Beating Ratio 0.5 for Weighted Oblivious
Matching Problems

Melika Abolhassani*!, T.-H. Hubert Chan'2?, Fei Chen*3,
Hossein Esfandiari’4, MohammadTaghi Hajiaghayif®,
Hamid Mahinil®, and Xiaowei Wu”

1 Department of Computer Sicence, University of Maryland, College Park, USA
melika@cs.umd.edu

2 Department of Computer Sicence, The University of Hong Kong, Hong Kong
hubert@cs.hku.hk

3 KTH Royal Institute of Technology, Stockholm, Sweden
feichen@kth.se

4 Department of Computer Sicence, University of Maryland, College Park, USA
hossein@cs.umd.edu

5 Department of Computer Sicence, University of Maryland, College Park, USA
hajiagha@cs.umd.edu

6 Department of Computer Sicence, University of Maryland, College Park, USA
hmahini@cs.umd.edu

7 Department of Computer Sicence, The University of Hong Kong, Hong Kong
xwwu@cs.hku.hk

—— Abstract

We prove the first non-trivial performance ratios strictly above 0.5 for weighted versions of the

oblivious matching problem. Even for the unweighted version, since Aronson, Dyer, Frieze,
and Suen first proved a non-trivial ratio above 0.5 in the mid-1990s, during the next twenty
years several attempts have been made to improve this ratio, until Chan, Chen, Wu and Zhao
successfully achieved a significant ratio of 0.523 very recently (SODA 2014). To the best of our
knowledge, our work is the first in the literature that considers the node-weighted and edge-
weighted versions of the problem in arbitrary graphs (as opposed to bipartite graphs).

(1) For arbitrary node weights, we prove that a weighted version of the Ranking algorithm has
ratio strictly above 0.5. We have discovered a new structural property of the ranking algorithm:
if a node has two unmatched neighbors at the end of algorithm, then it will still be matched
even when its rank is demoted to the bottom. This property allows us to form LP constraints for
both the node-weighted and the unweighted oblivious matching problems. As a result, we prove
that the ratio for the node-weighted case is at least 0.501512. Interestingly via the structural

* Partially supported by NSF CAREER award CCF-1053605, NSF BIGDATA grant 11S-1546108, NSF
AF:Medium grant CCF-1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423, and another
DARPA SIMPLEX grant.

T Partially supported by a grant from Hong Kong RGC under the contract 17200214.

¥ Partially supported by Swedish Research Council grant 2015-04659 “Algorithms and Complexity for
Dynamic Graph Problems”.

§ Partially supported by NSF CAREER award CCF-1053605, NSF BIGDATA grant 1IS-1546108, NSF
AF:Medium grant CCF-1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423, and another
DARPA SIMPLEX grant.

9 Partially supported by NSF CAREER award CCF-1053605, NSF BIGDATA grant I1S-1546108, NSF

AF:Medium grant CCF-1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423, and another

DARPA SIMPLEX grant.

Partially supported by NSF CAREER award CCF-1053605, NSF BIGDATA grant 1IS-1546108, NSF

AF:Medium grant CCF-1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423, and another

DARPA SIMPLEX grant.

© Melika Abolhassani, T.-H. Hubert Chan, Fei Chen, Hossein Esfandiari,
5v MohammadTaghi Hajiaghayi, Hamid Mahini, and Xiaowei Wu;
licensed under Creative Commons License CC-BY
24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis;
Article No. 3; pp. 3:1-3:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2

Beating Ratio 0.5 for Weighted Oblivious Matching Problems

property, we can also improve slightly the ratio for the unweighted case to 0.526823 (from the
previous best 0.523166 in SODA 2014).

(2) For a bounded number of distinct edge weights, we show that ratio strictly above 0.5 can be
achieved by partitioning edges carefully according to the weights, and running the (unweighted)
Ranking algorithm on each part. Our analysis is based on a new primal-dual framework known
as matching coverage, in which dual feasibility is bypassed. Instead, only dual constraints corres-
ponding to edges in an optimal matching are satisfied. Using this framework we also design and
analyze an algorithm for the edge-weighted online bipartite matching problem with free disposal.
‘We prove that for the case of bounded online degrees, the ratio is strictly above 0.5.

1998 ACM Subject Classification G.1.2 Approximation, G.1.6 Optimization, G.2.1 Combinat-
orics, G.2.2 Graph Theory

Keywords and phrases weighted matching, oblivious algorithms, Ranking, linear programming

Digital Object ldentifier 10.4230/LIPIcs.ESA.2016.3

1 Introduction

While the classical maximum matching problem [14] is well understood, the oblivious version
is motivated by exchange settings [15] and online advertising [9, 1], in which information
about the underlying graphs might be unknown. For instance, in the kidney exchange
problem [15], donor-recipient pairs are probed and greedily matched when two pairs are
compatible. Another example is pay-per-click online advertising, in which the revenue for a
click on a particular ad showing on a particular page is known, but it is unknown whether
the user will actually click on that ad. In this paper, we analyze two weighted versions of the
oblivious matching problem (ObMP). To be more specific, we first state the edge-weighted
(Ew) ObMP (and the node-weighted (Nw) version as a special case) formally as follows.

EwObMP. An adversary commits to a simple undirected graph G = (V| E), where every
unordered pair of nodes e = {u,v} (even if e ¢ E) has non-negative weight w.. The
unweighted case is the special case in which all pairs have the same weight. The nodes V'
(where n = |V|) and the weights of all pairs are revealed to the (randomized) algorithm,
while the edges E are kept secret. The algorithm returns a list L that gives a permutation
of the set (‘2/) of unordered pairs of nodes. Each pair of nodes in G is probed according to
the order specified by L to form a matching greedily. In the round when a pair e = {u,v} is
probed, if both nodes are currently unmatched and the edge e is in F, then the two nodes
will be matched to each other; otherwise, we skip to the next pair in L until all pairs in L are
probed. The goal is to maximize the performance ratio of the (expected) sum of weights
of edges in the matching produced by the algorithm to that of a maximum weight matching
in G. The node-weighted version is related to the edge-weighted version as follows.

NwObMP. The node-weighted version is a special case of EWObMP in which each node
u € V has a non-negative weight w,, and the weight of each pair e = {u, v} is w, = w, + w,.

Greedy Algorithms. Greedy algorithms can achieve ratio 0.5 for both the edge-weighted
and node-weighted versions. For the edge-weighted version, the probing order is given by
sorting pairs in non-increasing order of weight. For the node-weighted version, the nodes are
sorted in non-increasing order of weight to induce a lexicographical order on the pairs. As

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.3

M. Abolhassani et al.

far as we know, this work is the first in the literature to achieve algorithms for both weighted
versions with ratios strictly greater than 0.5.

To achieve non-trivial ratios, different variants of the Ranking algorithm have been
investigated for various matching problems [12, 1, 6, 5]. We analyze the following variant
that is relevant to NwObMP on arbitrary graphs.

