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Abstract
An α-spanner of a graph G is a subgraph H such that H preserves all distances of G within
a factor of α. In this paper, we give fully dynamic algorithms for maintaining a spanner H of
a graph G undergoing edge insertions and deletions with worst-case guarantees on the running
time after each update. In particular, our algorithms maintain:

a 3-spanner with Õ(n1+1/2) edges with worst-case update time Õ(n3/4), or
a 5-spanner with Õ(n1+1/3) edges with worst-case update time Õ(n5/9).

These size/stretch tradeoffs are best possible (up to logarithmic factors). They can be extended
to the weighted setting at very minor cost. Our algorithms are randomized and correct with high
probability against an oblivious adversary. We also further extend our techniques to construct a
5-spanner with suboptimal size/stretch tradeoff, but improved worst-case update time.

To the best of our knowledge, these are the first dynamic spanner algorithms with sublinear
worst-case update time guarantees. Since it is known how to maintain a spanner using small
amortized but large worst-case update time [Baswana et al. SODA’08], obtaining algorithms
with strong worst-case bounds, as presented in this paper, seems to be the next natural step for
this problem.

1998 ACM Subject Classification F.2.2 Computations on discrete structures, G.2.2 Graph al-
gorithms

Keywords and phrases Dynamic graph algorithms, spanners

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.17

1 Introduction

An α-spanner of a graph G is a sparse subgraph that preserves all original distances within
a multiplicative factor of α. Spanners are an extremely important and well-studied primitive
in graph algorithms. They were formally introduced by Peleg and Schäfer [34] in the late
eighties after appearing naturally in several network problems [36]. Today, they have been
successfully applied in diverse fields such as routing schemes [16, 17, 36, 39, 43], approximate
shortest paths algorithms [19, 20, 9], distance oracles [9, 14, 15, 37, 44], broadcasting [25],
etc. A landmark upper bound result due to Awerbuch [6] states that for any integer k,
every graph has a (2k − 1)-spanner on O(n1+1/k) edges. Moreover, the extremely popular
girth conjecture of Erdős [24] implies the existence of graphs for which Ω(n1+1/k) edges are
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17:2 Fully Dynamic Spanners with Worst-Case Update Time

necessary in any (2k − 1)-spanner. Thus, the primary question of the optimal sparsity of a
graph spanner is essentially resolved.

The next natural question in the field of spanners is to obtain efficient algorithms for
computing a sparse spanner of an input graph G. This problem is well understood in the static
setting; notable results include [6, 11, 38, 43]. However, in many of the above applications of
spanners, the underlying graph can experience minor changes and the application requires
the algorithm designer to have a spanner available at all times. Here, it is very wasteful
to recompute a spanner from scratch after every modification. The challenge is instead
to dynamically maintain a spanner under edge insertions and deletions with only a small
amount of time required per update. This is precisely the problem we address in this paper.

The pioneering work on dynamic spanners was by Ausiello et al. [5], who showed how
to maintain a 3- or 5-spanner with amortized update time proportional to the maximum
degree ∆ of the graph, i.e. for any sequence of u updates the algorithm takes time O(u ·∆)
in total. In sufficiently dense graphs, ∆ might be Ω(n). Elkin [22] showed how to maintain a
(2k − 1) spanner of optimal size using Õ(mn−1/k) expected update time; i.e. super-linear
time for dense enough graphs. Finally, Baswana et al. [10] gave fully dynamic algorithms
that maintain (2k−1)-spanners with essentially optimal size/stretch tradeoff using amortized
O(k2 log2 n) or O(1)k time per update. Their worst-case guarantees are much weaker: any
individual update in their algorithm can require Ω(n) time. It is very notable that every
previously known fully dynamic spanner algorithm carries the drawback of Ω(n) worst-case
update time. It is thus an important open question whether this update time is an intrinsic
part of the dynamic spanner problem, or whether this linear time threshold can be broken
with new algorithmic ideas.

There are concrete reasons to prefer worst-case update time bounds to their amortized
counterparts. In real-time systems, hard guarantees on update times are often needed to
serve each request before the next one arrives. Amortized guarantees, meanwhile, can cause
undesirable behavior in which the system periodically stalls on certain inputs. Despite
this motivation, good worst-case update times often pose a veritable challenge to dynamic
algorithm designers, and are thus significantly rarer in the literature. Historically, the
fastest dynamic algorithms usually first come with amortized time bounds, and comparable
worst-case bounds are achieved only after considerable research effort. For example, this was
the case for the dynamic connectivity problem on undirected graphs [31] and the dynamic
transitive closure problem on directed graphs [41]. In other problems, a substantial gap
between amortized and worst-case algorithms remains, despite decades of research. This
holds in the cases of fully dynamically maintaining minimum spanning trees [30, 27, 23],
all-pairs shortest paths [18, 42], and more. Thus, strong amortized update time bounds for a
problem do not at all imply the existence of strong worst-case update time bounds, and once
strong amortized algorithms are found it becomes an important open problem to discover
whether or not there are interesting worst-case bounds to follow.

The main result of this paper is that highly nontrivial worst-case time bounds are indeed
available for fully dynamic spanners. We present the first ever algorithms that maintain
spanners with essentially optimal size/stretch tradeoff and polynomially sublinear (in the
number of nodes in the graph) worst-case update time. Our main technique is a very general
new framework for boosting the performance of an orientation-based algorithm, which we
hope can have applications in related dynamic problems.
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1.1 Our results
We obtain fully dynamic algorithms for maintaining spanners of graphs undergoing edge
insertions and deletions. In particular, in the unweighted setting we can maintain:

a 3-spanner of size O(n1+1/2 log1/2 n log logn) with worst-case update time O(n3/4 log4 n),
or
a 5-spanner of size O(n1+1/3 log2/3 n log logn) with worst-case update time O(n5/9 log4 n),
or
a 5-spanner of size O(n1+1/2 log1/2 n log logn) with worst-case update time O(n1/2 log4 n).

