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Abstract
In this paper we improve the approximation ratio for the problem of scheduling packets on line
networks with bounded buffers with the aim of maximizing the throughput. Each node in the
network has a local buffer of bounded size B, and each edge (or link) can transmit a limited
number c of packets in every time unit. The input to the problem consists of a set of packet
requests, each defined by a source node, a destination node, and a release time. We denote by
n the size of the network. A solution for this problem is a schedule that delivers (some of the)
packets to their destinations without violating the capacity constraints of the network (buffers
or edges). Our goal is to design an efficient algorithm that computes a schedule that maximizes
the number of packets that arrive to their respective destinations.

We give a randomized approximation algorithm with constant approximation ratio for the
case where the buffer-size to link-capacity ratio, B/c, does not depend on the input size. This
improves over the previously best result of O(log∗ n) [11]. Our improvement is based on a new
combinatorial lemma that we prove, stating, roughly speaking, that if packets are allowed to stay
put in buffers only a limited number of time steps, 2d, where d is the longest source-destination
distance, then the optimal solution is decreased by only a constant factor. This claim was not
previously known in the integral (unsplitable, zero-one) case, and may find additional applications
for routing and scheduling algorithms.

While we are not able to give the same improvement for the related problem when packets have
hard deadlines, our algorithm does support “soft deadlines”. That is, if packets have deadlines, we
achieve a constant approximation ratio when the produced solution is allowed to miss deadlines
by at most logn time units.
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1 Introduction

In this paper we give an approximation algorithm with an improved approximation ratio
for a network-scheduling problem which has been studied in numerous previous works in a
number of variants (cf. [2, 3, 5, 8, 14, 11]). The problem consists of a directed line network
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40:2 Scheduling Packets on Line Networks

over nodes {0, . . . , n− 1}, where each node i can send packets to node i+ 1, and can also
store packets in a local buffer. The maximum number of packets that can be sent in a single
time unit over a given link is denoted by c, and the number of packets each node can store
at any given time is denoted by B. An instance of the problem is further defined by a set
of packets ri = (ai, bi, ti), 1 ≤ i ≤ M , where ai is the source node of the packet, bi is its
destination node, and ti ≥ 1 is the release time of the packet at vertex ai. The goal is that of
maximizing the number of packets that reach their respective destinations without violating
the links or the buffers capacities. See Section 2 for a formal definition of the problem.

We present a randomized approximation algorithm for that problem, which has a constant
approximation ratio for the case that the ratio B/c does not depend on the input size,
improving upon the previous O(log∗ n) approximation ratio given in [11, Theorem 3]. While
this constant approximation result does not hold for the variant of the problem where packets
have deadlines, our algorithm does provide a constant-approximation solution that abides to
“soft deadlines”. That is, in that solution each packet is delivered at most logn time units
past its deadline.

Our algorithm is based on a novel combinatorial lemma 3 which states the following.
Consider a set of packets such that all source-destination distances are bounded from above
by some d. The throughput of an optimal solution in which every packet ri must reach
its destination no later than time ti + 2d is an Ω(B/c)-fraction of the unrestricted optimal
throughput. This lemma plays a crucial role in our algorithm, and we believe that it may
find additional applications for scheduling and routing algorithms in networks. We emphasize
that the fractional version of a similar property, i.e., when packets are splitable and one
accrues a benefit also from the delivery of partial packets, presented first in [5], does not
imply the integral version that we prove here.

We emphasize that the problem studied here, namely, maximizing the throughput on
a network with bounded buffers, has resisted substantial efforts in its (more applicable)
distributed, online setting, even for the simple network of a directed line. Indeed, even the
question whether or not there exists a constant competitive online distributed algorithm for
that problem on the line network remains unanswered at this point. We therefore study here
the offline setting with the hope that, in addition to its own interest, results and ideas from
this setting will contribute to progress on the distributed problem.

Related Work. The problem of scheduling packets so as to maximize the throughput (i.e.,
maximize the number of packets that reach their destinations) in a network with bounded
buffers was first considered in [2], where this problem is studied for various types of networks
in the distributed setting. The results in that paper, even for the simple network of a directed
line, were far from tight but no substantial progress has been made since on the realistic,
distributed and online, setting. This has motivated the study of this problem in easier
settings, as a first step towards solving the realistic, possibly applicable, scenario.

Angelov et al. [3] give centralized online randomized algorithms for the line network,
achieving an O(log3 n)-competitive ratio. Azar and Zachut [5] improved the randomized
competitive ratio to O(log2 n) which was later improved by Even and Medina [6, 8] to
O(logn). A deterministic O(log5 n)-competitive algorithm was given in [7, 8], which was
later improved in [9] to O(logn) if buffer and link capacities are not very small (not smaller
than 5).

The related problem of maximizing the throughput when packets have deadlines (i.e., a
packet is counted towards the quality of the solution only if it arrives to its destination before
a known deadline) on line network with unbounded input queues is known to be NP-hard [1].



G. Even, M. Medina, and A. Rosén 40:3

The same problem in a variant of the setting, where the input queues are bounded, is shown
in [11] to have a O(log∗ n)-approximation randomized algorithm. The setting in the present
paper is the same setting as the one of the latter paper, and the results of [11] immediately
give an O(log∗ n)-approximation randomized algorithm for the problem and setting we study
in the present paper.

2 Preliminaries

2.1 Model and problem statement
We consider the standard model of synchronous store-and-forward packet routing networks [2,
3, 5]. The network is modeled by a directed path over n vertices. Namely, the network is
a directed graph G = (V,E), where V = {0, . . . , (n− 1)} and there is a directed edge from
vertex u to vertex v if v = u+ 1. The network resources are specified by two positive integer
parameters B and c that describe, respectively, the local buffer capacity of every vertex and
the capacity of every edge. In every time step, at most B packets can be stored in the local
buffer of each vertex, and at most c packets can be transmitted along each edge.