Weighted Ranking Algorithm for NwObMP. Given the node weights w, the algorithm
determines a distribution D,, on permutations of V. It samples a permutation 7 from D,,,
and returns a list L of unordered pairs according to the lexicographical order induced by
m, where nodes appearing earlier in the permutation have higher priority. Specifically, for
a permutation 7 : V' — [n], given two pairs e; and ey (where for each j, e; = {u;,v;} and
m(u;) < m(v;)), the pair e; has higher priority than ey if (i) m(u1) < m(u2), or (ii) w1 = us
and w(v1) < 7(ve).

Sampling a permutation. Previous works [1, 6] have considered the following way to sample
a permutation of nodes. The algorithm uses an adjustment function p(t) := 1 — et~! for
t € [0,1], and samples a configuration o € Qo := [0,1]" uniformly at random, i.e., each
node u receives independently a random number o(w) in [0, 1] uniformly at random. A
permutation is given by sorting the nodes in non-increasing order of the adjusted weight
w(o,u) := p(o(u)) - w,. Observe that for the unweighted case (i.e., all nodes have the same
weight), this is equivalent to sampling a permutation uniformly at random. We consider
different adjustment functions ¢ in this paper.

1.1 Summary of Our Results

Extending previous linear programming (LP) approaches [1, 13, 11, 5], we prove that a
weighted Ranking algorithm has ratio greater than 0.5 for NwObMP with arbitrary node
weights in general graphs.

» Theorem 1 (Weighted Ranking for NwObMP). For m = 10000, weighted Ranking using

the discrete sample space [0,1]%, (where [0,1],,, := {-= : i € [m]} is a discretization of [0,1])
Q171

and adjustment function ¢(t) := 1 — 7= has performance ratio at least 0.501505.

el”—1

In the analysis, we have discovered new structural properties of the Ranking algorithm.

For instance, if a node has two unmatched neighbors, then it will still be matched even when

its rank is demoted to the bottom. These properties enable us to form better LP constraints.

We use continuous LP techniques to prove that the above ratio can be improved to 0.501512
if continuous random sample space [0, 1]" is used (due to space constraints, the complete
proof is deferred to the full version). Interestingly via these structural properties, we also
improve the analysis of (unweighted) Ranking for the unweighted ObMP over the previous
best ratio of 0.523166 in the SODA 2014 paper [5].

» Theorem 2 (Ranking for Unweighted ObMP). The Ranking algorithm for unweighted ObMP
has performance ratio at least 0.526823.

For EwObMP with a bounded number of distinct edge weights, we show that ratio strictly
above 0.5 can be achieved by partitioning edges carefully according to the weights, and
running the (unweighted) Ranking algorithm on each part.

» Theorem 3 (EwObMP with Bounded Number of Distinct Weights). Suppose there is an
algorithm on unweighted ObMP with performance ratio %—0—{1. Then, for each positive integer

3:3

ESA 2016

3:4

Beating Ratio 0.5 for Weighted Oblivious Matching Problems

k > 1, there exists &, = Q(fl)o(kQ) such that the following holds. There exists an algorithm
for EWObMP such that on instances with k distinct edge weights, the performance ratio is at
least % + .

Our analysis is based on a new primal-dual framework of the standard matching LP known
as matching coverage, in which dual feasibility is bypassed. Instead, only dual constraints
corresponding to edges in an optimal matching are satisfied. Indeed the framework of
matching coverage introduced for weighted oblivious matching has applications for other
well-known problems. In particular using this framework we also design and analyze an
algorithm for the edge-weighted online bipartite matching problem with free disposal. We
prove that for the case of bounded online degrees, the ratio is strictly above 0.5.

EwOnBiMP with free disposal. An adversary fixes an edge-weighted bipartite graph
G(U UV, E) between a set U of online nodes and a set V' of offline nodes, and determines
the arrival order of the online nodes. When an online node u arrives, all the weights w,,’s of
edges between u and the offline nodes v in V' are revealed to the (randomized) algorithm.
The algorithm matches u to one of the offline nodes v. Even if an offline node v is already
matched to a previous online node u/, the algorithm is allowed to dispose of the edge {u’, v}
and include the edge {w, v} in the matching. The goal is to maximize the performance ratio,
which is the (expected) sum of weights of edges in the final matching to that of a maximum
weight matching in hindsight.

Feldman et al. [8] proved that a greedy algorithm can achieve ratio 0.5. We proposed a
randomized algorithm that achieves ratio strictly greater than 0.5 for the case in which each
online node has bounded degree.

» Theorem 4 (EwOnBiMP with Bounded Online Degree). There exists an algorithm for
edge-weighted online bipartite matching with free disposal such that on instances in which
every online node has degree at most A, the performance ratio is % + Q(é)

1.2 Related Work

Unweighted ObMP. For the unweighted version, Dyer and Frieze [7] showed that the
performance ratio is 0.5 4+ o(1) when the permutation of unordered pairs is chosen uniformly
at random. In the mid-1990s, Aronson et al. [2] showed that the Modified Randomized Greedy
(MRG) algorithm has ratio 0.5 + € (where € = 150055). Goel and Tripathi [10] showed a
hardness result of 0.7916 for any algorithm and 0.75 for adaptive vertex-iterative algorithms.
In a recent SODA 2014 paper, Chan et al. [5] proved that Ranking algorithm has performance
ratio at least 0.523166. We improve their analysis and performance ratio in this paper.

A version of the ranking algorithm was first proposed by Karp et al. [12] to solve the
online bipartite matching problem (OnBiMP) with ratio 1 — 1. Subsequent works by Goel
and Mehta [9], and Birnbaum and Mathieu [3] simplified the proof. Since the arrival order of
online nodes is arbitrary, the same analysis carries over to obtain the same ratio for ObMP
on bipartite graphs.

Since running Ranking on bipartite graphs for ObMP is equivalent to running the ranking
algorithm for OnBiMP with random arrival order, the result of Karande et al. [11] implies that
the ranking algorithm has a ratio at least 0.653 for the ObMP on bipartite graphs. Mahdian
and Yan [13] improved the ratio to 0.696 using the technique of strongly factor-revealing LP.
Karande et al. [11] also constructed a hard instance in which Ranking performs no better
than 0.727.

M. Abolhassani et al.

Weighted Ranking. Aggarwal et al. [1] showed that the ranking algorithm can be applied
to OnBiMP when the offline nodes have general weights. They proved that the performance
ratio is 1 — % Devanur et al. [6] gave an alternative proof using randomized primal-dual
analysis. We observe that their analysis can be applied to the NwObMP on bipartite graphs.
Since their analysis assumes that the online nodes arrive in arbitrary order, by exchanging

the roles of online and offline nodes for both partition of nodes, it can be shown that weighted
1

Ranking achieves the same ratio of 1 — < on bipartite graphs.

