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Abstract
While randomized online algorithms have access to a sequence of uniform random bits, determ-
inistic online algorithms with advice have access to a sequence of advice bits, i.e., bits that are
set by an all-powerful oracle prior to the processing of the request sequence. Advice bits are at
least as helpful as random bits, but how helpful are they? In this work, we investigate the power
of advice bits and random bits for online maximum bipartite matching (MBM).

The well-known Karp-Vazirani-Vazirani algorithm [24] is an optimal randomized (1 − 1
e )-

competitive algorithm for MBM that requires access to Θ(n logn) uniform random bits. We
show that Ω(log( 1

ε )n) advice bits are necessary and O( 1
ε5n) sufficient in order to obtain a (1− ε)-

competitive deterministic advice algorithm. Furthermore, for a large natural class of deterministic
advice algorithms, we prove that Ω(log log logn) advice bits are required in order to improve on
the 1

2 -competitiveness of the best deterministic online algorithm, while it is known that O(logn)
bits are sufficient [9].

Last, we give a randomized online algorithm that uses cn random bits, for integers c ≥ 1, and
a competitive ratio that approaches 1− 1

e very quickly as c is increasing. For example if c = 10,
then the difference between 1− 1

e and the achieved competitive ratio is less than 0.0002.
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1 Introduction

Online Bipartite Matching. The maximum bipartite matching problem (MBM) is a well-
studied problem in the area of online algorithms [24, 5, 12]. Let G = (A,B,E) be a bipartite
graph with A = [n] := {1, . . . , n} and B = [m], for some integers n,m. We assume m = Θ(n)
allowing bounds to be stated as simple functions of n rather than of n and m. The A-vertices
together with their incident edges arrive online, one at a time, in some adversarial chosen order
π : [n]→ [n]. Upon arrival of a vertex a ∈ A, the online algorithm has to irrevocably decide
to which of its incident (and yet unmatched) B-vertices it should be matched. The considered
quality measure is the well-established competitive ratio [32], where the performance of an

∗ Research supported in part by the ANR projects ANR-11-BS02-0015, ANR-15-CE40-0015, ANR-12-
BS02-005, by the Icelandic Research Fund grants-of-excellence no. 120032011 and 152679-051 and by the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme no. 648032.

© Christoph Dürr, Christian Konrad, and Marc Renault;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 37; pp. 37:1–37:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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online algorithm is compared to the performance of the best offline algorithm: A randomized
online algorithm A for MBM is c-competitive if the matching M output by A is such that
E|M | ≥ c · |M∗|, where the expectation is taken over the random coin flips, and M∗ is a
maximum matching.

In 1990, Karp, Vazirani and Vazirani [24] initiated research on online MBM and presented
a (1 − 1

e )-competitive randomized algorithm denoted KVV. It chooses a permutation σ :
[m]→ [m] of the B-vertices uniformly at random and then runs the algorithm Ranking(σ),
which matches each incoming A-vertex a to the free incident B-vertex b of minimum rank (i.e.,
σ(b) < σ(c) for all free incident vertices c 6= b). If there is no free B-vertex, then a remains
unmatched. They showed that no online algorithm has a better competitive ratio than 1− 1

e ,
implying that KVV is optimal. For deterministic online algorithms, it is well-known that
the Greedy matching algorithm, which can be seen as running Ranking(σ) using a fixed
arbitrary σ, is 1

2 -competitive, and is optimal for the class of deterministic online algorithms.

Improving on 1 − 1
e
. Additional assumptions are needed in order to improve on the

competitive ratio 1− 1
e . For example, Feldman et al. [17] introduced the online stochastic

matching problem, where a bipartite graph G′ = (A′, B′, E′) and a probability distribution
D is given to the algorithm. The request sequence then consists of vertices of A′ that are
drawn according to D. Feldman et al. showed that the additional knowledge can be used
to improve the competitive ratio to 0.67, which has subsequently been further improved
[3, 27]. Another example is a work by Mahdian and Yan [26], who considered the classical
online bipartite matching problem with a random arrival order of vertices. They analysed
the KVV algorithm for this situation and proved that it is 0.696-competitive.

