
Exponential Time Paradigms Through the
Polynomial Time Lens∗

Andrew Drucker1, Jesper Nederlof†2, and Rahul Santhanam‡3

1 Computer Science Department, University of Chicago, Chicago, USA
andy.drucker@gmail.com

2 Department of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven, The Netherlands
J.Nederlof@tue.nl

3 Department of Computer Science, University of Oxford, Oxford, UK
rahul.santhanam@cs.ox.ac.uk

Abstract
We propose a general approach to modelling algorithmic paradigms for the exact solution of
NP-hard problems. Our approach is based on polynomial time reductions to succinct versions
of problems solvable in polynomial time. We use this viewpoint to explore and compare the
power of paradigms such as branching and dynamic programming, and to shed light on the true
complexity of various problems.

As one instantiation, we model branching using the notion of witness compression, i.e., re-
ducibility to the circuit satisfiability problem parameterized by the number of variables of the
circuit. We show this is equivalent to the previously studied notion of ‘OPP-algorithms’, and pro-
vide a technique for proving conditional lower bounds for witness compressions via a constructive
variant of AND-composition, which is a notion previously studied in theory of preprocessing. In
the context of parameterized complexity we use this to show that problems such as Pathwidth
and Treewidth and Independent Set parameterized by pathwidth do not have witness com-
pression, assuming NP * coNP/poly. Since these problems admit fast fixed parameter tractable
algorithms via dynamic programming, this shows that dynamic programming can be stronger
than branching, under a standard complexity hypothesis. Our approach has applications outside
parameterized complexity as well: for example, we show if a polynomial time algorithm outputs
a maximum independent set of a given planar graph on n vertices with probability exp(−n1−ε)
for some ε > 0, then NP ⊆ coNP/poly. This negative result dims the prospects for one very
natural approach to sub-exponential time algorithms for problems on planar graphs.

As two other illustrations (more exploratory) of our approach, we model algorithms based
on inclusion-exclusion or group algebras via the notion of "parity compression", and we model a
subclass of dynamic programming algorithms with the notion of "disjunctive dynamic program-
ming". These models give us a way to naturally classify various parameterized problems with
FPT algorithms. In the case of the dynamic programming model, we show that Independent
Set parameterized by pathwidth is complete for this model.

1998 ACM Subject Classification F.2.0. Analysis of Algorithms and Problem Complexity

Keywords and phrases exponential time paradigms, branching, dynamic programming, lower
bounds

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.36

∗ This work was partly done while the authors were visiting the Simons Institute for the Theory of
Computing during the program ‘Fine-Grained Complexity and Algorithm Design’ in the fall of 2015.

† Funded by the NWO VENI project 639.021.438.
‡ Supported by the European Research Council under the European Union’s Seventh Framework Pro-

gramme (FP7/2007-2013)/ERC Grant Agreement no. 615075

© Andrew Drucker, Jesper Nederlof, and Rahul Santhanam;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 36; pp. 36:1–36:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.36
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Exponential Time Paradigms Through the Polynomial Time Lens

1 Introduction

The successes of theoretical computer science have often been driven by simple but general
algorithmic approaches, or paradigms, leading to efficient algorithms in many different
application domains. Indeed, paradigms such as divide-and-conquer, branching, dynamic
programming and linear programming have been applied over and over to design algorithms.

A natural question that arises is to quantify the power and limitations of a given
algorithmic paradigm. Doing so may have several benefits. It can help us understand what
makes the paradigm effective. It can make algorithm design and analysis less ad hoc, with
greater clarity about when and for which problems the paradigm is relevant. It can also
enable us to compare various algorithmic paradigms with each other in terms of their power
and usefulness. A crucial challenge in studying the power of algorithmic paradigms is the
modelling question. We need a modelling framework which is rich enough to capture existing,
successful algorithms within the paradigm. On the other hand, we need the modelling
framework to be meaningfully restricted, so that we can prove interesting things about these
models and the limits of their power. These goals are often in tension.

We aim to model exponential time algorithms. Understanding what can be computed in
exponential time seems to be harder than understanding what can be computed in polynomial
time, and less is known. In particular, showing general exponential-time lower bounds based
on standard hypotheses about polynomial-time computation (for example, the hypotheses
that P 6= NP or that the Polynomial Hierarchy is infinite) seems out of reach. We propose
to bypass this issue by arguing that several specific, established algorithmic paradigms can
be modelled as polynomial-time reductions to (succinct) problems, so that limitations to
their power may follow from these kinds of traditional hypotheses.

Approaches to algorithmic modelling can be broadly classified into syntactic and semantic
approaches. Syntactic approaches attempt to faithfully represent the step-by-step operation
of algorithms conforming to the method. Examples include the modelling of 1. DPLL
algorithms by proof systems such as Resolution, 2. backtracking and dynamic programming
by certain kinds of branching programs [1], 3. dynamic programming by feasible dominance
relations [16], 4. linear programming by extended formulations [5]. These approaches, though
natural, suffer from some drawbacks. The first is their lack of flexibility—they can fail to
capture simple-looking variants of the method, e.g., the failure of proof systems to capture
randomization. Second, in the search for accuracy, the models produced by such approaches
can get quite complicated, which makes them hard to analyze.

Our models, in contrast, are semantic—we try to capture broad features of the algorithmic
method rather than trying to model it in a step-by-step fashion. In particular, we allow
arbitrary polynomial-time computations as constituent subroutines. This allows the model
to flexibly accommodate preprocessing and natural variants of the method, and makes sense
for the intended applications to exponential time algorithms. Our use of parameterization
enables us to distinguish between algorithmic methods in a way that a traditional complexity-
theoretic approach cannot. Although our approach is coarser than most syntactic approaches,
it is more uniform, applying to a variety of algorithmic methods at once, and enables us to
get useful information about the relative power of these methods.

