
On the Hardness of Learning Sparse Parities
Arnab Bhattacharyya∗1, Ameet Gadekar2, Suprovat Ghoshal3, and
Rishi Saket4

1 Department of Computer Science and Automation, Indian Institute of Science,
Bangalore, India
arnabb@csa.iisc.ernet.in

2 Department of Computer Science and Automation, Indian Institute of Science,
Bangalore, India
ameet.gadekar@csa.iisc.ernet.in

3 Department of Computer Science and Automation, Indian Institute of Science,
Bangalore, India
suprovat.ghoshal@csa.iisc.ernet.in

4 IBM Research, Bangalore, India
rissaket@in.ibm.com

Abstract
This work investigates the hardness of computing sparse solutions to systems of linear equations
over F2. Consider the k-EvenSet problem: given a homogeneous system of linear equations over
F2 on n variables, decide if there exists a nonzero solution of Hamming weight at most k (i.e.
a k-sparse solution). While there is a simple O(nk/2)-time algorithm for it, establishing fixed
parameter intractability for k-EvenSet has been a notorious open problem. Towards this goal,
we show that unless k-Clique can be solved in no(k) time, k-EvenSet has no polynomial time
algorithm when k = ω(log2 n).

Our work also shows that the non-homogeneous generalization of the problem – which we
call k-VectorSum – is W[1]-hard on instances where the number of equations is O(k logn),
improving on previous reductions which produced Ω(n) equations. We use the hardness of k-
VectorSum as a starting point to prove the result for k-EvenSet, and additionally strengthen
the former to show the hardness of approximately learning k-juntas. In particular, we prove
that given a system of O(exp(O(k)) · logn) linear equations, it is W[1]-hard to decide if there
is a k-sparse linear form satisfying all the equations or any function on at most k-variables (a
k-junta) satisfies at most (1/2 + ε)-fraction of the equations, for any constant ε > 0. In the
setting of computational learning, this shows hardness of approximate non-proper learning of
k-parities. In a similar vein, we use the hardness of k-EvenSet to show that that for any
constant d, unless k-Clique can be solved in no(k) time, there is no poly(m,n) · 2o(

√
k) time

algorithm to decide whether a given set of m points in Fn2 satisfies: (i) there exists a non-trivial
k-sparse homogeneous linear form evaluating to 0 on all the points, or (ii) any non-trivial degree
d polynomial P supported on at most k variables evaluates to zero on ≈ PrFn

2
[P (z) = 0] fraction

of the points i.e., P is fooled by the set of points.
Lastly, we study the approximation in the sparsity of the solution. Let the

Gap-k-VectorSum problem be: given an instance of k-VectorSum of size n, decide if there
exist a k-sparse solution, or every solution is of sparsity at least k′ = (1 + δ0)k. Assuming the
Exponential Time Hypothesis, we show that for some constants c0, δ0 > 0 there is no poly(n)
time algorithm for Gap-k-VectorSum when k = ω((log logn)c0).

1998 ACM Subject Classification F.2.1 Analysis of Algorithms and Problem Complexity: Nu-
merical Algorithms and Problems – Computations in finite fields

∗ AB was supported in part by DSTO1358 Ramanujan Fellowship.

© Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, and Rishi Saket;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 On the Hardness of Learning Sparse Parities

Keywords and phrases Fixed Parameter Tractable, Juntas, Minimum Distance of Code, Psue-
dorandom Generators

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.11

1 Introduction

Given a system of linear equations over F2, does there exist a sparse non-trivial solution?
This question is studied in different guises in several areas of mathematics and computer
science. For instance, in coding theory, if the system of linear equations is Mx = 0 where
M is the parity check matrix of a binary code, then the minimum (Hamming) weight of a
nonzero solution is the distance of the code. This also captures the problem of determining
whether a binary matroid has a short cycle, as the latter reduces to deciding whether there
is a sparse nonzero x such that Mx = 0. In learning theory, the well known sparse parity
problem is: given a binary matrix M and a vector b decide whether there is a small weight
nonzero vector x satisfying Mx = b. The version where Mx is required to equal b in most
coordinates, but not necessarily all, is also well studied as the problem of learning noisy
parities.

Let a vector x ∈ Fn2 be called k-sparse if it is nonzero in at most k positions, i.e. it
has Hamming weight at most k. In this work, we show that learning a k-sparse solution
to a system of linear equations is fixed parameter intractable, even when (i) the number
of equations is only logarithmic in the number of variables, (ii) the learning is allowed to
be approximate, i.e. satisfy only 51% of the equations and, (iii) is allowed to output as
hypothesis any function (junta) supported on at most k variables. We also prove variants of
these results for the case when the system of equations is homogeneous, which correspond to
hardness of the well known k-EvenSet problem. Note that it is always possible to recover a
k-sparse solution in O(nk) time simply by enumerating over all k-sparse vectors. Our results
show that for many settings of k, no substantially faster algorithm is possible for k-EvenSet
unless widely believed conjectures are false. Assuming similar conjectures, we also rule out
fast algorithms for learning γk-sparse solutions to a linear system promising the existence of
a k sparse solutions, for some γ > 1.

In the next few paragraphs we recall previous related work and place our results in their
context. Let us first formally define the basic objects of our study:

I Definition 1. k-VectorSum: Given a matrix M ∈ Fm×n2 and a vector b ∈ Fm2 , and a
positive integer k as parameter, decide if there exists a k-sparse vector x such that Mx = b.

I Definition 2. k-EvenSet: Given a matrix M ∈ Fm×n2 , and a positive integer k as
parameter, decide if there exists a nonzero k-sparse vector x such that Mx = 0.

I Remark. In the language of coding theory, k-VectorSum is also known as the Maximum-
LikelihoodDecoding problem and k-EvenSet as the MinimumDistance problem.

Clearly, k-VectorSum is as hard as k-EvenSet1. The k-VectorSum problem was
shown to be W[1]-hard2 by Downey, Fellows, Vardy and Whittle [15], even in the special

1 The name k-EvenSet is from the following interpretation of the problem: given a set system F over a
universe U and a parameter k, find a nonempty subset S ⊆ U of size at most k such that the intersection
of S with every set in F has even size.

2 Standard definitions in parameterized complexity appear in Section 2.

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.11

A. Bhattacharyya, A. Gadekar, S. Ghoshal, and R. Saket 11:3

case of the vector b consisting of all 1’s. More recently, Bhattacharyya, Indyk, Woodruff,
and Xie [6] showed that the time complexity of k-VectorSum is at least min(2Θ(m), nΘ(k)),
assuming the Exponential Time Hypothesis (i.e., 3-SAT has no 2o(n) time algorithm) [24].

In contrast, the complexity of k-EvenSet remains unresolved, other than its containment
in W[2] shown in [15]. Proving W[1]-hardness for k-EvenSet was listed as an open problem
in Downey and Fellows’ 1999 monograph [17] and has been reiterated more recently in lists of
open problems [21, 19]. Note that if we ask for a vector x whose weight is exactly k instead
of at most k, the problem is known to be W[1]-hard [15]. Our work gives evidence ruling out
efficient algorithms for k-EvenSet for a wide range of settings of k.