Online Algorithms with Advice. It is a common theme in online algorithms to equip an
algorithm with additional knowledge that allows it to narrow down the set of potential future
requests and, thus, design algorithms that have better competitive ratios as compared to
algorithms that have no knowledge about the future. Additional knowledge can be provided
in many different ways, e.g. access to lookahead [22, 19], probability distributions about
future requests [17, 26], or even by giving an isomorphic copy of the input graph to the
algorithm beforehand [21]. Dobrev et al. [13] and later Emek et al. [15] first quantified the
amount of additional knowledge (advice) given to an online algorithm in an information
theoretic sense. They showed that a specific problem requires at least b(n) bits of advice,
for some function b, in order to achieve optimality [13] or in order to achieve a particular
competitive ratio [15]. Advice lower bounds are meaningful in practice as they apply to any
potential type of additional information that could be given to an algorithm.

In the advice model, a computationally all-powerful oracle is given the entire request
sequence and computes an advice string that is provided to the algorithm. Algorithms
with advice are not usually designed with practical considerations in mind but to show a
theoretical limit on what can be done. As such, the algorithms are often impractical due
to the nature of the advice or the complexity in calculating the advice. However, from
a theoretical perspective, advice algorithms are necessary to determine the exact advice
complexity of online problems (how many advice bits are necessary and sufficient) and thus
provide limits on the achievable and more practically relevant lower bounds.

Our Objective and Previous Results. Our objectives are to determine the advice complexity
of MBM and to investigate the power of random and advice bits for this problem.



C. Dürr, C. Konrad, and M. Renault 37:3

A starting point is a result of Böckenhauer et al. [9], who gave a method that allows the
transformation of a randomized online algorithm into a deterministic one with advice with a
similar approximation ratio. More precisely, given a randomized online algorithm A for a
minimization problem P with approximation factor c and possible inputs I(n) of length n,
Böckenhauer et al. showed that a (1 + ε)c-competitive deterministic online algorithm B with
logn+ 2 log logn+ log log |I(n)|

log(1+ε) bits1 of advice can be deduced from A, for any ε > 0, where
log is the binary logarithm in this paper. The calculation of the advice and the computations
executed by B require exponential time, since A has to be simulated on all potential inputs
I(n) on all potential random coin flips.

The technique of Böckenhauer et al. [9] can also be applied to maximization problems
such as MBM2. Applied to the KVV algorithm, we obtain:

I Theorem 1. There is a deterministic online algorithm with O(logn) bits of advice for
MBM with competitive ratio (1− ε)(1− 1/e), for any ε > 0.

This result is complemented by a recent result of Mikkelsen [28], who showed that for
repeatable problems (see [28] for details) such as MBM, no deterministic online algorithm
with advice sub-linear in n has a substantially better competitive ratio than any randomized
algorithm without advice. Thus, using O(logn) advice bits, a (1 − ε)(1 − 1

e )-competitive
deterministic algorithm can be obtained, and no algorithm using o(n) advice bits can
substantially improve on this result. Furthermore, Miyazaki [29] showed that Θ(log(n!)) =
Θ(n logn) advice bits are necessary and sufficient in order to compute a maximum matching.

Our Results on Online Algorithms with Advice. Consider a deterministic online algorithm
with f(n) bits of advice for MBM. Our previous exposition of related works shows that the
ranges f(n) ∈ Ω(logn) ∩ o(n) and f(n) ∈ Θ(n logn) are well understood. In this work, we
thus focus on the ranges f(n) ∈ o(logn) and f(n) ∈ Ω(n)∩ o(n logn). Our first set of results
concerns (1− ε)-competitive deterministic advice algorithms. We show:
1. There is a deterministic (1− ε)-competitive online algorithm, using O( 1

ε5n) advice bits
for MBM.