The input consists of a set of packet requests R = {ri}Mi=1. A packet request is specified
by a 3-tuple ri = (ai, bi, ti), where ai ∈ V is the source node of the packet, bi ∈ V is its
destination node, and ti ∈ N is the release time of the packet at vertex ai. Note that bi > ai,
and ri is ready to leave ai in time step ti.

A solution is a schedule S. For each request ri, the schedule S specifies a sequence si of
transitions that packet ri undergoes. A rejected request ri is simply discarded at time ti,
and no further treatment is required (i.e., si = {reject}). An accepted request ri is delivered
from ai to bi by a sequence si of actions, where each action is either “store” or “forward”.
Consider the packet of request ri. Suppose that in time t the packet is in vertex v. A store
action means that the packet is stored in the buffer of v, and will still be in vertex v in time
step t+ 1. A forward action means that the packet is transmitted to vertex v + 1, and will
be in vertex v + 1 in time step t+ 1. The packet of request ri reaches its destination bi after
exactly bi − ai forward steps. Once a packet reaches its destination, it is removed from the
network and it no longer consumes any of the network’s resources.

A schedule must satisfy the following constraints:
1. The buffer capacity constraint asserts that at any time step t, and in every vertex v, at

most B packets are stored in v’s buffer.
2. The link capacity constraint asserts that at any step t, at most c packets can be transmitted

along each edge.

The throughput of a schedule S is the number of accepted requests. We denote the
throughput of a schedule S by |S|. As opposed to online algorithms, there is no point in
injecting a packet to the network unless it reaches its destination. Namely, a packet that is
not rejected and does not reach its destination only consumes network resources without
any benefit. Hence, without loss of generality, we assume that every packet that is dropped
before reaching its designation is rejected at its source node at its release time.

We consider the offline optimization problem of finding a schedule that maximizes the
throughput. We propose a centralized constant-ratio approximation algorithm. By offline we
mean that the algorithm receives all requests in advance1. By centralized we mean that all

1 The number of requests M is finite and known in the offline setting. This is not the case in the online
setting in which the number of requests is not known in advance and may be unbounded.
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40:4 Scheduling Packets on Line Networks

the requests are known in one location where the algorithm is executed. Let opt(R) denote a
schedule of maximum throughput for the set of requests R. Let alg(R) denote the schedule
computed by alg on input R. We say that the approximation ratio of a scheduling algorithm
alg is c if ∀R : |alg(R)| ≥ c · |opt(R)|. For a randomized algorithm we say that the expected
approximation ratio is c if ∀R : E [|alg(R)|] ≥ c · |opt(R)|.

The Max-Pkt-Line Problem. The problem of maximum throughput scheduling of packet
requests on directed line (Max-Pkt-Line) is defined as follows. The input consists of: n - the
size of the network, B - node buffer capacities, c - link capacities, and M packet requests
{ri}Mi=1. The output is a schedule S. The goal is to maximize the throughput of S.

2.2 Path Packing in a uni-directed 2D-Grid
In this section we define a problem of maximum cardinality path packing in a two-dimensional
uni-directed grid (Max-Path-Grid). This problem is equivalent to Max-Pkt-Line, and was used
for that purpose in previous work, where the formal reduction is also presented [4, 1, 5, 11].
As the two problems are equivalent, we use in the sequel terminology from both problems
interchangeably.

The grid, denoted by Gst = (V st, Est), is an infinite directed acyclic graph. The vertex
set V st equals V × N, where V = {0, 1, . . . , (n− 1)}. Note that we use the first coordinate
(that corresponds to vertices in V ) for the y-axis and the second coordinate (that corresponds
to time steps) for the x-axis. The edge set consists of horizontal edges (also called store
edges) directed to the right and vertical edge (also called forward edges) directed upwards.
The capacity of vertical edges is c and the capacity of horizontal edges is B. We often refer
to Gst as the space-time grid (in short, grid) because the x-axis is related to time and the
y-axis corresponds to the vertices in V .

A path request in the grid is a tuple rst = (ai, ti, bi), where ai, bi ∈ V and ti ∈ N. The
request is for a path that starts in node (ai, ti) and ends in any node in the row of bi (i.e.,
the end of the path can be any node (bi, t), where t ≥ ti).

A packing is a set of paths Sst that abides the capacity constraints. For every grid edge
e, the number of paths in Sst that contain e is not greater than the capacity of e.

Given a set of path requests Rst = {rsti }Mi=1, the goal in the Max-Path-Grid problem is
to find a packing Sst with the largest cardinality. (Each path in Sst serves a distinct path
request.)

Multi-Commodity Flows (MCFs). Our use of path packing problems gives rise to fractional
relaxations of that problem, namely to multi-commodity flows (MCFs) with unit demands
on uni-directional grids. We deferred the definitions and terminology of MCFs to the full
version.

2.3 Tiling, Classification, and Sketch Graphs
To define our algorithm we make use of partitions of the space-time grid described above
into sub-grids. We define here the notions we use for this purpose. In this section we focus
on the case of unit capacities, namely, B = c = 1. An extension to other values of B and c
can be found [8].

Tiling. Tiling is a partitioning of the two-dimensional space-time grid (in short, grid) into
squares, called tiles. Two parameters specify a tiling: the side length k, an even integer,
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of the squares and the shifting (ϕx, ϕy) of the squares. The shifting refers to the x- and
y-coordinates of the bottom left corner of the tiles modulo k. Thus, the tile Ti,j is the subset
of the grid vertices defined by

Ti,j , {(v, t) ∈ V × N | ik ≤ v − ϕy < (i+ 1)k and jk ≤ t− ϕx < (j + 1)k},

where ϕx and ϕy denote the horizontal and vertical shifting, respectively. We consider two
possible shifts for each axis, namely, ϕx, ϕy ∈ {0, k/2}.