Related Previous Work

A large number of problems have been shown to be Fixed Parameter Tractable (FPT),
i.e., solvable in time O∗(f(k)), where k is a parameter provided with each input, O∗(·)
suppresses factors polynomial in the input size, and f(·) is some computable function. For

A. Drucker, J. Nederlof, and R. Santhanam 36:3

many problems we now know essentially the optimal running time: there is an O∗(f(k)) time
algorithm and an O∗(g(k)) time algorithm for any g(k) < f(o(k)) contradicts the Exponential
Time Hypothesis (ETH). For a few problems we even know that O∗(f(k)) time algorithms
cannot be improved to O∗(f(k)1−Ω(1)) time algorithm under stronger hypotheses as the
Strong ETH. In this work we are mostly interested in problems for which f(k) = 2poly(k) -
this is the case for most natural FPT parameterizations of NP -complete problems.

Kernelization. A natural paradigm to prove a problem is solvable in O∗(2poly(k)) time is
preprocessing plus brute force: given an instance (x, k) of a parameterized problem, transform
it in polynomial time to an instance (x′, k′) of the same problem where |x′|, k′ are polynomial
in k (this part is called the polynomial kernel), and then solve the smaller instance using
brute-force search.1 The power of polynomial kernelization has been extensively investigated,
and is by now fairly well understood. For many parameterized problems, we have either
found a polynomial kernel, or showed they do not exist unless NP ⊆ coNP/poly; the latter
is proved by providing an (OR or AND)-composition, and appealing to results in [3, 13, 11]
and related works. This fits as an excellent starting point for our study since it gives a lower
bound for a class of exponential-time algorithms modelled via polynomial-time reductions,
and is conditional on an hypothesis concerning polynomial-time computation.

Branching. Another heavily used paradigm to solve a problem in O∗(2poly(k)) time is that
of branching, or bounded search trees. A natural model for this paradigm is the model of
One-sided Probabilistic Polynomial (OPP) algorithms proposed by Paturi and Pudlak [24] in
their study of algorithms for satisfiability. OPP algorithms are polynomial-time algorithms
with one-sided error which never accept no-instances but only detect yes-instances with small
but non-trivial probability (called the success probability). An OPP algorithm with success
probability f(n) can be converted to a bounded-error randomized algorithm running in time
poly(n)/f(n) just by taking the OR of f(n) independent trials. On the other hand if an
exponential-time algorithm can be thought of as traversing an exponential-size recursion
tree which performs polynomial-time checks at leaves and returns true if at some leaf true
is returned, then we can cast this as an OPP algorithm provided we are able to sample
leaves of the branching tree in an efficient, nearly uniform way (in [24], this observation was
attributed to Eppstein [12]). We would like to remark that OPP is more powerful than one
might think at first sight as it also directly captures, for example, Schöning’s algorithm [27].

Concerning lower bounds, Paturi and Pudlak [24] showed that OPP algorithms with
success probability significantly better than 2−n for circuit satisfiability on n variables would
have unlikely consequences. Particularly relevant for our work is work by Drucker [10]
showing a 2−n1−ε upper bound of OPP algorithms’ success probability for 3-CNF-SAT (for
any ε > 0), assuming NP * coNP/poly.

Several closely-related formalisms of branching algorithms have been proposed in the
literature [4, 26, 31]. In the context of parameterized complexity, Marx proposed a study
of branching [20, 21] using a model ‘BFPT’ of branching FPT algorithms.2 Also relevant
is work of Dantsin and Hirsch [8], which discusses a notion closely related to our notion of
witness compression in the context of exact algorithms for Satisfiability, and provides lower
bounds conditioned on ETH.

1 That is, try all bit-strings and see if a certificate arises.
2 That turns out to be equivalent to OPP algorithms with success probability 2−O(k).

ESA 2016

36:4 Exponential Time Paradigms Through the Polynomial Time Lens

Our Contribution

In this work, we argue that many contemporary exponential-time algorithms can be rewritten
as polynomial-time reductions to succinct version of problems in P, and we also give several
concrete results on the applicability of specific algorithmic paradigms to different problems.
We outline these results next.

Branching. Our main technical contributions address branching algorithms as modelled by
OPP algorithms or equivalently witness compressions (defined below). Building on machinery
developed by Drucker [10] we give lower bounds for constructive OPP algorithms. For
instance:

I Theorem 1.1. If there is a polynomial time algorithm that given a planar graph outputs a
maximum independent set of n vertices with probability exp(−O(n1−ε)) for some ε > 0, then
NP ⊆ coNP/poly.

Note that exp(O(
√
n)) time algorithms are known (e.g. [18]), so this indicates that a rich

class of branching algorithms is incapable of exploiting planarity for solving independent
set. We also give a simple OPP algorithm that actually establishes success probability
exp(−O(n/

√
log(n))).

Following a hashing lemma from [24], we observe that having an OPP algorithm with
success probability f(k) is equivalent to having a polynomial-time Monte Carlo reduction
from the problem at hand to CKT-SAT3 with 1/ log(f(k)) input gates. Thus in the generic
context sketched in this paper, the succinct problem corresponding to our model of branching
is CKT-SAT. If f(k) = 2−poly(k), there are witnesses for the problem of size poly(k) and we
will refer to the polynomial time Monte Carlo reduction as a polynomial witness compression
since a satisfying solution of the circuit that the reduction outputs can be seen as a witness for
the original instance to be a yes-instance. We call a witness compression Levin or constructive
if we can determine a solution of the original problem given a satisfying assignment of the
circuit.