Naturally, these results assume that the initial graph is empty; otherwise, a lengthy initial-
ization step is unavoidable.

Using standard techniques, these results can be extended into the setting of arbitrary
positive edge weights, at the cost of an increase in the stretch by a factor of 1 + ε and an
increase in the size by a factor of log1+εW (for any ε > 0, where W is the ratio between the
largest and smallest edge weights).

Our algorithms are randomized and correct with high probability against an oblivious
adversary [12] who chooses its sequence of updates independently from the random choices
made by the algorithm.1 This adversarial model is the same one used in the previous random-
ized algorithms with amortized update time [10]. Since the girth conjecture has been proven
unconditionally for k = 2 and k = 3 [46], the first two spanners have optimal size/stretch
tradeoff (up to the log factor). The third result sacrifices a non-optimal size/stretch tradeoff
in exchange for improved update time.

1.2 Technical Contributions
Our main new idea is a general technique for boosting the performance of orientation-based
algorithms.

Our algorithm contains three new high-level ideas. First, let ~G be an arbitrary orientation
of the input graph G; i.e. replace every undirected edge {u, v} by a directed edge, either
(u, v) or (v, u). We give an algorithm ALG for maintaining either a 3-spanner or a 5-spanner
of G with update time proportional to the maximum out-degree of the oriented graph ~G.
This algorithm is based on the clustering approach used in [11]. For maintaining 3- and
5-spanners we only need to consider clusters of diameter at most 2 consisting of the set of
neighbors of certain cluster centers.

This alone is of course not enough, as generally the maximum out-degree of ~G can be as
large as n− 1. To solve this problem, we combine ALG with the following simple out-degree
reduction technique. Partition outgoing edges of every node into at most t ≤ dn/se groups of
size at most s each. For any 1 ≤ i ≤ t, we combine the edges of the i-th groups and on the
corresponding subgraph Gi we run an instance of ALG to maintain a 3-spanner with update
time O(s), the maximum out-degree in ~Gi. By the decomposability of spanners, the union of
all these sub-spanners H1∪ . . . Ht is a 3-spanner of G. In this way we can obtain an algorithm
for maintaining a 3-spanner of size |H1|+ . . . |Ht| = O(n5/2/s) with worst-case update time
O(s) for any 1 ≤ s ≤ n. We remark that the general technique of partitioning a graph into
subgraphs of low out-degree has been used before, e.g. [7]; however, our recursive conversion
of these subgraphs into spanners is original and an important technical contribution of this
paper.

1 In particular, this means that the adversary is not allowed to see the current edges of the spanner.
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The partitioning is still not enough, as the optimal size of a 3-spanner is O(n3/2), which
would then require s = Ω(n) worst-case update time. However, we can improve upon this
tradeoff once more with a more fine-grained application of ALG. In particular, on each
subgraph ~Gi, ALG maintains two subgraphs A1

i and ~B1
i , such that:

A1
i is a ‘partial’ 3-spanner of Gi of size Õ(n1+1/2 · s/n), and

The maximum out-degree in ~B1
i is considerably smaller than the maximum out-degree in

~Gi.
We then recursively apply ALG on ~B1

1 ∪ · · · ∪ ~B1
t to some depth ` at which the out-degree

can no longer be reduced by a meaningful amount. Our final spanner is then the union of all
the sets Aji , for 1 ≤ i ≤ t and 1 ≤ j ≤ `, as well as the “remainder” graphs ~B`1 ∪ · · · ∪ ~B`t ,
which have low out-degree and are thus sparse.

In principle, the recursive application of ALG could be problematic, as one update in G
could lead to several changes to the edges in the B1

i subgraphs, which then propagate as an
increasing number of updates in the recursive calls of the algorithm. This places another
constraint on ALG. We carefully design ALG in such a way that it performs only a constant
number of changes to each B1

i with any update in G, and we only recurse to depth ` = o(logn)
so that the total number of changes at each level is subpolynomial.

Overall, we remark that our framework for performing out-degree reduction is fairly
generic, and seems likely applicable to other algorithms that admit the design of an ALG with
suitable properties. The main technical challenges are designing ALG with these properties,
and performing some fairly involved parameter balancing to optimize the running time used
by the recursive calls. However, we do not know how to extend our approach to sparser
spanners with larger stretches since corresponding constructions usually need clusters of
larger diameter and maintaining such clusters with update time proportional to the maximum
(out)-degree of the graph seems challenging.

1.3 Other Related Work
There has been some related work attacking the spanner problem in other models of computa-
tion. Some of the work on streaming spanner algorithms, in particular [8, 26], was converted
into purely incremental dynamic algorithms, which maintain spanners under edge insertions
but cannot handle deletions. This line of research culminated in an incremental algorithm
with worst-case update time O(1) per edge insertion [22]. Elkin [21] also gave a near-optimal
algorithm for maintaining spanners in the distributed setting.

A concept closely related to spanners are emulators [19], in which the graph H for approx-
imately preserving the distances may contain arbitrary weighted edges and is not necessarily
a subgraph of G. Dynamic algorithms for maintaining emulators have been commonly used
as subroutines to obtain faster dynamic algorithms for maintaining (approximate) shortest
paths or distances. Some of the work on this problem includes [40, 13, 28, 29, 2, 1].