Quadrants and Classification. Consider a tile T . Let (x′, y′) denote the lower left corner
(i.e., south-west corner) of T . The south-west quadrant of T is the set of vertices (x, y) such
that x′ ≤ x ≤ x′ + k/2 and y′ ≤ y ≤ y′ + k/2.

For every vertex (x, y) in the grid, there exists exactly one shifting (ϕx, ϕy) ∈ {0, k/2}2

such that (x, y) falls in the south-west (SW) quadrant of a tile. Fix the tile side length k. We
define a class for every shifting (ϕx, ϕy). The class that corresponds to the shifting (ϕx, ϕy)
consists of all the path requests rsti whose origin (ai, ti) belongs to a SW quadrant of a tile
in the tiling that uses the shifting (ϕx, ϕy).

Sketch graph and paths. Consider a fixed tiling. The sketch graph is the graph obtained
from the grid after coalescing each tile into a single node. There is a directed edge (s1, s2)
between two tiles s1, s2 in the sketch graph if there is a directed edge (α, β) ∈ Est such that
α ∈ s1 and β ∈ s2. Let ps denote the projection of a path p in the grid to the sketch graph.
We refer to ps as the sketch path corresponding to p. Note that the length of ps is at most
d|p|/ke+ 1.

3 Outline of our Algorithm

For the sake of simplicity we focus hereafter on the case of unit capacities, namely B = c = 1.
Extension to non-unit capacities are discussed in Section 6.1.

Packet requests are categorized into three categories: short, medium, and long, according
to the source-destination distance of each packet. A separate approximation algorithm is
executed for each category. The algorithm returns a highest throughput solution among the
solutions computed for the three categories.

Notation. Two thresholds are used for defining short, medium, and long requests: `M ,
3 lnn, `S , 3 · ln(`M ) = 3 · ln(3 lnn).

I Definition 1. A request ri is a short request if bi − ai ≤ `S . A request ri is a medium
request if `S < bi − ai ≤ `M . A request ri is a long request if bi − ai > `M .

We use a deterministic algorithm for the class of short packets, and in Theorem 7 we
prove that this deterministic algorithm achieves a constant approximation ratio. We use a
randomized algorithm for each of the classes of medium and long packets; in Theorem 15 we
prove that this randomized algorithm achieves a constant approximation ratio in expectation
for each of these classes. Thus, we obtain the following corollary.

I Corollary 2 (Main Result). If B = c = 1, then there exists a randomized approximation
algorithm for the Max-Pkt-Line problem that achieves a constant approximation ratio in
expectation.
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In Section 6.1 we discuss non-unit capacities, give the approximation ratio for this case
and show that we achieve a constant approximation ratio as long as the ratio B/c does not
depend on the input size.

4 Approximation Algorithm for Short Packets

In this section we present a constant ratio deterministic approximation algorithm for short
packets. This algorithm, which is key to achieving the results of the present paper, makes
use of a new combinatorial lemma that we prove in the next subsection, stating, roughly
speaking, that if packets from a given set of packets are allowed to stay put in buffers (i.e., use
horizontal edges in the grid) only a limited number of time steps, 2d (where d is the longest
source-destination distance in the set of packets), then the optimal solution is decreased by
only a constant factor. We believe that this lemma may find additional applications in future
work on routing and scheduling problems.

4.1 Bounding Path Lengths in the Grid
In this section we prove that bounding, from above, the number of horizontal edges along
a path incurs only a small reduction in the throughput. Previously known bounds along
these lines hold only for fractional solutions [5], while we present here the first such claim for
integral schedules.

Let Rd denote a set of packet requests ri, i ≥ 1, such that bi − ai ≤ d for any i. Consider
the paths in the space-time grid that are allocated to the accepted requests. We prove that
restricting the path lengths to 2d decreases both the optimal fractional and the optimal
integral throughput only by a multiplicative factor of O(c/B). We note that if the ratio B/c
is a constant, then we are guaranteed an optimal solution which is only a constant away
from the unrestricted optimal solution.

Notation. For a single commodity acyclic flow fi, let pmax(fi) denote the diameter of
the support of fi (i.e., length of longest path2). For an MCF F = {fi}i∈I , let pmax(F ) ,
maxi∈I pmax(fi). Let F ∗frac(R) (respectively, F ∗int(R)) denote a maximum throughput frac-
tional (resp., integral) MCF with respect to the set of requests R. Similarly, let F ∗frac(R |
pmax < d′) (respectively, F ∗int(R | pmax < d′)) denote a maximum throughput fractional
(resp., integral) MCF with respect to the set of requests R subject to the additional constraint
that the maximum path length is at most d′.

I Lemma 3.

F ∗frac(Rd | pmax ≤ 2d) ≥ c

B + 2c · F
∗
frac(Rd),

F ∗int(Rd | pmax ≤ 2d) ≥ c

2(B + c) · F
∗
int(Rd).

Proof. Partition the space-time grid into slabs Sj of “width” d. Slab Sj contains the vertices
(v, k), where k ∈ [(j − 1) · d, j · d], j ≥ 1. We refer to vertices of the form (v, jd) as the
boundary of Sj . Note that if v − u ≤ d, then the forward-only vertical path from (u, jd) to
(v, jd+ (v − u)) is contained in slab Sj+1.

