
Outer Common Tangents and Nesting of Convex
Hulls in Linear Time and Constant Workspace
Mikkel Abrahamsen∗1 and Bartosz Walczak2

1 Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark
miab@di.ku.dk

2 Theoretical Computer Science Department, Faculty of Mathematics and
Computer Science, Jagiellonian University, Kraków, Poland
walczak@tcs.uj.edu.pl

Abstract
We describe the first algorithm to compute the outer common tangents of two disjoint simple
polygons using linear time and only constant workspace. A tangent of a polygon is a line touching
the polygon such that all of the polygon lies on the same side of the line. An outer common
tangent of two polygons is a tangent of both polygons such that the polygons lie on the same
side of the tangent. Each polygon is given as a read-only array of its corners in cyclic order. The
algorithm detects if an outer common tangent does not exist, which is the case if and only if the
convex hull of one of the polygons is contained in the convex hull of the other. Otherwise, two
corners defining an outer common tangent are returned.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases simple polygon, common tangent, optimal algorithm, constant workspace

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.4

1 Introduction

A tangent of a polygon is a line touching the polygon such that all of the polygon lies on the
same side of the line. An outer common tangent of two polygons is a tangent of both polygons
such that the polygons lie on the same side of the tangent. Two disjoint polygons have exactly
two outer common tangents unless their convex hulls are nested. If they are properly nested,
there is no outer common tangent. In this paper, we study the problem of computing the
outer common tangents of two disjoint simple polygons, each given as a read-only array of its
corners in cyclic order. We give an algorithm computing the outer common tangents in linear
time using only a constant number of variables each storing a boolean value or an index of a
corner in the array. We are therefore working in the constant workspace model of computation.

The constant workspace model is a restricted version of the RAM model in which the
input is read-only, the output is write-only, and only O(logn) additional bits of workspace
(with both read and write access) are available, where n is the size of the input. Clearly,
Ω(logn) bits in the workspace are necessary to solve any interesting computational problem,
because that many bits are required to store an index of or a pointer to an entry in the input.
Since blocks of Θ(logn) bits are considered to form words in the memory, algorithms in the
constant workspace model use O(1) words of memory, which explains the name of the model.

∗ Research partially supported by Mikkel Thorup’s Advanced Grant from the Danish Council for Inde-
pendent Research under the Sapere Aude research career programme.

© Mikkel Abrahamsen and Bartosz Walczak;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


4:2 Outer Common Tangents and Nesting of Convex Hulls

The practical relevance of studying problems in the constant workspace model is increasing,
as there are many current and emerging memory technologies where writing can be much
more expensive than reading in terms of time and energy [8].

The constant workspace model was first studied explicitly for geometric problems by
Asano et al. [4]. Recently, there has been growing interest in algorithms for geometric
problems using constant or restricted workspace, see for instance [1, 3, 5, 6, 9, 11, 14].

The problem of computing common tangents of two polygons has received most attention in
the case that the polygons are convex. For instance, computing the outer common tangents of
disjoint convex polygons is used as a subroutine in the classical divide-and-conquer algorithm
for the convex hull of a set of n points in the plane due to Preparata and Hong [17]. They
give a naive linear-time algorithm for outer common tangents, as it suffices for an O(n logn)-
time convex hull algorithm. The problem is also considered in various dynamic convex hull
algorithms [7, 12, 16]. Overmars and van Leeuwen [16] give an O(logn)-time algorithm for
computing an outer common tangent of two disjoint convex polygons when a separating line
is known, where each polygon has at most n corners. Kirkpatrick and Snoeyink [13] give an
O(logn)-time algorithm for the same problem but without using a separating line. Guibas
et al. [10] give a lower bound of Ω(log2 n) on the time required to compute an outer common
tangent of two intersecting convex polygons, even if they are known to intersect in at most
two points. They also describe an algorithm achieving that bound. Toussaint [18] considers
the problem of computing separating common tangents of convex polygons and notes that
the problem occurs in problems related to visibility, collision avoidance, range fitting, etc. He
gives a linear-time algorithm. Guibas et al. [10] give an O(logn)-time algorithm for the same
problem. All the above-mentioned algorithms with sublinear running times make essential
use of the convexity of the polygons. If the polygons are not convex, a linear-time algorithm
can be used to compute the convex hulls before computing the tangents [15]. However, if the
polygons are given in read-only memory, Ω(n) extra bits are required to store the convex
hulls, so this approach does not work in the constant workspace model.

Abrahamsen [2] gives a linear-time constant-workspace algorithm to compute the outer
common tangents of two simple polygons the convex hulls of which are disjoint. In this
paper, we show that the same is possible as long as the polygons (but not necessarily their
convex hulls) are disjoint. The algorithm is only slightly different from the one in [2], but
its proof of correctness requires much more effort. In particular, the proof relies on an
intricate continuous analysis of the algorithm. Before, it was not even clear whether to
expect existence of a linear-time constant-workspace algorithm that does not require the
convex hulls to be disjoint, because it happens quite often that a computational problem
exhibits different behavior for disjoint polygons and for polygons that are not disjoint. For
instance, as it has been mentioned above, the outer common tangents of two disjoint convex
polygons can be computed in time O(logn), while doing the same for two convex polygons
that intersect in two points requires time Ω(log2 n).

A separating common tangent of two polygons is a tangent of both polygons such that
the polygons lie on the opposite sides of the tangent. Two disjoint polygons have exactly two
separating common tangents provided that their convex hulls are disjoint. If they intersect
properly, there is no separating common tangent. Abrahamsen [2] describes a linear-time
constant-workspace algorithm that computes the separating common tangents of two simple
polygons. In particular, it detects whether the convex hulls of two simple polygons are
disjoint. Our current algorithm can decide whether the convex hulls two simple polygons are
nested, which happens when it is unable to find an outer common tangent. To the best of our
knowledge, this was not known to be possible in linear time and constant workspace prior to



M. Abrahamsen and B. Walczak 4:3

this work. Our algorithm and the algorithm from [2] together enable us to determine, for
two disjoint simple polygons in general position, the full relation between their convex hulls
(whether they are nested, overlapping, or disjoint) in linear time and constant workspace.

It remains open whether an outer common tangent of two polygons that are not disjoint
can be found in linear time using constant workspace.

2 Terminology and Notation

For any two points a and b in the plane, the closed line segment with endpoints a and b
is denoted by ab. When a 6= b, the straight line containing a and b that is infinite in both
directions is denoted by L(a, b), and the ray starting at a and going through b is denoted by
R(a, b). For three points a, b, and c, consider the line L(a, b) as oriented from a towards b,
and define T (a, b, c) to be 1 if c lies to the left of L(a, b), 0 if a, b, c are collinear, and −1 if
c lies to the right of L(a, b). Let LHP(a, b) denote the closed half-plane lying to the left of
L(a, b) and RHP(a, b) denote the closed half-plane lying to the right of L(a, b).