2. Every deterministic (1− ε)-competitive online algorithm for MBM uses Ω(log( 1
ε )n) bits

of advice.
Our lower bound result is obtained by a reduction from the string guessing game of Böcken-
hauer et al. [6], a problem that is difficult even in the presence of a large number of advice
bits. This technique has repeatedly been applied for obtaining advice lower bounds, e.g.
[1, 20, 10, 2, 11, 4]. Our algorithm simulates an augmenting-paths-based algorithm by Eggert
et al. [14], that has originally been designed for the data streaming model, with the help of
advice bits. It is fundamentally different to the KVV algorithm, however, inspired by the
simplicity of KVV, we are particularly interested in the following class of algorithms:

I Definition 2 (Ranking-algorithm). An online algorithm A for MBM is called Ranking-
algorithm if it follows the steps: (1) Determine a ranking σ; (2) Return Ranking(σ).

The KVV algorithm is a Ranking-algorithm, where in step (1), the permutation σ is
chosen uniformly at random. The algorithm described in Theorem 1 is a deterministic
Ranking-algorithm with O(logn) bits of advice that computes the permutation σ from the

1 Throughout the paper, logarithms, where the base is omitted, are implicitly binary logarithms.
2 It is straightforward to adapt the proof of Theorem 5 of [9] accordlingly. For completeness, a proof is

given in the full version of this paper.
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available advice bits. While we cannot answer the question how many advice bits are needed
for deterministic online algorithms in order to obtain a competitive ratio strictly larger than
1
2 (and thus to improve on Greedy), we make progress concerning Ranking algorithms:
3. Every Ranking-algorithm that chooses σ from a set of at most C log logn permutations,

for a small constant C, has approximation factor at most ( 1
2 + δ), for any δ > 0.

The previous result implies that every ( 1
2 + δ)-competitive deterministic online Ranking-

algorithm requires Ω(log log logn) advice bits.
Next, since the computation of the advice and the algorithm of Theorem 1 are not

efficient, we are interested in fast and simple Ranking algorithms. We identify a subclass of
Ranking algorithms, denoted Category algorithms, that leads to interesting results, both
as deterministic algorithms with advice and randomized algorithms without advice.

I Definition 3 (Category-algorithm). A Ranking-algorithm A is called a Category-
algorithm if it follows the steps:

Determine a category function c : B → {1, 2, 3, . . . , 2k} for some integer k ≥ 1 with
2k < m;
Let σc : [m]→ [m] be the unique permutation of the B-vertices such that for two vertices
b1, b2 ∈ B : σc(b1) < σc(b2) if and only if c(b1) < c(b2) or (c(b1) = c(b2) and b1 < b2).
Return Ranking(σc).

Categories can be seen as coarsened versions of rankings, where multiple items with adjacent
ranks are grouped into the same category and within a category, the natural ordering by
vertex identifier is used. We prove the following:
4. There is a deterministic 3

5 -competitive online Category-algorithm, using m bits of
advice (and thus two categories).

The oracle determines the categories depending on whether a B-vertex would be matched by
a run of Greedy. We believe that this type of advice is particularly interesting since it does
not require the oracle to compute an optimal solution.

Our Results on Randomized Algorithms. Last, we consider randomized algorithms with
limited access to random bits. The KVV-algorithm selects a permutation σ uniformly at
random, and, since there are m! potential permutations, log(m!) = Θ(m logm) random bits
are required in order to obtain a uniform choice. We are interested in randomized algorithms
that employ fewer random bits. We consider the class of randomized Category-algorithms,
where the categories of the B-vertices are chosen uniformly at random. We show:
5. There is a randomized Category-algorithm using km random bits with approximation

factor 1−
(

2k

2k+1

)2k
, for any integer k ≥ 1.

