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Abstract
Given a simple polygon P on n vertices, two points x, y in P are said to be visible to each other if
the line segment between x and y is contained in P. The Point Guard Art Gallery problem
asks for a minimum set S such that every point in P is visible from a point in S. The Vertex
Guard Art Gallery problem asks for such a set S subset of the vertices of P. A point in
the set S is referred to as a guard. For both variants, we rule out a f(k)no(k/ log k) algorithm,
for any computable function f , where k := |S| is the number of guards, unless the Exponential
Time Hypothesis fails. These lower bounds almost match the nO(k) algorithms that exist for
both problems.
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1 Introduction

Given a simple polygon P on n vertices, two points x, y in P are said to be visible to each
other if the line segment between x and y is contained in P. The Point Guard Art
Gallery problem asks for a minimum set S such that every point in P is visible from a
point in S. The Vertex Guard Art Gallery problem asks for such a set S subset of the
vertices of P. The set S is referred to as guards. In what follows, n refers to the number of
vertices of P and k to the size of an optimal set of guards.

The art gallery problem is arguably one of the most well-known problems in discrete and
computational geometry. Since its introduction by Viktor Klee in 1976, three books [32, 34, 14]
and two extensive surveys appeared [33, 8]. O’Rourke’s book from 1987 has over a thousand
citations, and each year, top conferences publish new results on the topic. Many variants
of the art gallery problem, based on different definitions of visibility, restricted classes of
polygons, different shapes of guards, have been defined and analyzed. One of the first results
is the elegant proof of Fisk that bn/3c guards are always sufficient and sometimes necessary
for a polygon with n vertices [12].

NP-hardness and APX-hardness have been shown for many variants of the art gallery
problem and other related problems [11, 23, 4, 26]. Due to those negative results, most
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19:2 Parameterized Hardness of Art Gallery Problems

papers concentrate on finding approximation algorithms and restrictions that are polynomially
tractable [15, 25, 24, 30, 26]. However, considering the recent lack of progress in this direction,
the study of other approaches becomes interesting. One such approach is finding heuristics
to solve large instances of the art gallery problem [8]. The fundamental drawback of this
approach is the lack of performance guarantee.

In the last twenty-five years, a fruitful paradigm, parameterized complexity, has been
gaining some popularity. The underlying idea is to study algorithmic problems with de-
pendence on a natural parameter. If the dependence on the parameter is practical and the
parameter is small for real-life instances, one gets algorithms that give optimal solutions
with reasonable running times. For a gentle introduction to parameterized complexity, we
recommend Niedermeier’s book [31]. For a thorough reading highlighting complexity classes,
we suggest the book by Downey and Fellows [9]. For a recent book on the topic with an
emphasize on algorithms, we advise to read the book by Cygan et al. [6]. An approach based
on logic is given by Flum and Grohe [13]. Despite the recent successes of parameterized
complexity, only very few results on the art gallery problem are known.

The first such result is the trivial algorithm for the vertex guard variant to check if a
solution of size k exists in a polygon with n vertices. The algorithm runs in O(nk+2) time,
by checking all possible subsets of size k of the vertices. The second not so well-known result
is the fact that one can find in time nO(k) a set of k guards for the point guard variant, if it
exists [10], using tools from real algebraic geometry [2]. This was first observed by Sharir [10,
Acknowledgment]. Despite the fact that the first algorithm is extremely basic and the second
algorithm, even with remarkably sophisticated tools, uses almost no problem-specific insights,
no better exact parameterized algorithms are known.

The Exponential Time Hypothesis (ETH) asserts that there is no 2o(N) time algorithm
for Sat on N variables. The ETH is used to attain more precise conditional lower bounds
than the mere NP-hardness. A simple reduction from Set Cover by Eidenbenz et al. shows
that there is no no(k) algorithm for these problems, when we consider polygons with holes [11,
Sec.4], unless the ETH fails. However, polygons with holes are very different from simple
polygons. For instance, they have unbounded VC-dimension while simple polygons have
bounded VC-dimension [35, 20, 22, 19]. Our contribution is to show that, even on simple
polygons, one cannot expect a large improvement over the nO(k) algorithms. More precisely,
we prove:

I Theorem 1 (Parameterized hardness point guard). Assuming the ETH, Point Guard Art
Gallery is not solvable in time f(k)no(k/ log k), for any computable function f , even on
simple polygons, where n is the number of vertices of the polygon and k is the number of
guards allowed.

I Theorem 2 (Parameterized hardness vertex guard). Assuming the ETH, Vertex Guard
Art Gallery is not solvable in time f(k)no(k/ log k), for any computable function f , even
on simple polygons, where n is the number of vertices of the polygon and k is the number of
guards allowed.

Our reductions are from Subgraph Isomorphism. Therefore an algorithm solving the
art gallery problem in time f(k)no(k/ log k) would also improve current running times for
Subgraph Isomorphism and for solving CSPs parameterized by treewidth, which are major
open questions [28]. Our results imply, in particular, that both variants are W [1]-hard
parameterized by the number of guards.

Finally, let us mention a sample of works on the parameterized complexity (with an
emphasis on hardness) of other geometric problems. The complexity of some fundamental
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Figure 1 Reduction from Hitting Set on interval graphs to a restricted version of the art gallery
problem.

Figure 2 Two instances of Hitting Set “magically” linked.

problems parameterized by the dimension d has been addressed [17]; it was shown that,
assuming the ETH, algorithms running in time nO(d) are essentially optimal (with n being
the size of the instance). Extracting from a finite set of points of R3 the largest subset in
convex position and whose convex-hull interior is empty is W[1]-hard [16]. More results on
geometric covering or packing problems include the following papers [5, 27, 1, 29, 7]. We
refer the interested reader to the extensive survey of Giannopoulos et al. [18].