As outlined above, one of the main technical contributions of this paper is a framework for
exploiting orientations of undirected graphs. The idea of orienting undirected graphs has been
key to many recent advances in dynamic graph algorithms. Examples include [33, 32, 35, 4, 3].

2 Preliminaries

We consider unweighted, undirected graphs G = (V,E) undergoing edge insertions and edge
deletions. For all pairs of nodes u and v we denote by dG(u, v) the distance between u and
v in G. An α-spanner of a graph G = (V,E) is a subgraph H = (V,E′) ⊆ G such that
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dH(u, v) ≤ α · dG(u, v) for all u, v ∈ V .2 The parameter α is called the stretch of the spanner.
We will use the well-known fact that it suffices to only span distances over the edges of G.

I Lemma 1 (Spanner Adjacency Lemma (Folklore)). If H = (V,E′) is a subgraph of G = (V,E)
that satisfies dH(u, v) ≤ α · dG(u, v) for all (u, v) ∈ E, then H is an α-spanner of G.

We will work with orientations of undirected graphs. We denote an undirected edge
with endpoints u and v by {u, v} and a directed edge from u to v by (u, v). An orientation
~G = (V, ~E) of an undirected graph G = (V,E) is a directed graph on the same set of
nodes such that for every edge {u, v} of G, ~G either contains the edge (u, v) or the edge
(v, u). Conversely, G is the undirected projection of ~G. In an undirected graph G, we
denote by N(v) := {w | {v, w} ∈ G} the set of neighbors of v. In an oriented graph ~G,
we denote by Out(v) := {w | (v, w) ∈ ~G} the set of outgoing neighbors of v. Similarly, by
In(v) := {u | (u, v) ∈ ~G} we denote the set of incoming neighbors of v. We denote by ∆+(~G)
the maximum out-degree of ~G.

Our algorithms can easily be extended to graphs with edge weights, via the standard
technique of weight binning:

I Lemma 2 (Weight Binning, e.g. [10]). Suppose there is an algorithm that dynamically
maintains a spanner of an arbitrary unweighted graph with some particular size, stretch, and
update time. Then for any ε > 0, there is an algorithm that dynamically maintains a spanner
of an arbitrary graph with positive edge weights, at the cost of an increase in the stretch by a
factor of 1 + ε and an increase in the update time by a factor of O(log1+εW ) (and no change
in update time). Here, W is the ratio between the largest and smallest edge weight in the
graph.

Since this extension is already well known, we will not discuss it further. Instead, we will
simplify the rest of the paper by focusing only on the unweighted setting; that is, all further
graphs in this paper are unweighted and undirected.

In our algorithms, we will use the well-known fact that good hitting sets can be obtained
by random sampling. This technique was first used in the context of shortest paths by Ullman
and Yannakakis [45]. A general lemma on the size of the hitting set can be formulated as
follows.

I Lemma 3 (Hitting Sets). Let a ≥ 1, let V be a set of size n and let U1, U2, . . . , Ur, be
subsets of V of size at least q. Let S be a subset of V obtained by choosing each element of V
independently at random with probability p = min(x/q, 1) where x = a ln (rn) + 1. Then, with
high probability (whp), i.e. probability at least 1 − 1/na, both the following two properties
hold:
1. For every 1 ≤ i ≤ r, the set S contains a node in Ui, i.e. Ui ∩ S 6= ∅.
2. |S| ≤ 3xn/q = O(an ln (rn)/q).

A well-known property of spanners is decomposability. We will exploit this property to
run our dynamic algorithm on carefully chosen subgraphs.

I Lemma 4 (Spanner Decomposability, [10]). Let G = (V,E) be an undirected (possibly
weighted) graph, let E1, . . . , Et be a partition of the set of edges E, and let, for every
1 ≤ i ≤ t, Hi be an α-spanner of Gi = (V,Ei) for some α ≥ 1. Then H =

⋃t
i=1 Hi is an

α-spanner of G.

2 If u and v are disconnected in G, then dG(u, v) = ∞ and so they may be disconnected in the spanner
as well.

ESA 2016
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In our algorithms we use a reduction for getting a fully dynamic spanner algorithm for an
arbitrarily long sequence of updates from a fully dynamic spanner algorithm that only works
for a polynomially bounded number of updates. This is particularly useful for randomized
algorithms whose high-probability guarantees are obtained by taking a union bound over a
polynomially bounded number of events.

I Lemma 5 (Update Extension, Implicit in [3]). Assume there is a fully dynamic algorithm
for maintaining an α-spanner (for some α ≥ 1) of size at most S(m,n,W ) with worst-case
update time T (m,n,W ) for up to 4n2 updates in G. Then there also is a fully dynamic
algorithm for maintaining an α-spanner of size at most O(S(m,n,W )) with worst-case update
time O(T (m,n,W )) for an arbitrary number of updates.

For completeness, we give the proof of this lemma in an appendix. We remark that is is
entirely identical to the one given in [3].

3 Algorithms for Partial Spanner Computation

Our goal in this section is to describe fully dynamic algorithm for partial spanner computation.
We prove lemmas that can informally be summarized as follows: given a graph G with an
orientation ~G, one can build a very sparse spanner that only covers the edges leaving nodes
with large out-degree in ~G. There is a smooth tradeoff between the sparsity of the spanner
and the out-degree threshold beyond which edges are spanned.

As a crucial subroutine, our algorithms employ a fully dynamic algorithm for maintaining
certain structural information related to a clustering of G. We will describe this subroutine
first.