In the non-parameterized setting, where k is part of the input, these problems are very
well-studied. Vardy showed that EvenSet (or MinimumDistance) is NP-hard [33]. The
question of approximating k, the minimum distance of the associated code, has also received
attention. Dumer, Micciancio, and Sudan [18] showed that if RP 6= NP, then k is hard
to approximate within some constant factor γ > 1. Cheng and Wan [11, 12] proved the
same assuming P 6= NP, and subsequently Austrin and Khot [4] gave a simpler deterministic
reduction for this problem. The results of [11, 12] and [4] were further strengthened by
Micciancio [30].

From a computational learning perspective, the k-VectorSum problem can be restated
as: given an m-sized set of n-dimensional point and value pairs (i.e. elements of Fn2 × F2),
decide if there exists a parity (i.e. a homogeneous linear form) supported on at most k
variables (i.e. a k-parity) that is consistent with all the pairs. This has been extensively
studied as a promise problem when the points are generated uniformly at random. Note
that in this case, if m = Ω(n), there is a unique solution w.h.p and can be found efficiently
by Gaussian elimination. On the other hand, for m = O(k logn), the best known running
time of O(nk/2) is given in [28] (credited to Dan Spielman). Obtaining a polynomial time
algorithm for m = poly(k logn) would imply attribute-efficient learning of k-parities and is a
long-standing open problem in the area [7].

A natural question studied in this work is whether one can do better if the learning
algorithm is allowed to be non-proper (i.e., output a hypothesis that is not a k-parity) and is
allowed to not satisfy all the point-value pairs. To further motivate this problem, let us look
at the case when k is not fixed along with a promise that there exists a parity consistent with
1− δ (for some constant δ > 0) fraction of the point-value pairs, i.e., the agnostic setting.
When the points are adversarially drawn, there is no non-trivial proper algorithm known
but there is a non-proper algorithm due to Kalai, Mansour, and Verbin [25] that runs in
time 2O(n/ logn) and outputs a circuit C consistent with at least

(
1− δ − 2−n0.99

)
of the

point-value pairs. On the hardness side, Håstad’s inapproximability for Max-3LIN [23]
implies that properly learning a noisy parity in the agnostic setting is NP-hard, even for
1/2+ε accuracy, for any constant ε > 0. Nearly a decade later, Gopalan, Khot, and Saket [22]
showed that achieving an accuracy of 1−1/2d+ε using degree-d polynomials as hypotheses is
NP-hard and subsequently, Khot [26] proved NP-hardness for learning with accuracy 1/2 + ε

using constant degree polynomials3. Our work studies the intractability of approximate
non-proper learning of k-parity and extends the hardness result for k-VectorSum to learning
by juntas of k variables and for k-EvenSet to learning using constant degree polynomials
on k variables.

3 As far as we know, this result is unpublished although it was communicated to the fourth author of
this paper. The full version of this paper [5] includes a proof of Khot’s result with his permission to
illustrate some of the techniques which inspire part of this work.

ESA 2016

11:4 On the Hardness of Learning Sparse Parities

Another interesting question in the parameterized setting is related to a gap in the
sparsity parameter k, i.e. how tractable it is to learn a γk-sparse solution when the existence
of a k-sparse solution is guaranteed, for some constant γ > 1. Previously, Bonnet et al. [8]
and Khot and Shinkar [27] studied the approximation problem corresponding to k-Clique,
and both these works show conditional hardness results. More generally, there have been
several previous works studying approximation algorithms with the optimum value being a
parameter; see references in Marx’s survey [29]. In our work, we prove a “gap in k” hardness
result for k-VectorSum similar to that obtained in [8] for k-Clique.

In the rest of this section we formally describe our results for k-VectorSum and
k-EvenSet, and give a brief description of the techniques used to obtain them.

1.1 Our Results
All the reductions given in this section run in time polynomial in the size of the output
instances. We do not make this explicit for ease of notation.

Hardness of exact problems

The main result of this paper is the following hardness reduction from k-VectorSum to the
k-EvenSet problem.

I Theorem 3 (Hardness of k-EvenSet). There is an FPT reduction from an instance
(M, t) of k-VectorSum, where M ∈ Fm×n2 and t ∈ Fm2 , to an instance M′ of O((k logn)2)-
EvenSet, where M′ ∈ Fm

′×n′
2 such that both m′ and n′ are bounded by fixed polynomials in

m and n.

Combined with the W[1]-hardness of k-VectorSum ([15, 13] or Theorem 5 below), the
above yields the following corollary.

I Corollary 4. There does not exist a poly(n) time algorithm for k-EvenSet when k =
ω(log2 n), assuming that k-Clique does not have a polynomial time algorithm for any
k = ωn(1). More generally, under the same assumption, k-EvenSet does not admit a
poly(n) · 2o(

√
k) time algorithm for unrestricted k.

Proof. Suppose there is a T (n, k) algorithm for k-EvenSet. Chaining the W[1]-hard-
ness of k-VectorSum from Theorem 5 with the reduction in Theorem 3, we obtain a
T
(
poly(n), O

(
(k2 logn)2)) algorithm for k-Clique. Choosing k = ωn(1) implies the first

part of the corollary. For the second part, observe that if f(x) = 2o(
√
x), then we have

f
(
(k2 logn)2) = no(1) for some k = ωn(1). J

To the best of our knowledge, Corollary 4 gives the first nontrivial hardness results for
parameterized k-EvenSet. Theorem 3 is obtained by adapting the hardness reduction for
the inapproximability of MinimumDistance by Austrin and Khot [4] to the parameterized
setting.

We also give a reduction from k-Clique showing the W[1]-hardness of k-VectorSum
on instances which have a small number of rows.

I Theorem 5 (W[1]-hardness of k-VectorSum). The k-VectorSum problem is W[1]-hard
on instances (M,b) where M ∈ Fm×n2 and b ∈ Fm2 such that m = O(k logn). This is
obtained by an FPT reduction from an r-vertex instance of `-Clique to (M,b) such that
m = O(`2 log r), n = O((`r)2) and k = Θ(`2). Our reduction implies, in particular, that
k-VectorSum does not admit an no(

√
k) time algorithm on such instances, unless k-Clique

on r-vertex graphs has an ro(k) time algorithm.

A. Bhattacharyya, A. Gadekar, S. Ghoshal, and R. Saket 11:5

As far as we know, in previous proofs of the W[1]-hardness of k-VectorSum [15, 13],
the number of rows in the matrix output by the reduction was linear in n. Our proof is
inspired by a recent proof of the W[1]-hardness of k-Sum [1]. Additionally, in Section 7 , we
give a simple O(n · 2m) time algorithm for k-VectorSum, which suggests that m cannot be
made sublogarithmic in n for hard instances. The logarithmic upper bound on the number
of equations in our hardness reduction to k-VectorSum also leads to a similarly efficient
W[1]-hardness of approximate non-proper learning of k-parities (Theorem 7 below) which
uses Theorem 5 as the starting point.