Proof ideas. In order to achieve these results, we slightly extend some known hardness
results of geometric set cover/hitting set problems and combine them with problem-specific
insights of the art gallery problem. One of the first problem-specific insights is the ability to
encode Hitting Set on interval graphs. The reader can refer to Figure 1 for the following
description. Assume that we have some fixed points p1, . . . , pn with increasing y-coordinates
in the plane. We can build a pocket “far enough to the right” that can be seen only from
{pi, . . . , pj} for any 1 ≤ i < j ≤ n.

Let I1, . . . , In be n intervals with endpoints a1, . . . , a2n. Then, we construct 2n points
p1, . . . , p2n representing a1, . . . , a2n. Further, we construct one pocket “far enough to the
right” for each interval as described above. This way, we reduce Hitting Set on interval
graphs to a restricted version of the art gallery problem. This observation is not so useful in
itself since hitting set on interval graphs can be solved in polynomial time.

The situation changes rapidly if we consider Hitting Set on 2-track interval graphs, as
described in Section 2. Unfortunately, we are not able to just “magically” link some specific
pairs of points in the polygon of the art gallery instance. Therefore, we construct linker
gadgets, which basically work as follows. We are given two set of points P and Q and a
bijection σ between P and Q. The linker gadget is built in a way that it can be covered by
two points (p, q) of P ×Q, if and only if q = σ(p). The Structured 2-Track Hitting
Set problem will be specifically designed so that the linker gadget is the main remaining
ingredient to show hardness.

ESA 2016



19:4 Parameterized Hardness of Art Gallery Problems

Organization of the paper. In Section 2, we introduce some notations, discuss the encoding
of the polygon, and give some useful ETH-based lower bounds. We show a lower bound for
Structured 2-Track Hitting Set based on the lower bound known for Multicolored
Subgraph Isomorphism. Due to space limitation, this proof is only included in the arxiv
version of the paper [3]. Then, we reduce from the particularly convenient Structured
2-Track Hitting Set. In Section 3, we show the lower bound for the Point Guard Art
Gallery problem (Theorem 1). We design a linker gadget, show its correctness, and show
how several linker gadgets can be combined consistently. In Section 4, we tackle the Vertex
Guard Art Gallery problem (Theorem 2). We have to design a very different linker
gadget, that has to be combined with other gadgets and ideas.

2 Preliminaries

For any two integers x 6 y, we set [x, y] := {x, x + 1, . . . , y − 1, y}, and for any positive
integer x, [x] := [1, x]. Given two points a, b in the plane, we define seg(a, b) as the line
segment with endpoints a, b. Given n points v1, . . . , vn ∈ R2, we define a polygonal closed
curve c by seg(v1, v2), . . . , seg(vn−1, vn), seg(vn, v1). If c is not self intersecting, it partitions
the plane into a closed bounded area and an unbounded area. The closed bounded area is a
simple polygon on the vertices v1, . . . , vn. Note that we do not consider the boundary as the
polygon but rather all the points bounded by the curve c as described above. Given two
points a, b in a simple polygon P, we say that a sees b or a is visible from b if seg(a, b) is
contained in P. By this definition, it is possible to “see through” vertices of the polygon.
We say that S is a set of point guards of P, if every point p ∈ P is visible from a point of S.
We say that S is a set of vertex guards of P, if additionally S is a subset of the vertices of
P. The Point Guard Art Gallery problem and the Vertex Guard Art Gallery
problem are formally defined as follows.

Point Guard Art Gallery
Input: The vertices of a simple polygon P in the plane and a natural number k.
Question: Does there exist a set of k point guards for P?

Vertex Guard Art Gallery
Input: A simple polygon P on n vertices in the plane and a natural number k.
Question: Does there exist a set of k vertex guards for P?

For any two distinct points v and w in the plane we denote by ray(v, w) the ray starting
at v and passing through w, and by `(v, w) the supporting line passing through v and w.
For any point x in a polygon P, VP(x), or simply V (x), denotes the visibility region of x
within P , that is the set of all the points y ∈ P seen by x. We say that two vertices v and w
of a polygon P are neighbors or consecutive if vw is an edge of P. A sub-polygon P ′ of a
simple polygon P is defined by any l distinct consecutive vertices v1, v2, . . . , vl of P (that is,
for every i ∈ [l − 1], vi and vi+1 are neighbors in P) such that v1vl does not cross any edge
of P. In particular, P ′ is a simple polygon.

We assume that the vertices of the polygon are either given by integers or by rational
numbers. We also assume that the output is given either by integers or by rational numbers.
The instances we generate as a result of Theorem 1 and Theorem 2 have rational coordinates.
We can represent them by specifying the nominator and denominator. The number of bits
is bounded by O(logn) in both cases. We can transform the coordinates to integers by
multiplying every coordinate with the least common multiple of all denominators. However,
this leads to integers using O(n logn) bits.
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ETH-based lower bounds. The Exponential Time Hypothesis (ETH) is a conjecture by
Impagliazzo et al. [21] asserting that there is no 2o(n)-time algorithm for 3-SAT on instances
with n variables.

The Multicolored Subgraph Isomorphism problem can be defined in the following
equivalent way. One is given a graph with n vertices partitioned into l color classes V1, . . . , Vl
such that only k of the

(
l
2
)
sets Eij = E(Vi, Vj) are non empty. The goal is to pick one vertex

in each color class so that the selected vertices induce k edges. Observe that l corresponds
to the number of vertices of the pattern graph. The technique of color coding and a result of
Marx imply that:

I Theorem 3 ([28]). Unless the ETH fails, Multicolored Subgraph Isomorphism
cannot be solved in time f(k)no(k/ log k) where k is the number of edges of the solution and f
any computable function.

Naturally, this result still holds when restricted to connected input graphs. In that case,
k > l − 1.

In the 2-Track Hitting Set problem, the input consists of an integer k, two totally
ordered ground sets A and B of the same cardinality, and two sets SA of A-intervals, and
SB of B-intervals. In addition, the elements of A and B are in one-to-one correspondence
φ : A→ B and each pair (a, φ(a)) is called a 2-element. The goal is to find, if possible, a set
S of k 2-elements such that the first projection of S is a hitting set of SA, and the second
projection of S is a hitting set of SB .