A simple polygon, or just a polygon, with corners x0, . . . , xn−1 is a closed polygonal curve
in the plane composed of n edges x0x1, . . . , xn−2xn−1, xn−1x0 such that the segments have
no common points other than the common endpoints of pairs of consecutive edges. The
region of the plane bounded by a polygon P (including P itself) is a polygonal region.

Assume for the rest of this paper that P0 and P1 are two disjoint simple polygons with
n0 and n1 corners, respectively. (We allow one of P0 and P1 to be contained in the “interior
region” of the other – in that case our algorithm will report that the convex hulls are
nested and no outer common tangent exists.) Assume that Pk is defined by a read-only
array of its corners pk[0], pk[1], . . . , pk[nk − 1] for k ∈ {0, 1}. Assume further, without loss
of generality, that the corners of P0 are given in counterclockwise order and the corners
of P1 are given in clockwise order. (The orientation of a polygon can be easily tested in
linear time using constant workspace, and the algorithm can choose to traverse the polygon
forwards or backwards, accordingly.) Finally, assume that the corners are in general position
in the sense that P0 and P1 have no corners in common and the combined set of corners
{p0[0], . . . , p0[n0 − 1], p1[0], . . . , p1[n1 − 1]} contains no triple of collinear points.

Indices of the corners of Pk are considered modulo nk, so that pk[i] and pk[j] denote the
same corner when i ≡ j (mod nk). For a, b ∈ Pk, the chain Pk[a, b] is the portion of Pk from
a to b in the order assigned to Pk (counterclockwise for P0, clockwise for P1). If i and j are
indices of corners on Pk, we write Pk[i, j] to denote Pk[pk[i], pk[j]].

A tangent of Pk is a line ` such that ` and Pk are not disjoint and Pk is contained in one
of the closed half-planes determined by `. The line ` is a common tangent of P0 and P1 if it
is a tangent of both P0 and P1. A common tangent is an outer common tangent if P0 and
P1 are on the same side of the tangent, otherwise the common tangent is separating.

For a simple polygon P , let H(P ) denote the convex hull of P . The following lemma
asserts well-known properties of common tangents of polygons. See Figures 1–3.

I Lemma 1. A line is a tangent of a polygon P if and only if it is a tangent of H(P ).
Under our general position assumptions, the following holds. If one of H(P0) and H(P1)
is completely contained in the other, there are no outer common tangents of P0 and P1.
Otherwise, there are two or more, and there are exactly two if P0 and P1 are disjoint. If
H(P0) and H(P1) are not disjoint, there are no separating common tangents of P0 and P1.
Otherwise, there are exactly two.

ESA 2016



4:4 Outer Common Tangents and Nesting of Convex Hulls

Figure 1 The convex hulls are dis-
joint – separating and outer common
tangents exist.

Figure 2 The convex
hulls overlap – only outer
common tangents exist.

Figure 3 The convex
hulls are nested – no
common tangents exist.

Algorithm 1: OuterCommonTangent(P0, P1)
1 s0 ← 0; v0 ← 0; b0 ← false; s1 ← 0; v1 ← 0; b1 ← false; u← 0
2 while s0 < 2n0 and s1 < 2n1 and (v0 < s0 + n0 or v1 < s1 + n1)
3 vu ← vu + 1
4 if T (p0[s0], p1[s1], pu[vu]) = 1
5 if p1−u[s1−u] ∈ ∆(pu[su], pu[vu − 1], pu[vu])
6 bu ← true

7 if not bu

8 su ← vu; v1−u ← s1−u; b1−u ← false

9 u← 1− u
10 if s0 ≥ 2n0 or s1 ≥ 2n1 or b0 or b1
11 return nested

12 return (s0, s1)

3 Algorithm

Let the outer common tangents of P0 and P1 be defined by pairs of corners (`0, `1) and (r0, r1)
so that `0, r0 ∈ P0, `1, r1 ∈ P1, and P0, P1 ⊂ LHP(`0, `1)∩RHP(r0, r1). Algorithm 1 returns
a pair of indices (s0, s1) such that (r0, r1) = (p0[s0], p1[s1]) or, if the convex hulls of P0 and P1
are nested so that the tangents do not exist, the algorithm reports that by returning nested.
Finding (`0, `1) requires running Algorithm 1 with the roles of P0 and P1 interchanged and
with the orders of the corners of P0 and P1 reversed – each array reference pk[i] is translated to
p1−k[−i] for k ∈ {0, 1}, and the returned result is (s1, s0) such that (`0, `1) = (p0[s0], p1[s1]).

The algorithm maintains a pair of indices (s0, s1) which determines the tangent candidate
L(p0[s0], p1[s1]). Starting from (s0, s1) = (0, 0) and advancing the indices s0, s1 appropriately,
the algorithm attempts to reach a situation that (p0[s0], p1[s1]) = (r0, r1), that is, P0, P1 ⊂
RHP(p0[s0], p1[s1]). At the start and after each update to (s0, s1), the algorithm traverses
P0 and P1 in parallel with indices (v0, v1), starting from (v0, v1) = (s0, s1) and advancing v0
and v1 alternately. The variable u ∈ {0, 1} determines the polygon Pu in which we advance
the traversal in a given iteration. If the test in line 4 happens to be positive, then the corner
pu[vu] lies on the “wrong side” of the tangent candidate, witnessing Pu 6⊂ RHP(p0[s0], p1[s1]).



M. Abrahamsen and B. Walczak 4:5

e

f

b

g

h

d
a

P1

c

P0

Figure 4 An example of how Algorithm 1 finds the outer common tangent L(c, h) of P0 and P1.
The start points are (p0[0], p1[0]) = (a, e). The gray dashed line segments are the segments p0[s0]p1[s1]
on the various tangent candidates. In the 11th iteration, an update makes (p0[s0], p1[s1]) = (b, f), so
the tangent candidate becomes the dotted line L(b, f). In the 19th iteration, u = 0 and p0[v0] = d, so
b0 is set to true. In the 28th iteration, u = 1 and p1[v1] = g, and therefore b0 is cleared. In the 31st
iteration, an update makes (p0[s0], p1[s1]) = (c, h) and the outer common tangent has been found.

In that case, the algorithm updates the tangent candidate by setting su ← vu and reverts
v1−u back to s1−u in line 8, unless a special boolean variable bu is set, which we will comment
on shortly. The reason for reverting v1−u back to s1−u in line 8 is that a corner of P1−u

which was on the correct side of the tangent candidate before the update to su can be on
the wrong side of the tangent candidate after the update to su, and then it needs to be
traversed again in order to be detected. The algorithm returns (s0, s1) in line 12 when it has
traversed both polygons entirely with indices v0 and v1 after last updates to s0 and s1 without
detecting any corner on the wrong side of the tangent candidate. That can happen only when
P0, P1 ⊂ RHP(p0[s0], p1[s1]). See Figure 4 for an example of how the algorithm proceeds.