Hardness of non-proper and approximately learning sparse parities

Theorem 5 can be restated in terms of W[1]-hardness of learning a k-parity4.

I Theorem 6 (Theorem 5 restated). The following is W[1]-hard: given m = O(k logn)
point-value pairs {(yi, ai)}mi=1 ⊆ Fn2 × F2, decide whether there exists a k-parity L which
satisfies all the point-value pairs, i.e., L(yi) = ai for all i = 1, . . . ,m.

Next, we strengthen the above theorem in two ways. We show that the W[1]-hardness
holds for learning a k-parity using a k-junta, and additionally for any desired accuracy
exceeding 50 Here, a k-junta is any function depending on at most k variables.

I Theorem 7. The following is W[1]-hard: for any constant δ > 0, given m = O(k · 23k ·
(logn)/δ3) point-value pairs {(zi, bi)}mi=1 ⊆ Fn2 × F2, decide whether:

YES Case. There exists a k-parity which satisfies all the point-value pairs.

NO Case. Any function f : Fn2 7→ F2 depending on at most k variables satisfies at most
1/2 + δ fraction of the point-value pairs.

Theorem 7 also implies hardness for approximately learning k-juntas as stated in the
following corollary:

I Corollary 8. There exists no no(k) time algorithm which given m = O(k · 23k · (logn)/δ3)
point-value pairs {(zi, bi)}mi=1, computes a k-junta f : Fn2 7→ F2 which satisfies at least 1/2 + δ

fraction of the point-value pairs, unless k-Clique on n vertices can be solved in no(k) time.

In comparison, the problem of exactly learning k-juntas previously shown to be W[2]-hard
by Arvind, Köbler, and Lindner [3]. Note that the current best algorithm for learning
k-juntas, even over the uniform distribution, takes nΩ(k) time [32, 31].

We similarly strengthen Theorem 3 to rule out efficient algorithms for approximately
learning a k-sparse solution to a homogeneous linear system using constant degree polynomials
supported on at most k variables.

I Theorem 9. For any constants δ > 0 and positive integer d, given an instance (A,b) of
k′-VectorSum, where A ∈ Fm

′×n′
2 and b ∈ Fm′2 , there is an FPT reduction to a set of m

points {zi}mi=1 ⊆ Fn2 such that for some k = O((k′ logn′)2),

YES Case. There exists a non-trivial k-parity L such that L(zi) = 0 for all i = 1, . . . ,m.

4 Note that Theorem 5 as stated shows hardness of learning homogeneous k-sparse linear forms (without
the constant term). The result can easily be made to hold for learning by general k-sparse linear forms
by adding a point-value pair which is (0, 0).

ESA 2016

11:6 On the Hardness of Learning Sparse Parities

NO Case. Any degree d polynomial P : Fn2 7→ F2 depending on at most k variables satisfies
P (zi) = 0 for at most

(
Prz∈UFn

2
[P (z) = 0] + δ

)
fraction of the points5, where z ∈U Fn2 is

sampled u.a.r.
In the above m and n are bounded by polynomials in m′ and n′.

In particular, if we assume that k-Clique does not have a poly(n) time algorithm for any
k = ω(1), then for any constant δ > 0 and positive integer d there is no poly(m,n) · 2o(

√
k)

time algorithm to decide whether a given set of points {zi}mi=1 ⊆ Fn2 satisfies the YES or
the NO case. The proof of Theorem 9 relies on an application of Viola’s [34] pseudorandom
generator for constant degree polynomials, and is inspired by Khot’s [26] NP-hardness of
learning linear forms using constant degree polynomials.

Gap in sparsity parameter

Using techniques similar to those employed in [8], we prove the following gap in k hardness
for k-VectorSum, i.e., hardness of Gap-k-VectorSum.

I Theorem 10. Assuming the Exponential Time Hypothesis, there are universal constants
δ0 > 0 and c0 such that there is no poly(N) time algorithm to determine whether an instance
of Gap-k-VectorSum of size N admits a solution of sparsity k or all solutions are of sparsity
at least (1 + δ0)k, for any k = ω((log logN)c0). More generally, under the same assumption,
this problem does not admit an NO(k/ω((log logN)c0)) time algorithm for unrestricted k.

1.2 Our Techniques
Our reduction for proving Theorem 3 proceeds by homogenizing a W[1]-hard instance of
k-VectorSum by including b as a column of M. To force the solution to always choose b,
we use the approach of Austrin and Khot [4] who face the same issue when reducing to the
MinimumDistance problem. But since we need to retain the bound on the sparsity of the
solution, we cannot use their techniques directly. Instead, for a purported sparse solution
x, we construct a small length sketch y that also belongs to an ε-balanced code C. Now,
consider Y that supposedly equals yyT. Note that we can check through a system of linear
constraints that Y belongs to the tensor product code C ⊗ C. We then proceed as in [4] to
ensure that in the soundness analysis, Y has non-trivially large weight whenever x is set to
0, implying that the derived k-EvenSet instance is unsatisfiable. Our construction inflates
the parameter k to O((k logn)2).

The proof of Theorem 5 is based on a gadget reduction from an n-vertex instance of
k-Clique creating columns of M corresponding to the vertices and edges of the graph along
with a target vector b. Unlike previous reductions in which the number of coordinates
(rows of M) are linear in the number of vertices, we reuse the same set of coordinates for
the vertices and edges by assigning unique logarithmic length patterns to each vertex. In
total we create k columns for each vertex and

(
k
2
)
columns for each edge, using O(k2 logn)

coordinates. The target vector b ensures that a solution always has at least k +
(
k
2
)
columns,

which suffices in the YES case while the NO case requires strictly more columns to sum to b.
The hardness of approximately learning k-parities with k-juntas given in Theorem 7 is

obtained by transforming the instance of Theorem 5 using an ε-balanced code, along with an
analysis of the Fourier spectrum of any k-junta on the resulting distribution. In contrast,

5 Note that Prz∈UFn
2
[P (z) = 0] 6 1− 2−d, for any non-trivial degree d polynomial P .

A. Bhattacharyya, A. Gadekar, S. Ghoshal, and R. Saket 11:7

Theorem 9 is obtained by taking the uniform distribution over the equations in the hard
instance of Theorem 3 (appropriately transformed using an ε-balanced code) as an input to
Viola’s construction [34] of pseudorandom generators for degree d polynomials. Note that
the exp(k) blowup in the reduction for Theorem 7 rules out its use for proving Theorem 9
due to the presence of a (log2 n) factor in the sparsity parameter of the instance obtained in
Theorem 3. On the other hand, the non-homogeneity of the k-VectorSum problem hinders
the use of Viola’s pseudorandom generator for proving a version (for degree d polynomials
on k variables instead of k-juntas) of Theorem 7 which avoids the exp(k) blowup.