Structured 2-Track Hitting Set is the same problem with color classes over the
2-elements, and a restriction on the one-to-one mapping φ. Given two integers k and t, A is
partitioned into (C1, C2, . . . , Ck) where Cj = {aj1, a

j
2, . . . , a

j
t} for each j ∈ [k]. A is ordered:

a1
1, a

1
2, . . . , a

1
t , a

2
1, a

2
2, . . . , a

2
t , . . . , a

k
1 , a

k
2 , . . . , a

k
t . We define C ′j := φ(Cj) and bji := φ(aji ) for

all i ∈ [t] and j ∈ [k]. We now impose that φ is such that, for each j ∈ [k], the set C ′j
is a B-interval. That is, B is ordered: C ′σ(1), C

′
σ(2), . . . , C

′
σ(k) for some permutation on [k],

σ ∈ Sk. For each j ∈ [k], the order of the elements within C ′j can be described by a
permutation σj ∈ St such that the ordering of C ′j is: b

j
σj(1), b

j
σj(2), . . . , b

j
σj(t). In what follows,

it will be convenient to see an instance of Structured 2-Track Hitting Set as a tuple
I = (k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB), where we recall that SA is a set
of A-intervals and SB is a set of B-intervals. We denote by [aji , a

j′

i′ ] (resp. [bji , b
j′

i′ ]) all the
elements a ∈ A (resp. b ∈ B) such that aji ≤A a ≤A a

j′

i′ (resp. b
j
i ≤B b ≤B bj

′

i′ ).
Taking inspiration from previous results, we show hardness of Structured 2-Track

Hitting Set by a reduction from Multicolored Subgraph Isomorphism. Due to lack
of space, we do no include the proof of the following theorem. The interested reader can find
this proof in the arxiv version of the paper [3].

I Theorem 4. Structured 2-Track Hitting Set is W [1]-hard, and not solvable in time
f(k) |I|o(k/ log k) for any computable function f , unless the ETH fails.

3 Parameterized hardness of the point guard variant

As exposed in the introduction, we give a reduction from the Structured 2-Track Hitting
Set problem. The main challenge is to design a linker gadget that groups together specific
pairs of points in the polygon. The following introductory lemma inspires the linker gadgets
for both Point Guard Art Gallery and Vertex Guard Art Gallery.

ESA 2016
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Figure 3 An illustration of the k + 1 permutations σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St of an instance
of Structured 2-Track Hitting Set, with k = 4 and t = 6.

I Lemma 5. The only minimum hitting sets of the set-system S = {Si = {1, 2, . . . , i,
i+ 1, i+ 2, . . . , n} | i ∈ [n]} ∪ {Si = {1, 2, . . . , i, i+ 1, i+ 2, . . . , n} | i ∈ [n]} are {i, i}, for
each i ∈ [n].

Proof. First, for each i ∈ [n], one may easily observe that {i, i} is a hitting set of S. Now,
because of the sets Sn and Sn one should pick one element i and one element j for some
i, j ∈ [n]. If i < j, then set Si is not hit, and if i > j, then Sj is not hit. Therefore, i should
be equal to j. J

I Theorem 1 (Parameterized hardness point guard). Assuming the ETH, Point Guard Art
Gallery is not solvable in time f(k)no(k/ log k), for any computable function f , even on
simple polygons, where n is the number of vertices of the polygon and k is the number of
guards allowed.

Proof. Given an instance I = (k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB) of
Structured 2-Track Hitting Set, we build a simple polygon P with O(kt+ |SA|+ |SB |)
vertices, such that I is a YES-instance iff P can be guarded by 3k points.

Outline. We recall that A’s order is: a1
1, . . . , a

1
t , . . . , a

k
1 , . . . , a

k
t and B’s order is determined

by σ and the σj ’s (see Figure 3). Let us focus on one color class j ∈ [k] together with a
permutation σj : A→ B. The global strategy of the reduction is to allocate, 2t special points
for this polygon. The points aj1, . . . , a

j
t on track A are represented by αj1, . . . , α

j
t points in P .

and the points σj(aj1), . . . , σj(ajt ) on track B are represented by βj1, . . . , β
j
t in the polygon.

Placing a guard in αji and βji shall correspond to picking the 2-element (aji , σj(b
j
i )). The

points αji ’s and βji ’s ordered by increasing y-coordinates will match the order of the aji ’s
along the order ≤A and then of the bji ’s along ≤B . Then, far in the horizontal direction, we
will place pockets to encode each A-interval of SA, and each B-interval of SB .

The first critical issue will be to link point αji to point βji . Indeed, in the Structured
2-Track Hitting Set problem, one selects 2-elements (one per color class), so we should
prevent one from placing two guards in αji and βji′ with i 6= i′. The so-called point linker
gadget will realize the intervals as described in Lemma 5.

The second critical issue is to enforce these positions. For this purpose, we will need to
introduce a copy αji of each αji . In each part of the gallery encoding a color class j ∈ [k], the
only way of guarding all the pockets with only three guards will be to place them in αji , α

j
i ,

and βji for some i ∈ [t] (see Figure 5). Hence, 3k guards will be necessary and sufficient to
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guard the whole P iff there is a solution to the instance of Structured 2-Track Hitting
Set.

We now get into the details of the reduction. We will introduce several characteristic
lengths and compare them; when l1 � l2 means that l1 should be thought as really small
compared to l2, and l1 ≈ l2 means that l1 and l2 are roughly of the same order. The
motivation is to guide the intuition of the reader without bothering her/him too much about
the details. At the end of the construction, we will specify more concretely how those lengths
are chosen.