For k = 1, the competitive ratio evaluates to 5/9. It approaches 1 − 1/e very quickly, for
example, for k = 10 the absolute difference between the competitive ratio and 1 − 1/e is
less than 0.0002. Our analysis is based on the analysis of the KVV algorithm by Birnbaum
and Mathieu [5] and uses a result by Konrad et al. [25] concerning the performance of the
Greedy algorithm on a randomly sampled subgraph which was originally developed in the
context of streaming algorithms.

The results as described above are summarized in Table 1.

Models for Online Algorithms with Advice. The two main models for online computation
with advice are the per-request model of Emek et at. [15] and the tape model of Böckenhauer
et al. [7]. Both models were inspired by the original model proposed by Dobrev et al. [13]. In
the model of Emek et at. [15], a bit string of a fixed length is received by the algorithm with



C. Dürr, C. Konrad, and M. Renault 37:5

Table 1 Overview of our results, sorted with decreasing competitiveness.

Deterministic ratio # of advice bits Description and Authors
1 Θ(n logn) (Miyazaki [29])
1 − ε O( 1

ε5 n) Application of Eggert et al. [14] (here)
1 − ε Ω(log( 1

ε
)n) LB holds for any online algorithm (here)

1 − 1
e

+ ε Ω(n) LB holds for any online algorithm (Mikkelsen [28])
1 − 1

e
O(logn) Exp. time Ranking-alg. (Böckenhauer et al. [9])

3
5 m Category-algorithm using two categories (here)
1
2 + ε Ω(log log logn) LB holds for Ranking-algorithms (here)
Randomized ratio # of random bits Description and Authors
1 − 1

e
m logm KVV algorithm (Karp, Vazirani, Vazirani [24])

1 −
(

2k

2k+1

)2k
km Category-algorithm using 2k categories (here)

each request for a total amount of advice that is at least linear in the size of the input. For
this work, we use the tape model of Böckenhauer et al. [7], where the algorithm has access to
an infinite advice string that it can access at any time (see Section 2 for a formal definition),
allowing for advice that is sub-linear in the size of the input. Many online problems have
been studied in the setting of online algorithms with advice (e.g. metrical task system [15],
k-server problem [15, 9, 30, 20], paging [13, 7], bin packing problem [31, 11, 2], knapsack
problem [8], reordering buffer management problem [1], list update problem [10], minimum
spanning tree problem [4] and others). Interestingly, a variant of the algorithm with advice
for list update problem of [10] was used to gain significant improvements in the compression
rates for Burrows-Wheeler transform compression schemes [23]. The information-theoretic
lower bound techniques for online algorithms with advice proposed by Emek et al. [15] applies
to randomized algorithms and uses a reduction to a matching pennies game (essentially
equivalent to the string guessing game). The reduction technique using the string guessing
game of Böckenhauer et al. [6] is a refinement specifically for deterministic algorithms of the
techniques of Emek et al.

Outline. Preliminaries are discussed in Section 2. Our (1− ε)-competitive algorithm and a
related advice lower bound are presented in Section 3. Then, in Section 4, we give the advice
lower bound for ( 1

2 + ε)-competitive Ranking-algorithms. Last, in Section 5, we consider
our randomized Category algorithm and our 3

5 -competitive advice Category algorithm.

2 Preliminaries

Unless stated otherwise, we consider a bipartite input graph G = (A,B,E) with A = [n] and
B = [m], for integers m,n such that m = Θ(n). The neighbourhood of a vertex v in graph
G is denoted by ΓG(v). Let M be a matching in G. We denote the set of vertices matched
in M by V (M). For a vertex v ∈ V (M), M(v) denotes the vertex that is matched to v
in M . Generally, we write M∗ to denote a maximum matching, i.e., a matching of largest
cardinality. For A′ ⊆ A,B′ ⊆ B, opt(A′, B′) denotes the size of a maximum matching in
G[A′ ∪B′], the subgraph induced by A′ ∪B′.