We define a type of reduction we call ‘constructive AND-composition’ that is closely related
to AND-compositions from kernelization theory, and show that assuming NP * coNP/poly

no parameterized problem can both have a constructive AND-composition and a Levin
polynomial witness compression. As one particular application, we use this to separate
dynamic programming from branching (as modelled via OPP algorithms). Specifically, we
show that Independent Set parameterized by pathwidth,4 which is known to be FPT via
a dynamic programming algorithm, does not have Levin polynomial witness compressions
unless NP * coNP/poly. An important question5 is how fast this problem can be solved
using only polynomial space. In [19], the authors provide an O∗(2O(pw2))-time and polynomial-
space algorithm based on a tradeoff between dynamic programming and Savitch’s theorem,
but the folklore dynamic programming algorithm uses O∗(2pw) time and space. Our results
thus indicate that branching algorithms of the OPP type, a very natural class of polynomial
space algorithms, will not be useful here.

We emphasize that the model of OPP algorithms and witness compressions are powerful
by observing that problems such as Steiner Tree, Long Path and Directed Feedback

3 Refer to Section 2 for a definition.
4 That is, we assume a path decomposition of width pw is given as input.
5 This question first appeared in print in [19], but was explicitly asked before at least in [22].

A. Drucker, J. Nederlof, and R. Santhanam 36:5

Vertex Set (DFVS) do have polynomial witness compressions as a consequence of methods
from previous works.

Kernelization. The above results on branching have a number of consequences for kernel-
ization theory. To explain these, let us first stress that it seems that if a problem has an
AND-composition it seems very likely it also has an constructive AND-composition since all
known AND-compositions are known to be constructive.

There has been interest recently in relaxed versions of kernelization, such as OR-kernels,
where rather than computing one small instance from the initial instance, we compute a list
of instances, at least one of which is in the language if and only if the original instance was.
It is easy to see that a polynomial witness compression is a far reaching generalization of
OR-kernelization: if a problem has a OR-kernel the witness would indicate which output of
the OR-kernel is a yes-instance along with a certificate of this instance being a YES. On the
other hand, a problem as CKT-SAT with k input variables is known to not have polynomial
kernelization assuming NP * coNP/poly (see e.g., [9]) but trivially has a polynomial witness
compression. Our observation thus implies that problems cannot have both constructive
AND-compositions and OR-kernelizations simultaneously unless NP ⊆ coNP/poly.

Our connection between constructive AND-composition and witness compressions com-
bined with the polynomial witness compressions for Steiner Tree, Long Path and DFVS
implies that these problems do not have constructive AND-compositions, which is a clear
indication that they do not admit AND-compositions as studied in kernelization theory.
We feel this is a useful insight especially for DFVS because the existence of a polynomial
compression for this is a major open problem [6], and since we currently only know how to
exclude polynomial compressions via AND- and OR-compressions our connection indicates
we probably should not look for AND-compressions.

Parity Compression. There are several other important paradigms that in many cases seem
essential to known algorithms for various problems, especially to obtain the best known
bounds on the function f(k). In [24], the authors mention as examples the paradigms
of exponential-time divide-and-conquer; inclusion-exclusion; dynamic programming; group
algebra; and Voronoi cell decomposition; and they argue that ‘OPP and its generalizations
could serve as an excellent starting point for the study of exponential-time algorithms for
NP-complete problems in general’, although they leave such generalizations unspecified.

We further explore this direction, using our unifying perspective via succinct parameterized
problems. Similar to witness compression, we define a notion of "parity compression"
corresponding to reducibility to the problem ⊕CKT-SAT parameterized by the number
of variables. The idea here is that algebraic and inclusion-exclusion based approaches to
FPT algorithms often implicitly reduce the problem to a succinctly represented parity of
exponentially many input bits, i.e, an instance of⊕CKT-SAT. We illustrate this phenomenon
by capturing the Long Path and K-Cycle problems in our model.

Disjunctive Dynamic Programming. We model a subclass of dynamic programming algo-
rithms which we refer to as "disjunctive dynamic programming". Intuitively, this corresponds
to dynamic programming tables whose entries are Boolean ORs of lexicographically-prior
entries. We model this class via reducibility to the problem CNF-Reach, an instance of
which is a directed graph succinctly encoded by a CNF, with the question being whether
there is a source-sink path of a prescribed length in the graph. The parameter is the number

ESA 2016

36:6 Exponential Time Paradigms Through the Polynomial Time Lens

of variables of the CNF. Essentially, the existence of a path corresponds to a "trace" of a
disjunctive dynamic programming algorithm with a YES answer.

More generally, one could study succinctness implemented by circuits rather than CNFs;
however, the choice of CNFs has a nice benefit: it allows us to find natural complete problems
for our model. Specifically, we show that Independent Set parameterized by pathwidth is
complete for this model, thus in some sense dynamic programming is the "right" algorithmic
technique for this problem. The completeness of Independent Set parameterized by
pathwidth may also be interpreted as another signal that polynomial space algorithms for
problems parameterized by pathwidth might be hard to find as they need to exploit the
succinctness given by the CNF representation or otherwise need to improve over Savitch’s
theorem for short reachability. Let us remark that related research has been proposed earlier:
the reduction as outlined here has been conjectured in the second author’s PhD-thesis [23],
and the aforementioned signal was remarked in [23, 2, 25]

Organization. This work is organized as follows: in Section 2 we provide a few preliminaries.
Note that due to space constraints we do not cover basic definitions from parameterized
complexity such as definitions of fixed-parameter tractability that provide context for our
work; we refer the reader to a recent textbook [7]. Section 3 presents our main technical results,
which are on branching algorithms. Section 4 introduces the model of parity compression,
Section 5 introduces the model of disjunctive dynamic programming and in Section 6 we list
a number of interesting directions for further research.