For Theorem 10, we use the improved sparsification lemma of Calabro, Impagliazzo, and
Paturi [10] followed by Dinur’s almost linear PCP construction [14] to reduce an n-variable
3-SAT instance to 2εn Gap-3-SAT instances with almost linear in n clauses and variables.
For each instance, a corresponding k-VectorSum instance is created by partitioning the
clauses into k blocks and adding F2-valued variables for partial assignments to each block
along with non-triviality and consistency equations. In the YES case setting one variable
from each block to 1 (i.e. a k-sparse solution) suffices, whereas in the NO case at least γk
variables need to be set to 1, for some constant γ > 1. The parameters are such that an
efficient algorithm to decide the YES and NO cases would violate the Exponential Time
Hypothesis for 3-SAT.

Organization of the paper. Reducing from a W[1]-hard instance of k-VectorSum, The-
orem 3 is proved in Section 3. This is extended in Section 4 to prove Theorem 9. The
reduction proving Theorem 7 is given in Section 5, and starts with a hard instance from
Theorem 6 (restatement of Theorem 5). Lastly, we given an efficient reduction from k-Clique
to k-VectorSum in in Section 6. Due to lack of space, we do not include the proof of
Theorem 10, which can be found in the full version [5] of the paper instead.

In the next section we give some definitions and results which shall prove useful for the
subsequent proofs.

2 Preliminaries

2.1 Parameterized Complexity
A parameterization of a problem is a poly(n)-time computable function that assigns an
integer k > 0 to each problem instance x of length n (bits). The pair (x, k) is an instance of
the corresponding parameterized problem. The parameterized problem is said to be fixed
parameter tractable (FPT) if it admits an algorithm that runs in time f(k) · poly(n) where k
is the parameter of the input, n is the size of the input, and f is an arbitrary computable
function. The W-hierarchy, introduced by Downey and Fellows [16, 17], is a sequence of
parameterized complexity classes with FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ · · · . It is widely
believed that FPT 6= W[1].

These hierarchical classes admit notions of completeness and hardness under FPT reduc-
tions i.e., f(k) ·poly(n)-time transformations from a problem A instance (x, k) where |x| = n,
to an instance (x′, k′) of problem B where |x′| 6 f(k) · poly(n) and k′ is bounded by f(k).
For example, consider the k-Clique problem: given a graph G on n vertices and an integer
parameter k, decide if G has a clique of size k. The k-Clique problem is W[1]-complete,
and serves as a canonical hard problem for many W[1]-hardness reductions including those
in this work.

For a precise definition of the W-hierarchy, and a general background on parameterized
algorithms and complexity, see [17, 20, 13].

ESA 2016

11:8 On the Hardness of Learning Sparse Parities

2.2 Coding Theoretic Tools
Our hardness reductions use some basic results from coding theory. For our purposes, we shall
be restricting our attention to linear codes over F2 i.e., those which form linear subspaces. A
code C ⊆ Fn2 is said to be a [n, k, d]-binary linear code if C forms a k-dimensional subspace
of Fn2 such that all nonzero elements (codewords) in C are of Hamming weight at least d.
We use weight wt(x) of a codeword x to denote its Hamming weight, distance of a code to
denote the minimum weight of any nonzero codeword, and rate to denote the fraction k/n.
A generator matrix G ∈ Fn×k2 for C is such that C = {Gx | x ∈ Fk2}. Also associated with C
is a parity check matrix G⊥ ∈ F(n−k)×n

2 satisfying: G⊥y = 0 iff y ∈ C. We shall use the
generator and parity check matrices of well studied code constructions whose properties we
state below.

I Theorem 11 (BCH Codes, Theorem 3 [9]). The dimension of the BCH code of block length
n = (2m − 1) and distance d, is at least

(
n− dd−1

2 em
)
. Further, the corresponding parity

check matrix is constructible in time poly(n).

While the above theorem restricts the block length to be of the form (2m− 1), for general
n we can use as the parity check matrix any n columns of the parity check matrix of a BCH
code of the minimum length (2m − 1) greater than or equal to n. In particular, we have the
following corollary tailored for our purpose.

I Corollary 12. For all lengths n and positive integers k < n, there exists a parity check
matrix R ∈ F20k logn×n

2 such that Rx 6= 0 whenever 0 < wt(x) < 18k. Moreover, this matrix
can be computed in time poly(n).

The following explicit family of ε-balanced binary linear codes of constant rate was given by
Alon et al. [2].

I Theorem 13 (ε-balanced codes [2]). There exists an explicit family of codes C ⊆ Fn2 such
that every codeword in C has normalized weight in the range [1/2− ε, 1/2 + ε], and rate
Ω(ε3), which can be constructed in time poly(n, 1

ε), where ε > 0 is any arbitrarily small
constant.

Given a linear code C ⊆ Fn2 , the product code C⊗2 consists of n × n matrices where
each row and each column belongs to C; equivalently, C⊗2 = {GXGT : X ∈ Fk×k2 } where
G ∈ Fn×k2 is the generator matrix for the code C. If the distance d(C) = d, then it is easy to
verify that d(C⊗2) > d2. However, we shall use the following lemma from [4] for a tighter
lower bound on the Hamming weight when the code word satisfies certain properties.

I Lemma 14 (Density of Product Codes [4]). Let C ⊆ Fn2 be a binary linear code of distance
d = d(C), and let Y ∈ C⊗2 be a nonzero codeword with the additional properties that
diag(Y) = 0, and Y = YT. Then, the Hamming weight of Y is at least 3

2d
2.

2.3 Viola’s Pseudorandom Generator
The proof of Theorem 9 in Section 4 uses Viola’s [34] construction of pseudorandom generators
which we describe below.

I Definition 15. A distribution D over Fn2 is said to ε-fool degree d polynomials in n-variables
over F2 if for any degree d polynomial P :∣∣∣ E

z←D
[e(P (z))]− E

z←U
[e(P (z))]

∣∣∣ 6 ε,

where U is the uniform distribution over Fn2 and e(x) := (−1)x for x ∈ {0, 1}.

A. Bhattacharyya, A. Gadekar, S. Ghoshal, and R. Saket 11:9

I Theorem 16. Let Y1, . . . ,Yd be d independent distributions on Fn2 that each ε-fool linear
polynomials. Then the distribution W = Y1 + · · ·+ Yd εd-fools degree-d polynomials where
εd := 16 · ε1/2d−1 .

3 Parameterized Reduction for the k-EvenSet problem

This section is devoted to proving the Theorem 3. The next few paragraphs give an informal
description of the reduction. We then define the variables and equations of the k-EvenSet
instance, and analyze the completeness and soundness of the reduction.

3.1 Reduction Overview
Let Mx = t be a hard instance of k-VectorSum i.e., in the YES case there exists a k-sparse
solution, whereas in the NO case all solutions have Hamming weight at least (k + 1). We
homogenize this affine system by replacing the target vector t by a0t for some F2-variable
a0, where a0t is a coordinate-wise multiplication of t with the scalar a0. Clearly, if all
(k + 1)-sparse (including a0 as a variable) solutions to Mx = a0t have a0 = 1 then the
hardness of k-VectorSum implies the desired hardness result for k-EvenSet. However,
this may not be true in general: there could exist a k-sparse x such that Mx = 0. The
objective of our reduction therefore, is to ensure that any solution to Mx = a0t that has
a0 = 0 with a k-sparse x, must have significantly large weight in other auxiliary variables
which we shall add in the construction.