Construction. We start with an explicit specification of the coordinates. The description
will be dependent on some parameters x, y, L,D, F that we will specify later. The value x
represents the offset between elements with respect to the x-coordinate and likewise the
value y represents the offset between elements with respect to the y-coordinate. D represents
the vertical distance between different color classes and L represents the horizontal distance
between all the α′s and the β′s, see also Figure 6. The value F will become relevant later
and describes the distance of the points to the pockets to the far right. The crucial point of
the construction is that the order of the α’s corresponds exactly to the order of the a’s along
track A and the same relation holds between the β’s and b’s.

We recall that we want the points αji ’s and β
j
i ’s ordered by increasing y-coordinates, to

match the order of the aji ’s and b
j
i ’s along ≤A and ≤B , with first all the elements of A and

then all the elements of B. Starting from some y-coordinate y1 (which is the one given to
point α1

1), the y-coordinates of the α
j
i ’s are regularly spaced out by an offset y; that is, the

y-coordinate of αji is y1 + (i+ (j − 1)t)y. Between the y-coordinate of the last element in A
(i.e., akt whose y-coordinate is y1 + (kt− 1)y) and the first element in B, there is a large offset
L, such that the y-coordinate of βji is y1 + (kt − 1)y + L + (ord(bji ) − 1)y (for any j ∈ [k]
and i ∈ [t]) where ord(bji ) is the rank of bji along the order ≤B .

For each color class j ∈ [k], let xj := x1 + (j− 1)D for some x-coordinate x1 and value D,
and yj := y1 + (j − 1)ty. The allocated points αj1, α

j
2, α

j
3, . . . , α

j
t are on a line at coordinates:

(xj , yj), (xj + x, yj + y), (xj + 2x, yj + 2y), . . . , (xj + (t− 1)x, yj + (t− 1)y), for some value
x. We place, to the left of those points, a rectangular pocket Pj,r of width, say, y and
length, say1, tx such that the uppermost longer side of the rectangular pocket lies on the line
`(αj1, α

j
t ) (see Figure 4). The y-coordinates of βj1, β

j
2, β

j
3, . . . , β

j
t have already been defined.

We set, for each i ∈ [t], the x-coordinate of βji to xj + (i− 1)x, so that βji and αji share the
same x-coordinate. One can check that it is consistent with the previous paragraph. We
also observe that, by the choice of the y-coordinate for the βji ’s, we have both encoded the
permutations σj ’s and permutation σ (see Figure 6 or Figure 4). This finishes the description
of the coordinates.

Now, we will give a description how, we can encode intervals by on track A and B by
small pockets and, we describe, where to place them. From hereon, for a vertex v and two
points p and p′, we informally call triangular pocket rooted at vertex v and supported by
ray(v, p) and ray(v, p′) a sub-polygon w, v, w′ (a triangle) such that ray(v, w) passes through
p, ray(v, w′) passes through p′, while w and w′ are close to v (sufficiently close not to interfere
with the rest of the construction). We say that v is the root of the triangular pocket, that
we often denote by P(v). We also say that the pocket P(v) points towards p and p′. It is
easy to see that each point that sees v also sees the entire triangular pocket P (v).

1 The exact width and length of this pocket are not relevant; the reader may just think of Pj,r as a thin
pocket which forces to place a guard on a thin strip whose uppermost boundary is `(αj1, α

j
t )

ESA 2016
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For each A-interval Iq = [aji , a
j′

i′ ] ∈ SA we construct one triangular pocket P(zA,q) rooted
at vertex zA,q and supported by ray(zA,q, αji ) and ray(zA,q, αj

′

i′ ). The placement of this
triangular pocket is very far to the right. The x-coordinate of zA,q equals xk + (t− 1)x+ F ,
for some large value F to be specified later. The y-coordinate shall be between y1 and
yk + (kt− 1)y. We place those |SA| pockets along the y-axis, and space them out by some
small distance s. To guarantee that we have enough room to place all those pockets, s will
be chosen sufficiently small (s� y).

We will show later, for appropriate values y � x� D � F , the only αj
′′

i′′ seeing vertex
zA,q should be the points such that aji ≤A a

j′′

i′′ ≤A a
j′

i′ (see Figure 6).
Similarly, we represent each interval Iq ∈ SB by a triangular pocket rooted at zB,q. These

pockets are placed at the x-coordinate xk + (t− 1)x+ F and spaced out by distance s along
the y-axis between y-coordinates y1 + (kt− 1)y +L and y1 + 2(kt− 1)y +L. The B-interval
Iq = [bji , b

j′

i′ ] is represented by the triangular pocket P(zB,q) rooted at vertex zB,q supported
by ray(zB,q, σj(aji )) and ray(zB,q, σj(aj

′

i′ )). Note that σj(aji ) is the point on track B that
corresponds to βji . The different values (s, x, y, D, L, and F ) introduced so far compare in
the following way: s� y � x� D � F , and x� L� F , see Figure 6.

Now, we describe how we link each point αji to its associate βji . For each j ∈ [k], let us
mentally draw ray(αjt , β

j
1) and consider points slightly to the left of this ray at a distance,

say, L′ from point αjt . Let us call R
j
left that informal region of points. Any point in Rjleft sees,

from right to left, in the order αj1, α
j
2 up to αjt , and then, βj1, β

j
2 up to βjt . This observation

relies on the fact that y � x� L. So, from the distance, the points βj1, . . . , β
j
t look almost

flat. It makes the following construction possible. In Rjleft, for each i ∈ [t− 1], we place a
triangular pocket P(cji ) rooted at vertex cji and supported by ray(cji , α

j
i+1) and ray(cji , β

j
i ).

We place also a triangular pocket P(cjt ) rooted at cjt supported by ray(cji , β
j
1) and ray(cji , β

j
t ).