2 Preliminaries and Notation

For an integer p, [p] := {1, . . . , p}, and
(
X
p

)
denotes the family of size-p subsets of a set X.

Probabilistic Circuits. A probabilistic circuit is a (De Morgan) Boolean circuit C(x, r)
which, in addition to its input gates x ∈ {0, 1}n, has a designated set of “randomness gates”
r ∈ {0, 1}poly(n). We say such a circuit computes a function f(x) with success probability
p(n) if, for all x ∈ {0, 1}n, Prr[C(x, r) = f(x)] ≥ p(n). Here the probability is taken over a
uniform random setting to r. By Cook’s transformation, any polynomial time randomized
algorithm can be expressed as a (logspace-uniform) family of polynomial-size probabilistic
circuits.

Problem Definitions. PC denotes the set of search problems whose solutions can be verified
in polynomial time (following [14]). For L ⊆ {0, 1}∗, χL denotes the characteristic vector of
L. A parameterized problem is a set Q ⊆ {0, 1}∗ × N.

We use the following notation to define (parameterized) (search) problems in NP or
PC: if k is some parameter of an unparameterized problem R, R/k denotes the associated
problem parameterized by k. When a problem has a natural search version, we will use this
to define it, as the decision version follows from the search version. We use LQ to denote the
decision version of a search problem Q. The following parameterized search problems will be
important for this paper:

CKT-Sat Parameter: n
Instance: A Boolean circuit C on n variables.
Witness: An assignment x ∈ {0, 1}n such that C(x) = 1.

A. Drucker, J. Nederlof, and R. Santhanam 36:7

(d)-CNF-Sat Parameter: n
Instance: A Boolean (d)-CNF-formula C on n variables.
Witness: An assignment x ∈ {0, 1}n such that C(x) = 1.

For any search problem R ∈ PC, we define a search problem AND(R) as follows:

AND(R) Parameter: n
Instance: Instances x1, . . . , xt ∈ {0, 1}n

Witness: y1, . . . , yt such that (xi, yi) ∈ R for every i.

Reductions. For search problems6 Q,R ∈ PC, a Levin reduction from Q to R consists
of two polynomial time algorithms, A1 and A2, such that (i) ∃y : (x, y) ∈ Q if and only
if ∃y′ : (A1(x), y′) ∈ R, (ii) if (A1(x), y′) ∈ R, then (x,A2(x, y′)) ∈ Q. A Monte Carlo
reduction from language L to language L′ is a randomized polynomial time algorithm that
takes x ∈ {0, 1}∗ as input and outputs y ∈ {0, 1}∗ such that (i) if x /∈ L then y /∈ L′, (ii) if
x ∈ L then Pr[y ∈ L′] ≥ 1/4. A Levin Monte Carlo reduction from search problem Q to
search problem R is a pair of two randomized polynomial time algorithms A and B with
the following properties: (i) A is a Monte Carlo reduction from LQ to LR mapping x to x′,
(ii) B takes as input x, x′ and y′, and if (x′, y′) ∈ R, then with probability 1/4, B outputs y
such that (x, y) ∈ Q.

Success Probability of Polynomial Time Algorithms. Let f : N × N → R. We say that
an algorithm solves a parameterized problem Q with success probability f , if given (x, k)
it returns NO if (x, k) /∈ LQ and YES with probability at least f(|x|, k) if (x, k) ∈ LQ.
Moreover, if Q ∈ PC, it finds solutions for Q with probability at least f if given (x, k) it
returns NO if (x, k) /∈ LQ and it returns a certificate for (x, k) ∈ LQ with probability at least
f(|x|, k), otherwise. Note that an algorithm finding solutions for Q also solves Q.

By standard boosting arguments we see that if there is a polynomial time algorithm
solving Q or finding solutions for Q with probability at least f , then for any polynomial p
there is also a polynomial time algorithm solving Q or finding solutions for Q with probability
at least min{ 1

2 , p(|x|)f(|x|, k)}. Therefore, if f(|x|, k) is 1/(poly(|x|)f(k)), we say it solves
or finds solutions for Q with probability at least f ′(k) where f ′(k) = f(1, k).

Non-deterministic Direct Product Reductions. For a function f : A → B and integer t,
we denote f⊗t : At → Bt to be the t-fold direct product of f , e.g., for x1, . . . , xt ∈ A we let
f⊗t(x1, . . . , xt) = (f(x1), . . . , f(xt)). The following result will be crucial for this work:

I Theorem 2.1 (Theorem 1.2 of [10]). Let f = {fN} be a family of Boolean functions on
N input bits, and suppose that f /∈ NP/poly ∩ coNP/poly. Let 100 ≤ t(N) ≤ poly(N) be a
parameter and let {CN}N>0 be any family of polynomial-size probabilistic circuits outputting
t(N) bits. Then for infinitely many choices of N and x ∈ {0, 1}N×t(N),

Pr[CN = f
⊗t(N)
N (x)] < exp(−Ω(t(N)). (2.1)

6 In this work, we implicitly cast a parameterized (search) problem as a normal (search) problem by
omitting the parameter where convenient.

ESA 2016

36:8 Exponential Time Paradigms Through the Polynomial Time Lens

3 Branching via OPP Algorithms and Witness Compressions

In this section we present our results on branching algorithms. We first formally define
the notion of constructive AND-compositions and state how they exclude OPP algorithms.
Then we formally introduce witness compressions and show their close relation with OPP
algorithms. Subsequently, we point out implications to parameterized complexity.