Towards this end, we borrow some techniques from the proof of the inapproximability of
MinimumDistance by Austrin and Khot [4]. Using transformations by suitable codes we
first obtain a K = O(k logn)-length sketch y = (y1, . . . , yK) of x, such that y is of normalized
weight nearly 1/2 when x is k-sparse but nonzero. We then construct a codeword Y ∈ FK×K2 ,
which is intended to be the product codeword yyT . However, this relationship cannot
be expressed explicitly in terms of linear equations. Instead, for each pair of coordinates
(i, j) ∈ [K]× [K], we introduce functions Zij : F2 × F2 7→ F2 indicating the value taken by
the pair (yi, yj) along with constraints that relate the Zij variables to codewords y and Y. In
fact, the explicit variables {Zij} determine both y and Y which are implicit. The constraints
also satisfy the key property: if x is k-sparse, then the number of nonzero Zij variables is
significantly larger when a0 = 0 than when a0 = 1. This forces all sparse solutions to set
a0 = 1, which gives us the desired separation in sparsities between the YES and NO cases.

3.2 Constraints
Let Mx = t be the instance of k-VectorSum over F2, in n variables and m equations.
We homogenize this system by introducing a new F2-variable a0 so that the new system of
equations is then given by

Mx = a0t, (1)

where the a0t is the coordinate wise product of t with the scalar a0. We also add the
following additional constraints and variables.

Linear Sketch Constraints: Let R ∈ Fk′×n be the parity check matrix of a [n, n− k′, 18k]
linear code, where k′ = 20k logn, as defined in Corollary 12. Define η to be a k′-length
sketch of x using R as,

η = Rx. (2)

ESA 2016

11:10 On the Hardness of Learning Sparse Parities

Mixing Constraints: Let C ∈ FK×k
′

2 be the generator matrix of a linear code C ⊆ FK2 as
defined in Theorem 13 where C has relative distance 1

2 − ε and rate Ω(ε3) for some small
ε > 0 and K = k′

Ω(ε3) 6 20k logn
cε3 , for some constant c > 0. We add the constraint

y = Cη = CRx. (3)

Product Code Constraints: Let C⊗2 := C
⊗
C be the product code with relative distance(1

2 − ε
)2, constructed from C. Let Y = {Yij}16i,j6K ∈ FK×K2 be such that Y = yyT. To

represent this relation linearly, we introduce variables {Zij(a, b)}a,b∈F2 for each 1 6 i, j 6 K,
which are intended to indicate the value assigned to the pair (yi, yj) i.e., Zij(a, b) = 1{yi =
a, yj = b}. For each (i, j) ∈ [K]× [K] we add the following equations,

Zij(0, 0) + Zij(0, 1) + Zij(1, 0) + Zij(1, 1) = a0 (4)
Zij(1, 0) + Zij(1, 1) = yi (5)
Zij(0, 1) + Zij(1, 1) = yj (6)

Zij(1, 1) = Yij . (7)

Furthermore, we add the constraints

QY = 0, (8)

where Q is the parity check matrix for the product code C⊗2, and

Yij = Yji ∀i 6= j, (9)
Yii = yi ∀i ∈ [K], (10)

so that Y preserves the diagonal entries and symmetry of yyT . Finally, we introduce
x1,x2, . . . ,xr−1 and constraints

xi = x ∀i ∈ [r − 1], (11)

where r = K2

16k 6 25k(logn)2

c2ε6 . These r − 1 explicit copies of the vector x are used to balance
the Hamming weight of the final solution. Observe that all the variables described above are
linear combinations of a0, {Zij(·, ·)}i,j∈[k] and the coordinates of the vectors x and {xi}i∈[r−1].
Hence, we analyze the sparsity of the solution restricted to these explicit variables. The total
number of variables considered is 4K2 + r · n+ 1.
I Remark. The key difference between [4] and our reduction is in Equation (2) which
constructs a small (O(k logn))-length sketch of the n-length vector x. This helps us contain
the blowup in the sparsity of the solution to O(k2 log2 n) instead of O(n).

3.3 Completeness
In the YES case, setting a0 = 1 we obtain a k-sparse x such that Mx = a0t = t. Furthermore,
for each i, j ∈ [K], exactly one of the Zij variables would be nonzero. Hence, we have a
solution of weight K2 + rk + 1.

3.4 Soundness
Since the solution has to be non-trivial, at least one of a0,x,y,Y must be nonzero. Note
that when x = 0, y = 0 since y is a homogeneous linear transformation of x. Moreover, we
may assume that the weight of x is at most K2+1

r +k+ 1 < 18k by our setting of r, otherwise

A. Bhattacharyya, A. Gadekar, S. Ghoshal, and R. Saket 11:11

the total weight of the solution would be at least r ·
(
K2+1
r + k + 1

)
> K2 + r(k + 1) + 1

due to the copies of x and we would be done. The construction of y along with the upper
bound of 18k on the weight of x constrains y to be nonzero when x is nonzero. Thus, the
only three cases we need to consider are:

Case (i): a0 = 1. In this case, any solution x to Mx = a0t = t has weight at least k + 1.
Furthermore, for each i, j ∈ [K], at least one of the four Zij variables must be nonzero since
a0 = 1. Hence, the total Hamming weight of the solution is at least K2 + r(k + 1) + 1.

Case (ii): a0 = 0,x 6= 0,y 6= 0. By construction, since y is nonzero it has weight
>
(1

2 − ε
)
K. Therefore, for at least 1−

(1
2 + ε

)2
> 3

4−2ε fraction of the pairs (i, j) ∈ [K]×[K],
either yi = 1 or yj = 1 . Observe that for each such pair, at least two Zij variables are set to
1. Thus, the weight of any solution in this case is at least 2

(
3
4 − 2ε

)
K2 =

(
3
2 − 4ε

)
K2.

Case (iii): a0 = 0,x = 0,y = 0,Y 6= 0. We have that diag(Y) = y = 0, Y is symmetric
and it belongs to the product code C⊗2 (as enforced by Equations (8) and (9)). Then by
Lemma 14, the weight of Y is at least

(3
8 − 3ε

)
K2. Observe that for each i, j ∈ [K] such

that Yij = 1, Equations (4)-(7) force all four Zij variables to be set to 1. Hence, the number
of nonzero Zij ’s are at least

(3
2 − 12ε

)
K2.

The above analysis yields that in contrast to the YES case which admits a (K2 + rk+ 1)-
sparse solution, in the NO case all solutions are of weight at least

min
{(
K2 + r(k + 1) + 1

)
,

(
3
2 − 12ε

)
K2
)}

> K2 + r(k + 1) + 1

by choice of the parameter r. Thus, solving the d-EvenSet problem with d = K2 + rk+ 1 =
O(k2(logn)2) solves the k-VectorSum instance Mx = t.