In the test in line 5, ∆(a, b, c) denotes the filled triangle with corners a, b, c. If that test
is positive, then p1−u[s1−u] belongs to the convex hull of Pu, so p1−u[s1−u] 6= r1−u. In that
case, the boolean variable bu is set, and then it prevents any updates to su in line 8 until it
is cleared after a later update to s1−u in line 8. It will be shown in the proof of Lemma 3
that such an update to s1−u must occur if the convex hulls of P0 and P1 are not nested.

The main effort in proving correctness of Algorithm 1 lies in the following lemma, which
is proved in Section 4.

I Lemma 2. If the outer common tangents of P0 and P1 exist, then the loop in line 2 of
Algorithm 1 ends with s0 < 2n0 and s1 < 2n1.

The above implies that the algorithm ends up returning (s0, s1) in line 12 provided that
b0 = b1 = false when the loop in line 2 ends (this will be proved in Lemma 3).

To explain the role of the special variables b0 and b1, suppose temporarily that the
conditions s0 < 2n0 and s1 < 2n1 are omitted from the test in line 2. If we were making the
updates in line 8 regardless of the current values of b0 and b1, the algorithm could never end
making updates to s0 and s1 even if the outer common tangents exist (see [2] for an example
of such a behavior). In particular, Lemma 2 would no longer be true. On the other hand, if
the convex hulls of P0 and P1 are nested, then one of the following happens:

ESA 2016



4:6 Outer Common Tangents and Nesting of Convex Hulls

the algorithm never ends making updates to s0 and s1,
one of b0, b1, say bk, is true and the algorithm has traversed P1−k entirely with the index
v1−k after last update to s1−k without detecting any corner on the wrong side of the
tangent candidate.

In both cases, taking the conditions s0 < 2n0 and s1 < 2n1 in line 2 back into account, the
algorithm reports that the convex hulls of P0 and P1 are nested in line 11.

I Lemma 3. If the outer common tangents of P0 and P1 exist, then the loop in line 2 of
Algorithm 1 ends with b0 = b1 = false.

Proof. We prove a slightly stronger statement, namely, that at most one of b0 and b1 can be
true at a time, and if one of b0 and b1 is true, then it will be cleared subsequently. Hence,
the algorithm cannot terminate with b0 = true or b1 = true.

Consider an iteration i of the loop in line 2 which leads to changing the value of b0 from
false to true in line 6. By induction, we can assume that b1 = false. Since the test in line
5 is positive, the edge P0[v0 − 1, v0] intersects L(p0[s0], p1[s1]) at a point x such that p1[s1]
lies on the segment p0[s0]x. Moreover, P0[p0[s0], x] ⊂ RHP(p0[s0], p1[s1]), otherwise b0 would
be set before. Let y be the first corner of P1 after p1[s1] such that y /∈ RHP(p0[s0], p1[s1]).
Such a corner exists, otherwise P1 would be contained in the convex hull of P0. It follows that
the test in line 4 will be positive in the first iteration j after i in which u = 1 and p1[v1] = y.
The edge P1[v1 − 1, v1] intersects L(p0[s0], p1[s1]) at a point on the segment p0[s0]x, and
hence the test in line 5 is negative in iteration j. Therefore, b0 is cleared and we again have
b0 = b1 = false. The same argument shows that b1 will be cleared after being set. J

I Theorem 4. Algorithm 1 is correct, runs in linear time, and uses constant workspace.
Specifically, if the outer common tangents exist, then Algorithm 1 returns a pair of indices
(s0, s1) such that (r0, r1) = (p0[s0], p1[s1]), that is, P0, P1 ⊂ RHP(p0[s0], p1[s1]). Otherwise,
the algorithm returns nested.

Proof. First, suppose the algorithm returns (s0, s1) in line 12. Consider the final values of s0,
s1, b0 and b1. Due to the test in line 10, we have s0 < 2n0, s1 < 2n1, and b0 = b1 = false,
so the loop in line 2 has ended because v0 ≥ s0 + n0 and v1 ≥ s1 + n1. After the last update
to (s0, s1), the test in line 4 has been performed for every v0 ∈ {s0 + 1, . . . , s0 + n0} and
every v1 ∈ {s1 + 1, . . . , s1 + n1} and was negative – otherwise a further update would have
been performed in line 8, as b0 = b1 = false. This shows that P0, P1 ⊂ RHP(p0[s0], p1[s1]).

Now, suppose that the outer common tangents exist. By Lemma 2 and Lemma 3, the
loop in line 2 ends with s0 < 2n0, s1 < 2n1, and b0 = b1 = false. Hence (s0, s1) is returned
in line 12. In view of the discussion above, this proves correctness of the algorithm.

It is clear that Algorithm 1 uses constant workspace. For the running time, note that
if an update to (s0, s1) happens in iteration i, the sum s0 + s1 is increased by at least i−j

2 ,
where j is the number of the previous iteration in which an update to (s0, s1) happened or
j = 0 if there has been no update before. By induction, we see that there have been at most
2(s0 + s1) iterations until an update to (s0, s1). Suppose first that s0 < 2n0 and s1 < 2n1
when the loop in line 2 terminates. There have been at most 4(n0 + n1) iterations until the
final update to (s0, s1). Thereafter, at most 2 max{n0, n1} ≤ 2(n0 + n1) iterations follow
until v0 ≥ s0 + n0 and v1 ≥ s1 + n1, when the loop in line 2 terminates. Hence, there are at
most 6(n0 + n1) iterations in total. Now, suppose that s0 ≥ 2n0 or s1 ≥ 2n1 when the loop
terminates. By the same argument, the second to last update to (s0, s1) happens after at
most 4(n0 + n1) iterations, after which at most 2(n0 + n1) iterations follow until the last
update to (s0, s1). The loop is terminated immediately after the last update. Hence, we get



M. Abrahamsen and B. Walczak 4:7

the same bound of 6(n0 + n1) iterations. Clearly, each iteration takes constant time, so the
total running time of the algorithm is linear. J

4 Proof of Lemma 2

For our analysis, it will be convenient to imagine the execution of Algorithm 1 in continuous
time. By considering various discrete events happening during the continuous execution of
the algorithm, we are able to prove the invariant stated in Lemma 2.

4.1 Additional Terminology and Notation
For U ⊆ R2, let F(U) denote the set of compact subsets of U . By an interval, we mean a
bounded interval of real numbers. We allow an interval to be closed or open at each endpoint
independently. We shall consider functions defined on an interval I with the following sets
(or their subsets) as codomains: R with the standard metric, R2 with the Euclidean metric,
and F(R2) with the Hausdorff metric, a set S of functions with the discrete metric, and the
power set 2S of a set S of functions, again with the discrete metric. The only purpose of these
metrics is to have a suitable notion of convergence. We think of the domain I as time. If f
is a function with domain I and I ′ is a subinterval of I, then f � I ′ denotes the restriction of
f to I ′. For a function f : I → X, where X is (a subset of) one of the codomains above, a
point in time t ∈ I is a discontinuity of f if f is not continuous at t. We write

f(↗ t?) to denote the limit of f(t) as t→ t? from below, where t? ∈ I r {inf I},
f(↘ t?) to denote the limit of f(t) as t→ t? from above, where t? ∈ I r {sup I}.