2 Without loss of generality, we may assume that each single commodity flow fi is acyclic.
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We begin with the fractional case. Let f∗ = F ∗frac(Rd) denote an optimal fractional
solution for Rd. Consider request ri and the corresponding single commodity flow f∗i in
f∗. Decompose f∗i to flow-paths {p`}`. For each flow-path p` in f∗i , let p′` denote the prefix
of p` till it reaches the boundary of a slab. Note that p′` = p` if p` is confined to a single
slab. If p′` ( p`, then let (v, jd) denote the last vertex of p′`. Namely, the path p′` begins
in (ai, ti) ∈ Sj and ends in (v, jd). Let q′′` denote the forward-only path from (v, jd) to
(bi, jd+ (bi− v)). (If p′` = p`, then q′′` is an empty path.) Note that q′′` is confined to the slab
Sj+1. We refer to the vertex (v, jd) in the intersection of p′` and q′′` as the boundary vertex.
Let gi denote the fractional single commodity flow for request ri obtained by adding the
concatenated flow-paths q` , p′` ◦ q′′` each with the flow amount of f∗i along p`. Define the
MCF g by g(e) ,

∑
i∈I gi(e). For every edge e, part of the flow g(e) is due to prefixes p′`,

and the remaining flow is due to suffixes q′′` . We denote the part due to prefixes by gpre(e)
and refer to it as the prefix-flow. We denote the part due to suffixes by gsuf (e) and refer to
it as the suffix-flow. By definition, g(e) = gpre(e) + gsuf (e).

The support of gi is contained in the union of two consecutive slabs. Hence, the diameter
of the support of gi is bounded by 2d. Hence pmax(g) ≤ 2d.

Clearly, |gi| = |f∗i | and hence |g| = |f∗|. Set ρ = c/(B + 2c). To complete the proof,
it suffices to prove that ρ · g satisfies the capacity constraints. Indeed, for a “store” edge
e = (v, t)→ (v, t+ 1), we have gsuf (e) = 0 and gpre(e) ≤ f∗(e) ≤ B. For a “forward” edge
e = (v, t)→ (v + 1, t+ 1) we have: gpre(e) ≤ f∗(e) ≤ c. On the other hand, gsuf (e) ≤ B + c.
The reason is as follows. All the suffix-flow along e starts in the same boundary vertex (u, jd)
below e. The amount of flow forwarded by (u, jd) is bounded by the amount of incoming
flow, which is bounded by B + c. This completes the proof of the fractional case.

We now prove the integral case. The proof is a variation of the proof for the fractional
case in which the supports of pre-flows and suffix-flows are disjoint. Namely, one alternates
between slabs that support prefix-flow and slabs that support suffix-flow.

In the integral case, each accepted request ri is allocated a single path pi, and the allocated
paths satisfy the capacity constraints. As in the fractional case, let qi , p′i ◦ q′′i , where p′i is
the prefix of pi till a boundary vertex (v, jd), and q′′i is a forward-only path. We need to
prove that there exists a subset of at least c/(2(B + c)) of the paths {qi}i that satisfy the
capacity constraints. This subset is constructed in two steps.

First, partition the requests into “even” and “odd” requests according to the parity of
the slab that contains their origin (ai, ti). (The parity of request ri is simply the parity
of dti/de.) Pick a part that has at least half of the accepted requests in F ∗int(Rd); assume
w.l.o.g. that such a part is the part of the even slabs. Then, we only keep accepted requests
whose origin belong to even slabs.

In the second step, we consider all boundary vertices (v, j · d). For each boundary vertex,
we keep up to c paths that traverse it, and delete the remaining paths if such paths exist.
In the second step, again, at least a c/(B + c) fraction of the paths survive. It follows that
altogether at least c/(2(B + c)) of the paths survive.

We claim that the remaining paths satisfy the capacity constraints. Note that prefixes
are restricted to even slabs, and suffixes are restricted to odd slabs. Thus, intersections,
if any, are between two prefixes or two suffixes. Prefixes satisfy the capacity constraints
because they are prefixes of F ∗int(Rd). Suffixes satisfy the capacity constraints because if
two suffixes intersect, then they start in the same boundary vertex. However, at most c
paths emanating from every boundary vertex survive. Hence, the surviving paths satisfy the
capacity constraints, as required. This completes the proof of the lemma. J
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We note that if the ratio B/c is bounded by a constant, then Lemma 3 guarantees an
optimal solution which is only a (different) constant away from the unrestricted optimal
solution.

4.2 The Algorithm for Short Packets
Short requests are further partitioned into four classes, defined as follows. Consider four
tilings each with side length k , 4`S and horizontal and vertical shifts in ϕx, ϕy ∈ {0, k/2}.3
The four possible shifts define four classes: The packets of a certain class (shift) are the
packets whose source nodes reside in the SW quadrants of the tiles according to a given shift.
Observe that each packet request belongs to exactly one class. We say that a path pi from
(ai, ti) to the row of bi is confined to a tile if pi is contained in one tile. We bound from
above the path lengths by 2`S so

We claim that by exhaustive search, it is possible to efficiently compute a maximum
throughput solution for each class, under the restriction that each path is of length at most
2`S . The algorithm computes an optimal (bounded path length) solution for each class, and
returns a highest throughput solution among the four solutions.

The polynomial running time of the exhaustive search algorithm per class is based on the
two following observations.

I Observation 4. A path of length at most k/2 = 2`S that begins in the SW quadrant of tile
T is confined to T .

Proof. The tile side length equals k = 4`S . If the origin of a request is in the SW quadrant
of a tile and the path length is at most 2`S = k/2, then the end of the path belongs to the
same tile. J

I Observation 5 ([6, 9, 8]). Partition the packets according to their source node. For each
node v, order the packets with source node v in increasing order of their target point. There
exists an optimal solution that does not include any packet with rank more than 2 in that
ordering.4

I Lemma 6. If B = c = 1, an optimal solution for each class in which paths are confined to
their origin tile is computable in time polynomial in n and M .