We place vertices cji and c
j
i+1 at the same y-coordinate and spaced out by distance x along

the x-axis (see Figure 4). Similarly, let us informally refer to the region slightly to the
right of ray(αj1, β

j
t ) at a distance L′ from point αj1, as R

j
right. Any point Rjright sees, from

right to left, in this order βj1, β
j
2 up to βjt , and then, αj1, α

j
2 up to αjt . Therefore, one can

place in Rjleft, for each i ∈ [t − 1], a triangular pocket P(dji ) rooted at dji supported by
ray(dji , β

j
i+1) and ray(cji , α

j
i ). We place also a triangular pocket P(djt ) rooted at djt supported

by ray(dji , α
j
1) and ray(cji , α

j
t ). Again, those t pockets are placed at the same y-coordinate

and spaced out horizontally by x (see Figure 4). We denote by Pj,α,β the set of pockets
{P(cj1), . . . ,P(cjt ),P(dj1), . . . ,P(djt )} and informally call it the weak point linker (or simply,
weak linker) of αj1, . . . , α

j
t and β

j
1, . . . , β

j
t . We may call the pockets of Rjleft (resp. R

j
right) left

pockets (resp. right pockets).
As we will show later, if one wants to guard with only two points all the pockets of

Pj,α,β = {P(cj1), . . . ,P(cjt ),P(dj1), . . . ,P(djt )} and one first decides to put a guard on point
αji (for some i ∈ [t]), then one is not forced to put the other guard on point βji but only
on an area whose uppermost point is βji (see the shaded areas below the bji ’s in Figure 4).
Now, if the points βj1, . . . , β

j
t would all lie on a common line `, we could shrink the shaded

area of each βji (Figure 4) down to the single point βji by adding a thin rectangular pocket
on ` (similarly to what we have for αj1, . . . , α

j
t ). Naturally, we need that βj1, . . . , β

j
t are

not on a common line to be able to encode the permutation σj . The remedy we pursue
is the following. For each j ∈ [k], we allocate t points αj1, α

j
2, . . . , α

j
t on a horizontal line,

spaced out by distance x, say, ≈ D
2 to the right and ≈ L above of βjt . We place a thin

horizontal rectangular pocket Pj,r of the same dimension as Pj,r such that the lowermost
longer side of Pj,r is on the line `(αj1, α

j
t ). We add the 2t pockets corresponding to a weak
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α1α2α3α4α5α6

β1β2β3β4
β5β6

d1c1 d2c2 d3c3 d4c4 d5c5 d6c6

Figure 4 Weak point linker gadget.

Figure 5 Point linker gadget: a triangle of (three) weak point linkers.

linker Pj,α,α between αj1, . . . , α
j
t and αj1, . . . , α

j
t as well as the 2t pockets of a weak linker

Pj,α,β between αj1, . . . , α
j
t and β

j
1, . . . , β

j
t as pictured in Figure 5. We denote by Pj the union

Pj,r ∪ Pj,r ∪ Pj,α,β ∪ Pj,α,α ∪ Pj,α,β of all the pockets involved in the encoding of color class
j. Now, say, one wants to guard all the pockets of Pj with only three points, and chooses to
put a guard on αji (for some i ∈ [t]). Because of the pockets of Pj,α,α ∪ Pj,r, one is forced to
place a second guard precisely on αji . Now, because of the weak linker Pj,α,β the third guard
should be on a region whose uppermost point is βji , while, because of Pj,α,β the third guard
should be on a region whose lowermost point is βji . The conclusion is that the third guard
should be put precisely on βji . This triangle of weak linkers is called the linker of color class
j. The k linkers are placed accordingly to Figure 6. This ends the construction.

Specification of the distances. We can specify the coordinates of positions of all the
vertices by fractions of integers. These integers are polynomially bounded in n. If we want
to get integer coordinates, we can transform the rational coordinates to integer coordinates
by multiplying all of them with the least common multiple of all the denominators, which is
not polynomially bounded anymore. The length of the integers in binary is still polynomially
bounded.

We can safely set s to one, as it is the smallest length, we specified. We will put |Sa|
pockets on track A and |Sb| pockets on track B. It is sufficient to have an opening space
of one between them. Thus, the space on the right side of P, for all pockets of track A is
bounded by 2|Sa|. Thus setting y to |Sa|+ |Sb| secures us that we have plenty of space to
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L

P1,r

P2,r

P3,r

P1,r

P2,r

P3,r
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track B

α

α

β

Figure 6 The overall picture of the reduction with k = 3.

place all the pockets. We specify F = (|Sa|+ |Sb|)Dk = yDk. We have to show that this is
large enough to guarantee that the pockets on track A distinguish the picked points only
by the y-coordinate. Let p and q be two points among the αji . Their vertical distance is
upper bounded by Dk and their horizontal distance is lower bounded by y. Thus the slope
of ` = `(p, q) is at least y

Dk . At the right side of P the line ` will be at least F y
Dk above the

pockets of track A. Note F y
Dk = yDk y

Dk > y2 > |Sa|2 > 2|Sa|. The same argument shows
that F is sufficiently large for track B.

The remaining lengths x, L, L′, and D can be specified in a similar fashion. For the
construction of the pockets, let s ∈ Sa be an A-interval with endpoints a and b, represented
by some points p and q and assume the opening vertices v and w of the triangular pocket are
already specified. Then the two lines `(p, v) and `(q, w) will meet at some point x to the right
of v and w. It is easy to see that x has rational coordinates and the integers to represent
them can be expressed by the coordinates of p, q, v, and w. This way, all the pockets can be
explicitly constructed using rational coordinates as claimed above.

Soundness. We now show that the reduction is correct. The following lemma is the main
argument for the easier implication: if I is a YES-instance, then the gallery that we build
can be guarded with 3k points.

I Lemma 6. ∀j ∈ [k], ∀i ∈ [t], the three associate points αji , α
j
i , β

j
i guard entirely Pj.