Constructive AND-Compositions and Their Consequences.

I Definition 3.1 (Constructive AND-composition). Let L be a search problem, Q be a
parameterized search problem and d be a constant. We say that a pair of algorithms (A,B) is
a constructive AND-composition of degree d from L into Q if the following conditions hold:
1. A is given x1, x2, . . . , xt and outputs an instance (x, k) ∈ Σ∗ × N in time polynomial in∑t

i=1 |xi| such that k ≤ poly(maxi |xi| log(t)) and |x| ≤ poly(maxi |xi| log(t))td,
2. if for every i there exist yi such that (xi, yi) ∈ L, then B does the following: B takes as

input x1, x2, . . . , xt, the instance (x, k), and a certificate y such that (x, k, y) ∈ Q, and
outputs yi for every i such that

Pr[∀i : (xi, yi) ∈ L] ≥ exp
(
−poly

(
max
i
|xi|
)

log(t)
)
.

This is closely related to AND-compositions as studied in kernelization complexity (see
e.g. [7, Section 15.1.3]): it is more strict in the sense that the reduction needs to be Levin, but
more general in the sense that we only need a weak probabilistic guarantee on the output. We
will see that even constructive AND-compositions of degree 1 with trivial parameterizations
have interesting consequences.

I Theorem 3.2. If there is a constructive AND-composition of degree d from a PC-hard
search problem L into a parameterized search problem Q, then no polynomial time algorithm
finds solutions for every instance (x, k) of Q with probability exp(−poly(k)|x|1/d−Ω(1)), unless
NP ⊆ coNP/poly.

As one concrete application we obtain the Theorem as mentioned in the introduction:

I Theorem 1.1 (restated). If there is a polynomial time algorithm that, given a planar graph,
outputs a maximum independent set of n vertices with probability exp(−n1−ε) for some ε > 0,
then NP ⊆ coNP/poly.

Proof. Let L be the following search problem: given the adjacency list of a planar graph G
and integer θ, find an independent set of G of size at least θ. The decision variant of this
problem NP-complete and by inspecting the known reductions, the problem is also seen to
be PC-complete. Let Q be L with a trivial parameterization (e.g., the parameter equals 1).
We now give a constructive AND-composition of degree 1 from L to Q. Given instances
(G1 = (V1, E1), θ1), . . . , (Gt = (Vt, Et), θt), create an instance (G, θ∗) of Q where G is the
disjoint union of G1, . . . , Gt (i.e. it has each graph Gi as a connected component in it),
and θ∗ is picked uniformly at random from {1, . . . ,

∑t
i=1 |Vi|}. We see that with probability

1/
∑t
i=1 |Vi| ≥ exp (−poly (maxi |xi|) log(t)), we have that θ∗ equals the size of the maximum

independent set. Moreover, if we are given a maximum independent set of G, its intersection
with every component must be a maximum independent set in that component so if all
instances are YES instances we find maximum independent sets of size at least θi in Gi for
every i. Since (G, θ) is represented with poly(maxi |Vi|)t log(t) bits, we therefore found a
constructive AND-composition of degree 1, and no polynomial time algorithm finds solutions

A. Drucker, J. Nederlof, and R. Santhanam 36:9

for Q with probability exp(−|x|1−Ω(1)) by Theorem 3.2. This implies the statement since |x|
is n logn for n-vertex graphs. J

We remark the naïve guessing procedure here is not optimal (the proof is postponed to
the full version):

I Theorem 3.3. There exists a polynomial time algorithm that outputs a maximum inde-
pendent set of a planar graph on n vertices with probability exp(−n/

√
logn).

Witness Compressions. We will now give an equivalent interpretation of OPP algorithms
that paves the way for defining models of other paradigms in the next sections.

I Definition 3.4 ((Levin) Witness Compression). A (Levin) h(k,N)-witness compression for
a parameterized (search) problem Q is a (Levin) Monte-Carlo reduction from Q to CKT-Sat
that maps (x, k) with |x| = N to (y, n) with n ≤ h(k,N).

Note that having a h(k,N)-witness compression is equivalent to having a h(k,N + lg(N))-
witness compression since we can brute-force over all assignments of lg(N) input bits in
polynomial time. We say a (Levin) h(k,N)-witness compression is polynomial if h(k,N) ≤
poly(k) (or equivalently poly(k) + log(N)). The following lemma shows the equivalence of
witness compression and OPP algorithms.

I Lemma 3.5. A parameterized (search) problem has a (Levin) h(k,N)-witness compression
if and only if there is a polynomial time algorithm solving it (respectively, finding solutions)
with success probability at least 2−h(k,N).

The proof is postponed to the full version. The forward direction in both variants is immediate.
For the backward direction, we use the ‘Hash-Down lemma’ from [24] to prove both variants.
Our proof of the equivalence takes advantage of the fact that we allow randomized reductions
in the definition of witness compression. If we were to only allow deterministic reductions in
the definition, the equivalence would still hold under a sufficiently strong derandomization
hypothesis - we omit the details.

We emphasize the power of polynomial witness compression by revisiting a few FPT-
algorithms and observing that they give rise to efficient witness compressions. Marx [21]
observes that Vertex Cover and Feedback Vertex Set have a witness compression
with h(k) linear. Here, we add a few non-trivial witness compressions to this list with h(k)
quasi-linear. The relevant problem statements and proof of the following theorem can be
found in the full version. All these results go via the connection from Theorem 3.5.