EwOnBiMP with Free Disposal. Feldman et al. [8] proposed the free disposal feature for
EwOnBiMP. They considered the setting in which each offline node v has capacity n(v),
and an online algorithm benefits from the n(v) highest-weighted edges matched to v. They
proposed an online algorithm with ratio 1 — é, where e, = (1 + %)k7 and k is a lower bound
on capacities. Thus, the proposed algorithm has performance ratio % for the classic weighted
version, when all capacities are 1.

1.3 Analyzing NwObMP via Linear Programming

A common technique [1, 11, 13, 10, 5] for analyzing Ranking algorithms is to define variables
capturing the behavior of the algorithm in question, and derive structural properties that
translate into constraints on the variables. A minimization LP with the performance ratio
as the objective expressed in terms of the variables gives a lower bound on the ratio of the
algorithm.

Let Q be the sample space of configurations from which the algorithm derives its ran-
domness. An instance (o,u) € Q x V is good if node u is matched when the algorithm is
run with o, and bad otherwise. We first describe the challenges encountered when previous
techniques are applied to the node-weighted version of the problem on general graphs.

Why is the problem difficult on general graphs (as opposed to bipartite graphs)? Bipartite
graphs have the following nice property. Suppose in configuration o, node v is unmatched,
while its partner v* in the optimal matching is matched to some node v. If the rank
of u is promoted to form configuration ¢’, then u* will be matched to some node v’
such that the adjusted weight w(c’,v") > w(o,v) does not decrease. This naturally gives
a way to relate the bad instance (o,u) to the good instance (o/,v’) [12, 11, 13, 1, 6],
but unfortunately this property does not hold in general graphs. In fact, u* might be
unmatched in ¢’ as a result of u’s promotion.

Why is the problem difficult when nodes have arbitrary weights (as opposed to uniform
weight)? In previous work [5] on the unweighted case, when u* is matched in ¢’ in
the above scenario, it is argued that the bad instance (o,u) can be related to the good
instance (0’,v), where v is matched in ¢’ to u*. However, there is no guarantee that
the adjusted weight w(o’,v) of the good instance is at least w(e, u), which is needed as
in [1, 6] to analyze the ratio for the weighted version.

To overcome the difficulties mentioned above, we have exploited the following structural
properties of the Ranking algorithm. We analyze how the resulting matching would change if
the rank of one node is changed (in Lemma 14), and give finer classification of good instances.
In particular, the following notions are useful for relating bad instances to good instances in
order to form LP constraints.

Graceful Instance. A good instance (o, u) is graceful if u is currently matched to a node

v such that its optimal partner v* does not exist or is also matched in o.

3:5

ESA 2016

3:6

Beating Ratio 0.5 for Weighted Oblivious Matching Problems

Perpetual Instance. If in a good instance (o, u), node u has two unmatched neighbors,
then (o,u) is perpetually good in the sense that u will still be matched even when its rank
is demoted to the bottom.

Breaking 0.5 Ratio for NwWObMP. As in [1], we analyze the discrete sample space ., :=
[m]" (with the adjustment function ¢(t) := 1 — 2117;7:11, ¥(i) := ¢(L) and adjusted weight
w(o,u) :=P(o(u)) - w,), and show that the performance ratio of weighted Ranking is at least
the optimal value of some finite LPY, with m variables. Since LP¥, does not depend on the
size of G, computing the optimal value of LPﬁbn for some large enough m is sufficient to prove
a lower bound on the ratio of weighted Ranking. We show in our full version that a slightly
better ratio can be analyzed using continuous LP for the limiting case as m tends to infinity.

We are aware of other adjustment functions that can achieve even slightly better ratios
for the weighted Ranking, but we just present here a simple form that crosses the 0.5 barrier.
Our result for the node-weighted case achieves the first non-trivial performance ratio that is
strictly larger than 0.5.

Improved Ratio for Unweighted ObMP. We also apply our new combinatorial analysis to
derive a new finite LPg , that gives a lower bound on the performance ratio of unweighted
Ranking running on graphs of size n. For the unweighted version of the problem, the limiting
behavior of LPY is analyzed when n tends to infinity and an improved lower bound on the
performance ratio of unweighted Ranking is proved using a new class of continuous LP with
jump discontinuity. The ideas for formulating the constraints are similar to the node-weighted
case and we defer the proof to the full version.

1.4 Analyzing EWObMP and EwOnBiMP via Matching Coverage

Researchers have successfully applied the primal-dual LP framework to design approximation
algorithms for matching problems [4, 6]. Consider the following standard maximum weight
matching LP relaxation for an undirected graph G = (V, E) with non-negative edge weights.
Its dual is known as vertex cover.

max w(z):= Z Wy T (1) min Cla) = Z Qy, (2)

{uv}eFlE wev
5.t Y ew<l, Wwev st avtouZww, V{uvleE
ufuviel a, >0, YveV

Ty > 0, V{u,v} € E

An integral feasible primal solution x indicates whether an edge is selected and corresponds
to some matching M, whose weight is denoted by w(M) := w(z). When G is a bipartite graph
between U and V', we use «,, for the variables for nodes in U and 3, for those corresponding
to V.

Standard Primal-Dual Analysis. Typically, during the execution of an algorithm, both a
primal and a dual solution are constructed. To analyze the approximation ratio, the value of
the primal solution returned by the algorithm is compared with that of the dual solution.
Since the primal is a maximization problem, any feasible dual provides an upper bound
on the optimal primal value and can guarantee some approximation ratio. Hence, it is
crucial in such a framework to establish the feasibility of the dual solution, for instance by

M. Abolhassani et al.

either ensuring feasibility during construction, or scale the dual solution at the end by some
appropriate factor. Dual feasibility requires that, for every edge in the graph, the sum of the
dual values of its incident nodes is large enough.

New Framework. We observe that this strict requirement of dual feasibility is an artifact
of the approximation analysis, and instead explore a new analysis method in which dual
feasibility can be bypassed. Specifically, we use this new approach for different variations
of edge-weighted maximum matching, and call it matching coverage. To emphasize that
we do not achieve dual feasibility of any kind, we use a vector to mean an assignment of a
non-negative value to each node.

» Definition 5 (Matching Coverage). Let M be a matching in graph G. A vector a € RV
is a matching coverage for matching M if « is non-negative, and the dual constraints of
LP (2) corresponding to the edges of M are satisfied. In other words, for each {u,v} € M,
Qg + Oy = Wy

» Remark. Since any two distinct edges in a matching do not share any node, it follows that
if a vector « is a matching coverage for a matching M, then C(«) > w(M).

General Framework of Matching Coverage. In our new analysis framework, the algorithm
does not construct any dual solution (not even an infeasible one). This is a major departure
from the conventional primal-dual framework in which some dual solution is usually con-
structed by an algorithm, whereas in our approach, the vector is used only for analysis. In
the analysis, we imagine that as an algorithm ALG is executed, a vector « is constructed
alongside with the knowledge of an optimal matching M™*. The idea is that the values in «
are increased just enough to make sure that « is a matching coverage for M*.