4 Proof of Theorem 9

We first prove the following strengthening of Theorem 3.

I Theorem 17 (Hardness of approximate k-EvenSet). For any constant ε > 0, given an
instance (A,b) of k′-VectorSum, where A ∈ Fm

′×n′
2 and b ∈ Fm′2 , there is an FPT

reduction to an instance B ∈ Fm×n2 of k-EvenSet for some k = O((k′ logn′)2), such that
YES Case. There is a nonzero k-sparse vector x which satisfies Bx = 0.
NO Case. For any nonzero k-sparse vector x the weight of Bx is in the range [1/2−ε, 1/2+ε].
Here both m and n are bounded by fixed polynomials in m′ and n′.

Proof. Let M ∈ Fr×n2 be the instance of k-EvenSet obtained by applying Theorem 3 to the
instance (A,b) of k′-VectorSum we start with. Let W ∈ Fm×r2 be the generator matrix
of an ε-balanced linear code given by Theorem 13, where m = O(r/ε3). Taking B := WM
completes the proof. J

It is easy to see that in the NO case the uniform distribution on the rows of the matrix
B fools all linear forms (with error ε) over k variables.

Viola’s result [34] (Theorem 16) implies that for any constant d, taking d-wise sums of
the rows of B yields a distribution on which the YES case solution evaluates to 0, while in
the NO case it fools all degree d polynomials supported on at most k variables with error
16 · ε1/2d−1 . Taking ε to be a small enough constant completes the proof of Theorem 9.

ESA 2016

11:12 On the Hardness of Learning Sparse Parities

5 Hardness of Learning k-Parities using k-Juntas

This section gives the proof of Theorem 7. Combining Theorem 6 with a small bias linear code
we first induce an approximation gap for learning k-parities along with extending the result
to non-homogeneous linear forms. In particular, let W = {Wij} ∈ Ft×m2 be the generator
matrix of an ε-balanced linear code given by Theorem 13, where t = O(m/ε3). Here, we
choose ε := δ · 2−k, where δ is as given in Theorem 7. Given an instance {(yj , aj)}mj=1 from
Theorem 6, let zi =

∑m
j=1Wijyj , and bi =

∑m
j=1Wijaj , for i = 1, . . . , t. In the YES case,

there is a homogeneous linear form L∗ supported on at most k variables that satisfies all
{(yj , aj)}mj=1 and thus satisfies linear combinations of these point-value pairs, in particular
{(zi, bi)}ti=1.

For the NO case, we begin with the following lemma.

I Lemma 18. If {(yj , aj)}mj=1 is a NO instance, then any linear form L(x) + c supported
on at most k variables satisfies a fraction in the range [1/2− ε, 1/2 + ε] of the point-value
pairs {(zi, bi)}ti=1.

Proof. Since the homogeneous part L does not satisfy all pairs {(yj , aj)}mj=1, it will satisfy
a fraction in the range [1/2− ε, 1/2 + ε] of the pairs {(zi, bi)}ti=1, due the lower and upper
bounds bound on the weight of the nonzero codewords in the column space of W. This also
holds for L+ c for any constant c. J

We now extend the NO case to k-juntas. Let f : Fn2 7→ F2 be a function depending
only a subset S ⊆ [n] of coordinates where |S| 6 k. Define an extension g : Fn+1

2 7→ F2
as g(x1, . . . , xn, xn+1) := f(x1, . . . , xn) + xn+1. For convenience we shall abuse notation to
denote (z, b) = (z1, . . . , zn, b) where z = (z1, . . . , zn) ∈ Fn2 and b ∈ F2. To complete the proof
we need to show that,∣∣∣∣ E

(z,b)∈Z
[e(g(z, b))]

∣∣∣∣ 6 2δ, (12)

where e(x) := (−1)x. For some real values Cα (α ⊆ [n+ 1]), the Fourier expansion of e(g) is
given by,

e(g) =
∑

α⊆[n+1]

Cαχα.

Since e(g(x1, . . . , xn+1)) = e(f(x1, . . . , xn) + xn+1) and f depends only on coordinates in
S, it is easy to see that the Fourier spectrum of e(g) is supported only on characters χα
such that α ⊆ S ∪ {n+ 1}. Further, since e(g(x1, . . . , xn+1)) changes sign on flipping xn+1,
Cα 6= 0⇒ (n+ 1) ∈ α. Thus,

e(g) =
∑

α⊆S∪{n+1}
(n+1)∈α

Cαχα. (13)

Observe that for any α in the sum above, χα(x1, . . . , xn, b) = e(L(x1, . . . , xn) + b) where L
is a homogeneous linear form supported on at most k variables. For any such α, Lemma 18
implies∣∣∣∣ E

(z,b)∈Z
[χα(z, b)]

∣∣∣∣ 6 2ε. (14)

A. Bhattacharyya, A. Gadekar, S. Ghoshal, and R. Saket 11:13

Using the above along with Equation (13) yields,∣∣∣∣ E
(z,b)∈Z

[e(g(z, b))]
∣∣∣∣ 6 (2ε) ·

∑
α⊆S∪{n+1}

(n+1)∈α

|Cα|

6 (2ε) · 2k = 2δ,

where the last inequality is because there are at most 2k subsets α in the sum on the RHS of
Equation (13) and each |Cα| 6 1 since e(g) is a {−1, 1}-valued function.

6 W[1]-hardness of k-VectorSum on O(k logn) Equations

The following theorem implies Theorem 5.

I Theorem 19. There is an FPT reduction from an instance G(V,E) of k-Clique, over n
vertices and m edges, to an instance (M,b) of k′-VectorSum, where M ∈ Fd×n

′

2 such that
k′ = Θ(k2), d = O(k2 logn) and n′ = O(nk +mk2).

The rest of this section is devoted to proving the above theorem. We start by observing
that a k-clique in a graph G(V,E) can be certified by the pair of mappings f : [k] 7→ V and
g :
([k]

2
)
7→ E , such that g(i, j) = (f(i), f(j)) ∈ E ∀i, j ∈ [k], i < j. Here, we use

([k]
2
)
to

represent {(i, j) | 1 6 i < j 6 k}. The underlying idea behind the reduction is to construct
M and b such that f and g exist iff there is a sparse set of columns of M that sums up to b.

Construction of M and b. Let G(V,E) be a k-Clique instance on n = |V | vertices and
m = |E| edges, where V = {v1, v2, . . . , vn}. For each vertex vi ∈ V , assign a distinct
N = dlog(n+ 1)e bit nonzero binary pattern denoted by qi ∈ FN2 . We first construct a set of
vectors – which shall be the columns of M – corresponding to the vertices and edges. The
dimension over which the vectors are defined is partitioned into three sets of coordinates:

Edge-Vertex Incidence Coordinates: These consist of k slots, where each slot consists of
(k − 1) subslots, and each subslot in turn consists of N coordinates. In any column of M, a
subslot may either contain the N -length pattern of a vertex, or it might be all zeros.