I Theorem 3.6. Steiner Tree and Long Path have Levin O(k log k)-witness compres-
sions, and DFVS has a Levin O(k log3(k))-witness compression.

Implications to Parameterized Complexity. As mentioned in the introduction, polynomial
witness compression appears significantly more powerful than polynomial kernelization.
Indeed if a problem has an OR-kernelization,7 it is easily seen we have a polynomial witness
compression:

7 Where rather than computing one small instance from the initial instance as in kernelization, we compute
a list of instances at least one of which is in the language if and only if the original instance was, see
e.g.[17] where the name ‘disjunctive kernelization’ was used.

ESA 2016

36:10 Exponential Time Paradigms Through the Polynomial Time Lens

I Observation 3.7. If Q admits a polynomial (Levin) OR-kernelization to a problem in NP ,
it admits a polynomial (Levin) witness compression.

On the other hand, let us remark here that there may be problems in NP that admit
polynomial compressions8 but no polynomial witness compression: Wahlström [30] gives
an interesting polynomial compression of the K-cycle problem (see the full version for the
problem definition) to a language that is not in NP , and remarks that this seems to separate
polynomial kernelization from polynomial compression since it is not clear whether K-cycle
has polynomial witness compressions.

The above connection is relevant for kernelization complexity because Theorem 3.8
suggests that parameterized problems with AND-compositions have no OR-kernelizations.
Another interesting consequence obtained by combining Theorem 3.2 and Theorem 3.6 is
(since the problems at hand are easily seen to be PC-complete):

I Theorem 3.8. Steiner Tree, Long Path, and DFVS do not admit constructive
AND-compositions unless NP ⊆ coNP/poly.

As mentioned before, this is a useful fact especially for DFVS because the existence
of a polynomial compressions for this is a big open problem [6], and we currently only
know how to exclude polynomial compressions via AND- and OR-compressions Theorem 3.8.
So this indicates researchers attacking this open problem probably should not look for
AND-compressions.

Another useful implication concerns the following parameterized problem:

Independent Set (IS/pw) Parameter: pw

Instance: A graph G, path decomposition of G of width pw, integer θ.
Witness: An independent set of G of size at least θ.

As mentioned in the introduction, it is an important open question how fast this problem
can be solved using only polynomial space. We show that branching algorithms (which is a
subset of all polynomial space algorithms) are not useful here:

I Theorem 3.9. Suppose a polynomial time algorithm takes as input a path decomposition
of width pw of a graph G on n vertices, and outputs with probability exp(−poly(pw)n1−Ω(1))
a maximum independent set of G, then NP ⊆ coNP/poly.

Since the proof is very similar to the proof of Theorem 1.1, it is postponed to the full
version. Let us remark that several other interesting graph problems admit constructive
AND-compositions. For example, following Lemma 7 from [3] we have that

I Observation 3.10. Let L be a parameterized graph search problem such that for any pair
of graphs G1 and G2, and integer k ∈ N, (G1, k) ∈ L ∧ (G2, k) ∈ L ↔ (G1 ∪ G2, k) where
G1 ∪G2 is the disjoint union of G1 and G2. Then L admits a constructive AND-composition
of degree 1.

Similar as in [3], this implies hardness for several problems. We refer to [3] for the
definitions of these problems since our only goal is to point out the applicability of our
framework.

8 A compression is a kernelization where the target problem might be different (and crucially here, not
even in NP).

A. Drucker, J. Nederlof, and R. Santhanam 36:11

I Theorem 3.11. No polynomial time algorithm finds solutions for any instance (x, k)
of Cutwidth, Modified Cutwidth, Pathwidth, Branchwidth, Search Number,
Gate Matrix Layout, and Front Size with probability exp(−poly(k)|x|1−Ω(1)) unless
NP * coNP/poly.

Proof. Following [3], we have by Observation 3.10 that all the above problems admit
constructive AND-compositions. By inspection it can be seen that the reductions from these
problems to CKT-Sat (which exist since all the above problems are NP-complete) are all
Levin reductions, thus all problems are PC-complete. The claim follows from Theorem 3.2. J

4 Parity Compression

As mentioned before, witness compression tightly captures a large part of contemporary
FPT-algorithms, but still far from all of them. Motivated by this, we propose the following
natural generalization of witness compression, based on the definition of witness compression
as a reduction to CKT-Sat. A parity compression is a polynomial time Monte Carlo
reduction from the problem at hand to the ⊕CKT-Sat problem, defined as follows:

⊕CKT-Sat Parameter: n
Instance: A Boolean circuit C on n variables
Asked: Whether the parity of the size of the set {x ∈ {0, 1}n : C(x) = 1} is odd.

Analogous to witness compressions, we can interpret parity compressions as exponential time
algorithms by solving the resulting ⊕CKT-Sat instance in time 2n|x|O(1) (the analogue of
witness compressions was to solve the CKT-Sat instance by simple brute-force enumeration).
By an easy application of the Isolation Lemma of [29], there is a polynomial time Monte
Carlo reduction from CKT-Sat to ⊕CKT-Sat that increases the number of input variables
by O(polylog(|C|)). Thus parity compression is a generalization of witness compression. No
polynomial-time reduction in the reverse direction is known, and such a reduction (even
randomized) would imply a collapse of PH in light of Toda’s theorem [28].

While we are not yet able to show lower bounds for parity compressions since its study
is still in its infancy, we do argue in the full version that several interesting contemporary
algorithms (mainly, ones using inclusion/exclusion or group algebra) are exponential parities.
This motivates a very interesting future research direction:

I Open Problem 1. Find non-trivial evidence against a polynomial time Monte Carlo
reduction from CKT-Sat on n-variable circuits to ⊕CKT-Sat on n′ circuits where n′ << n.