Why does this help the analysis? Since the vector « is a matching coverage for M*, by
Remark 1.4, we have w(M*) < C(«). As a does not have to be feasible for all edge constraints,
it is possible that the resulting value C(«) could be smaller than that of a feasible dual.
Therefore, we can hope to get a smaller value of F' when we compare C(a) < F' - w(MaLg)
with the weight of the matching Ma ¢ returned by ALG, thereby getting a larger performance
ratio w(Marg) > + - Cla) > + - w(M™).

We use the framework of matching coverage to design and analyze algorithms for the
following problems.

EwObMP. In Section 4, we present an algorithm that achieves ratio strictly greater than
0.5 when the number of distinct edge weights is bounded. The full analysis is included in
our full version.

EwOnBiMP with Free Disposal. We present and analyze (in our full version) an algorithm
that achieves ratio strictly greater than 0.5 when the online nodes have bounded degree.
We show that without the free disposal assumption, no randomized algorithm can achieve
any non-trivial constant guarantee on the ratio.

2 Defining Variables for Weighted Ranking on NwObMP

An adversary commits to a graph G = (V, E) with n = |V| nodes, where each node u has
a non-negative weight w,. We fix some maximum weight matching OPT in G. When the
context is clear, we also use OPT to denote the set of nodes covered by the matching. Observe

3:7

ESA 2016

3:8

Beating Ratio 0.5 for Weighted Oblivious Matching Problems

that in general OPT might be a proper subset of V. Let w(OPT) = 3" _opt wy be the total
weight of OPT. For any uw € V, if u is matched in OPT, then we denote by u* the partner of
u in OPT, and we call u* the optimal partner of u. If u ¢ OPT, then we say that u* does
not exist.

Weighted Ranking. As described in the introduction, the algorithm derives its randomness
by sampling from €2, := [m]" uniformly at random, where m is a sufficiently large integer
and [m] = {1,2,...,m}. (We omit the subscript for 2 when the context is clear.) This is
equivalent to picking o(u) € [m] uniformly at random and independently for each u € V. As
in [1, 6], the algorithm fixes an adjustment function ¢ : [0,1] — [0, 1] that is non-increasing.
The function p(t) := 1 — e!~! is used in [1, 6]. We shall consider other adjustment functions
such that ¢(1) = 0 also holds.

We denote (i) := ¢(-%). Then, a permutation on V is induced by o by sorting the nodes
in non-increasing order of adjusted weight w(co,u) := ¥ (o(u)) - w,, where ties are resolved
deterministically (for instance by the identities of the nodes). This permutation on V induces
a lexicographical order on the node pairs that is used for probing. We denote (o, u) > (o,v)
when node u comes before v in the permutation induced by o, in which case u has higher
priority than v.

We denote U := Q x V as the set of instances. Let M (o) be the matching obtained when
Ranking is run with configuration o. If u is matched to some v after running Ranking with
configuration o, then we say that v is matched in o and v is the (current) partner of w in o.
An instance (o, u) is good if u is matched in o, and otherwise bad. An event is a subset of
instances.

Given o € Q,,, let o) be obtained by setting o7 (u) = j and o (v) = o(v) for all v # u.

» Definition 6 (Events). For each i € [m], define the following:
Rank-i good event: Q; := {(o,u)|o(u) =i and u is matched in o}
Rank-i bad event: R; := {(o,u)|o(u) = 4,u is not matched in o and v € OPT}

Let Q := Uie[m]Qi and R := Uie[m]Ri~

Notice that @; and R; are disjoint. While @); could involve nodes that are not in OPT,
R; only involves nodes in OPT; this idea also appears in [1] for dealing with the case when

(o, weq; ¥
w(OPT)-mn—1"
conditional expected contribution of the nodes given that they are at rank i. We next derive

some properties of the xz;’s.

OPT is a proper subset of V. Define z; := which can be interpreted as the

Monotonicity. For i > 2, we have z;_1 > x; > 0, since if (o,u) € Q;, then (¢!t u) €

Qi—1. However, 1 > x; does not necessarily hold since there may exist u ¢ OPT and
(o,u) € Q1.

Loss due to unmatched nodes. Similar to z; associated with @Q;, we consider an
analogous quantity associated with R;:

_— Z(J,u)GRi Wy, E(U,u)GQiURi Wy — Z(U’U)GQi Wy

v ':w(OPT) Tt w(OPT) - mn—1
w(OPT) - mn~1 — Wy,
> P P 3)
w(OPT) - mn—1

n

where the inequality 3, \co,ur, Wu = w(OPT)-m”~! could be strict because @; might

involve nodes not in OPT.

M. Abolhassani et al.

Performance Ratio. The performance ratio is the expected sum of weights of matched

nodes divided by w(OPT), which is given by % = L5 @

» Definition 7 (Marginally Bad Event). For ¢ € [m], we define rank-i marginally bad event
as follows. Let Sy := Ry; for i > 2, let S; := {(o,u) € R;|(c%71,u) € Qi—1}-

Let S := Ujepm)Si and a; := % for all ¢ € [m)].

Observe that for an instance (o, u) such that (¢, u) is bad, there exists a unique j € [m)
such that (¢7,u) € S;, and we say that j is the marginal position of (o, u).

Relating x;’s and «;’s. From a marginally bad instance (o, u) € S;, node u will be matched
when its rank is promoted to i — 1. Hence, for i > 2, we immediately have

Z(a,u)eQifl Wy — Z(a,u)eQi Wy,

= w(OPT) -1 = Tim1)

Q;

Moreover, for i € [m], any bad instance (o, u) € R; has a unique marginal position j € [i]
such that (07, u) € S;; for each (o,u) € S; such that j < 4, we also have (0, u) € R;. Hence,
there is a one-one correspondence between R; and U;-:lSj, and so we have:

Zi:a' - 22:1 Z(a,u)esj Wy, _ Z(U,u)eRi Wy,
I w(OPT) - mn—1 - w(OPT) - mn—1

Jj=1

=7, > 1—z;. (5)

» Remark. Observe that when all nodes in V' are covered by OPT, equality holds for both
(4) and (5). In fact, Lemma 9 allow us to remove the «;’s from the LP constraints.

» Fact 8 (Ranking is Greedy). Suppose Ranking is run with configuration o. If (o,u) is bad,
then each neighbor of u (in G) is matched in o to some node v such that (o,v) > (o, u).

3 Analyzing NwObMP Using Graceful and Perpetual Instances

In this section we define some relations from (marginally) bad events to good events to
formulate our LP constraints. We describe a general principle which is a weighted version of
the argument used in [5].

As mentioned above, the following lemma is used to remove the «;’s from the LP
constraints.

» Lemma 9. Suppose that {b;}"4" is non-negative and non-increasing such that by,+1 = 0,

and {c;}"4! is non-decreasing such that ¢; = 0. Then, we have

(a) Zl 1 b i g Z bl er;l(bl - bi+1)l‘i.
(b) o7y bicioy > =307 (bici — biviCig1) i

Proof. Statement (a) follows because
Zbaz —Z i = bita ZOéJ >Z b)) (1= 2:) =b1 — > _(bi = biy1)xs ,

=1 i=1

where the inequality comes from (5).