Edge Indicator Coordinates: These are a set of
(
k
2
)
coordinates corresponding to {(i, j) |

1 6 i < j 6 k}, indicating whether the vector represents an edge mapped from (i, j). Any
column of M may have at most one of these coordinates set to 1.

Vertex Indicator Coordinates: These are a set of k coordinates corresponding to indices
i ∈ {1, . . . , k}, which indicate whether the vector represents a vertex mapped from i. Any
column of M may have at most one of these coordinates set to 1.

Thus, each vector is a concatenation of k(k − 1)N edge-vertex incidence bits, followed by(
k
2
)
edge indicator bits and k vertex indicator bits, so that d = k(k−1)N+

(
k
2
)
+k = O(k2 logn).

For ease of notation, let Sjl represent the N -sized subset of coordinates belonging to the
subslot l of slot j where j ∈ [k] and l ∈ [k− 1]. We define qi(Sjl) ∈ Fd2 to be the vector which
contains the pattern of vertex vi in Sjl , and is zero everywhere else. For 1 6 i < j 6 k, let
δi,j ∈ Fd2 be the vector which has a 1 at the edge indicator coordinate corresponding to (i, j),
and is 0 everywhere else. Similarly, δi ∈ Fd2 is the indicator vector which has its ith vertex
indicator coordinate set to 1, everything else being 0. Using these components we construct
the vertex and edge vectors as follows.

ESA 2016

11:14 On the Hardness of Learning Sparse Parities

Vertex Vectors: For each vertex vi ∈ V and j ∈ [k], we introduce a vector η(vi, j) ∈ Fd2
which indicates that vertex vi is mapped from index (slot) j i.e., f(j) = vi. The vector
is constructed as follows: populate each of the (k − 1) subslots of the jth slot with the
pattern qi of vertex vi, and set its jth vertex indicator coordinate to 1. Formally, η(vi, j) :=∑k−1
l=1 qi(Sjl) + δj . For each vertex there are k vertex vectors resulting in a total of nk vertex

vectors.

Edge Vectors: For each edge e = (vi1 , vi2) ∈ E where i1 < i2, and 1 6 j1 < j2 6 k, we
introduce a vector that indicates that the pair of indices (slots) (j1, j2) is mapped to (vi1 , vi2)
i.e., g(j1, j2) = (vi1 , vi2) . We construct the vector η(e, j1, j2) ∈ Fd2 as follows: populate
Sj1
j2−1 with the pattern of vertex vi1 , and S

j2
j1

with the pattern of vertex vi2 . Additionally,
we set the edge indicator coordinate corresponding to (j1, j2) to 1. The vector is formally
expressed as, η(e, j1, j2) := qi1(Sj1

j2−1) + qi2(Sj2
j1

) + δj1,j2 . Intuitively, for the lower ordered
vertex vi1 , η(e, j1, j2) cancels out the (j2 − 1)th subslot of slot j1, and for the higher ordered
vertex vi2 , it cancels out the j1th subslot of its j2th slot. Note that we are treating (vi1 , vi2)
as an unordered pair since i1 < i2. Therefore, for each edge e ∈ E, and for each choice of
1 6 j1 < j2 6 k, we introduce one edge vector. Hence, there are a total of m ·

(
k
2
)
edge

vectors in the set.

The vertex and edge vectors constructed above constitute the columns of M. The
target vector b ensures that (i) every solution must have at least k vertex vectors, and

(
k
2
)

edge vectors and (ii) the vectors must cancel each other out in the Edge-Vertex Incidence
coordinates. Formally, b =

∑
i∈[k] δi +

∑
16i<j<k δi,j . In other words, all the edge and

vertex indicator coordinates of b are set to 1, and everything else to 0.

6.1 YES case
We show that ifG(V,E) has a k-Clique, then there exists a set of k+

(
k
2
)
columns of M that sum

to b. Assume that vi1 , vi2 , . . . , vik form a k-clique where i1 < i2 < · · · < ik. We select k vertex
vectors {η(vij , j)}j∈[k], and

(
k
2
)
edge vectors {η(e, j1, j2) | e = (vij1

, vij2
), 1 6 j1 < j2 6 k}.

Since the k vertices form a clique, these vectors always exists. Observe that for any fixed
j ∈ [k], (i) for ` = 1, . . . , j − 1, η(vij , j) and η(e, `, j) have the same pattern qij in subslot `
of slot j, where e = (vi` , vij), and (ii) for ` = j + 1, . . . , k, η(vij , j) and η(e, j, `) have the
same pattern qij in subslot (`− 1) of slot j, where e = (vij , vi`). Thus, the k +

(
k
2
)
selected

vectors sum to zero on all but the vertex and edge indicator coordinates and thus sum up to
b.

6.2 NO Case
Suppose for a contradiction that S is a subset of columns of M that sum to b and that
|S| 6 k +

(
k
2
)
.

I Proposition 20. There are exactly k vertex vectors corresponding to indices (slots) i ∈ [k]
in S. Also, there are exactly

(
k
2
)
edge vectors, one for each pair (i, j) (1 6 i < j 6 k) of slots,

in S.

Proof. This follows from the observation that there are k+
(
k
2
)
nonzero indicator coordinates

in the target b, and each (edge or vertex) vector contributes exactly one nonzero (edge or
vertex) indicator coordinate. Therefore, by a counting argument, k vertex vectors, one each
for the indices (slots) i ∈ [k], must contribute to the k vertex indicator bits. Similarly,

(
k
2
)

A. Bhattacharyya, A. Gadekar, S. Ghoshal, and R. Saket 11:15

edge vectors, one for each pair of slots (i, j) (1 6 i < j 6 k), must contribute to the
(
k
2
)
edge

indicator bits. J

The above proposition implies that for each pair of vertex vectors there is exactly one
edge vector which has a common populated subslot with each of them. So there are exactly
(k − 1) edge vectors which share a populated subslot with any given vertex vector in S.

Since the k vertex vectors in S populate distinct slots, in total k(k − 1) subslots are
populated by the sum of the k vertex vectors. Note that any edge vector populates exactly 2
subslots. Thus, for the

(
k
2
)

= k(k− 1)/2 edge vectors in S to sum up to the values in k(k− 1)
subslots, it must be that the edge vectors populate distinct subslots. In other words, no two
edge vectors are both nonzero in the same slot-subslot combination.

Thus, for each vertex vector there are exactly (k − 1) edge vectors which share distinct
populated subslots with it, and these edge vectors must cancel out the corresponding subslots
i.e., have the same pattern in the shared subslot as that of the vertex vector. In other words,
for any two vertex vectors corresponding to slots i and j respectively (i < j), the edge vector
corresponding to the pair (i, j) must cancel one subslot from each one of the two vertex
vectors. This is possible only if (i) the k vertex vectors correspond to distinct vertices in G,
and (ii) each pair of these vertices have an edge between them for the corresponding edge
vector to exist. This implies that G has a k-clique which is a contradiction.

7 A simple O(n · 2m) -time algorithm for k-VectorSum

Let (M,b) be an instance of k-VectorSum where M ∈ Fm×n2 and b ∈ Fm2 . Construct a
graph G on vertex set V = Fm2 and edge set given by,

E =
{
{u,v} ∈

(
V

2

)
| u + v is a column of M

}
.