Another goal would be to further exclude more polynomial space paradigms that are able to
solve Independent Set parameterized by the pathwidth:

I Open Problem 2. Find evidence against a polynomial time Monte Carlo reduction from
IS/pw to ⊕CKT-Sat where n = o(pw2).

5 Disjunctive Dynamic Programming

One natural other algorithmic paradigm unaddressed so far (as highlighted in Theorem 3.9
and Open Problem 2) is dynamic programming. We focus in this work on a subclass of
dynamic programming algorithms which we call ’disjunctive dynamic programming’ - this
corresponds to dynamic programming tables where the entries are Boolean ORs of previous

ESA 2016

36:12 Exponential Time Paradigms Through the Polynomial Time Lens

entries. Specifically, we say a disjunctive dynamic programming algorithm is a polynomial
time parameter reduction to the following problem:

CNF-Reach Parameter: n
Instance: A CNF-formula ϕ : {0, 1}n → {0, 1} with m clauses and n even, integer
` = poly(n).
Witness: x1, . . . , x` ∈ {0, 1}n/2 with x1 = 0 · · · 0,x` = 1 · · · 1 and ϕ(xixi+1) = 1 for every
0 ≤ i ≤ `− 1.

In the full version we show that IS/pw is almost equivalent to CNF-Reach9 by giving
almost tight reductions between the two problems. Thus IS/pw can be seen as complete for
the class of problems efficiently solvable with disjunctive dynamic programming. We feel such
a reduction expresses the hardness of a problem typically solved with dynamic programming
better than e.g., a reduction to CNF-Sat or even CKT-Sat since these problem do have
small witnesses and polynomial-space algorithms. Next to Theorem 3.9, this may be seen as
additional evidence that finding fast space-efficient algorithms for IS/pw might be very hard
(e.g., we either need to exploit the succinct representation via CNF-formula’s or find new
algorithms for the directed reachability problem).

We also show that an algorithm for Set Cover is a disjunctive dynamic programming
algorithm: we reduce Set Cover to CNF-Reach in the full version.

6 Directions for Further Research

We conclude this paper with a few open questions. First, for several problems, the existence of
polynomial witness compression is open (see the full version for missing problem definitions):

I Open Problem 3. Do Subset Sum, Knapsack, Knapsack/Weight-Value, K-Cycle
or Disjoint Paths have polynomial witness compressions?

Note that currently, it is not clear whether there exists a parameterized problem that has
a polynomial compression but no polynomial witness compression, although as suggested
in [30] the K-Cycle would be a good candidate for such a problem.

One algorithmic paradigm not addressed is exponential time divide and conquer [15],
which is also closely related to applications of Savitch’s Theorem as used by [19]:

I Open Problem 4. Is there a good model of exponential time divide and conquer based
on reductions to a succinct version of a natural problem? Can it solve IS/pw in O∗(2o(pw2))
time?

Ambitiously, having finer-grained lower bounds would be very insightful:

I Open Problem 5. Can we rule out linear witness compressions for some problems with
quasilinear witness compressions under standard assumptions?

References
1 Michael Alekhnovich, Allan Borodin, Joshua Buresh-Oppenheim, Russell Impagliazzo,

Avner Magen, and Toniann Pitassi. Toward a model for backtracking and dynamic pro-
gramming. In 20th Annual IEEE Conference on Computational Complexity (CCC 2005),

9 Such a reduction was already conjectured in the PhD-thesis of the second author [23, Page 35]

A. Drucker, J. Nederlof, and R. Santhanam 36:13

11-15 June 2005, San Jose, CA, USA, pages 308–322. IEEE Computer Society, 2005.
doi:10.1109/CCC.2005.32.

2 Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis A. Papakonstantinou, and Bangsheng
Tang. Width-parametrized SAT: time–space tradeoffs. Theory of Computing, 10:297–339,
2014. doi:10.4086/toc.2014.v010a012.

3 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

4 Liming Cai and Jianer Chen. On the amount of nondeterminism and the power of verifying.
SIAM Journal on Computing, 26(3):733–750, 1997. doi:10.1137/S0097539793258295.

5 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Extended formulations in
combinatorial optimization. 4OR, 8(1):1–48, 2010. doi:10.1007/s10288-010-0122-z.

6 Marek Cygan, Fedor Fomin, Bart M.P. Jansen, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, and Saket Saurabh Michal Pilipczuk. Open problems for fpt school
2014.

7 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

8 Evgeny Dantsin and Edward A. Hirsch. Satisfiability certificates verifiable in subexponen-
tial time. In Karem A. Sakallah and Laurent Simon, editors, Theory and Applications
of Satisfiability Testing – SAT 2011 – 14th International Conference, SAT 2011, Ann Ar-
bor, MI, USA, June 19-22, 2011. Proceedings, volume 6695 of Lecture Notes in Computer
Science, pages 19–32. Springer, 2011. doi:10.1007/978-3-642-21581-0_4.

9 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:
10.1145/2629620.

10 Andrew Drucker. Nondeterministic direct product reductions and the success probability
of SAT solvers. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 736–745. IEEE Computer
Society, 2013. doi:10.1109/FOCS.2013.84.

11 Andrew Drucker. New limits to classical and quantum instance compression. SIAM J.
Comput., 44(5):1443–1479, 2015. doi:10.1137/130927115.

12 David Eppstein. Quasiconvex analysis of multivariate recurrence equations for backtracking
algorithms. ACM Trans. Algorithms, 2(4):492–509, October 2006. doi:10.1145/1198513.
1198515.

13 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. doi:10.1016/j.jcss.2010.06.
007.