Proof. The rectangular pockets Pj,r and Pj,r are entirely seen by respectively αji and αji .
The pockets P(cj1),P(cj2), . . .P(cji−1) and P(dji ),P(dji+1), . . .P(djt ) are all entirely seen by
αji , while the pockets P(cji ),P(cji+1), . . .P(cjt ) and P(dj1),P(dj2), . . .P(dji−1) are all entirely
seen by βji . This means that αji and β

j
i jointly see all the pockets of Pj,α,β . Similarly, αji and

αji jointly see all the pockets of Pj,α,α, and αji and β
j
i jointly see all the pockets of Pj,α,β .

Therefore, αji , α
j
i , β

j
i jointly see all the pockets of Pj . J

Assume that I is a YES-instance and let {(a1
s1
, b1
s1

), . . . , (aksk
, bksk

)} be a solution. We
claim that G = {α1

s1
, α1

s1
, β1
s1
, . . . , αksk

, αksk
, βksk
} guard the whole polygon P. By Lemma 6,

∀j ∈ [k], Pj is guarded. For each A-interval (resp. B-interval) in SA (resp. SB) there is at
least one 2-element (ajsj

, bjsj
) such that ajsj

∈ SA (resp. bjsj
∈ SB). Thus, the corresponding

pocket is guarded by αjsj
(resp. βjsj

). The rest of the polygon P (which is not part of pockets)
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is guarded by, for instance, {α1
s1
, . . . , αksk

}. So, G is indeed a solution and it contains 3k
points.

Assume now that there is no solution to the instance I of Structured 2-Track
Hitting Set. We show that there is no set of 3k points guarding P. We observe that no
point of P sees inside two triangular pockets one being in Pj,α,γ and the other in Pj′,α,γ′
with j 6= j′ and γ, γ′ ∈ {β, α}. Further, V (r(Pj,α,β ∪ Pj,α,α)) ∩ V (r(Pj′,α,β ∪ Pj′,α,α)) = ∅
when j 6= j′, where r maps a set of triangular pockets to the set of their root. Also, for each
j ∈ [k], seeing entirely Pj,α,β and Pj,α,α requires at least 3 points. This means that for each
j ∈ [k], one should place three guards in V (r(Pj,α,β ∪Pj,α,α)). Furthermore, one can observe
among those three points one should guard a triangular pocket Pj′,r and another should
guard Pj′′,r. Let us try to guard entirely P1 and two rectangular pockets Pj′,r and Pj′′,r,
with only three guards. Let call `1 (resp. `′1) the line corresponding to the extension of the
uppermost (resp. lowermost) longer side of P1,r (resp. P1,r). The only points of P that can
see a rectangular pocket Pj′,r and at least t pockets of P1,α,α are on `1: more specifically,
they are the points α1

1, . . . , α
1
t . The only points that can see a rectangular pocket Pj′′,r

and at least t pockets of P1,α,α are on `′1: they are the points α1
1, . . . , α

1
t . As P1,α,α has 2t

pockets, one has to take a point α1
i and α1

i′ . By the same argument argument as in Lemma 5,
i should be equal to i′ (otherwise, i < i′ and the left pocket pointing towards α1

i′−1 and α1
i′

is not seen, or i > i′ and the right pocket pointing towards α1
i+1 and α1

i is not seen). We
now denote by s1 this shared value. Now, to see the left pocket P(c1

s1
) and the right pocket

P(d1
s1−1) (that should still be seen), the third guard should be to the left of `(c1

s1
, β1
s1

) and
to the right of `(d1

s1−1, β
1
s1

) (see shaded area of Figure 4). That is, the third guard should be
on a region in which β1

s1
is the uppermost point. The same argument with the pockets of

P1,α,β implies that the third guard should also be on a region in which β1
s1

is the lowermost
point. Thus, the position of the third guard has to be point β1

s1
. Therefore, one should put

guards on points α1
s1
, α1

s1
, and β1

s1
, for some α1 ∈ [t].

As none of those three points see any pocket Pj,α,β with j > 1 (we already mentioned
that no pocket of Pj,α,β and Pj,α,α with j > 1 can be seen by those points), we can repeat
the argument for the second color class; and so forth up to color class k. Thus, a potential
solution with 3k guards should be of the form {α1

s1
, α1

s1
, β1
s1
, . . . , αksk

, αksk
, βksk
}. As there is

no solution to I, there should be a set in SA∪SB that is not hit by {(a1
s1
, b1
s1

), . . . , (aksk
, bksk

)}.
By construction, the pocket associated to this set is not entirely seen. J

4 Parameterized hardness of the vertex guard variant

We now turn to the vertex guard variant and show the same hardness result. Again, we
reduce from Structured 2-Track Hitting Set and our main task is to design a linker
gadget. Though, linking pairs of vertices turns out to be very different from linking pairs
of points. Therefore, we have to come up with fresh ideas to carry out the reduction. In
a nutshell, the principal ingredient is to link pairs of convex vertices by introducing reflex
vertices at strategic places. As placing guards on those reflex vertices is not supposed to
happen in the Structured 2-Track Hitting Set instance, we design a so-called filter
gadget to prevent any solution from doing so.

I Theorem 2 (Parameterized hardness vertex guard). Assuming the ETH, Vertex Guard
Art Gallery is not solvable in time f(k)no(k/ log k), for any computable function f , even
on simple polygons, where n is the number of vertices of the polygon and k is the number of
guards allowed.

Proof. From an instance I = (k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB), we build
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α1 α2 α3 α4 α5 α6
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Figure 7 Vertex linker gadget. We omitted the superscript j in all the labels. Here, σj(1) =
4, σj(2) = 2, σj(3) = 5, σj(4) = 3, σj(5) = 6, σj(6) = 1.

a simple polygon P with O(kt+ |SA|+ |SB |) vertices, such that I is a YES-instance iff P
can be guarded by 3k vertices.