Proof. Fix a tile T . Let X denote the set of short requests in T , having rank at most 2
according to the ordering defined in Observation 5. By Observation 5, an optimal solution
can be computed out of the set of packets X. Let Y be the set of paths in T . We perform
an exhaustive search to find the optimal solution.

It suffices for the exhaustive search to consider all possibly partial functions f : X → Y ,
and for each such function check that (1) each packet in the domain of f can be served by
the path associated with it, and (2) no two path in the image of f intersect. Then pick,
among all functions that pass the checks, the one with the largest domain.

The size of X is at most 2(k/2)2 since there are at most (k/2)2 possible source nodes.
The size of Y is at most (k/2)2(2k

k

)
(there are (k/2)2 possible source nodes, and a path is

defined by the steps in which it goes horizontally, and those where it goes vertically).
Therefore the number of possibly partial functions per tile is at most 2|X| · |Y ||X| <

22(k/2)2 ·
(
(k/2)222k)2(k/2)2

≤ 2poly(k). Furthermore, given a function f the two needed checks

3 Recall that `M , 3 lnn and `S , 3 · ln(`M ) = 3 · ln(3 lnn).
4 Rank B + c for non unit capacities.
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can be done in time at most O(|X|+ |X|2 · k2) = O(|X|2 · k2). Since k = O(log logn) for
the case of the short packets, and |X| ≤ 2(k/2)2, the total time of the exhaustive search per
tile is poly(n).

The number of tiles that contain a request is bounded by the number of requests M .
Hence, the running time of the algorithm for short requests is polynomial in n and M . J

I Theorem 7. The approximation ratio of the algorithm for short requests is 1
16 .

Proof. The short requests are partitioned to 4 classes. Then, for each class and tile, the
exhaustive algorithm computes a solution which with cardinality at least a 1/4 of the optimal
one, by the integral version of Lemma 3. J

5 Approximation Algorithm for Medium & Long Requests

We use the same algorithm for the two classes of medium and long requests, the only difference
being some parameters of the algorithm. As indicated above, we consider at this point the
case of unit capacities (B = c = 1). We further note that the approximation ratio of the
algorithm for these classes is with respect to the optimal fractional solution.

Notation. Let Rdmin,dmax denote the set of packet requests whose source-to-destination
distance is greater than dmin and at most dmax. Formally, Rdmin,dmax , {ri | dmin < bi− ai ≤
dmax}.

Parametrization. When applied to medium requests we use the parameter dmax = `M and
dmin = `S . When applied to long requests the parameters are dmax = n and dmin = `M .
Note that these parameters satisfy dmin = 3 · ln dmax.

5.1 The Algorithm for Rdmin,dmax

The algorithm for Rdmin,dmax proceeds as follows. To simplify notation, we abbreviate
Rdmin,dmax by R. The parameters dmin and dmax must satisfy that dmin = 3 · ln dmax. We use
the randomized rounding procedure by Raghavan [12, 13]. The description of this randomized
rounding procedure is deferred to the full version.

1. Reduce the packet requests in R to path requests Rst over the space-time graph Gst.
2. Compute a maximum throughput fractional MCF F , {fi}ri∈Rst with edge capacities

c̃(e) = λ (for λ = 1/(β(3) · 6)) 5 and bounded diameter pmax(F ) ≤ 2dmax. We remark
that this MCF can be computed in time polynomial in n - the number of nodes and M -
the number of requests.6

5 The function β : (−1,∞)→ R is defined by β(ε) , (1 + ε) ln(1 + ε)− ε.
6 Since always dmax ≤ n, we can consider a space-time grid of size at most n× (M · 2n), which can be
constructed by going over the release times of all M requests, eliminating “unnecessary” time steps.
One can then compute a maximum throughput fractional solution with bounded diameter on this grid
using linear programming. This is true because the constraint pmax(fi) ≤ d′ is a linear constraint and
can be imposed by a polynomial number of inequalities (i.e, polynomial in n and d′). For example, one
can construct a product network with (d′ + 1) layers, and solve the MCF problem over this product
graph.
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3. Partition R to 4 classes {Rj}4
j=1 according to the shift that results in the source node

being in the SW quadrant of a k× k tiling, where k , 2dmin = 6 ln dmax (see Section 2.3).
Pick a class Rj such that the throughput of F restricted to Rj is at least a quarter of the
throughput of F , i.e., |F (Rj)| ≥ |F |/4.

4. For each request ri ∈ Rj , apply randomized rounding independently to fi. The outcome
of randomized rounding per request ri ∈ Rj is either “reject” or a path pi in Gst. Let
Rrnd ⊆ Rj denote the subset of requests ri that are assigned a path pi by the randomized
rounding procedure.

5. Let Rfltr ⊆ Rrnd denote the requests that remain after applying filtering (described in
Section 5.2).

6. Let Rquad ⊆ Rfltr denote the requests for which routing in first quadrant is successful (as
described in Section 5.3).

7. Complete the path of each request in Rquad by applying crossbar routing (as described in
Section 5.4).

5.2 Filtering
Notation. Let e denote an edge in the space-time grid Gst. Let es denote an edge in the
sketch graph (see Section 2.3). We view es also as the set of edges in Gst that cross the tile
boundary that corresponds to the sketch graph edge es. The path pi is a random variable
that denotes the path, if any, that is chosen for request ri by the randomized rounding
procedure. For a path p and an edge e let 1p(e) denote the 0-1 indicator function that equals
1 iff e ∈ p.

The set of filtered requests Rfltr is defined as follows (recall that λ = 1/(β(3) · 6)).

I Definition 8. A request ri ∈ Rfltr if and only if ri is accepted by the randomized rounding
procedure, and for every sketch-edge es in the sketch-path psi it holds that

∑
i 1p

s
i
(es) ≤ 4λ ·k.