The Ranking Algorithm. Given permutations π : [n] → [n] and σ : [m] → [m], we write
Ranking(G, π, σ) to denote the output matching of the Ranking algorithm when the A-
vertices arrive in the order given by π, and the B-vertices are ranked according to σ. We
may write Ranking(σ) to denote Ranking(G, π, σ) if π and G are clear from the context.

ESA 2016
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The Greedy Matching Algorithm. Greedy processes the edges of a graph in arbitrary
order and inserts the current edge e into an initially empty matching M if M ∪ {e} is a
matching. It computes a maximal matching which is of size at least 1

2 |M
∗|.

Category Algorithms. For an integer k, let c : [m] → {1, . . . , 2k} be an assignment of
categories to the B-vertices. Then let σc : [m] → [m] be the unique permutation of the
B-vertices such that for two vertices b1, b2 ∈ B : σc(b1) < σc(b2) if and only if c(b1) < c(b2)
or (c(b1) = c(b2) and b1 < b2). The previous definition of σc is based on the natural ordering
of the B-vertices. This gives a certain stability to the resulting permutation, since changing
the category of a single vertex b does not affect the relative order of the vertices B \ {b}.

The Tape Advice Model. For a given request sequence I of length n for a maximization
problem, an online algorithm with advice in the tape advice model computes the output
sequence alg(I,Φ) = 〈y1, y2, . . . , yn〉, where yi is a function of the requests from 1 to i of I
and the infinite binary advice string Φ. Algorithm alg has an advice complexity of b(n) if,
for all n and any input sequence of length n, alg reads no more than b(n) bits from Φ.

3 Deterministic (1 − ε)-competitive Advice Algorithms

3.1 Algorithm With O( 1
ε5 n) Bits of Advice

The main idea of our online algorithm is the simulation of an augmenting-paths-based
algorithm with the help of advice bits. We employ the deterministic algorithm of Eggert
et al. [14] that has been designed for the data streaming model. It computes a (1 − ε)-
approximate matching, using O( 1

ε5 ) passes over the edges of the input graph, where each pass
i is used to compute a matching Mi in a subgraph Gi = G[Ai ∪Bi], for some subsets Ai ⊆ A
and Bi ⊆ B, using the Greedy matching algorithm. In the first pass, M1 is computed in G
and thus constitutes a 1

2 -approximation. Let M = M1. Then, O( 1
ε2 ) phases follow, where

in each phase, a set of disjoint augmenting paths is computed using O( 1
ε3 ) applications of

the Greedy matching algorithm (and thus O( 1
ε3 ) passes per phase). At the end of a phase,

M is augmented using the augmenting-paths found in this phase. Upon termination of the
algorithm, M constitutes a (1− ε)-approximation (see [14] for the analysis).

The important property that allows us to translate this algorithm into an online algorithm
with advice is the simple observation that the computed matching M is a subset of

⋃
iMi.

For every i, we encode the vertices Ai ⊆ A and Bi ⊆ B that constitute the vertices of Gi
using n+m advice bits. Furthermore, for every vertex a ∈ A, we also encode the index j(a) of
the matching Mj(a) that contains the edge that is incident to a in the final matching M (if a
is not matched in M , then we set j(a) = 0). Last, using O(logn) bits, we encode the integers
n and m, using a self-delimited encoding. Parameters n,m are required in order to determine
the word size that allows the storage of the indices j(a), and to determine the subgraphs Gi.
The total number of advice bits is hence O( 1

ε5 (n+m) + log( 1
ε5 )(m) + log(n)) = O( 1

ε5n).
After having read the advice bits, our online algorithm computes the O( 1

ε5 ) Greedy
matchings Mi simultaneously in the background while receiving the requests. Upon arrival
of an a ∈ A, we match it to the b ∈ B such that ab ∈Mj(a) incident to a if j(a) ≥ 1, and we
leave it unmatched if j(a) = 0. We thus obtain the following theorem:

I Theorem 4. For every ε > 0, there is a (1− ε)-competitive deterministic online algorithm
for MBM that uses O( 1

ε5n) bits of advice.
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3.2 Ω(log(1
ε
)n) Advice Lower Bound

We complement the advice algorithm of the previous section with an Ω(log( 1
ε )n) advice lower

bound for (1− ε)-competitive deterministic advice algorithms. To show this, we make use of
the lower bound techniques of [6] using the string guessing game, which is defined as follows.

