB with running time O(mda3/e® + mdalog a) = O(mda®/e®). Their algorithm is
based on a number of interesting geometric observations, as well as a dual transformation
to reduce the MaxIB problem to a sequence of minimum enclosing ball (MinEB) instances,
which they solve by applying known core-set techniques [6, 12]. Unfortunately, their cubic
dependence on « and 1/e undermines the practical applicability of their algorithm.

In Section 3, we use saddle-point optimization techniques to obtain an algorithm
MaxIBSPSolver with running time 6(md + m\/aa/a). In other words, we reduce the
dependence on both a and 1/¢ from cubic to linear, and improve the running time by a
factor up to v/da?/e2. We emphasize that our improvement could be significant in the views
of theoretical computer scientists, operations researchers, as well as experimentalists:

In theoretical computer science, one usually views a and € as large constants so our

improvement can be seen as (v/d) if one ignores the input reading time O(md).

In operations research or statistics, one usually concentrate on the convergence rate which

is the & dependence (recall that the seminal work of Nesterov is only to reduce 1/¢ to

1/4/ [15]). Our improvement in this paper is from 1/&3 to 1/e.

In practice, if « is 10 for the polyhedron, ¢ is 10%, and the dimension d = 100, our

method could potentially be 10° times faster than that of [20]. We leave it a future work

to inspect the practical performance of our method on real-life datasets.

In the full version of this paper [3], we also apply convex (rather than saddle-point)
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optimization and obtain a parallel algorithm MaxIBConvexSolver with slightly slower total
running time 6(mda/5). However, in terms of parallel running time (i.e., the number of par-
allelizable iterations, a classical benchmark used by iterative solvers [4]), MaxIBConvexSolver
improves the result of [20] by a factor Q(a2/e2).

Minimum Enclosing Ball (MinEB). In the MinEB problem, we are given a set {a1, as,
..., @y} € RY of points in the d-dimensional space and are asked to find a point = € R? so
that its maximum distance to all the n points is at least (1 + &) Ropt, where Ropt is the radius
of a minimum enclosing ball that contains all the points in this set.

As originally studied by Sylvester in [18], the problem of MinEB has found numerous
applications in fields such as data mining, learning, statistics, and computer graphics. In
particular, the relationship between MinEB and support vector machines (SVMs) has been
recently emphasized by [11, 10, 7, 17]. Efficient algorithms for this problem are both of
theoretical and practical importance.

If the dimension d is constant, the algorithm of Welzl [19] solves MinEB exactly in linear
time. Unfortunately, its dependency on d is exponential.

For large dimensions, a sequence of works based on the core-set technique [6, 12, 5, 21, 7]
has given algorithms whose best known running time is O(nd/e). This running time is tight
for the core-set technique, as, in the worst-case, the size of a coreset of MinEB is at least
Q(1/¢) [5]. Another type of algorithm due to Clarkson, Hazan, and Woodruff [8] achieves a
running time of O(n/e% + d/e). This algorithm is fast for large values of &, but may not be
suitable for very small . All these cited algorithms converge at best in O(1/¢) iterations.

Recently, Saha, Vishwanathan, and Zhang [17] designed two algorithms for MinEB
that successfully overcame this 1/e barrier. Using our e-notation for multiplicative er-
ror, they give one algorithm which works in the ¢5-norm and achieves a running time of
O(ndQ/+/e), and another algorithm which works in the ¢;-norm and achieves a running
time of O(ndy/lognL/\/¢). While the values of @ and L depend on the input structure,
we observe that @ can be as large as O(y/n), while L is never larger than a constant. In
other words, their proposed algorithms have worst-case running times O(n'-%d/,/¢) and
O(ndv/Togn/+/2). The key component behind the result of Saha, Vishwanathan, and Zhang
is the excessive gap framework of Nesterov [16], which is a primal-dual first-order approach
for structured non-smooth optimization problems.

In Section 4, we rewrite MinEB as a saddle-point optimization problem, and obtain an
algorithm MinEBSPSolver that runs in 5(nd +n+/d/\/€). This is faster than the previous
algorithm [17] by a factor up to Vd, and faster than the popular core-set algorithm by a

factor up to Vd/+/z.

As an additional result, in the full version of this paper [3], we also observe that MinEB
can be directly formulated as a convex (rather than saddle-point) optimization problem,
and get an algorithm MinEBConvexSolver matching the running time of [17] but with much
simpler analysis.

Remark. For both MaxIB and MinEB, one can also use interior-point types of algorithms
to obtain a convergence rate of log(1/¢). However, this fast convergence rate comes at the
cost of having expensive iterations: each iteration typically requires solving a linear equation
system in the input size, making it impractical for very-large-scale inputs. Therefore, in this
paper, we choose to focus on iterative methods whose iterations run in nearly-linear time.
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1.1  Our Techniques

Our MaxIBSPSolver and MinEBSPSolver rely on (min-max) saddle-point optimization to
solve MaxIB and MinEB respectively. More specifically, we reduce MaxIB and MinEB to
solving the regularized saddle-point program:

1 1
max min —y! Az + —

T Y 9
b+ \H — L
z€ERI yeEA,, dy + (v) B) ]2

where H(-) is the entropy function over m-dimensional probabilities vectors, and A,y > 0
are fixed regularization parameters. We call this ¢;-¢5 saddle-point optimization because,
borrowing language from optimization, this objective is strongly convex with respect to the
¢1 norm on the y side and strongly concave with respect to the 5 norm on the x side.

To solve this saddle-point problem efficiently, we iteratively update = and y. In particular,
in each iteration we update x by a random coordinate, and update y fully using multiplicative
weight updates. Therefore, this method can be viewed as an accelerated, coordinate-based,
first-order method for saddle-point optimization. To the best of our knowledge, the only
previously known accelerated, coordinate-based method on saddle-point optimization was
SPDC [22], one of the state-of-the-art algorithms used for empirical risk minimizations in
machine learning. We call our algorithm L1L2SPSolver.

A Surprising Hadamard Rotation. Unfortunately, solely applying L1L2SPSolver does not
solve MinEB or MaxIB fast enough. In particular, the running time of L1L2SPSolver relies
on the largest absolute values of A’s entries. If the entries of A are very non-uniform — say,
with a few very large entries and mostly small ones — the performance could be somewhat
unsatisfactory. (In particular, we no longer have a v/d factor speed-up.)

To overcome this difficulty, we apply a randomized Hadamard transformation on A to
uniformize its entries, so that all entries of A are relatively small. This transformation
is inspired by the fast Johnson-Lindenstrauss transform [2] proposed for numerical linear
algebra and compressive sensing purposes, and is another crucial ingredient behind our
running time improvements.

Surprisingly, this Hadamard rotation comes solely from our optimization view but not the
geometry. Indeed, it is not immediately clear why MaxIB or MinEB, as geometric problems,
should be easier to solve if we rotate the space by a unitary (Hadamard) matrix.

Our Contributions. We summarize the main contributions of this paper as follows:
We provide significantly faster algorithms on MaxIB and MinEB.

This is the first time coordinate-based saddle-point optimization algorithm is applied to
MaxIB, MinEB, or perhaps to any computational geometry problem.

Since the ¢1-¢5 saddle-point problem seems very natural, our L1L2SPSolver method can
potentially lead to other applications in the future.

The speed-up we obtained from the Hadamard rotation is an algebraic technique but
applied to geometric problems. It sheds lights on solving perhaps more geometric problems
faster using optimization insights.

2 Main Body of This Paper

We defer all the mathematical details of this paper to http://arxiv.org/abs/1412.1001 [3].
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