I Claim 9. E [|Rfltr|] ≥
(
1−O( 1

k )
)
·E [|Rrnd|].

Proof. We begin by bounding the probability that at least 4λk sketch paths cross a single
sketch edge.

I Lemma 10 (Chernoff Bound). For every edge es in the sketch graph,7

Pr
[∑

i

1ps
i
(es) > 4λk

]
≤ e−k/6 . (1)

Proof of lemma. Recall that the edge capacities in the MCF F are λ. The capacity constraint∑
i fi(e) ≤ λ implies that fi(e) ≤ λ. Each sketch edge es corresponds to the grid edges

between adjacent tiles. Since the demand of each request is 1, it follows that fi(es) ≤ 1.
For every edge e and request ri, we have E

[
1ps

i
(es)

]
= Pr

[
1ps

i
(es) = 1

]
= fi(es) ≤ 1. Fix

a sketch edge es. The random variables {1ps
i
(es)}i are independent 0-1 variables. Moreover,∑

i E
[
1ps

i
(es)

]
=
∑
i fi(es) =

∑
e∈es

∑
i fi(e) ≤ λ · k. By Chernoff bound8

Pr
[∑

i

1ps
i
(es) > 4 ·

∑
i

E
[
1ps

i
(es)

]]
< e−β(3)·λk = e−k/6. J

7 The e in the RHS is the base of the natural logarithm.
8 We use the following version of Chernoff Bound [12, 15]. Let {Xi}i denote a sequence of independent
random variables attaining values in [0, 1]. Assume that E [Xi] ≤ µi. Let X ,

∑
i
Xi and µ ,

∑
i
µi.

Then, for ε > 0, Pr [X ≥ (1 + ε) · µ] ≤ e−β(ε)·µ.
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A request ri ∈ Rrnd is not in Rfltr iff at least one of the edges es ∈ psi has more than 2λk
paths on it. Hence, by a union bound,

Pr [ri 6∈ Rfltr | ri ∈ Rrnd] ≤ |psi | · e−k/6 ≤
(⌈

2dmax

k

⌉
+ 2
)
· e− ln dmax = O

(
1
k

)
,

since k = 6 ln dmax. J

5.3 Routing in the First Quadrant
In this section, we deal with the problem of evicting as many requests as possible from their
origin quadrant to the boundary of the origin quadrant.
I Remark. Because k/2 ≤ dmin every request that starts in a SW quadrant of a tile must
reach the boundary (i.e., top or right side) of the quadrant before it can reach its destination.

The maximum flow algorithm. Consider a tile T . Let X denote set of requests ri whose
source (ai, ti) is in the south-west quadrant of T . We say that a subset X ′ ⊆ X is quadrant
feasible (in short, feasible) if it satisfies the following condition: There exists a set of edge
disjoint paths {qi | ri ∈ X ′}, where each path qi starts in the source (ai, ti) of ri and ends in
the top or right side of the SW quadrant of T .

We employ a maximum-flow algorithm to solve the following problem.
Input: A set of requests X whose source is in the SW quadrant of T .
Goal: Compute a maximum cardinality quadrant-feasible subset X ′ ⊆ X.

The algorithm is simply a maximum-flow algorithm over the following network, denoted
by N(X). Augment the quadrant with a super source s̃ and a super sink t̃. The super source
s̃ is connected to every source (ai, ti) (of a request ri ∈ X) with a unit capacity directed
edge. (If γ requests share the same source, then the capacity of the edge is γ.) There is a
unit capacity edge from every vertex in the top side and right side of the SW quadrant of
T to the super sink t̃. All the grid edges are assigned unit capacities. Compute an integral
maximum flow in the network. Decompose the flow to unit flow paths. These flow paths are
the paths that are allocated to the requests in X ′.

Analysis. Fix a tile T and let RT ⊆ Rfltr denote the set of requests in Rfltr whose source
vertex is in the SW quadrant of T . Let R′T ⊆ RT denote the quadrant-feasible subset of
maximum cardinality computed by the max-flow algorithm. Let Rquad =

⋃
T R
′
T .

We now prove the following theorem that relates the expected value of |R′T | to the expected
value of |RT |. Observe that it is not always true that the same relation holds for any specific
RT that results from a specific random tape used by the randomized rounding procedure.

I Theorem 11. [10, 11] Eτ [|Rquad|] ≥ 0.93 · Eτ [|Rfltr|], where τ is the probability space
induced by the randomized rounding procedure.

Proof. By linearity of expectation, it suffices to prove that Eτ [|R′T |] ≥ 0.93 ·Eτ [|RT |], for
any given tile T .

The proof goes along the following lines. We define a certain capacity constraint over
rectangles; this definition makes use of the capacity of the boundary of the rectangles, and
the number of requests within them. We define the set R̂T ⊆ RT to be a set of requests
based on the capacity constraints of the rectangles containing the source of the requests. We
prove that: (1) The set R̂T thus defined is feasible, and (2) Eτ

[
|R̂T |

]
≥ 0.93 ·Eτ [|RT |]. By
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the algorithm, R′T is of maximum cardinality (maximum flow), therefore, |R′T | ≥ |R̂T |, and
the theorem follows.

We now describe how the feasible subset R̂T is defined. Consider a subset S of the vertices
in the SW quadrant of T . Let dem(S) denote the number of requests in RT whose origin is
in S. Let cap(S) denote the capacity of the edges in the network N(X) that emanate from
S. By the min-cut max-flow theorem, a set of requests X ⊆ RT is feasible if and only if
dem(S) ≤ cap(S) for every cut S ∪ {s̃} in the network N(X).