3:9

ESA 2016

3:10

Beating Ratio 0.5 for Weighted Oblivious Matching Problems

For statement (b), observing that ¢; = 0, we can assume that a3 = xg — x1, where zo = 1.
Let C = max; ¢;, and define d; := C — ¢; > 0. Then, we have

in: bicia; = Zm: Chia; — i bid;a; > Cby — Ci(bi - bi+1)xi - Zm: bidi(xifl - CUZ)
i=1 i=1 i=1 i=1 i=1

= Z(bici — bi+1Ci+1)$i s

i=1

where in the inequality we apply statement (a) to the first term (which is still valid because
a1 > 1 — 7 holds), and apply oy = zp — z1 and (4) to the second term. <

Weighting Principle. Suppose f is a relation from subset A to subset B of instances, where
f(a) is the set of elements in B that are related to a € A, and f~1(b) is the set of elements
in A that are related to b € B. Recall that each instance a = (o, u) has adjusted weight
w(a) = w(o,u). Suppose further that for all a € A, for all b € f(a), w(a) < w(b). Then, by
considering the bipartite graph H induced by f on AU B, and comparing the weights of
end-points for each edge in H, it follows that >, |[f(a)| - w(a) < >y cp [f7H ()] - w(b).

We shall formulate constraints by considering relations between subsets of instances. The
injectivity of a relation f is the minimum integer ¢ such that for all b € B, |f~1(b)| < ¢. In
this case, we have

Yaealf(@)]-wla) < g3y pw(b). (6)

3.1 Demoting Marginally Bad Instances
» Lemma 10. We have: L 37 [24(i) + (m —3) (¥ (i) — (i + 1))]z; > ¥(1).

Proof. We define a relation f from the set S of marginally bad instances to the set @
of good instances. Observe that for a (marginally) bad instance (o,u), u is unmatched
in o and its optimal partner u* exists. If we further demote u by setting its rank to
j > o(u), the resulting matching is unchanged. Therefore, by Fact 8, for each j > o(u),
u* is matched to the same v such that w(o,u) < w(o,v) = w(ol,v). Hence, we can define
flo,u) == {(cf,v)|u* is matched to v in ol,j > o(u)} C Q, where |f(o,u)] =m —o(u) + 1,
and w(o,u) < w(o’,v) for all (¢/,v) € f(o,u).

We next check the injectivity of f. Suppose (p,v) € f(o,u). Then, u* is the current
partner of v in p, and this uniquely determines u, which is unmatched in p. Hence, o = pJ,
where j is uniquely determined as the marginal position of (p,u). Therefore, the injectivity
is 1.

Hence, our weighting principle (6) gives the following:

S it Dew, = S 1@ w@) < S w) =3 S wliw,.

i=1 (ou)es; a€S beQ i=1 (p,v)€Q

Dividing both sides by w(OPT) - m" gives L 3" (m —i+ 1)¢p(i)oy; < L 37 (i),

Since we do not wish «;’s to appear in our constraints, we derive a lower bound for the
LHS in terms of x;’s by applying Lemma 9 with b; := (m — i + 1)1(¢), where ¢)(m + 1) can
be chosen to be any value. Rearranging gives the required inequality. <

M. Abolhassani et al.

3.2 Promoting Marginally Bad Instances

» Lemma 11. We have: 23" (i) - @ + = 300 5p(i) — i((i + 1) — ¥(0))] -z >
e i (i)

To use the weighting principle, we shall define relations from marginally bad instances S
to the following subsets of special good instances.

» Definition 12 (/f v is matched, would v* still be matched?). For i € [m], let the graceful
instances be Y; := {(o,u) € Q;|u is matched in o to some v s.t. v* does not exist or is also
w.
(o,u)€Y;

matched in o}. Let y; := W and Y := Uje(m) Yi-

» Definition 13 (You will be matched even at the bottom). For i € [m], let the perpetual

Z(U,u)EZi Wu

instances be Z; = {(o,u) € Q;|(c*,u) € Qm}. Let z; = D OPT) =T

u

and Z := Uie[m]Zi~

By definition, we know that Y; C Q; and hence x; > y; > 0. Moreover, observing that
there exists a bijection between Z; and Q,, that maps each (o,u) € Z; to (01", u) € Qm, We
have z; = x,,.

Suppose (o,u) is a good instance that has marginal position j. We wish to compare the
matchings produced by o and ¢7. Sometimes it is more convenient to consider an unmatched
node as being ignored. Specifically, given a configuration ¢ and a node u, running Ranking
with o, means that we still use o to generate the probing order, but any edge involving wu is
ignored. Observe that if (o, u) has a marginal position j, then o, and ¢ will produce the
same matching.

» Lemma 14 (Ignoring One Node). Suppose u is covered by the matching M (o) produced
by o, and M(oy,) is the matching produced by using the same probing list, but any edge
involving u is ignored. The symmetric difference M (o) ® M(oy,) is an alternating path
P = (u=mwu1,us,...,up) such that for all i € [p — 2|, (o,u;) > (0, uiy2).

Proof. We can view probing G with o, as using the same list L of unordered node pairs to
probe another graph G,,, which is the same as GG except that the node u is labelled unavailable
and will not be matched in any case. After each round of probing, we compare what happens
to the partially constructed matchings M(o) in G and M(o,) in G,. For the sake of this
proof, “unavailable” and “matched” are the same availability status, while “unmatched” is a
different availability status.

We apply induction on the number of rounds of probing. Observe that the following
invariants hold initially. (i) There is exactly one node known as the crucial node (which
is initially u) that has different availability in G and G,,. (ii) The symmetric difference
M (o) & M (o,) is an alternating path P connecting u to the current crucial node; initially,
both M(o) and M(o,) are empty, and path P is degenerate and contains only w. (iii)
If the path P = (u = uy,us,...,u;) contains I > 3 nodes, then for all i € [l — 2], then
(o,u;) > (0, uiq2).

Consider the inductive step. Suppose currently the alternating path M (o) & M(oy,)
contains ! nodes, where u; is crucial. Observe that the crucial node and M (o) ® M (c,) do
not change in a round except for the case when the pair being probed is an edge in G' (and
G,), involving the crucial node u; with another currently unmatched node w41 in G, which
is also unmatched in G,, (because the induction hypothesis states that all nodes but u; have
the same availability status in G and G,,).

Since u; has different availability in G and G,,, but w;41 is unmatched in both G and

G, it follows that the edge e := {u;,u;41} is added to exactly one of M (o) and M(oy,).

3:11

ESA 2016

3:12

Beating Ratio 0.5 for Weighted Oblivious Matching Problems

Hence, the edge e is added to extend the alternating path M (o) ® M (o,,), and the node u;41
becomes crucial.