3.1 Maintaining a clustering structure
In the spanner literature, a clustering of a graph G = (V,E) is a partition of the nodes V into
clusters C1, . . . , Ck, as well as a “leftover” set of free nodes F , with the following properties:

For each cluster Ci, there exists a “center” node xi ∈ V such that all nodes in Ci are
adjacent to xi.
The free nodes F are precisely the nodes that are not adjacent to any cluster center.

In this paper, we will represent clusterings with a vector c indexed by V , such that for
any clustered v ∈ V we have c[v] equal to its cluster center, and for any free v ∈ V we use
the convention c[v] =∞.

We will use the following subroutine in our main algorithms:

I Lemma 6. Given an oriented graph ~G = (V, ~E) and a set of cluster centers S = {s1, . . . , sk},
there is a fully dynamic algorithm that simultaneously maintains:
1. A clustering c of G = (V,E) with centers S
2. For each node v and each cluster index i ∈ {1, . . . , k}, the set

In(v, i) := {u ∈ In(v) | c[u] = i}

(i.e. the incoming neighbors to v from cluster i)
3. For every pair of cluster indices i, j ∈ {1, . . . , k}, the set

In(i, j) := {(u, v) ∈ ~E | c[u] = j, c[v] = i}

(i.e. the incoming neighbors to cluster i from cluster j).
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This algorithm has worst-case update time O(∆+(~G) logn), where ∆+(~G) is the maximum
out-degree of ~G.

The second In(v, i) sets will be useful for the 3-spanner, while the third In(i, j) sets will
be useful for the 5-spanner.

The implementation of this lemma is extremely straightforward; it is not hard to show
that the necessary data structures can be maintained in the naive way by simply passing
a message along the outgoing edges from u and v whenever an edge (u, v) is inserted or
deleted. Due to space constraints, we defer full implementation details and pseudocode to
Appendix A.

3.2 Maintaining a partial 3-spanner
We next show how to convert Lemma 6 into a fully dynamic algorithm for maintaining a
partial 3-spanner of a graph, as described in the introduction. Specifically:

I Lemma 7. For every integer 1 ≤ d ≤ n, there is a fully dynamic algorithm that takes an
oriented graph ~G = (V, ~E) on input and maintains subgraphs A = (V,EA), ~B = (V, ~EB) (i.e.
~B is oriented but A is not) over a sequence of 4n2 updates with the following properties:

dA(u, v) ≤ 3 for every edge {u, v} in E \ EB
A has size |A| = O(n2(logn)/d+ n)
The maximum out-degree of ~B is ∆+( ~B) ≤ d.
With every update in G, at most 4 edges are changed in ~B.

Further, this algorithm has worst-case update time O(∆+(~G) logn). The algorithm is ran-
domized, and all of the above properties hold with high probability against an oblivious
adversary.

Informally, this lemma states the following. Edges leaving nodes with high out-degree are
easy for us to span; we maintain A as a sparse spanner of these edges. Edges leaving nodes
with low out-degree are harder for us to span, and we maintain ~B as a collection of these
edges.

Note that this lemma is considerably stronger than the existence of a 3-spanner. In
particular, by setting d =

√
n logn and then using A∪ ~B as a spanner of G, we obtain a fully

dynamic algorithm for maintaining a 3-spanner:

I Corollary 8. There is a fully dynamic algorithm for maintaining a 3-spanner of size
O(n1+1/2√logn) for an oriented graph ~G with worst-case update time O(∆+(~G) logn). The
stretch and the size guarantee both hold with high probability against an oblivious adversary.

The proof is essentially immediate from Lemma 7; we omit it because it is non-essential. The
detail of handling only 4n2 updates is not necessary in this corollary, due to Lemma 5.

Looking forward, we will wait until Lemma 4 to show precisely how the extra generality
in Lemma 7 is useful towards strong worst-case update time. The rest of this subsection is
devoted to the proof of Lemma 7.

3.2.1 Algorithm
It will be useful in this algorithm to fix an arbitrary ordering of the nodes in the graph. This
allows us to discuss the “smallest” or “largest” node in a list, etc.

We initialize the algorithm by determining a set of cluster centers S via random sampling.
Specifically, every node of G is added to S independently with probability p = min(x/d, 1)

ESA 2016
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where x = a ln (4n5) + 1 for some error parameter a ≥ 1. We then use the algorithm of
Lemma 6 above to maintain a clustering with S = {s1, . . . , sk} as the set of cluster centers.
The subgraphs A and ~B are defined according to the following three rules:
1. For every clustered node v (i.e. c[v] 6= ∞), A contains the edge {v, c[v]} from v to its

cluster center in S.
2. For every clustered node v (i.e. c[v] 6=∞) and every cluster index 1 ≤ i ≤ k, A contains

the edge {u, v} to the first node u ∈ In(v, i) (unless In(v, i) = ∅).
3. For every node u and every node v among the first d neighbors of u in N(u) (with respect

to an arbitrary fixed ordering of the nodes), ~B contains the edge (u, v). Alternately, if
|N(u)| ≤ d, then ~B contains all such edges (u, v).

We maintain the subgraph ~B in the following straightforward way. For every node u we
store N(u), the set of neighbors of u, in two self-balancing binary search trees: N≤d(u) for
the first d neighbors and N>d(u) for the remaining neighbors. Every time an edge (u, v) or
an edge (v, u) is inserted into ~G, we add v to N≤d(u) and we add (u, v) to ~B. If N≤d(u)
now contains more than d nodes, we remove the largest element v′, add it to N>d(u), and
remove (u, v′) from ~B.3 Similarly, every time an edge (u, v) or an edge (v, u) is deleted from
~G, we first check if v is contained in N>d(u) and if so remove it from N>d(u). Otherwise, we
first remove v from N≤d(u) and (u, v) from ~B. Then we find the smallest node v′ in N>d(u),
remove v′ from N>d(u), add v′ to N≤d(u), and add (u, v) to ~B.