If the limits f(↗ t?) exist for all t? ∈ I r {inf I} and the limits f(↘ t?) exist for all
t? ∈ I r {sup I}, then we say that f has one-sided limits. Each of the functions f that we
consider has one-sided limits and finitely many discontinuities. Note that f has a discontinuity
at a point in time t ∈ I if and only if f(↗ t) 6= f(t) or f(↘ t) 6= f(t). A function f : I → F(U),
where U ⊆ R2, is monotonically decreasing if f(t) ⊇ f(t′) for any t, t′ ∈ I such that t < t′.

I Lemma 5. Let I be an interval and f : I → F(U) be a function with one-sided limits and
finitely many discontinuities, where U ⊆ R2. Suppose f � I ′ is monotonically decreasing for
every subinterval I ′ ⊆ I such that f � I ′ is continuous on I ′. Furthermore, suppose that

f(↗ t) ⊇ f(t) for any t ∈ I r {inf I} such that f(↗ t) 6= f(t),
f(t) ⊇ f(↘ t) for any t ∈ I r {sup I} such that f(t) 6= f(↘ t).

Then f is monotonically decreasing in the entire domain I.

Proof. Let t1 < · · · < tn be the discontinuities of f . Let t, t′ ∈ I and t < t′. If there is
no i with t ≤ ti ≤ t′, then f � [t, t′] is continuous, so it follows from the assumption that
f(t) ⊇ f(t′). Otherwise, let i be minimum and j be maximum such that t ≤ ti ≤ tj ≤ t′. If
t < ti, then the assumptions yield f(t) ⊇ f(↗ ti) ⊇ f(ti), Similarly, the assumptions yield
f(tk) ⊇ f(↘ tk) ⊇ f(↗ tk+1) ⊇ f(tk+1) for k ∈ {i, . . . , j − 1}, and f(tj) ⊇ f(↘ tj) ⊇ f(t′)
if tj < t′. Thus f(t) ⊇ f(t′). J

4.2 Continuous Interpretation of the Algorithm
Let m denote the number of iterations of the loop in line 2 performed by Algorithm 1. For
i ∈ {0, . . . ,m} and k ∈ {0, 1}, let vk(i) and sk(i) denote the values of vk and sk, respectively,
after i iterations of the loop. In particular, vk(0) = sk(0) = 0. For x ∈ R r Z, let pk[x]
denote the interpolated point (dxe − x)pk[bxc] + (x− bxc)pk[dxe] on the edge Pk[bxc, dxe].

ESA 2016



4:8 Outer Common Tangents and Nesting of Convex Hulls

We extend the functions s0 and s1 to the real interval [0,m] as follows. We imagine
that the ith iteration of the loop in line 2 starts at time i − 1 and ends at time i, and
during that iteration vu grows continuously from vu(i − 1) = vu(i) − 1 to vu(i). Thus we
define vu(t) = vu(i) − i + t for t ∈ (i − 1, i). Suppose that the update in line 8 is to be
performed in the ith iteration. If su(i−1) = vu(i−1), then all of the edge Pu[vu(i−1), vu(i)]
is in LHP(p0[s0(i − 1)], p1[s1(i − 1)]). We therefore imagine that the update happens at
time i − 1 and then su grows continuously together with vu up to vu(i); thus we define
su(t) = vu(t) and v1−u(t) = s1−u(i − 1) for t ∈ (i − 1, i). If su(i − 1) < vu(i − 1), then
the edge Pu[vu(i − 1), vu(i)] intersects the tangent candidate at a point pu[vu(t?)], where
t? ∈ (i− 1, i). We therefore imagine that the update in line 8 happens at time t? and then
su grows continuously together with vu up to vu(i); thus we define

su(t) = su(i− 1) and v1−u(t) = v1−u(i− 1) for t ∈ (i− 1, t?],
su(t) = vu(t) and v1−u(t) = s1−u(i− 1) for t ∈ (t?, i),

and we say that su jumps from su(t?) to vu(t?) = su(↘ t?) at time t?. Finally, in either
case, we define s1−u(t) = s1−u(i− 1) for t ∈ (i− 1, i). The functions s0, s1 : [0,m]→ R thus
defined are nondecreasing, have one-sided limits and finitely many discontinuities, and are
left-continuous, that is, s0(↗ t) = s0(t) and s1(↗ t) = s1(t) for every t ∈ (0,m]. We have
also defined functions v0, v1 : [0,m]→ R, but we are not going to use them any more.

I Observation 6. At any point in time during the execution of the continuous version of
Algorithm 1, at most one of s0, s1 is changing. The tangent candidate L(p0[s0], p1[s1])
either is not moving, or is turning continuously counterclockwise around p0[s0] (when s1 is
changing), or is turning continuously clockwise around p1[s1] (when s0 is changing).

The following is trivial if sk(t) = sk(↘ t) and otherwise is a direct consequence of the
test in line 5 and of the fact that the update in line 8 is only performed when bu = false.

I Observation 7. If t ∈ [0,m) and k ∈ {0, 1}, then pk[sk(↘ t)] ∈ R(p1−k[s1−k(t)], pk[sk(t)])
and Pk[sk(t), sk(↘ t)] ⊂ RHP(p0[s0(t)], p1[s1(t)]).

4.3 Auxiliary Structure on the Polygons
In this subsection, we introduce some auxiliary concepts used in the proof of Lemma 2. They
are defined in terms of the polygons P0, P1 only and are independent of the algorithm.

Assume for this entire subsection that the convex hulls of P0 and P1 are not nested. Thus
there are two outer common tangents – let them be given by points `0, r0 ∈ P0 and `1, r1 ∈ P1
such that P0, P1 ⊂ LHP(`0, `1) ∩ RHP(r0, r1). Let L = `0`1 and R = r0r1. Let E be the
polygonal region bounded by the chains P0[`0, r0], P1[`1, r1] and by the segments L, R. Since
P0 is oriented counterclockwise and P1 clockwise, the interiors of P0 and P1 lie outside E.

I Lemma 8. Every segment xy such that xy∩P0 = {x} and xy∩P1 = {y} is contained in E.