Next, it remains to show that if [> 2, then (o, u;—1) > (0, ui4+1). Suppose we go back in
time, and consider at the beginning of the round when the edge {u;_1,u;} is about to be
probed, and u;_; is crucial. By the induction hypothesis, both u; and wu;4; are unmatched in
both G and G,,. It follows that (o, u;—1) > (o, u;41), because otherwise the edge {u;—1,u;}
would have lower probing priority than {u;y1,u;}. This completes the inductive step. |

» Lemma 15 (Two Unmatched Neighbors Implies Perpetual). Suppose in configuration o,
node u is matched and has two unmatched neighbors in G. Then, (o,u) € Z is perpetual.

Proof. If we assume the opposite, then u will be unmatched in o]*. Suppose = and y are
two neighbors of u that are unmatched in o. Then, by Lemma 14, the symmetric difference
M (o) ® M(o}) is an alternating path starting from u, and hence at most one of z and y
will remain unmatched in o]".

This implies that in 7', the unmatched node v will have at least one unmatched neighbor;

this contradicts the fact that that Ranking will always produce a maximal matching. |

Next we derive inequalities involving the graceful instances. Combining the inequalities,
we can obtain the crucial constraint involving only xz;’s for achieving a ratio that is strictly
larger than 0.5.

» Lemma 16 (You are unmatched because someone is not graceful.). We have the following
inequality: =" i)y, < LS (i) (22 — 1).

Proof. We define a relation from the set R of bad instances to the set @\Y of good instances
that are not graceful.

Given any bad instance (o,u) € R, we know that u* exists and is matched to some node
v such that w(o,v) > w(o,u), by Fact 8. Moreover, since v is matched to u* such that
u is unmatched, we know that (o,v) € @\ 'Y is good but not graceful. Hence, we define
f(o,u) :={(o,v)}, where v is the current partner of u*. Observe that each (o,v) € Q\'Y
can be related to a unique (o,u) € R, where u is the optimal partner of v’s current partner
in 0. Hence, the injectivity of f is 1.

Hence, the weighting principle (6) gives: 3°, jcpw(o,u) <32, ,)co\y w(o,v). Dividing
both sides by w(OPT) - m™ gives: L 3" (i), < L 3" (i) (@ — yi).

Finally, using T; > 1 — z; from (3) and rearranging gives the required inequality. |

» Lemma 17 (/f you are marginal, someone else is either graceful or perpetual). We have the
inequality: =577 (i — D)(i)oy < LS (i) (By: + 22:).

Proof. As mentioned earlier, we shall define two relations f and g from marginally bad S to
graceful Y and perpetual Z, respectively, such that the following properties hold.

1. For each a € S, for each b € f(a) Ug(a), w(a) < w(b).

2. Foreacha€ S, |f(a)l+ |g(a)] = o(u) — 1.

3. The injectivity of f is at most 3 and the injectivity of g is at most 2.

Suppose we have f and g with these properties. Then, our weighting principle (6) gives:

Z (O—(u)il)w(o—fu‘)g Z 3w(p,v)+ Z 2w(p,v),

(o,u)eS (pv)ey (pv)€Z

M. Abolhassani et al.

which by definition is equivalent to

m m

S Y w06 Y w2 3wl

i=1 (o,u)€S; i=1 (pyv)€Y; (pv)€Z;

Dividing both sides by w(OPT) - m™ gives the required inequality.
Next we show how f and g are constructed such that all required properties hold.
Given marginally bad (o,u) € S, we consider good instance (¢/,u) € @, where ¢’ =
ol,j < o(u) is obtained by “promoting” u’s rank in o. Note that by Fact 8, u* must be

matched in o to some node vy such that (o,v9) > (0,u). Let the partner of u in ¢’ be p.

The next claim is crucial for the construction of f and g.

» Claim 18. If w(o’,p) < w(o,u), then u* is matched in o’ to some node v such that
w(o’,v) > w(o,v0) > w(o,u).

Proof. By Lemma 14, we know that the symmetric difference M (c’) ® M (o) is an alternating
path (u = u1,p = ug, us, ug . ..) that starts with w. Moreover, we have w(o’,u) > w(o’,us) >
w(o’,us) > ... and w(o’,p) > w(o’,uy) > w(o’,ug) > If u* is not contained in the
alternating path, then directly we have v = vy and hence the claim holds.

Assume that u* is contained in the alternating path. Then, vy must also appear in
the alternating path. Let vg = w;. Since w(o’,v9) = w(o,v9) > w(o,u) > w(o’,p), we
conclude that ¢ must be odd. By Lemma 14, we know that «* must be u;_; since wu; is
matched to u;_1 in 0. Moreover, we know that u* = w;_1 is matched to u;_s in ¢’ such that
w(o’,ui—2) > w(o’,u;) = w(o, vo). <

Next we include instances in Y into f(o,) and instances in Z into g(o,u) on a case by
case basis. Recall that for each 1 < j < o(u), we consider o’ = oJ; moreover, after promoting
u to rank j, u is matched in o’ to p.

Case-1(a). u* is matched in ¢’ and w(o’,p) = w(o,p) > w(o,u). In this case, (¢/,p) is
graceful, because p is matched in o’ to u, whose optimal partner u* is also matched. Hence,
we include (¢/,p) € Y in f(o,u).

Case-1(b). u* is matched in ¢’ and w(o’,p) = w(o,p) < w(o,u). By Claim 18, u* is
matched in ¢’ to some node v such that w(o’,v) > w(o,u). Observe that (0/,v) is graceful,
and we include (¢/,v) € Y in f(o,u).

Case-2(a). u* is unmatched in ¢/, and p* (if it exists) is also matched in ¢’. Note that after
promoting u, we have w(o’,u) > w(o,u). Moreover, (¢, u) is graceful, because the optimal
partner p* either does not exist or is matched in ¢’. We include (¢/,u) € Y in f(o,u).

Case-2(b). w«* is unmatched in ¢/, p* exists and is the only unmatched neighbor of p in ¢’

By Claim 18, since u* is unmatched in o', we have w(o, p) = w(o’,p) > w(o, u); also, since p
is matched in o/, p # u*. Moreover, by Lemma 14, the symmetric difference M (o) & M (o”)
is an alternating path, and only two nodes (u and u*) can have different matching status in
o and o’.

Hence, in ¢, p must remain matched and p* must remain unmatched; this means that p
has exactly two unmatched neighbors, namely v and p*, in ¢. By Lemma 15, we conclude
that (o, p) is perpetual, and include (o, p) € Z in g(o,u).

3:13

ESA 2016

3:14

Beating Ratio 0.5 for Weighted Oblivious Matching Problems

Case-2(c). wu* is unmatched in o', p* exists and is not the only unmatched neighbor of p
in ¢’. Similar to Case-2(b), in this case, w(c’,p) = w(o,p) > w(o,u) and p has two different
unmatched neighbors in ¢, so (¢/,p) is perpetual by Lemma 15. We include (¢’,p) € Z in
g(o,u). .