We say that an edge {u,v} ∈ E is labeled by the column u + v of M. Clearly, if there is a
vector x of Hamming weight at most k such that Mx = b then there is a path of length at
most k in G from 0 to b given by choosing the edges labeled by the columns corresponding
to the non-zero entries of x in any sequence. On the other hand, if there is a path in G from
0 to b of length at most k, then there is a sequence of at most k columns (with possible
repetitions) of M which sum up to b. Cancelling out even number of repetitions of any
column yields a subset of at most k distinct columns of M that sum up to b. Thus, deciding
k-VectorSum reduces to determining whether there is a path of length at most k from 0
to b.

The size of V is 2r and of E is at most n · 2m, and the graph can be constructed in time
O(n · 2m). Doing a Breadth First Search yields a running time of O(n · 2m).

Acknowledgements. We thank Subhash Khot for his permission to include (in the full
version of this paper [5]) his proof for the hardness of learning parities using polynomials.
Also, thanks to Ryan Williams for encouraging and stimulating conversations and to Rocco
Servedio for bringing [3] to our attention.

References
1 Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining edges. In Proc.

22nd Annual European Symposium on Algorithms, pages 1–12. Springer, 2014.

ESA 2016

11:16 On the Hardness of Learning Sparse Parities

2 Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M Roth. Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE
Trans. Inform. Theory, 38(2):509–516, 1992.

3 Vikraman Arvind, Johannes Köbler, and Wolfgang Lindner. Parameterized learnability of
juntas. Theor. Comp. Sci., 410(47-49):4928–4936, 2009.

4 Per Austrin and Subhash Khot. A simple deterministic reduction for the gap minimum
distance of code problem. IEEE Trans. Inform. Theory, 60(10):6636–6645, 2014.

5 Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, and Rishi Saket. On the hard-
ness of learning sparse parities. CoRR, abs/1511.08270, 2015. URL: http://arxiv.org/
abs/1511.08270.

6 Arnab Bhattacharyya, Piotr Indyk, David P Woodruff, and Ning Xie. The complexity
of linear dependence problems in vector spaces. In Proc. 2nd Innovations in Computer
Science, pages 496–508, 2011.

7 Avrim Blum. On-line algorithms in machine learning. In Workshop on on-line algorithms,
Dagstuhl, pages 305–325. Springer, 1996.

8 Edouard Bonnet, Bruno Escoffier, Eun Jung Kim, and Vangelis Th. Paschos. On subexpo-
nential and fpt-time inapproximability. Algorithmica, 71(3):541–565, 2015.

9 R. C. Bose and Dwijendra K. Ray-Chaudhuri. On A class of error correcting binary group
codes. Information and Control, 3(1):68–79, 1960.

10 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause
width and clause density for SAT. In 21st Annual IEEE Conference on Computational
Complexity, pages 252–260, 2006.

11 Qi Cheng and Daqing Wan. Complexity of decoding positive-rate reed-solomon codes. In
Proc. 35th Annual International Conference on Automata, Languages, and Programming,
pages 283–293. Springer, 2008.

12 Qi Cheng and Daqing Wan. A deterministic reduction for the gap minimum distance
problem. In Proc. 41st Annual ACM Symposium on the Theory of Computing, pages 33–38.
ACM, 2009.

13 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Mar-
cin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer
International Publishing, 2015.

14 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3), 2007.
15 Rod G Downey, Michael R Fellows, Alexander Vardy, and Geoff Whittle. The paramet-

rized complexity of some fundamental problems in coding theory. SIAM J. on Comput.,
29(2):545–570, 1999.

16 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
I: basic results. SIAM J. on Comput., 24(4):873–921, 1995.

17 Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer Science
& Business Media, 1999.

18 Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating the min-
imum distance of a linear code. IEEE Trans. Inform. Theory, 49(1):22–37, 2003.

19 Michael R Fellows, Jiong Guo, Dániel Marx, and Saket Saurabh. Data reduction and
problem kernels (Dagstuhl Seminar 12241). Dagstuhl Reports, 2(6):26–50, 2012.

20 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer Verlag, 2006.
21 Fedor V Fomin and Dániel Marx. FPT suspects and tough customers: Open problems

of Downey and Fellows. In The Multivariate Algorithmic Revolution and Beyond, pages
457–468. Springer, 2012.

22 Parikshit Gopalan, Subhash Khot, and Rishi Saket. Hardness of reconstructing multivariate
polynomials over finite fields. SIAM J. on Comput., 39(6):2598–2621, 2010.

23 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

http://arxiv.org/abs/1511.08270
http://arxiv.org/abs/1511.08270

A. Bhattacharyya, A. Gadekar, S. Ghoshal, and R. Saket 11:17

24 Russell Impagliazzo and Ramamohan Paturi. Complexity of k-SAT. In Proc. 14th Annual
IEEE Conference on Computational Complexity, pages 237–240. IEEE, 1999.

25 Adam Tauman Kalai, Yishay Mansour, and Elad Verbin. On agnostic boosting and parity
learning. In Proc. 40th Annual ACM Symposium on the Theory of Computing, pages 629–
638. ACM, 2008.

26 Subhash Khot. personal communication, 2009.
27 Subhash Khot and Igor Shinkar. On hardness of approximating the parameterized clique

problem. In Proc. 7th Innovations in Theoretical Computer Science, pages 37–45. ACM,
2016.

28 Adam R Klivans and Rocco A Servedio. Toward attribute efficient learning of decision lists
and parities. J. Mach. Learn. Res., 7:587–602, 2006.

29 Dániel Marx. Parameterized complexity and approximation algorithms. The Computer
Journal, 51(1):60–78, 2008.

30 Daniele Micciancio. Locally dense codes. In Proc. 29th Annual IEEE Conference on Com-
putational Complexity, pages 90–97. IEEE, 2014.

31 Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning functions of k relevant
variables. J. Comp. Sys. Sci., 69(3):421–434, November 2004.

32 Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and juntas. In Proc. 53rd Annual IEEE Symposium on Foundations of Computer
Science, pages 11–20. IEEE, 2012.

33 Alexander Vardy. The intractability of computing the minimum distance of a code. IEEE
Trans. Inform. Theory, 43(6):1757–1766, 1997.

34 Emanuele Viola. The sum of D small-bias generators fools polynomials of degree D. Com-
putational Complexity, 18(2):209–217, 2009.

ESA 2016

	Introduction
	Our Results
	Our Techniques

	Preliminaries
	Parameterized Complexity
	Coding Theoretic Tools
	Viola's Pseudorandom Generator

	Parameterized Reduction for the k-EvenSet problem
	Reduction Overview
	Constraints
	Completeness
	Soundness

	Proof of Theorem 9
	Hardness of Learning k-Parities using k-Juntas
	W[1]-hardness of k-VectorSum on o(k log n) Equations
	YES case
	NO Case

	A simple O(n.2^m) -time algorithm for k-VECTORSUM