Proof. The set Er (P0[`0, r0]∪P1[`1, r1]) separates P0 and P1 in LHP(`0, `1)∩RHP(r0, r1),
so it contains a point z in common with the segment xy. If z ∈ L or z ∈ R, then xy = `0`1
or xy = r0r1, respectively, so xy lies in E. So suppose z is in the interior of E. The segment
zx cannot cross the boundary of E at any point other than x, and zy at any point other
than y. This shows that xy lies in E. J

See Figure 5. Let q0 ∈ P0 and q1 ∈ P1 be fixed points such that at least one of q0, q1
is a corner of the respective polygon P0 or P1. Let S = q0q1. We consider the segment S
as oriented from q0 to q1, so that we can speak of the left side of S, LHP(q0, q1), and the



M. Abrahamsen and B. Walczak 4:9

q0

q1

L`0 `1

E0

E1

E2

E3E4

E5

Rr0 r1

y1y0

Figure 5 The doors are the five dashed segments on S = q0q1: D4, D5, D3, D1, D2 in the order
from q0 to q1. The weights of the doors are 2, 1, 1, −1, 0, respectively. D3 = y0y1 is the primary
door. The boundary of the primary region E′ = E3 ∪ E4 ∪ E5 is drawn with thick lines.

right side of S, RHP(q0, q1). A door is a subsegment xy of S such that xy ∩ Pk = {x} and
xy ∩ P1−k = {y} for some k ∈ {0, 1}. By Lemma 8, every door is contained in E. A fence
is a subsegment xy of S such that xy ⊂ E, xy ∩ Pk = {x, y}, and xy ∩ P1−k = ∅ for some
k ∈ {0, 1}. Exceptionally, when S contains an edge xy of Pk, we call the whole edge xy a
fence. Since at least one of q0, q1 is a corner, the latter is possible only when x = qk or
y = qk. Let D be the set of all doors defined by the fixed points q0 and q1. Figure 5 also
illustrates the following lemma.

I Lemma 9. The doors in D can be ordered as D1, . . . , Dd so that if Di ∩ P0 = {xi} and
Di ∩ P1 = {yi} for i ∈ {1, . . . , d}, then

the order of points along P0[`0, r0] is `0, x1, . . . , xd, r0 (with possible coincidences),
the order of points along P1[`1, r1] is `1, y1, . . . , yd, r1 (with possible coincidences).

The doors partition E into polygonal regions E0, . . . , Ed such that
E0 is bounded by L, P0[`0, x1], D1 and P1[`1, y1] (it is degenerate when D1 = L),
Ei is bounded by Di, P0[xi, xi+1], Di+1 and P1[yi, yi+1], for i ∈ {1, . . . , d− 1},
Ed is bounded by Dd, P0[xd, r0], R and P1[yd, r1] (it is degenerate when Dd = R).

Proof. Suppose there are doors xy, x′y′ ∈ D such that x is strictly before x′ on P0[`0, r0]
while y′ is strictly before y on P1[`1, r1]. It follows that the clockwise order of the four points
along the boundary of E is x, x′, y, y′ and no two of these points coincide. By Lemma 8,
both xy and x′y′ lie in E, so they must cross at a point different from their endpoints,
which is a contradiction. This shows that the order of endpoints of the doors along P0[`0, r0]
agrees with that along P1[`1, r1], which proves the first statement. The second statement is
a straightforward corollary to the first. J

From now on, we use D1, . . . , Dd to denote the doors in their order according to Lemma 9,
and we use E0, . . . , Ed to denote the regions defined in Lemma 9.

ESA 2016



4:10 Outer Common Tangents and Nesting of Convex Hulls

Recall that we consider S as a segment oriented from q0 to q1. Every door inherits that
orientation, so that we can speak of the left side and the right side of the door. Taking into
account that the regions Ei−1 and Ei lie on opposite sides of Di, we classify each door Di as

a right-door if Ei−1 lies to the right and Ei lies to the left of Di (in particular, if Di = L),
a left-door if Ei−1 lies to the left and Ei lies to the right of Di (in particular, if Di = R).

I Lemma 10. Consider a chain Pk[a, b], where k ∈ {0, 1}. If Pk[a, b] ∩ S = {a, b} and
Pk[a, b] ⊂ RHP(q0, q1), then all doors contained in the segment ab occur in pairs of a left-
door followed by a right-door, consecutive in the order on D.

Proof. Consider the polygonal region F bounded by the chain Pk[a, b] and by the segment
ab. It follows that F ⊂ RHP(q0, q1). Each of the regions E0, . . . , Ed lies either inside or
outside F , where E0 and Ed lie outside F . Each region Ei lying inside F connects the door
Di, which is therefore a left-door, and the door Di+1, which is therefore a right-door. J

So far we were considering q0 and q1 as fixed points. Now, we allow them to change
in time. Specifically, let I be a real interval that can be open or closed at each endpoint
independently, and consider q0 and q1 as continuous functions q0 : I → P0 and q1 : I → P1.
This way S becomes a continuous function S : I → F(R2). Furthermore, suppose at least
one of q0(t), q1(t) is a corner of the respective polygon for every t ∈ I, so that S(t) can
contain at most one other corner (by the general position assumption). Let X(t) denote the
set of intersection points of S(t) with P0 ∪ P1. In the exceptional case that S(t) contains an
edge of P0 or P1, we only include the endpoints of the edge in X(t). The points in X(t) are
changing continuously except that an intersection point appears or disappears at a point in
time t ∈ I when S(t) sweeps over a corner whose both incident edges lie on the same side of
S(t). Note that since the corners of P0 and P1 are assumed to be in general position and
one of q0 and q1 is a corner, at most one point can appear in or disappear from X(t) at any
point in time. The doors are changing continuously except when one of the following door
events happens as a point appears in or disappears from X(t):
1. a fence splits into two doors,
2. two doors merge into a fence,
3. a door splits into a smaller door and a fence,
4. a door and a fence merge into a larger door.
Specifically, every door D can be represented as a continuous function D : ID → F(R2),
where ID is a subinterval of I (open or closed at each endpoint independently) such that
1. if t = inf ID ∈ ID, then an endpoint of D(t) is in X(t) but not in X(↗ t),
2. if t = sup ID ∈ ID, then an endpoint of D(t) is in X(t) but not in X(↘ t),
3. if t = sup ID /∈ ID, then an interior point of D(↗ t) is in X(t) but not in X(↗ t),
4. if t = inf ID /∈ ID, then an interior point of D(↘ t) is in X(t) but not in X(↘ t).
At any point in time t ∈ I, the set of doors D(t) consists of the doors D such that t ∈ ID

ordered according to Lemma 9. The following observation, a straightforward consequence of
Lemma 9, summarizes how D(t) and the order on D(t) are changing in time.

I Observation 11. The set D(t) and the order on D(t) are constant in time intervals where
no door event happens. A door event at time t makes the following change to D(t):
1. if a fence splits into two doors D and D′, then D and D′ are added to D(↗ t) as

consecutive doors to form D(t),
2. if two doors D and D′ merge into a fence, then D and D′ are consecutive in D(t) and

they are removed from D(t) to form D(↘ t),



M. Abrahamsen and B. Walczak 4:11

3. if a door D splits into a smaller door D′ and a fence, then D is replaced by D′ in D(↗ t)
to form D(t),

4. if a door D and a fence merge into a larger door D′, then D is replaced by D′ in D(t) to
form D(↘ t).