In fact, it is not necessary to consider all the cuts. It suffices to consider only axis parallel
rectangles contained in the quadrant T . The reason is that without loss of generality, the set
S is connected in the underlying undirected graph of the grid (i.e., consider each connected
components of S separately). Every “connected” set S can be replaced by the smallest
rectangle Z(S) that contains S. We claim that cap(S) ≥ cap(Z(S)) and dem(S) ≤ dem(Z(S)).
Indeed, there is an injection from the edges in the cut of Z(S) to the edges in the cut of S. For
example, a vertical edge e in the cut of Z(S) is mapped to the topmost edge e′ in the cut of S
that is in the column of e. Hence, cap(Z(S)) ≤ cap(S). On the other hand, as S ⊆ Z(S), it
follows that dem(S) ≤ dem(Z(S)). Hence if dem(S) > cap(S), then dem(Z(S)) > cap(Z(S)).

We say that a rectangle Z is overloaded if dem(Z) > cap(Z). The set R̂T is defined to be
the set of requests ri ∈ RT such that the source of ri is not included in an overloaded rectangle.
Namely, R̂T , {ri ∈ RT | ∀ rectangles Z : Z is overloaded ⇒ (ai, ti) 6∈ Z}. Consider an
x×y rectangle Z. We wish to bound from above the probability that dem(Z) > cap(Z). Note
that cap(Z) = x+ y. Since requests in RT that start in Z must exit the quadrant, it follows
that dem(Z) is bounded by the number of paths in RT that cross the top or right side of Z
(note that there might be additional paths that do not start in Z but cross Z.). The amount of
flow that emanates from Z is bounded by λ · (x+ y) (the initial capacities are λ and there are
x+y edges in the cut). By the randomized rounding procedure, Pr [e ∈ pi] = fi(e). Summing
up over all the edges in the cut of Z and the requests in RT , the expected number of paths in
RT that cross the cut of Z equals the flow of the request in RT , which, in turn, is bounded
by the capacity λ · (x+ y). As the paths of the requests are independent random variables,
we obtain:9 Pr [dem(Z) > cap(Z)] ≤ Pr

[∑
i∈RT

|pi ∩ cut(Z)| > (x+ y)
]
≤ (λ · e)x+y.

For each x, y, each source (ai, ti) is contained in at most x · y rectangles with side lengths
x× y. By applying a union bound, the probability that (ai, ti) is contained in an overloaded
rectangle is bounded from above by

Pr [∃ overloaded rectangle Z : (ai, ti) ∈ Z] ≤
∞∑
x=1

∞∑
y=1

xy · (λ · e)x+y

≤ (λ · e)2

(1− λ · e)4 ≤ 0.07, (2)

and the theorem follows. J

Routing within the first tile (see Section 5.4) requires however a stronger upper bound
on the number of requests that emanate from each side of the quadrant, namely that at
most k/3 paths reach each side of the quadrant. Using a simple procedure (e.g., taking the
solution and greedily eliminating paths) one can have a solution for which this condition
holds, and with cardinality only a constant fraction smaller.

9 Using the following version of the Chernoff bound: Pr [X ≥ α · µ] ≤
(
e
α

)α·µ.
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Figure 1 (a) Partitioning of a tile to quadrants [9]. Thick lines represent “walls” that cannot
be crosses by paths. Sources may reside only in the SW quadrant of a tile. Maximum flow
amounts crossing quadrant sides appears next to each side. Final destinations of paths are assumed
(pessimistically) to be in the top row of the NE quadrant. (b) Crossbar routing: flow crossing an
a× b grid [9].

I Corollary 12. Let R′quad be the set of quadrant-feasible paths such that at most k/3 paths
reach each side of each quadrant. Then, Eτ

[
|R′quad|

]
≥ Ω(1) · Eτ [|Rfltr|], where τ is the

probability space induced by the randomized rounding procedure.

5.4 Detailed Routing
In this section we deal with computing paths for requests ri ∈ Rquad starting from the
boundary of the SW quadrant that contains the source (ai, ti) till the destination row bi.
These paths are concatenated to the paths computed in the first quadrant to obtain the final
paths of the accepted requests. Detailed routing is based on the following components: (1) The
projections of the final path and the path pi to the sketch graph must coincide. (2) Each
tile is partitioned to quadrants and routing rules within a tile are defined. (3) Crossbar
routing within each quadrant is applied to determine the final paths (except for routing in
SW quadrants in which paths are already assigned).

Sketch paths and routing between tiles. Each path pi computed by the randomized
rounding procedure is projected to a sketch path psi in the sketch graph. The final path p̂i
assigned to request ri traverses the same sequence of tiles, namely, the projection of p̂i is
also psi .

Routing rules within a tile [6]. Each tile is partitioned to quadrants as depicted in Figure 1a.
The bold sides (i.e., “walls”) of the quadrants indicate that final paths may not cross these
walls. The classification of the requests ensures that source vertices of requests reside only in
SW quadrants of tiles. Final paths may not enter the SW quadrants; they may only emanate
from them. If the endpoint of a sketch path psi ends in tile T , then the path p̂i must reach a
copy of its destination bi in T . Reaching the destination is guaranteed by having p̂i reach
the top row of the NE quadrant of T (and thus it must reach the row of bi along the way).

Crossbar routing. [9]. Routing in each quadrant is simply an instance of routing in a
(uni-directional) 2D grid where requests enter from two adjacent sides and exit from the
opposite sides. Figure 1b depicts such an instance in which requests arrive from the left and
bottom sides and exit from the top and right side. The following claim characterizes when
crossbar routing succeeds.

ESA 2016



40:14 Scheduling Packets on Line Networks

I Claim 13 ([9]). Consider a 2-dimensional directed a × b grid. A set of requests can be
routed from the bottom and left boundaries of the grid to the opposite boundaries if and only
if the number of requests that should exit each side is at most the length of the corresponding
side.