Linker gadget. For each j ∈ [k], permutation σj will be encoded by a sub-polygon Pj that
we call vertex linker, or simply linker (see Figure 7). We regularly set t consecutive vertices
αj1, α

j
2, . . . , α

j
t in this order, along the x-axis. Opposite to this segment, we place t vertices

βjσj(1), β
j
σj(2), . . . , β

j
σj(t) in this order, along the x-axis, too. The βjσj(1), . . . , β

j
σj(t), contrary

to αj1, . . . , α
j
t , are not consecutive; we will later add some reflex vertices between them. At

mid-distance between αj1 and βjσj(1), to the left, we put a reflex vertex rj↓. Behind this reflex
vertex, we place a vertical wall djej (rj↓, dj , and ej are three consecutive vertices of P), so
that ray(αj1, r

j
↓) and ray(αjt , r

j
↓) both intersect seg(dj , ej). That implies that for each i ∈ [t],

ray(αji , r
j
↓) intersects seg(dj , ej). We denote by pji this intersection. The greater i, the closer

pji is to dj . Similarly, at mid-distance between αjt and βjσj(t), to the right, we put a reflex
vertex rj↑ and place a vertical wall xjyj (rj↑, xj , and yj are consecutive), so that ray(αj1, r

j
↑)

and ray(αjt , r
j
↑) both intersect seg(xj , yj). For each i ∈ [t], we denote by qji the intersection

between ray(αji , r
j
↑) and seg(xj , yj). The smaller i, the closer qji is to xj .

For each i ∈ [t], we put around βji two reflex vertices, one in ray(βji , p
j
i ) and one in

ray(βji , q
j
i ). In Figure 7, we merged some reflex vertices but the essential part is that

V (βji )∩ seg(dj , ej) = seg(dj , pji ) and V (βji )∩ seg(xj , yj) = seg(xj , qji ). Finally, we add a
triangular pocket rooted at gj and supported by ray(gj , αj1) and ray(gj , αjt ), as well as a
triangular pocket rooted at bj and supported by ray(gj , βjσj(1)) and ray(gj , βjσj(t)). This ends
the description of the vertex linker (see Figure 7).

The following lemma formalizes how exactly the vertices αji and β
j
i are linked: say, one

chooses to put a guard on a vertex αji , then the only way to see entirely Pj by putting a
second guard on a vertex of {βj1, . . . , β

j
t } is to place it on the vertex βji .

I Lemma 7. For any j ∈ [k], the sub-polygon Pj is seen entirely by {αjv, βjw} iff v = w.
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Proof. The regions of Pj not seen by αjv (i.e., Pj \ V (αjv)) consist of the triangles djrj↓pjv,
xjrj↑q

j
v and partially the triangle ajbjcj . The triangle ajbjcj is anyway entirely seen by the

vertex βji , for any i ∈ [t]. It remains to prove that djrj↓pjv ∪ xjr
j
↑q
j
v ⊆ V (βjw) iff v = w.

It holds that djrj↓pjv ∪ xjr
j
↑q
j
v ⊆ V (βjv) since, by construction, the two reflex vertices

neighboring βjv are such that βjv sees seg(dj , pjα) (hence, the whole triangle djrj↓pjv) and
seg(xj , qjα) (hence, the whole triangle xjrj↑qjv). Now, let us assume that v 6= w. If v < w, the
interior of the segment seg(pv, pw) is not seen by {αjv, βjw}, and if v > w, the interior of the
segment seg(qv, qw) is not seen by {αjv, βjw}. J

The issue we now have is that one could decide to place a guard on a vertex αji and a
second guard on a reflex vertex between βjσj(w) and βjσj(w+1) (for some w ∈ [t − 1]). This
is indeed another way to guard the whole Pj . We will now describe a sub-polygon Fj (for
each j ∈ [k]) called filter gadget (see Figure 8) satisfying the property that all its (triangular)
pockets can be guarded by adding only one guard on a vertex of Fj iff there is already a
guard on a vertex βji of Pj . Therefore, the filter gadget will prevent one from placing a guard
on a reflex vertex of Pj . The functioning of the gadget is again based on Lemma 5.

Filter gadget. Let dj1, . . . , d
j
t be t consecutive vertices of a regular, say, 20t-gon, so that

the angle made by ray(dj1, d
j
2) and the x-axis is a bit below 45◦, while the angle made by

ray(djt−1, d
j
t ) and the x-axis is a bit above 45◦. The vertices dj1, . . . , d

j
t can therefore be

seen as the discretization of an arc C. We now mentally draw two lines `h and `v; `h is a
horizontal line a bit below dj1, while `v is a vertical line a bit to the right of djt . We put,
for each i ∈ [t], a vertex xji at the intersection of `h and the tangent to C passing through
dji . Then, for each i ∈ [t− 1], we set a triangular pocket P(xji ) rooted at xji and supported
by ray(xji , d

j
1) and ray(xji , β

j
σj(i+1)). For convenience, each point βjσj(i) is denoted by cji on

Figure 8. We also set a triangular pocket P(xjt ) rooted at xjt and supported by ray(xjt , d
j
1)

and ray(xjt , d
j
t ). Similarly, we place, for each i ∈ [t− 1], a vertex yji at the intersection of `v

and the tangent to C passing through dji+1. Finally, we set a triangular pocket P(yji ) rooted
at yji and supported by ray(yji , β

j
σj(i)) and ray(yji , d

j
t ), for each i ∈ [t− 1] (see Figure 8). We

denote by P(Fj) the 2t− 1 triangular pockets of Fj .

I Lemma 8. For each j ∈ [k], the only ways to see entirely P(Fj) and the triangle ajbjcj
with only two guards on vertices of Pj ∪ Fj is to place them on vertices cji and dji (for any
i ∈ [t]).

Proof. Proving this lemma will, in particular, entail that it is not possible to see entirely
P(Fj) with only two vertices if one of them is a reflex vertex between cji and c

j
i+1. Let us call

such a vertex an intermediate reflex vertex (in color class j). Because of the pocket ajbjcj ,
one should put a guard on a cji (for some i ∈ [t]) or on an intermediate reflex vertex in class
j. As vertices aj , bj , and cj do not see anything of P(Fj), placing the first guard at one of
those three vertices cannot work as a consequence of what follows.