I Definition 5 (q-sgkh [6]). The string guessing problem with known history over an alphabet
Σ of size q ≥ 2 (q-sgkh) is an online minimization problem. The input consists of n and
a request sequence σ = r1, . . . , rn of the characters, in order, of an n length string. An
online algorithm A outputs a sequence a1, . . . , an such that ai = fi(n, r1, . . . , ri−1) ∈ Σ for
some computable function fi. An important aspect of this problem is that the algorithm
needs to produce its output character before the corresponding request: request ri is revealed
immediately after the algorithm outputs ai. The cost of A is the Hamming distance between
a1, . . . , an and r1, . . . , rn.

In [6], the following lower bound on the number of advice bits is shown for q-sgkh.

I Theorem 6 ([6]). Consider an input string of length n for q-sgkh. The minimum
number of advice bits for any deterministic online algorithm that is correct for more than
αn characters, for 1

q ≤ α < 1, is ((1 −Hq(1 − α)) log2 q)n, where Hq(p) = p logq(q − 1) −
p logq p− (1− p) logq(1− p) is the q-ary entropy function.

First, we define a sub-graph that is used in the construction of the lower bound sequence.

I Definition 7. A bipartite graph is c-semi complete, if it is isomorphic to G = (A,B,E)
with A = {a1, . . . , ac}, B = {b1, . . . , bc}, and E = {ai, bj : j ≥ i}.

The following lemma presents the reduction from q-sgkh to MBM.

I Lemma 8. For an integer c ≥ 3, suppose that there is a deterministic ρ-competitive online
algorithm for MBM, using bn bits of advice, where 1− 1

c + 1
c! ≤ ρ < 1. Then, there exists

a deterministic algorithm for c!-sgkh, using cbn bits of advice, that is correct for at least
(1− (1− ρ)c)n characters of the n-length string.

Proof. Let algmat be a deterministic ρ-competitive online algorithm for MBM, using bn
bits of advice, with 1 − 1

c + 1
c! ≤ ρ, for an integer c ≥ 3. We will present an algorithm

algc!-sgkh that, in an online manner, will generate a request sequence Imat based on its input,
I (of length n), that can be processed by algmat. Further, the advice received by algc!-sgkh
will be the advice that algmat requires for Imat. As shown below, the length of Imat is cn,
hence algc!-sgkh requires cbn bits of advice. The solution produced by algmat on Imat will
define the output produced by algc!-sgkh.

Suppose first that the entire input sequence I is known in advance (we will argue later
how to get around this assumption). Let Π be an enumeration of all the permutations of
length c, and let g : Σ→ {1, . . . , c!} be a bijection between Σ, the alphabet of the c!-sgkh
problem, and an index of a permutation in Π. The request sequence Imat has a length of
cn, consisting of n distinct c-semi-complete graphs, where each graph is based on a request
of I. That is, for each request ri in I, we append c requests to Imat that correspond to the
A-vertices of a c-semi-complete graph, where the indices of the B-vertices are permuted
according to the permutation Π[g(ri)].

Since I is not known in advance, we must construct Imat in an online manner while
predicting the requests rj . For each request rj , the procedure is as follows:

Let Ij−1
mat be the c(j − 1)-length prefix of Imat. Note that when predicting request rj ,

requests r1, . . . , rj−1 have already been revealed, and Ij−1
mat can thus be constructed. The

ESA 2016
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algorithm algc!-sgkh simulates algmat on Ij−1
mat followed by another c-semi-complete graph

Gj = (Aj , Bj , Ej) such that, for 1 ≤ k ≤ c, when vertex ak ∈ Aj is revealed, the B-vertices
incident to ak correspond exactly to the unmatched B-vertices of Bj in the current matching
of algmat. By construction, algmat computes a perfect matching in Gj . The computed
perfect matching corresponds to a permutation π at some index z of Π, and algorithm
algc!-sgkh outputs g−1(z) as a prediction for rj .