In case of door events 1 and 2, the two doors D and D′ are, in their order in D(t),
a right-door followed by a left-door if the edges incident to w lie to the right of S(t),
a left-door followed by a right-door if the edges incident to w lie to the left of S(t),

where w denotes the corner that triggers the event (i.e., the corner that appears in or
disappears from X(t) at time t). In case of door events 3 and 4, the door D′ keeps the
left/right-door status of D. The left/right-door status of every door D remains constant over
the entire time interval ID.

Now, consider q0 and q1 again as fixed points. Recall that D1, . . . , Dd denote the doors
in their order according to Lemma 9. We define the weight W (Di) of every door Di by
induction, as follows:

W (D1) =
{

1 if D1 is a right-door,
−1 if D1 is a left-door,

W (Di) =
{
W (Di−1) + 1 if Di is a right-door,
W (Di−1)− 1 if Di is a left-door,

for i ∈ {2, . . . , d}. See Figure 5. The following is a direct consequence of Observation 11.

I Observation 12. When q0 : I → P0, q1 : I → P1 are continuous functions, every door
D : ID → F(R2) maintains constant weight over the entire time interval ID. Furthermore,
the function W ? : I → Z defined so that W ?(t) is the weight of the last door in the order on
D(t) is constant over the entire time interval I.

I Lemma 13. For any fixed points q0, q1, there is at least one door with weight 1.

Proof. The statement is obvious if q0 = `0 and q1 = `1, because in that case there is just one
door L, which is a right-door by definition, so it has weight 1. To prove the lemma in general,
let I = [0, 1] and (abusing notation) consider arbitrary continuous functions q0 : I → P0 and
q1 : I → P1 such that q0(0) = `0, q1(0) = `1, and q0(1), q1(1) are the points q0, q1 fixed in
the statement of the lemma. By Observation 12, the function W ? : I → Z is constant over I,
so W ?(1) = W ?(0) = 1 as observed above. This shows that the last door in the order on
D(1) has weight 1. J

For any fixed points q0, q1, let the primary door D′ be the first door with weight 1 in the
order on D. Such a door always exists due to Lemma 13.

I Observation 14. The primary door D′ is a right-door and is not preceded by a left-door
in the order on D.

Let y0 and y1 denote the endpoints of D′ so that y0 ∈ P0 and y1 ∈ P1. Let Y0 = P0[y0, r0]
and Y1 = P1[y1, r1]. Finally, let the primary region E′ be defined as the polygonal region
determined by D′, Y0, R and Y1. See Figure 5.

I Observation 15. If D′ = Di, then E′ is the union of Ei, . . . , Ed. In particular, E′
contains the doors Di+1, . . . , Dd. By Observation 14, the region E′ meets D′ from the left.

ESA 2016



4:12 Outer Common Tangents and Nesting of Convex Hulls

4.4 Back to the Algorithm
We recall the functions s0, s1 : [0,m]→ R describing the execution of Algorithm 1 as explained
in Section 4.2, and we define functions q0 : [0,m]→ P0 and q1 : [0,m]→ P1 as follows:

q0(t) = p0[s0(t)], q1(t) = p1[s1(t)] for t ∈ [0,m].

They have the property that at least one of q0(t), q1(t) is a corner at any point in time
t ∈ [0,m]. Some other objects that have been defined in Section 4.3 based on fixed points q0,
q1 now become functions of time t ∈ [0,m]: the segment S, the primary door D′, the points
y0, y1, the chains Y0, Y1, and the primary region E′.

The functions q0 and q1 have finitely many discontinuities – the points of time t ∈ [0,m)
when the respective sk jumps from sk(t) to sk(↘ t). It is also clear that they have one-sided
limits, since the functions s0 and s1 are bounded and piecewise monotone. It follows that
the functions D′ : [0,m] → F(R2), y0 : [0,m] → P0, y1 : [0,m] → P1, Y0 : [0,m] → F(P0),
Y1 : [0,m] → F(P1), and E′ : [0,m] → F(R2) also have one-sided limits and finitely many
discontinuities, which arise from discontinuities of q0, q1 and from door events in between.

The following lemma is the heart of the proof of correctness of the algorithm. Informally
speaking, it asserts that the primary region E′ can only shrink in time, since the primary
door D′ always sweeps continuously into or jumps into E′.

I Lemma 16. The functions Y0 and Y1 are monotonically decreasing.

Proof. First, we let I be an arbitrary subinterval of [0,m] in which q0 and q1 are continuous,
and we prove the lemma for functions restricted to I: y0 � I, y1 � I, Y0 � I and Y1 �
I. Following the convention from Section 4.3, we consider doors as continuous functions
D : ID → F(R2) with ID ⊆ I and, for t ∈ I, we let D(t) denote the set of doors D such that
t ∈ ID. Accordingly, we redefine D′(t) to denote the function D : ID → F(R2) that is chosen
as the primary door at time t ∈ I.

By Observation 12, every door D : ID → F(R2) maintains constant weight over the entire
time interval ID. By Observation 11, the only possible changes to D and to the order on D
over time interval I are that doors are being added to or removed from D. Therefore, any
change to the choice of the primary door can only occur at a point in time t ∈ I when a door
event happens; moreover, the primary door D′(t) must participate in that event, that is, if
D′(t) = D, then t = inf ID or t = sup ID.

Consider an interval I ′ ⊆ I over which the choice of the primary door remains constant,
that is, there is a door D : ID → F(R2) such that I ′ ⊆ ID and D′(t) = D for every t ∈ I ′.
Since D is a continuous function, so are the functions y0 � I ′, y1 � I ′, Y0 � I ′ and Y1 � I ′.
Furthermore, it follows from Observation 6 that the segment S is constant or is sweeping
continuously to the left at any point in time t ∈ I. By Observation 15, D can only be moving
towards the interior of E′ in time interval I ′. This shows that E′ � I ′ and hence Y0 � I ′ and
Y1 � I ′ are monotonically decreasing functions.

In view of Lemma 5, to complete the proof that Y0 � I and Y1 � I are monotonically
decreasing, it remains to prove that

Y0(↗ t) ⊇ Y0(t) and Y1(↗ t) ⊇ Y1(t) whenever D′(↗ t) 6= D′(t), for t ∈ I r {inf I},
Y0(↘ t) ⊆ Y0(t) and Y1(↘ t) ⊆ Y1(t) whenever D′(↘ t) 6= D′(t), for t ∈ I r {sup I}.

We consider the kinds of door events as identified in Section 4.3, looking for events happening
at time t ∈ I that result in a primary door being added to or removed from D.

1. A fence splits into two doors. Since S(t) can only be sweeping to the left, both polygon
edges incident to the corner triggering that event lie to the left of S(t). Therefore, by



M. Abrahamsen and B. Walczak 4:13

Observation 11, the two doors are a left-door followed by a right-door in the order on
D(t). Consequently, by Observation 14, neither of the two doors can be primary.