Say, the first guard is placed at cji (= βjσ(i)). The pockets P(xj1),P(xj2), . . . ,P(xji−1)
and P(yji ),P(yji+1), . . . ,P(xjt−1) are entirely seen, while the vertices xji , x

j
i+1, . . . , x

j
t and

yj1, y
j
2, . . . , y

j
i−1 are not. The only vertex that sees simultaneously all those vertices is dji .

The vertex dji even sees the whole pockets P(xji ),P(xji+1), . . . ,P(xjt ) and P(yj1),P(yj2), . . . ,
P(yji−1). Therefore, all the pockets P(Fj) are fully seen.

Now, say, the first guard is put on an intermediate reflex vertex r between cji and c
j
i+1

(for some i ∈ [t− 1]). Both vertices xji and y
j
i , as well as x

j
t , are not seen by r and should
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Figure 8 The filter gadget Fj . Again, we omit the superscript j on the labels. Vertices
c1, c2, . . . , ct are not part of Fj and are in fact the vertices βj

σj (1), β
j
σj (2), . . . , β

j
σj (t) and the vertices

in between the ci’s are the reflex vertices that we have to filter out.

therefore be seen by the second guard. However, no vertex simultaneously sees those three
vertices. J

Putting the pieces together. The permutation σ is encoded the following way. We position
the vertex linkers P1,P2, . . . ,Pk such that Pi+1 is below and slightly to the left of Pi. Far
below and to the right of the Pi’s, we place the Fi’s such that the uppermost vertex of
Fσ(i) is close and connected to the leftmost vertex of Fσ(i+1), for all i ∈ [t− 1]. We add a
constant number of vertices in the vicinity of each Pj , so that the only filter gadget that
vertices βj1, . . . , β

j
t can see is Fσ(j) (see Figure 9). Similarly to the point guard version, we

place vertically and far from the αji ’s, one triangular pocket P(zA,q) rooted at vertex zA,q
and supported by ray(zA,q, αji ) and ray(zA,q, αj

′

i′ ), for each A-interval Iq = [aji , a
j′

i′ ] ∈ SA
(Track A). Finally, we place vertically and far from the dji ’s, one triangular pocket P(zB,q)
rooted at vertex zB,q and supported by ray(zB,q, dji ) and ray(zB,q, dj

′

i′ ), for each B-interval
Iq = [bjσj(i), b

j′

σj′ (i′)
] ∈ SB (Track B). This ends the construction (see Figure 9).

Soundness. We now prove the correctness of the reduction. Assume that I is a YES-
instance and let {(a1

s1
, b1
s1

), . . . , (aksk
, bksk

)} be a solution. We claim that the set of vertices
G = {α1

s1
, β1
s1
, d1
σ−1

1 (s1), . . . , α
k
sk
, βksk

, dk
σ−1

k
(sk)} guards the whole polygon P . Let z

j := dj
σ−1

j
(sj)

for notational convenience. By Lemma 7, for each j ∈ [k], the sub-polygon Pj is entirely
seen, since there are guards on αjsj

and βjsj
. By Lemma 8, for each j ∈ [k], all the pockets of

Fj are entirely seen, since there are guards on βjsj
= cj

σ−1
j

(sj) and dj
σ−1

j
(sj) = zj . For each

A-interval (resp. B-interval) in SA (resp. SB) there is at least one 2-element (ajsj
, bjsj

) such
that ajsj

∈ SA (resp. bjsj
∈ SB). Thus, the corresponding pocket is guarded by αjsj

(resp. βjsj
).

The rest of the polygon is seen by, for instance, zσ(1) and zσ(k).
Assume now that there is no solution to the instance I of Structured 2-Track

Hitting Set, and, for the sake of contradiction, that there is a set G of 3k vertices guarding
P . For each j ∈ [k], vertices bj , gj , and xjt are seen by three disjoint set of vertices. The first
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Figure 9 Overall picture of the reduction with k = 5.

two sets are contained in the vertices of sub-polygon Pj and the third one is contained in the
vertices of Fj . Therefore, to see entirely Pj ∪ P(Fj), three vertices are necessary. Summing
that over the k color classes, this corresponds already to 3k vertices which is the size of the
supposed set G. Thus, there should exactly 3 guards placed among the vertices of Pj ∪ Fj .
Therefore, by Lemma 8, there should be an sj ∈ [t] such that both djsj

and cjsj
= βjσj(sj)

are in G. Then, by Lemma 7, a guard should be placed at vertex αjσj(sj). Indeed, the only
vertices seeing gj are f j , gj , hj and aj1, . . . , a

j
t ; but, if the third guard is placed at vertex

f j , gj , or hj , then vertices βjw (with w 6= σj(i)) are not seen. So far, we showed that G
should be of the form {α1

σ1(s1), β
1
σ1(s1), d

1
s1
, . . . , αjσj(sj), β

j
σj(sj), d

j
sj
, . . . , αkσk(sk), β

k
σk(sk), d

k
sk
, }.

Though, as there is no solution to I, there should be a set in SA ∪ SB that is not hit by
{(a1

σ1(s1), b
1
σ1(s1)), . . . , (akσk(sk), b

k
σk(sk))}. By construction, the pocket associated to this set is

not entirely seen; a contradiction.
Let us bound the number of vertices of P. Each sub-polygon Pj or Fj contains O(t)

vertices. Track A contains 3|SA| vertices and Track B contains 3|SB | vertices. Linking
everything together requires O(k) additional vertices. So, in total, there are O(kt+|SA|+|SB |)
vertices. Thus, this reduction together with Theorem 4 implies that Vertex Guard Art
Gallery is W[1]-hard and cannot be solved in time f(k)no(k/ log k) for any computable
function f , where n is the number of vertices of the polygon and k the number of guards,
unless the ETH fails. J
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