By construction, property 1 holds. Moreover, for each 1 < j < o(u) and ¢’ = o7, exactly
one of the above 5 cases happens. Hence, we also have property 2: |f(o,u)| + |g(o,u)| =
o(u) — 1. Next, we prove the injectivity.

Injectivity Analysis. Observe that in our construction, if (p,v) € f(o,u) U g(o,u), then
o = pt,, where t is the marginal position of (p,u). Hence, in the injectivity analysis, once
(p,v) and u are identified, o can be uniquely determined.
For relation f, suppose (p,v) € Y is included in some f(o,u) in the following cases.
Case-1(a). Node u is uniquely identified as the current partner of v in p.
Case-1(b). Node u is uniquely identified as the optimal partner of v’s current partner.
Case-2(a). Node u is the same as v.

Hence, each (p,v) € Y is related to at most 3 instances in S, which means that f has
injectivity at most 3.

For relation g, suppose (p,v) € Z is included in some g(o,u) in the following cases.

Case-2(b). By construction p = o, and v has exactly two neighbors that are unmatched

in p, one of which is v*. Node w is uniquely identified as the other unmatched neighbor.

Case-2(c). Node u is uniquely identified as the current partner of v in p.

Hence, each (p,v) € Z is related to at most 2 instances in .S, which means that g has
injectivity at most 2. This completes the proof of Lemma 17. <

We can now derive the main constraint of this subsection.

Proof of Lemma 11. We start from the inequality in Lemma 16. Observing that z; = x,,,
and using the upper bound for = 3" 4 (i)y; in Lemma 17, we have = > (i — 1) (i)a; <
L3 (i) (62 + 2 — 3).

We next use Lemma 9 by setting b; := ¢ (i) and ¢; := i — 1; observe that ¢; = 0, and we set
¥(m + 1) := 0, which is consistent with ¢¥(m) > 0 = ¢)(m + 1). Hence, we have the following
lower bound for the LHS: L > (i — 1)o(i)oy; > L 37 (p(i) +i(y(i + 1) — (3))) - 2.

Rearranging gives the required inequality. |

3.3 Using LP to Bound Performance Ratio

Putting all achieved constraints on x;’s together, we obtain the following linear program
LP%7 which is a lower bound on the performance ratio when weighted Ranking is run with
weight adjustment function v» and sample space ,,, = [m]V.

LP% min % Yo
s.t. x; — wiy1 > 0, 1€ [m—1]
23 (@) - xS [5Y(0) — (i + 1) = (0)] - > 2 30 (i) (7)
o S [20(0) + (m = i) () — (i +)]s > (1) (8)

x; >0, i€ [m].

M. Abolhassani et al.

Achieving ratio strictly larger than 0.5. Observe that LP% is independent of the size of
G. Hence, to obtain a lower bound on the ratio, we can use an LP solver to solve LPw for
some large enough m and some appropriate non-negative non-increasing sequence {1 (i)} ;.
In particular, there exists a weighted Ranking algorithm with ratio strictly above 0.5.

174
» Theorem 19. Using m = 10000 and (i) := 1 — %57 71 , the weighted Ranking algorithm
has performance ratio at least the value given by LP}fl. 0.501505.

Although the function o(t) := 1 — e!~! (that is used in [1, 6]) cannot give a ratio better
0.5 from our LP, it is still possible that the function could have good performance ratio.
More experimental results and our source code can be downloaded at:

http://i.cs.hku.hk/~algth/project/online_matching/weighted.html.

Limiting case when m tends to infinity. Experiments show that LPm is increasing in m.
This suggests that a (slightly) better analysis may be achieved if Ranking samples o from the
continuous space Q.. = [0,1]V, and uses adjusted weight w(o, u) := ¢(o(u)) - w, for each
node u. _

The variables z;’s are replaced by the function z(¢t) := Ducy Pr”[(aﬁ)(éi.gr(;Odlq(u)_t]'wu.
Our combinatorial counting argument can be replaced by measure analysis. For instance,
Qoo = [0,1]V is equipped with the uniform n-dimensional measure, while z(t) has measure of
dimension n — 1. Since we assume that ¥(m + 1) = 0 in the finite analysis, this corresponds
to ¢(1) = 0 in continuous case.

Observe that it is possible to describe a continuous version of the weighting principle
using measure theory to derive all the corresponding constraints involving z. However, the
formal rigorous proof is out of the scope of this paper, and one can intuitively see that each
constraint involving the x;’s translates naturally to a constraint involving z in the limiting
case. Hence, the following continuous LPY, gives a lower bound on the ratio when Ranking

samples continuously, and we analyze it in our full version as a case study.

LP min [, z(t)dt

s.t. Z/(t) <0 Vte|0,1]
20 2(1) + [[5ep(t) — t! (1)) 2(t)dt > 30
Jy 1260() = (1 = 1) ()] 2(t)dt > p(0)
z(>0 YVt € [O, 1]
o= fo p(t)dt

» Theorem 20 (Weighted Ranking with Continuous Sampling). Using continuous sample space
1

Qo (with adjustment function @(t) :=1— e17 —~ L) weighted Ranking has performance ratio

at least 0.501512.

4 Beating Ratio 0.5 for EWObMP

We consider EWObMP where the number of distinct weights is k. We give an algorithm
whose performance ratio is % + &, where & only depends on k. As a subroutine, we use
an algorithm A"" for the unweighted version of the problem with performance ratio % + &1,
where & > 0. For instance, Theorem 2 implies that & > 0.0268. When we run A“" on a
subset H C (), A“" is first run to produce a random order L of node pairs. Only pairs in
H are kept in L, while pairs not in H are removed. Then, the list L is used for probing as

3:15

ESA 2016

http://i.cs.hku.hk/~algth/project/online_matching/weighted.html

3:16

Beating Ratio 0.5 for Weighted Oblivious Matching Problems

before. We partition the pairs in (‘2/) into batches {H;};>1, where the weights of pairs in
each batch are similar. Then, starting from the batch with largest weights, we run A"" on
each batch H; to produce a list L;, and return the concatenated list used for probing.

The following lemma, whose proof can be found in the full version, describes the properties
of the intervals picked by the algorithm. Recall that A“" has performance ratio % + &1 on
unweighted ObMP. Given two real numbers a < b, we denote dist(a, b) := 1 — §.

» Lemma 21 (Partitioning Weights into Batches). Given a set W of k distinct weights, there

exists an integer v = O(k?) and € = %1 such that the algorithm can return disjoint intervals

{I; == [a;, bi]}i>1, whose union contains W, and for each i > 1, b1 < a;, dist(a;,b;) < €
and diSt(bi+1, bl) > e L.