2. Two doors merge into a fence. If D′(t) is one of the two doors, then the choice of the
primary door changes to some door D ∈ D(↘ t) ⊂ D(t) that is after D′(t) in the order
on D(t). By Lemma 9, the endpoints y0(↘ t) and y1(↘ t) of D(t) lie on Y0(t) and Y1(t),
respectively, so Y0(↘ t) ⊆ Y0(t) and Y1(↘ t) ⊆ Y1(t) as required.

3. A door splits into a smaller door and a fence. It follows from Observation 11 that the
door added to D(t) maintains the weight of the door removed from D(↗ t). Therefore,
assuming D′(t) 6= D′(↗ t), D′(t) is the door added to D(t) and D′(↗ t) is the one removed
from D(↗ t). Let w ∈ Pk denote the corner that triggers the event, where k ∈ {0, 1}.
It follows that y1−k(t) = y1−k(↗ t), so Y1−k(t) = Y1−k(↗ t). Since w = yk(t), we need
to prove that w ∈ Yk(↗ t). Let D = D′(↗ t) and let t0 be a value in ID ∩ I such that
t0 < t and no door event happens in time interval [t0, t). For every t′ ∈ [t0, t), let ϕ(t′)
be the point on D(t′) closest to w. Since D moves continuously, ϕ is a continuous curve.
Since ϕ(t′) ∈ E′(t′) and E′(t′) ⊂ E′(t0) as shown before for every t′ ∈ [t0, t), ϕ must be
contained in E′(t0). Since w ∈ D(↗ t), we have ϕ(↗ t) = w. Furthermore, E′(t0) is a
closed set, and hence w ∈ E′(t0). The interior of E′(t0) is disjoint from P0 and P1, so w
must be a corner on the chain Yk(t0) = Pk[yk(t0), rk]. Since w = yk(t), it follows that
Yk(t) ⊆ Yk(t0). By letting t0 approach t from below, we get Yk(t) ⊆ Yk(↗ t).

4. A door and a fence merge into a larger door. Again, it follows from Observation 11 that
the door added to D(↘ t) maintains the weight of the door removed from D(t). Therefore,
assuming D′(t) 6= D′(↘ t), D′(t) is the door removed from D(t) and D′(↘ t) is the one
added to D(↘ t). Let w ∈ Pk denote the corner that triggers the event, where k ∈ {0, 1}.
It follows that y1−k(t) = y1−k(↘ t), so Y1−k(t) = Y1−k(↘ t). We make an argument
similar to the one in the above case to show that Yk(↘ t) ⊆ Yk(t), but using reversed
time. Let D = D′(↘ t) and let t0 be a value in ID ∩ I such that t0 > t and no door
event happens in time interval (t, t0]. For every t′ ∈ (t, t0], let ϕ(t′) be the point on D(t′)
closest to w. Since D moves continuously, ϕ is a continuous curve. For every t′ ∈ [0,m],
let F (t′) be the polygonal region bounded by P0[`0, y0(t′)], the primary door at time t′,
P1[`1, y1(t′)], and the segment L = `0`1. Thus F (t′) is a sort of complementary region to
E′(t′) in the region E. Since E′ is monotonically decreasing on (t, t0] as shown before, F ′
is monotonically increasing on (t, t0]. Therefore, since ϕ(t′) ∈ F (t′), ϕ must be contained
in F (t0). Since w ∈ D(↘ t), we have ϕ(↘ t) = w. Furthermore, F (t0) is a closed set, and
hence w ∈ F (t0). The interior of F (t0) is disjoint from P0 and P1, so w must be a corner
on the chain Pk[`k, yk(t0)]. Since w = yk(t), it follows that Pk[`k, yk(t)] ⊆ Pk[`k, yk(t0)].
By letting t0 approach t from above, we get Pk[`k, yk(t)] ⊆ Pk[`k, yk(↘ t)]. Hence, yk(↘ t)
is on the chain Yk(t) = Pk[yk(t), rk] and therefore Yk(↘ t) ⊆ Yk(t).

Now, we return to the general case of functions y0, y1, Y0 and Y1 defined on the entire
interval [0,m]. Consider a point in time t ∈ [0,m) that is a discontinuity of qk, where
k ∈ {0, 1}. That is, sk jumps from sk(t) to sk(↘ t) at time t. We shall see that the
jump of sk has no effect on the choice of the primary door. By Observation 7, the point
pk[sk(↘ t)] = qk(↘ t) lies on the ray R(q1−k(t), qk(t)) and the chain Pk[qk(t), qk(↘ t)]
belongs to RHP(q0(t), q1(t)). Let D(t) and D(↘ t) denote the sets of doors as defined for the
segments S(t) and S(↘ t), respectively. We shall prove that the primary door with respect
to D(t) (i.e., defined for S(t)) is the same as with respect to D(↘ t) (i.e., defined for S(↘ t)).

Suppose qk(↘ t) is on the segment S(t). It follows that S(↘ t) ⊂ S(t), D(↘ t) ⊆ D(t), and
D(t)rD(↘ t) is the set of doors on S(t)rS(↘ t). Since Pk[qk(t), qk(↘ t)] ⊂ RHP(q0(t), q1(t)),
it follows from Lemma 10 that the doors in D(t)rD(↘ t) occur in pairs of a left-door followed

ESA 2016



4:14 Outer Common Tangents and Nesting of Convex Hulls

by a right-door, consecutive in the order on D(t). Therefore, the weights of every door
D ∈ D(↘ t) with respect to the sets of doors D(↘ t) and D(t) are equal. By Observation 14,
none of the doors in D(t)rD(↘ t) can be primary with respect to D(t), so the primary door
is the same with respect to D(t) as with respect to D(↘ t).

Now, suppose qk(↘ t) is not on the segment S(t). It follows that S(t) ⊂ S(↘ t),
D(t) ⊆ D(↘ t), and D(↘ t) r D(t) is the set of doors on S(↘ t) r S(t). An argument
analogous to that for qk(↘ t) ∈ S(t) above shows that the primary door is the same with
respect to D(↘ t) as with respect to D(t).

To conclude, let t0 = 0, t1, . . . , tn−1 be the discontinuities of q0 or q1 ordered so that
t1 < · · · < tn−1, and tn = m, and consider the closed intervals Ii = [ti−1, ti] for i ∈ {1, . . . , n}.
Fix an index i and consider the restrictions q0 � Ii and q1 � Ii. Only one of them, say qk � Ii,
is not continuous, and the only discontinuity of qk � Ii is ti−1. As we have proved above, if
we redefine qk(ti−1) by letting qk(ti−1) = qk(↘ ti−1), the primary door D′(ti−1) does not
change, but then qk � Ii becomes continuous. Therefore, what we have proved for restrictions
of Y0 and Y1 to subintervals I ⊆ [0,m] such that q0 � I and q1 � I are continuous implies that
Y0 � Ii and Y1 � Ii are monotonically decreasing, for every i ∈ {1, . . . , n}. The assumptions
of Lemma 5 are satisfied for Y0 and Y1, so Y0 and Y1 are monotonically decreasing in the
entire domain [0,m]. J

We are now ready to prove Lemma 2. Using the continuous interpretation of the algorithm,
it can be rephrased as follows.