We now explain how to maintain the subgraph A. As an underlying subroutine, we
use the algorithm of Lemma 6 to maintain a clustering w.r.t. centers S. On each edge
insertion/deletion, we first update the clustering, and then perform the following steps:
1. For every node v for which c[v] has just changed from some center si to some other

center sj , we remove the edge {v, si} from A (if i 6=∞) and add the edge {v, sj} to A (if
j 6=∞).

2. For every node u that has been added to In(v, i) for some node v and some 1 ≤ i ≤ k,
we check if u is now the first node in In(v, i). If so, we add the edge {u, v} to A and
remove the edge {u′, v} for the previous first node u′ of In(v, i) (if In(v, i) was previously
non-empty).

3. For every node u that is removed from In(v, i) for some node v and some 1 ≤ i ≤ k, we
check if u was the first node in In(v, i) and if so remove the edge {u, v} from A and add
the edge {u′, v} for the new first node u′ of In(v, i) (if In(v, i) is still non-empty).

3.2.2 Analysis
To bound the update time required by this algorithm, we will argue that we spend
O(∆+(~G) logn) time per update maintaining A, and O(logn) time per update maintaining
~B (which, in our applications, is always dominated by O(∆+(~G) logn)). By Lemma 6, the
clustering structure can be updated in time O(∆+(~G) logn). Each operation in steps 1, 2,
and 3 above can be charged to the corresponding changes in si and In(v, i) and thus can
also be carried out within the same O(∆+(~G) logn) time bound. Updating the subgraph ~B

takes time O(logn), since we must perform a constant number of queries and updates in the
corresponding self-balancing binary search trees.

We now show that the subgraphs A and ~B have all of the properties claimed in Lemma 7.
First, we will discuss the sparsity bounds on A and ~B. Observe that rule 1 contributes at

3 Note that the node v′ that is removed from N≤d(u) might be the node v we have added in the first
place.
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most n edges to A, since every node is contained in at most one cluster. Next, recall that the
number of cluster centers S is |S| = k = O(n(logn)/d) (by Lemma 3, with high probability).
Thus, A contains only O(nk) = O(n2(logn)/d) edges due to rule 2. As the only edges of ~B
come from rule 3, the maximum out-degree in ~B is d. The claimed sparsity bounds therefore
hold. Furthermore, with every insertion or deletion of an edge {u, v} in G, at most one edge
is added to or removed from the first d neighbors of u and v, respectively. This implies that
there are at most 4 changes to ~B with every update in G. It now only remains to show that
A is a 3-spanner of G \B.

I Lemma 9. For up to 4n3 updates, dA(u, v) ≤ 3 for every edge {u, v} in E \ EB with high
probability.

Proof. Let {u, v} be an edge of E \ EB. Assume without loss of generality that the edge
is oriented from u to v in ~G. As {u, v} is not contained in B, by rule 3 above we have
|N(u)| > d. Thus, by Lemma 3, since the cluster centers S were chosen by random sampling,
with high probability there exists a cluster center in the first d outgoing neighbors of each
node in all of up to 4n3 different versions of G (i.e. one version for each of the 4n3 updates
considered). Therefore c[u] = i for some 1 ≤ i ≤ k and, by rule 1, A contains the edge
{u, si}. Since c[u] = i, and u is an incoming neighbor of v in ~G, we have In(v, i) 6= ∅, and
thus, for the first element u′ of In(v, i), A contains the edge {u′, v} (by rule 2). As c[u′] = i,
A contains the edge {si, u′} by rule 1. This means that A contains the edges {u, si}, {si, u′},
and {u′, v}, and thus there is a path from u to v of length 3 in A as desired. J

This now also completes the proof of Lemma 7.

3.3 5-spanner
The 5-spanner algorithm is very similar to the 3-spanner algorithm above, but we define the
edges of the spanner in a slightly different way. Instead of including an edge from each node
to each cluster, we have an edge between each pair of clusters. Thus, the subgraphs A and
~B are defined according to the following three rules:
1. For every clustered node v (i.e. c[v] 6= ∞), A contains the edge {v, c[v]} from v to its

cluster center in S.
2. For every pair of distinct cluster indices 1 ≤ i, j ≤ k, A contains the edge {u, v}, where
{u, v} is the first element in In(i, j) (unless In(i, j) = ∅).

3. For every node u and every node v among the first d neighbors of u in N(u) (with respect
to an arbitrary fixed ordering of the nodes), ~B contains the edge (u, v). Alternately, if
|N(u)| ≤ d, then ~B contains all such edges (u, v)..

Beyond this slightly altered definition, we use the same approach for maintaining A and
~B as in the 3-spanner. The guarantee on the stretch can be proved as follows.

I Lemma 10. For up to 4n3 updates, dA(u, v) ≤ 5 for every edge {u, v} in E \EB with high
probability.