Algorithm 1 Algorithm for Edge-Weighted ObMP

—

: W {we:e€ (‘2/)} > Set of weights of pairs in (‘2/)
. {I; := [ai, b;]} £, + Disjoint intervals as given in Lemma 21 to partition W, where I is
the interval with the largest weights.
: for ¢ from 1 to K do
H,; <+ Pairs in (‘2/) with weights in I;
L; < List produced by running unweighted A“" on H; using independent randomness
return concatenated list L := L1 ® Ly ®--- P Lg

N

@ R ®

Assuming the knowledge of an optimal matching OPT, we construct a matching coverage
a € RY for OPT during an execution of the algorithm. For a matching M, we use |M| to
denote its cardinality and w(M) to denote the sum of weights of its edges. We say an edge e
in OPT is destroyed by a matching M if edge e is not in M but at least one end-point of e is
matched in M. Moreover, two edges intersect if they share at least one end-point. We define
the following edge sets for ¢ > 1.

ALG,; is the set of edges the algorithm includes in the matching when list L; is probed.

OPT,; is the set of edges in OPT that intersect with edges in ALG;, but do not intersect

with edges in ALG;, for all j < i.

OPTZH := OPT; N H;, each of which has weight in [a;, b;].

The matching resulting from the probing list L returned by the algorithm is ALG :=
U;ALG;. Since ALG is a maximal matching in G, it follows that every edge in OPT appears
in exactly one OPT;.

Suppose V; is the set of nodes matched in ALG;. Let C(ay,) :== .
the vector « restricted to coordinates corresponding to V;.

vev, Qw, Where ay; is

We defer the proof of the following lemma to our full version.
» Lemma 22 (Local Performance Ratio). Suppose the weights of H; are in [a;,b;], where

n := dist(a;, b;); moreover, let X := dist(b;41,b;). Then, E[w(ALG;)] > (1 —n)- (3 + fﬁ;&l) .
E[C(av;)].

Finally, we are ready to prove the performance ratio of the algorithm.

Proof of Theorem 3. From Lemma 21, it follows that the parameters in Lemma 22 satisfy
A> et and n < €, where r = O(k?). Observing that ¢ = %1 < 1, it follows that the local

M. Abolhassani et al.

performance ratio is

BALC (1 - (;Jr s >>(1—er) <1+ 515_1)

E[C(av,)] 1426 2 1424
(1 2
<16><2 1+25>
_]' ET T]‘ 51 s
=3t orag Bt 25t oy B

where the last inequality follows because r > 1 and € <

Hence, we have E[ALG] = 3_, E[ALG;] > (3 + 2+£1§1 (3)") >_, E[C(av;)]. Finally, observe
that >, E[C(ay,)] = E[C(«a)] > w(OPT), as « is a matching coverage for OPT. Therefore,
we conclude that the performance ratio for the whole algorithm is at least % + &k, where

& = 2+1451 () = Q)9 as required. <

'Q"»&\H

—— References

1 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-
weighted bipartite matching and single-bid budgeted allocations. In Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23-25, 2011, pages 1253-1264, 2011.

2 Jonathan Aronson, Martin Dyer, Alan Frieze, and Stephen Suen. Randomized greedy

matching. ii. Random Struct. Algorithms, 6(1):55-73, January 1995. doi:10.1002/rsa.

3240060107.

3 Benjamin Birnbaum and Claire Mathieu. On-line bipartite matching made simple. SIGACT
News, 39(1):80-87, March 2008. doi:10.1145/1360443.1360462.

4 Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. Online primal-dual algorithms for
maximizing ad-auctions revenue. In ESA, pages 253264, 2007.

5 T.-H. Hubert Chan, Fei Chen, Xiaowei Wu, and Zhichao Zhao. Ranking on arbitrary
graphs: Rematch via continuous Ip with monotone and boundary condition constraints. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1112-1122, 2014. doi:
10.1137/1.9781611973402.82.

6 Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized primal-dual analysis
of ranking for online bipartite matching. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 101-107, 2013. doi:10.1137/1.9781611973105.7.

7 Martin E. Dyer and Alan M. Frieze. Randomized greedy matching. Random Struct. Al-
gorithms, 2(1):29-46, 1991. doi:10.1002/rsa.3240020104.

8 Jon Feldman, Nitish Korula, Vahab S. Mirrokni, S. Muthukrishnan, and Martin P4l. Online
ad assignment with free disposal. In Internet and Network Economics, 5th International
Workshop, WINE 2009, Rome, Italy, December 14-18, 2009. Proceedings., pages 374—385,
2009. doi:10.1007/978-3-642-10841-9_34.

9 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008,
pages 982-991, 2008.

10 Gagan Goel and Pushkar Tripathi. Matching with our eyes closed. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA,
October 20-23, 2012, pages 718727, 2012. doi:10.1109/F0CS.2012.19.

3:17

ESA 2016

http://dx.doi.org/10.1002/rsa.3240060107
http://dx.doi.org/10.1002/rsa.3240060107
http://dx.doi.org/10.1145/1360443.1360462
http://dx.doi.org/10.1137/1.9781611973402.82
http://dx.doi.org/10.1137/1.9781611973402.82
http://dx.doi.org/10.1137/1.9781611973105.7
http://dx.doi.org/10.1002/rsa.3240020104
http://dx.doi.org/10.1007/978-3-642-10841-9_34
http://dx.doi.org/10.1109/FOCS.2012.19

3:18

Beating Ratio 0.5 for Weighted Oblivious Matching Problems

11

12

13

14

15

Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite matching
with unknown distributions. In Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 587-596, 2011. doi:
10.1145/1993636.1993715.

Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for
on-line bipartite matching. In Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 352-358, 1990. doi:
10.1145/100216.100262.

Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an
approach based on strongly factor-revealing LPs. In Proceedings of the 43rd ACM Sym-
posium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
597-606, 2011. doi:10.1145/1993636.1993716.

Silvio Micali and Vijay V. Vazirani. An O(v/V E) algorithm for finding maximum matching
in general graphs. In FOCS’80, pages 17-27. IEEE Computer Society, 1980. doi:10.1109/
SFCS.1980.12.

Alvin E Roth, Tayfun Sénmez, and M Utku Unver. Pairwise kidney exchange. Journal of
Economic theory, 125(2):151-188, 2005.

http://dx.doi.org/10.1145/1993636.1993715
http://dx.doi.org/10.1145/1993636.1993715
http://dx.doi.org/10.1145/100216.100262
http://dx.doi.org/10.1145/100216.100262
http://dx.doi.org/10.1145/1993636.1993716
http://dx.doi.org/10.1109/SFCS.1980.12
http://dx.doi.org/10.1109/SFCS.1980.12

	Introduction
	Summary of Our Results
	Related Work
	Analyzing NwObMP via Linear Programming
	Analyzing EwObMP and EwOnBiMP via Matching Coverage

	Defining Variables for Weighted Ranking on NwObMP
	Analyzing NwObMP Using Graceful and Perpetual Instances
	Demoting Marginally Bad Instances
	Promoting Marginally Bad Instances
	Using LP to Bound Performance Ratio

	Beating Ratio 0.5 for EwObMP