14 Oded Goldreich. Computational complexity – a conceptual perspective. Cambridge Univer-
sity Press, 2008.

15 Yuri Gurevich and Saharon Shelah. Expected computation time for hamiltonian path
problem. SIAM J. Comput., 16(3):486–502, 1987. doi:10.1137/0216034.

16 Paul Helman. A common schema for dynamic programming and branch and bound algo-
rithms. Journal of the ACM, 36(1):97–128, 1989.

17 Stefan Kratsch. Recent developments in kernelization: A survey. Bulletin of the EATCS,
113, 2014. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/285.

18 Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator theorem.
SIAM J. Comput., 9(3):615–627, 1980. doi:10.1137/0209046.

19 Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. Planar k-path in subexponential
time and polynomial space. In Petr Kolman and Jan Kratochvíl, editors, Graph-Theoretic

ESA 2016

http://dx.doi.org/10.1109/CCC.2005.32
http://dx.doi.org/10.4086/toc.2014.v010a012
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1137/S0097539793258295
http://dx.doi.org/10.1007/s10288-010-0122-z
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-642-21581-0_4
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1109/FOCS.2013.84
http://dx.doi.org/10.1137/130927115
http://dx.doi.org/10.1145/1198513.1198515
http://dx.doi.org/10.1145/1198513.1198515
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1137/0216034
http://eatcs.org/beatcs/index.php/beatcs/article/view/285
http://dx.doi.org/10.1137/0209046

36:14 Exponential Time Paradigms Through the Polynomial Time Lens

Concepts in Computer Science – 37th International Workshop, WG 2011, Teplá Monastery,
Czech Republic, June 21-24, 2011. Revised Papers, volume 6986 of Lecture Notes in Com-
puter Science, pages 262–270. Springer, 2011. doi:10.1007/978-3-642-25870-1_24.

20 Dániel Marx. What’s next? reductions other than kernelization. Talk at WorKer 2010:
Workshop on Kernelization, Leiden, The Netherlands, 2010.

21 Dániel Marx. What’s next? future directions in parameterized complexity. In Hans L.
Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate
Algorithmic Revolution and Beyond – Essays Dedicated to Michael R. Fellows on the Oc-
casion of His 60th Birthday, volume 7370 of Lecture Notes in Computer Science, pages
469–496. Springer, 2012. doi:10.1007/978-3-642-30891-8_20.

22 Jesper Nederlof. Saving space by algebraization. Talks at seminars in Utrecht (January
8) and UiB (Februari 11), UiB ICT Research school (May 18), STOC, Dagstuhl ‘Exact
Complexity of NP-hard Problems’, 2010.

23 Jesper Nederlof. Space and Time Efficient Structural Improvements of Dynamic Program-
ming Algorithms. PhD thesis, University of Bergen, 2011. URL: http://www.win.tue.nl/
~jnederlo/PhDThesis.pdf.

24 Ramamohan Paturi and Pavel Pudlák. On the complexity of circuit satisfiability. In
Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Com-
puting, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 241–250. ACM,
2010. doi:10.1145/1806689.1806724.

25 Michal Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on
structural decompositions of graphs. In Nicolas Ollinger and Heribert Vollmer, editors,
33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-
20, 2016, Orléans, France, volume 47 of LIPIcs, pages 57:1–57:15. Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.57.

26 Rahul Santhanam. On separators, segregators and time versus space. In Computational
Complexity, 16th Annual IEEE Conference on, 2001., pages 286–294, 2001. doi:10.1109/
CCC.2001.933895.

27 Uwe Schöning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In
40th Annual Symposium on Foundations of Computer Science, FOCS’99, 17-18 October,
1999, New York, NY, USA, pages 410–414. IEEE Computer Society, 1999. doi:10.1109/
SFFCS.1999.814612.

28 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.,
20(5):865–877, 1991. doi:10.1137/0220053.

29 Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions. Theor.
Comput. Sci., 47(3):85–93, 1986. doi:10.1016/0304-3975(86)90135-0.

30 Magnus Wahlström. Abusing the tutte matrix: An algebraic instance compression for
the K-set-cycle problem. In Natacha Portier and Thomas Wilke, editors, 30th Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS 2013, Febru-
ary 27 – March 2, 2013, Kiel, Germany, volume 20 of LIPIcs, pages 341–352. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2013. URL: http://www.dagstuhl.de/
dagpub/978-3-939897-50-7, doi:10.4230/LIPIcs.STACS.2013.341.

31 Ryan Williams. Inductive time-space lower bounds for sat and related problems. computa-
tional complexity, 15(4):433–470, 2006.

http://dx.doi.org/10.1007/978-3-642-25870-1_24
http://dx.doi.org/10.1007/978-3-642-30891-8_20
http://www.win.tue.nl/~jnederlo/PhDThesis.pdf
http://www.win.tue.nl/~jnederlo/PhDThesis.pdf
http://dx.doi.org/10.1145/1806689.1806724
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.57
http://dx.doi.org/10.1109/CCC.2001.933895
http://dx.doi.org/10.1109/CCC.2001.933895
http://dx.doi.org/10.1109/SFFCS.1999.814612
http://dx.doi.org/10.1109/SFFCS.1999.814612
http://dx.doi.org/10.1137/0220053
http://dx.doi.org/10.1016/0304-3975(86)90135-0
http://www.dagstuhl.de/dagpub/978-3-939897-50-7
http://www.dagstuhl.de/dagpub/978-3-939897-50-7
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.341

	Introduction
	Preliminaries and Notation
	Branching via OPP Algorithms and Witness Compressions
	Parity Compression
	Disjunctive Dynamic Programming
	Directions for Further Research