I Lemma 17. For any t ∈ [0,m], we have 0 ≤ s0(t) < 2n0 and 0 ≤ s1(t) < 2n1.

Proof. We only present the proof of the bound on s0(t). That for s1(t) is analogous. Let c0(0)
be the unique real in the interval [0, n0) such that y0(0) = p0[c0(0)]. Let ĉ0 be the unique real
in the interval [c0(0), c0(0) + n0) such that r0 = p0[ĉ0]. By Lemma 16, for t ∈ (0,m], there is
a unique real c0(t) ∈ [c0(0), ĉ0] such that y0(t) = p0[c0(t)], and this defines a nondecreasing
function c0 : [0,m]→ R with one-sided limits and finitely many discontinuities. Obviously,
0 ≤ s0(t) and c0(t) ≤ ĉ0 < c0(0) + n0 < 2n0. It remains to prove s0(t) ≤ c0(t) for t ∈ [0,m].

We first prove that for every t ∈ [0,m) with s0(t) ≤ c0(t), there is ε > 0 such that
s0(t′) ≤ c0(t′) for all t′ ∈ [t, t+ ε). Let t ∈ [0,m) be such that s0(t) ≤ c0(t). First, suppose
s0 is continuous and either constant or strictly increasing on some interval [t, t + ε) with
ε > 0. If s0(t) < c0(t), then the statement is clear, so suppose s0(t) = c0(t). If s0 is constant
on [t, t+ ε), then the statement is clear, as c0 is nondecreasing. If s0 is strictly increasing on
[t, t+ ε), we either have c0(t′) = s0(t′) for t′ ∈ [t, t+ ε′), for some ε′ ∈ (0, ε], or c0 jumps at
time t to a higher value, that is, c0(t) < c0(↘ t). In both cases, the statement holds.

Now, suppose s0 jumps at time t, that is, s0(t) < s0(↘ t). By choosing ε > 0 small
enough, we can assume that s0 is continuous on the interval (t, t+ ε) and that the points
{p0[s0(t′)] : t′ ∈ (t, t + ε)} are a part of one edge e of P0, which also contains the point
p0[s0(↘ t)]. By Observation 7, we have P0[s0(t), s0(↘ t)] ⊂ RHP(p0[s0(t)], p1[s1]). This
and the facts that p0[c0(t′)] ∈ S(t′) and S(t′) ∩ RHP(p0[s0(t)], p1[s1]) = {p1[s1]} imply
c0(t′) > s0(↘ t), for every t′ ∈ (t, t + ε). We conclude that for every t′ ∈ (t, t + ε), either
c0(t′) = s0(t′) or p0[c0(t′)] is on an edge of P0 other than e, in which case c0(t′) > s0(t′).

We now return to proving that s0(t) ≤ c0(t) for every t ∈ [0,m]. Suppose the contrary,
and let t? = inf{t ∈ [0,m] : s0(t) > c0(t)}. In view of the discussion above, we must have
s0(t?) > c0(t?). Then t? > 0, because c0(0) ≥ 0 = s0(0). By the definition of s0, we have
s0(↗ t?) = s0(t?) > c0(t?) ≥ c0(↗ t?). This contradicts the definition of t?. J



M. Abrahamsen and B. Walczak 4:15

References
1 M. Abrahamsen. An optimal algorithm computing edge-to-edge visibility in a simple poly-

gon. In 25th Canadian Conference on Computational Geometry (CCCG 2013), pages 157–
162, 2013.

2 M. Abrahamsen. An optimal algorithm for the separating common tangents of two polygons.
In 31st International Symposium on Computational Geometry (SoCG 2015), volume 34 of
LIPIcs, pages 198–208, 2015. arXiv:1511.04036 (corrected version).

3 T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz. Memory-
constrained algorithms for simple polygons. Comput. Geom., 46(8):959–969, 2013.

4 T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-work-space algorithms for geometric
problems. J. Comput. Geom., 2(1):46–68, 2011.

5 L. Barba, M. Korman, S. Langerman, K. Sadakane, and R.I. Silveira. Space–time trade-
offs for stack-based algorithms. Algorithmica, 72(4):1097–1129, 2015.

6 L. Barba, M. Korman, S. Langerman, and R.I. Silveira. Computing the visibility polygon
using few variables. Comput. Geom., 47(9):918–926, 2014.

7 G.S. Brodal and R. Jacob. Dynamic planar convex hull. In 43rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2002), pages 617–626, 2002.

8 E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool, O. Schwartz, and H.V.
Simhadri. Write-avoiding algorithms. Technical Report UCB/EECS-2015-163, University
of California, Berkeley, 2015.

9 O. Darwish and A. Elmasry. Optimal time-space tradeoff for the 2D convex-hull problem.
In European Symposium on Algorithms (ESA 2014), volume 8737 of LNCS, pages 284–295.
Springer, 2014.

10 L. Guibas, J. Hershberger, and J. Snoeyink. Compact interval trees: a data structure for
convex hulls. Int. J. Comput. Geom. Appl., 1(1):1–22, 1991.

11 S. Har-Peled. Shortest path in a polygon using sublinear space. In 31st International
Symposium on Computational Geometry (SoCG 2015), volume 34 of LIPIcs, pages 111–
125, 2015.

12 J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm. BIT
Numer. Math., 32(2):249–267, 1992.

13 D. Kirkpatrick and J. Snoeyink. Computing common tangents without a separating line.
In 4th International Workshop on Algorithms and Data Structures (WADS 1995), volume
955 of LNCS, pages 183–193. Springer, 1995.

14 M. Korman, W. Mulzer, A. van Renssen, M. Roeloffzen, P. Seiferth, and Y. Stein. Time-
space trade-offs for triangulations and voronoi diagrams. In Workshop on Algorithms and
Data Structures (WADS 2015), volume 9214 of LNCS, pages 482–494. Springer, 2015.

15 A.A. Melkman. On-line construction of the convex hull of a simple polyline. Inform.
Process. Lett., 25(1):11–12, 1987.

16 M.H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput.
System Sci., 23(2):166–204, 1981.

17 F.P. Preparata and S.J. Hong. Convex hulls of finite sets of points in two and three
dimensions. Commun. ACM, 20(2):87–93, 1977.

18 G.T. Toussaint. Solving geometric problems with the rotating calipers. In IEEE Mediter-
ranean Electrotechnical Conference (MELECON 1983), pages A10.02/1–4, 1983.

ESA 2016

http://arxiv.org/abs/1511.04036
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-163.html

	Introduction
	Terminology and Notation
	Algorithm
	Proof of Lemma 2
	Additional Terminology and Notation
	Continuous Interpretation of the Algorithm
	Auxiliary Structure on the Polygons
	Back to the Algorithm