Proof. Let {u, v} be an edge of E \ EB. Assume without loss of generality that the edge
is oriented from u to v in ~G. As {u, v} is not contained in B, by rule 3 above we have
|N(v)| > d. We now apply Lemma 3 to argue that there is a cluster center in the first d
outgoing neighbors of each node in up to 4n3 versions of the graph (one version for each
update to be considered). Thus, N(v) contains a cluster center from S with high probability.
Therefore c[v] = i for some 1 ≤ i ≤ k and, by rule 1, A contains the edge {v, si}. By the
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same argument, N(u) contains a cluster center from S with high probability and thus A
contains an edge {u, sj} where c[u] = j for some 1 ≤ j ≤ k. Since c[v] = i, c[u] = j, and u is
an incoming neighbor of v in ~G, we have In(i, j) 6= ∅, and thus, for the first element (u′, v′) of
In(i, j), A contains the edge {u′, v′} (by rule 2). As c[v′] = i, c[u′] = j, A contains the edges
{v′, si} and {u′, sj} by rule 1. This means that A contains the edges {u, si}, {si, u′}, {u′, v′},
{v′, si} and {si, v}, and thus there is a path from u to v of length 5 in A as desired. J

Note that in this proof we exploit the fact that we have cluster centers for both u and v
whenever the edge {u, v} is missing. This motivates our design choice for considering the
whole neighborhood of a node to determine its cluster. If we only considered cluster centers
in the outgoing neighbors of a node, the resulting clustering would still be good enough for
the 3-spanner, but the argument above for the 5-spanner would break down.

All other properties of the 5-spanner can be proved in an essentially identical manner to
the 3-spanner. We can summarize the obtained guarantees as follows.

I Lemma 11. For every integer 1 ≤ d ≤ n, there is a fully dynamic algorithm that takes an
oriented graph ~G = (V, ~E) on input and maintains subgraphs A = (V,EA), ~B = (V, ~EB) (i.e.
~B is oriented but A is not) over a sequence of 4n2 updates with the following properties:

dA(u, v) ≤ 5 for every edge {u, v} in E \ EB
A has size |A| = O((n2 log2 n)/d2 + n)
The maximum out-degree of ~B is ∆+( ~B) ≤ d.
With every update in G, at most 4 edges are changed in ~B.

Further, this algorithm has worst-case update time O(∆+(~G) logn). The algorithm is ran-
domized, and all of the above properties hold with high probability against an oblivious
adversary.

Once again, this lemma generalizes the construction of a sparse 5-spanner. By setting
d = (n logn)2/3 we can obtain:

I Corollary 12. There is a fully dynamic algorithm for maintaining a 5-spanner of size
O(n1+1/3 log2/3 n) for an oriented graph ~G with worst-case update time O(∆+(~G) logn). The
stretch and the size guarantee both hold with high probability against an oblivious adversary.

4 Out-degree Reduction for Improved Update Time

Our goal is now to use Lemmas 7 and 11 to obtain spanner algorithms with sublinear update
time. Since we obtain our 3-spanner and 5-spanner in an essentially identical manner, we
will explain only the 3-spanner in full detail, and then sketch the 5-spanner construction.

We next establish the following simple generalization of Lemma 7:

I Lemma 13. For every integer 1 ≤ s ≤ n and 1 ≤ d ≤ n, there is a fully dynamic algorithm
that takes an oriented graph ~G = (V, ~E) on input and maintains subgraphs A = (V,EA), ~B =
(V, ~EB) (i.e. ~B is oriented but A is not) over a sequence of 4n2 updates with the following
properties:

dA(u, v) ≤ 3 for every edge {u, v} in E \ EB
A has size |A| = O(∆+(~G)n2(logn)/(sd))
The maximum out-degree of ~B is ∆+( ~B) ≤ ∆+(~G) · d/s.
With every update in G, at most 4 edges are changed in ~B.

Further, this algorithm has worst-case update time O(s logn). The algorithm is randomized,
and all of the above properties hold with high probability against an oblivious adversary.

In particular, Lemma 7 is the special case of this lemma in which s = ∆+(~G).
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Proof. We orient each incoming edge of G in an arbitrary way. We then maintain a
partitioning of the (oriented) edges of G into t := d∆+(~G)/se groups, such that in each
group each node has at most s outgoing edges. Specifically, we perform this partitioning
by maintaining the current out-degree of each node u in ~G, and we assign a new edge (u, v)
which is the xth edge leaving u in ~G to the subgraph ~Gdx/se. In this way, we form t subgraphs
~G1, . . . ~Gt of ~G, each of which has ∆+(~Gi) ≤ s.

We now run the algorithm of Lemma 7 on each ~Gi to maintain, for each 1 ≤ i ≤ t, two
subgraphs Ai and ~Bi as specified in the lemma. Let A =

⋃
Ai and ~B =

⋃ ~Bi denote the
unions of these subgraphs.

Observe that every update in G only changes exactly one of the subgraphs ~Gi and thus
only must be executed in one corresponding instance of the algorithm of Lemma 7. As
we have “artificially” bounded the maximum out-degree of every subgraph ~Gi by s, the
claimed bounds on the update time and the properties of A and ~B now follow simply from
Lemma 7. J

We now recursively apply the “out-degree reduction” of the previous lemma to obtain
subgraphs ~B of smaller and smaller out-degree. Finally, at bottom level, the maximum
out-degree is small enough that we can apply a “regular” spanner algorithm to it.

I Theorem 14. There is a fully dynamic algorithm for maintaining a 3-spanner of size
O(n1+1/2 log1/2 n log logn) with worst-case update time O(n3/4 log4 n).

Proof. Our spanner construction is as follows (we temporarily omit details related to
parameter choices, which influence the resulting update time). Apply Lemma 13 to obtain
subgraphs A1, ~B1. Include all edges in A in the spanner, and then recursively apply Lemma 13
to ~B to obtain A2, ~B2. Repeat to depth ` (for some parameter ` that will be chosen later).
At bottom level, instead of recursing, we apply the algorithm from Corollary 8 to obtain a
3-spanner of ~B.