We conclude with the following claim.

I Claim 14. Detailed routing succeeds in routing all the requests in Rquad.

Proof sketch. The sketch graph is a directed acyclic graph. Sort the tiles in topological
ordering. Within each tile, order the quadrants also in topological order: SW, NW, SE, NE.
Prove by induction on the position of the quadrant in the topological ordering that detailed
routing up to and including the quadrant succeeds. The claim for all SW quadrants follows
because this routing is done along the path that result of the randomized rounding step of
the requests in Rquad. Now note that filtering ensures that the number of paths between
tiles is at most 2λk < k/6. Routing in the first quadrant ensures that the number of paths
emanating from each side of a SW quadrant is at most k/3. The induction step follows by
applying Claim 13. J

5.5 Approximation Ratio

I Theorem 15. The approximation ratio of the algorithm for packet requests in Rdmin,dmax ,
for dmin = 3 · ln dmax, is constant in expectation.

Proof. We follow the algorithm, as defined in Section 5.1, stage by stage.
Stage 2 computes a fractional maximum multi-commodity flow on a network with reduced

edge capacities, and with the requirement that all flows have bounded diameter. By Lemma 3,
bounding path lengths in the MCF results in a solution of at least a 1/3 fraction of the
unrestricted one, and the scaling of the capacities in the space-time grid results in a solution
which is at least a λ = Ω(1) fraction of the latter.

Stage 3 classifies the requests into 4 classes and picks only the one for which the multi-
commodity flow solution is the highest, hence resulting in a solution of at least a 1/4 fraction
of the solution of the previous stage.

Stage 4 applies a randomized rounding procedure to the flows that are picked in stage 3.
The expected size of the solution is equal to the total flow left from the previous stage (but
the solution might not be feasible).

Stage 5 applies a filtering procedure to the solution of the previous stage, in order to
get a feasible solution on the sketch graph. By Claim 9, the expected size of the feasible
solution is at least a 1 − O(1/k) fraction of the solution given by stage 4. Observe that
1−O(1/k) = O(1) (in fact k = Ω(log logn) in any relevant invocation of the algorithm).

Stage 6 further reduces the size of the solution when the algorithm selects a subset of
the requests that have survived so far, using a maximum flow algorithm applied to each
SW quadrant. This is done in order to allow for the solution to be feasible in the original
space-time grid. By Corollary 12 the expected size of the solution after this stage is an Ω(1)
fraction of the expected size before this stage.

Stage 7 gives the final routing without further reducing the size of the solution.
We conclude that the algorithm for medium and long requests is a randomized O(1)

approximation algorithm (in fact with respect to the fractional optimum). J
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6 Extensions

6.1 Non-unit Capacities & Buffer Sizes
Our results extend to arbitrary values of B and c, with an (additional) multiplicative
penalty in the approximation ratio of O(B/c) in certain cases. In this section we outline
the required changes in the algorithm when B/c does not depend on the input size, i.e.,
B = Θ(c). For this case, our results will give a randomized approximation algorithm with
constant approximation ratio. We now outline the required modifications to handle this
case, explaining the modifications in each component of the algorithm, and then the overall
structure of the modified algorithm.

Adapting the algorithm for short packets (the exhaustive search algorithm). Exhaustive
search for arbitrary B and c can be done in polynomial time provided that the distance of
each packet request is at most ln(`S) (see [11, Lemma 7]). This means that for general B
and c there is an additional category of requests, called very short requests, on which the
exhaustive search will be applied. The remaining packets are divided into short, medium,
and long requests, as for the case of B = c = 1, and the distance of short requests is lower
bounded by ln(`S).

Adapting the Algorithm for Rdmin,dmax (for short, medium, and long packets). We adapt
the algorithm to the case where B = c = γ, where γ ∈ N>0. Note that while we consider
here non-unit capacities, the flow demands (packets) are not changed, i.e., they remain unit
demands. Consider a 3-dimensional view of the grid where there are γ “floors”, each floor for
a single capacity slice out of γ. This view of the grid partitions the routing problem at hand
to γ problems, where at each of them the capacities are unit. Now, apply the algorithm for
Rdmin,dmax on each of these floors. The approximation ratio of the revised algorithm follows
from linearity of expectation.

Putting things together. We now describe the general structure of the algorithm for
arbitrary B and c. The packets are partitioned into four classes very short, short, medium,
and long. As given above, we have a constant approximation algorithm for very short packets
for arbitrary B and c.

For the other three categories, we set both the buffer sizes and link capacities to min{B, c},
and apply the (modified) Rdmin,dmax for the case B = c. Observe that the fractional optimum
incurs a penalty of at most a factor of O(B/c) as a result of this capacity change. Since
this algorithm gives a constant approximation compared to the fractional optimum, we
get an O(B/c)-approximation algorithm compared to the optimum on the network with
non-modified capacities.

We can now conclude with the following theorem.

I Theorem 16. There exists a randomized algorithm for the Max-Pkt-Line problem, such
that if B = O(c), then its approximation ratio is a (different) constant.

6.2 Supporting Soft Deadlines
In this section we argue that if packets have deadlines, we achieve a constant approximation
ratio when the produced solution is allowed to miss deadlines by at most O(logn) time
units. This is achieved, simply, by reducing a request with deadlines to a path request which
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its destination set is a copy of the destination vertex with a time index which is less than
the time of the deadline. Since the tiling has “resolution” of at most O(logn), the detailed
routing might “miss” the deadline by the tile’s side length.

Note that the algorithm for short requests (or very short for non-unit capacities) can
handle requests with deadlines, and achieve the same performance while respecting hard
deadlines, because it employs exhaustive search10.
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