Consider a run of algmat on Imat. If algmat computes a perfect matching on the jth
semi-complete graph, then our algorithm predicted rj correctly. Similarly, if this matching is
not perfect, then our algorithm failed to predict rj . Let ν be the total number of imperfect
matchings, let algmat(Imat) denote the matching computed by algmat on Imat, and let
opt(Imat) denote a perfect matching in the graph given by Imat. Then:

|algmat(Imat)| ≤ |opt(Imat)| − ν ⇐⇒ ν ≤ |opt(Imat)| − ρ · |opt(Imat)| = (1− ρ)cn . J

We prove now the main lower bound result of this section.

I Theorem 9. For an integer c ≥ 3, any deterministic online algorithm with advice for MBM
requires at least

(
(1−Hq(1−α))

2 log c
)
n bits of advice to be ρ-competitive for 1− 1

c + 1
c! ≤ ρ < 1,

where Hq is the q-ary entropy function and α = 1− (1− ρ)c.

Proof. For 1− 1
c + 1

c! ≤ ρ < 1, let algmat be a deterministic ρ-competitive online algorithm
for MBM, using bn bits of advice. By Lemma 8, there exists an algorithm for c!-sgkh
that uses cbn bits of advice and is correct for at least αn characters of the n-length input
string. The bounds on ρ and c imply 1/(c!) ≤ α ≤ 1. Thus, Theorem 6 implies cbn ≥
((1−Hq(1− α)) log(c!))n and, hence,

b ≥ (1−Hq(1− α))
c

log(c!) ≥ (1−Hq(1− α))
2 log c, as c! ≥ cc/2. J

Setting ε = 1/(2c) < 1/c− 1/(c!) for all c ≥ 3, we get the following corollary. Note that,
as ρ approaches 1 from below, α also approaches 1 from below and Hq(1− α) approaches 0.

I Corollary 10. For any 0 < ε ≤ 1/6, any (1− ε)-competitive deterministic online algorithm
with advice for MBM requires O(log( 1

ε )n) bits of advice.

4 Advice Lower Bound for Ranking Algorithms

Let σ1, . . . , σk : [n] → [n] be rankings. We will show that there is a 2n-vertex graph
G = (A,B,E) and an arrival order π such that |Ranking(G, π, σi)| ≤ n( 1

2 + ε) + o(n), for
every σi and every constant ε > 0, while G contains a perfect matching. Furthermore, the
construction is such that k ∈ Ω(log logn).

The key property required for our lower bound is the fact that we can partition the set
of B-vertices into disjoint subsets B1, . . . , Bq, each of large enough size, such that for every
Bi with Bi = {b1, . . . , bp} and b1 < b2 < · · · < bp, the sequence (σj(bi))i is monotonic, for
every 1 ≤ j ≤ k. In other words, the ranks of the nodes b1, . . . , bp appear in the rankings σi
in either increasing or decreasing order. For each set Bi, we will construct a vertex-disjoint
subgraph Gi on which Ranking computes a matching that is close to a 1

2 -approximation.
The subgraphs Gi are based on graph Hz that we define next.
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V U V U

v2 u1 v1 u5

v4 u2 v3 u6

v6 u3 v5 u7

v8 u4 v7 u8 Ranking: in-
creasing ranks

Ranking: de-
creasing ranks

perfect matching

Figure 1 Left: U -vertices arrive in order u1, u2, . . . , u8. ’Ranking: increasing ranks’ shows the
resulting matching when σ(v1) < σ(v2) < · · · < σ(v8). ’Ranking: decreasing ranks’ shows the
resulting matching when σ(v1) > σ(v2) > · · · > σ(v8). Right: Perfect matching.