More formally, we set ~B0 = ~G0, and for every 1 ≤ j ≤ ` we let Aj and ~Bj be the graphs
maintained by the algorithm of Lemma 13 on input ~Bj−1 using parameters s and dj to be
chosen later.4 Further, we let H ′ be the spanner maintained by the algorithm of Corollary 8
on input ~B`. The resulting graph maintained by our algorithm is H =

⋃
1≤j≤`Aj ∪ H ′.

Then, by Lemma 13, we have the following properties for every 1 ≤ j ≤ `:
dAj

(u, v) ≤ 3 for every edge {u, v} in Bj−1 \Bj
Aj has size |Aj | = O(∆+( ~Bj−1)n2(logn)/(sdj))
The maximum out-degree of ~Bj is ∆+( ~Bj) ≤ ∆+( ~Bj−1) · dj/s.
With every update in ~Bj−1, at most 4 edges are changed in ~Bj .

It is straightforward to see that the resulting graph H is a 3-spanner of G: At each level j
of the recursion, Aj spans all edges of Bj−1 except those that appear in the current subgraph
~Bj . Thus, at bottom level, the only non-spanned edges of G are those in the final subgraph
~B`. For these edges we explicitly add a 3-spanner H ′ of ~B` to H. By Lemma 1, this suffices
to produce a 3-spanner of all of G.

Now that we have correctness of the construction, it remains to bound the number of
edges in the output spanner. First, observe that, by induction,

∆+( ~Bj) ≤ n ·
∏

1≤j′≤j
dj′/s

j

4 Note that the parameter s is the same for all levels of the recursion, whereas the parameter dj is not.
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for all 1 ≤ j ≤ `. Since additionally H ′ has size O(n1+1/2 log1/2 n) by Corollary 8, the total
number of edges in H is

|H| =
∑

1≤j≤`
|Aj |+ |H ′| ≤

∑
1≤j≤`

O

(
∆+(Bj−1)n2 logn

sdj

)
+O(n1+1/2 log1/2 n)

≤
∑

1≤j≤`
O


( ∏

1≤j′≤j−1
dj′

)
n3 logn

sjdj

+O(n1+1/2 log1/2 n) .

Thus, our spanner satisfies the claimed sparsity bound so long as the union of all ` of the
Aj subgraphs fit within the claimed sparsity bound; this will be the case if we balance all
summands.

We next bound the update time of our algorithm. Each change to some ~Bj causes at
most 4 changes in the next level ~Bj+1, and thus the number of changes to ~Bj can propagate
exponentially. Thus, for every 0 ≤ j ≤ ` − 1, a single update in ~G could cause at most
4j changes to ~Bj . Each of the ` instances of the algorithm of Lemma 13 has a worst-case
update time of O(s logn) and the algorithm of Corollary 8 has a worst-case update time of
∆+( ~B` logn). Since

∆+( ~B`) ≤ n ·
∏

1≤j≤`
dj/s

`

the worst-case update time of our overall algorithm is

O

`−1∑
j=0

4js+ 4`∆+( ~B`)

 · logn

 ≤ O

s+

n ·
∏

1≤j≤`
dj

s`

 · 4` logn

 .

Our goal is now to choose parameters sj , d, ` to minimize this expression subject to the
constraint on spanner size given above. To achieve this, we set parameters as follows:

` = log logn ,

s = n(3·2`−1)/(2`+2−2) logn , and

dj = n(3·2`−2j−1−1)/(2`+2−2) logn .

These values were obtained with the help of a computer algebra solver, so we do not have
explicit computations to show for them. J

We now turn our attention to the 5-spanner. Similar to Lemma 13 above, we can
use Lemma 11 to perform a similar out-degree reduction step for our dynamic 5-spanner
algorithm.

I Lemma 15. For every integer 1 ≤ s ≤ n and 1 ≤ d ≤ n, there is a fully dynamic algorithm
that takes an oriented graph ~G = (V, ~E) on input and maintains subgraphs A = (V,EA), ~B =
(V, ~EB) (i.e. ~B is oriented but A is not) over a sequence of 4n2 updates with the following
properties:

dA(u, v) ≤ 5 for every edge {u, v} in E \ EB
A has size |A| = O(∆+(~G)n2(log2 n)/(sd2))
The maximum out-degree of ~B is ∆+( ~B) ≤ ∆+(~G) · d/s.
With every update in G, at most 4 edges are changed in ~B.
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Further, this algorithm has worst-case update time O(s logn). The algorithm is randomized,
and all of the above properties hold with high probability against an oblivious adversary.

The proof of this lemma is essentially identical to the proof of Lemma 13 and has thus been
omitted.

Just as in the case of the 3-spanner, we use this lemma to show:

I Theorem 16. There is a fully dynamic algorithm for maintaining a 5-spanner of size
O(n1+1/3 log2/3 n log logn) with worst-case update time O(n5/9 log4 n).

Proof. The proof is identical to the proof of Theorem 14, except that the proper parameter
balance is now:

` = log logn ,

s = n(5·3`−2`+1)/(3`+2−3·2`+1) logn , and

dj = n(5·3`−3j−12`−j+2−2`+1)/(3`+2−3·2`+1) logn . J

Finally, we can also show:

I Theorem 17. There is a fully dynamic algorithm for maintaining a 5-spanner of size
O(n1+1/2 log1/2 n log logn) with worst-case update time O(n1/2 log4 n).

Proof. The proof is identical to the proof of Theorems 14 and 16, except that we now use
the parameter balance

` = log logn ,

s = n(3`+1−2`)/(2·3`+1−2`+2) logn , and

dj = n(3`+1−3j ·2`−j−2`)/(2·3`+1−2`+2) logn .

and we maintain the dynamic 3-spanner H ′ of size O(n1+1/2 log1/2 n) from Corollary 12 at
bottom level. J

This spanner has non-optimal size/stretch tradeoff, but enjoys the best worst-case update
time that we are currently able to construct.

Acknowledgements. We want to thank Seeun William Umboh for many fruitful discussions
at Simons.
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A Updating the Clustering

In the following we give the straightforward algorithm for maintaining the clustering with
worst-case update time proportional to the maximum out-degree of the original graph
mentioned in Section 3.1. To make the presentation of this algorithm more succinct we
assume that there is some (arbitrary, but fixed) ordering on the nodes. Furthermore, we
assume that the nodes of S are given according to this order, i.e. s1 ≤ s2 ≤ · · · ≤ sk. For
every node v, we maintain c[v] as the smallest i such that si is a neighbor of v (or ∞ if no
such neighbor exists). Additionally, we naturally extend the sets In(v, i) and In(i, j) to the
case i, j ∈ {1, . . . , k,∞}.

We begin with an empty graph G = (V, ∅), a cluster vector c with c[v] =∞ for all v ∈ V ,
and empty sets In(i, j) and In(i, v) for all cluster indices 1 ≤ i, j ≤ k and v ∈ V . We then
modify these data structures under edge insertions and deletions as follows.

Correctness of the algorithms that follow is immediate, and is not shown formally.

A.1 Insertion of an edge (u, v)
Add u to In(v, i) for i = c[u].
Add (u, v) to In(j, i) for i = c[u] and j = c[v]
If u = si for some 1 ≤ i ≤ k:

Set j = c[v] (might be ∞)
Add u to C[v].
If i < j:
∗ Set c[v] = i

∗ For every outgoing neighbor v′ of v:
Remove v from In(v′, j) and add v to In(v′, i).
Remove (v, v′) from In(i′, j) and add (v, v′) to In(i′, i) where i′ = c[v′].

If v = si for some 1 ≤ i ≤ k:
Set j = c[u] (might be ∞)
Add v to C[u].
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If i < j:
∗ Set c[u] = i

∗ For every outgoing neighbor v′ of u:
Remove u from In(v′, j) and add u to In(v′, i).
Remove (u, v′) from In(i′, j) and add (u, v′) to In(i′, i) where i′ = c[v′].

A.2 Deletion of an edge (u, v):
Remove u from In(v, i) for i = c[u].
Remove (u, v) from In(j, i) for i = c[u] and j = c[v]
If u = si for some 1 ≤ i ≤ k:

Remove u from C[v].
If c[v] = si:
∗ Let j be minimal such that sj is in C[v] (might be ∞)
∗ Set c[v] = j

∗ For every outgoing neighbor v′ of v:
Remove v from In(v′, i) and add v to In(v′, j).
Remove (v, v′) from In(i′, j) and add (v, v′) to In(i′, i) where i′ = c[v′]

If v = si for some 1 ≤ i ≤ k:
Remove v from C[u].
If c[u] = si:
∗ Let j be minimal such that sj is in C[u] (might be ∞)
∗ Set c[u] = j

∗ For every outgoing neighbor v′ of u:
Remove u from In(v′, i) and add u to In(v′, j).
Remove (u, v′) from In(i′, j) and add (u, v′) to In(i′, i) where i′ = c[v′]

B Proof of Lemma 5

We exploit the decomposability of spanners. We maintain a partition of G into two disjoint
subgraphs G1 and G2 and run two instances A1 and A2 of the dynamic algorithm on G1 and
G2, respectively. These two algorithms maintain a t-spanner of H1 of G1 and a t-spanner
H2 of G2. By Lemma 4, the union H = H1 ∪H2 is a t-spanner of G = G1 ∪G2.

We divide the sequence of updates into phases of length n2 each. In each phase of updates
one of the two instances A1, A2 is in the state growing and the other one is in the state
shrinking. A1 and A2 switch their states at the end of each phase. In the following we
describe the algorithm’s actions during one phase. Assume without loss of generality that, in
the phase we are fixing, A1 is growing and A2 is shrinking.

At the beginning of the phase we restart the growing instance A1. We will orchestrate
the algorithm in such a way that at the beginning of the phase G1 is the empty graph and
G2 = G. After every update in G we execute the following steps:
1. If the update was the insertion of some edge e, then e is added to the graph G1 and this

insertion is propagated to the growing instance A1.
2. If the update was the deletion of some edge e, then e is removed from the graph Gi it is

contained in and this deletion is propagated to the corresponding instance Ai.
3. In addition to processing the update in G, if G2 is non-empty, then one arbitrary edge e

is first removed from G2 and deleted from instance A2 and then added to G1 and inserted
into instance A1.
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Observe that these rules indeed guarantee that G1 and G2 are disjoint and together contain
all edges of G. Furthermore, since the graph G2 of the shrinking instance has at most n2

edges at the beginning of the phase, the length of n2 updates per phase guarantees that G2
is empty at the end of the phase. Thus, the growing instance always starts with an empty
graph G1.

As both H1 and H2 have size at most S(n,m,W ), the size of H = H1 ∪ H2 is
O(S(n,m,W )). With every update in G we perform at most 2 updates in each of A1
and A2. It follows that the worst-case update time of our overall algorithm is O(T (m,n,W )).
Furthermore since each of the instances A1 and A2 is restarted every other phase, each
instance of the dynamic algorithm sees at most 4n2 updates before it is restarted.
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