Construction of Hz. We construct now graph Hz = (U, V, F ) with U = V = [z], for some
even integer z, on which Ranking computes a matching that is close to a 1

2 -approximation,
provided that the V vertices are ranked in either increasing or decreasing order.

Let U = {u1, . . . uz} be so that ui arrives before ui+1 in π. Let V = {v1, . . . vz} be
so that vi < vi+1 (which implies vi = i). Then, for 1 ≤ i ≤ z/2 we define ΓHz

(ui) =
{v2i−1, v2i, v2i+1}, and for z/2 < i ≤ z we define ΓHz

(ui) = {v2i−z−1}. The graph H8 is
illustrated in Figure 1. It has the following properties:
1. If the sequence (σi(bj))j is increasing, then |Ranking(Hz, π, σi)| = z/2.
2. If the sequence (σi(bj))j is decreasing, then |Ranking(Hz, π, σi)| = z/2 + 1.
3. Hz has a perfect matching (of size z).

Lower Bound Proof. We prove first that we can appropriately partition the B-vertices
that allow us to define the graphs Gi. Our prove relies on the well-known Erdős-Szekeres
theorem [16] that we state in the form we need first.

I Theorem 11 (Erdős-Szekeres [16]). Every sequence of distinct integers of length n contains
a monotonic (either increasing or decreasing) subsequence of length d

√
ne.

I Lemma 12. Let ε > 0 be an arbitrary small constant. Then for any k permutations
σ1, . . . , σk : [n] → [n] with k ≤ log logn− log log 1

ε − 2, there is a partition of B = [n] into
subsets C,B1, B2, . . . such that:
1. |Bi| ≥ 1/ε for every i,
2. |C| ≤

√
n,

3. For every Bi = {b1, . . . , bp} with b1 < b2 < · · · < bp, and every σj, the sequence (σj(bl))l
is monotonic.

Proof. Let S = B. We iteratively remove subsets Bi from S until |S| ≤
√
n. The remaining

elements then define set C. Thus, by construction, Item 2 is fulfilled.
Suppose that we have already defined sets B1, . . . , Bi. We show how to obtain set Bi+1.

Let S = B \
⋃i
j=1 Bj (S = B if i = 0). Note that |S| ≥

√
n. By Theorem 11, there is a subset

B′1 = {b1
1, . . . , b

1
dn1/4e} ⊆ S with b1

1 < b1
2 < · · · < b1

dn1/4e such that the sequence (σ1(bi))bi∈B′
1

is monotonic. Then, again by Theorem 11, there is a subset B′2 = {b2
1, . . . , b

2
dn1/8e} ⊆ B′1

with b2
1 < b2

2 < · · · < b2
dn1/8e such that the sequences (σj(bi))bi∈B′

2
are monotonic, for every

j ∈ {1, 2}. Similarly, we obtain that there is a subset B′w = {bw1 , . . . , bwdn(1/2)w+1e} ⊆ B′w−1

with bw1 < bw2 < · · · < bdn(1/2)w+1e such that the sequences (σj(bi))bi∈B′
w
are monotonic, for

every j ∈ {1, . . . , w}.
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In order to guarantee Item 1, we solve the inequality n( 1
2 )w+1 ≥ 1

ε for w, and we obtain
w ≤ log logn− log log 1

ε − 2. This completes the proof. J

Equipped with the previous lemma, we are ready to prove our lower bound result.

I Theorem 13. Let ε > 0 be an arbitrary constant. For any k permutations σ1, . . . , σk :
[n]→ [n] with k ≤ log logn− log log 2

ε − 2 and arrival order π : [n]→ [n], there is a graph
G = (A,B,E) such that for every σi:

|Ranking(G, π, σi)| ≤ (1
2 + ε)n+ o(n),

while G contains a perfect matching.

Proof. Let ε′ = ε/2. Let G = (A,B,E) denote the hard instance graph. Let C,B1, B2, . . .

denote the partition of B according to Lemma 12 with respect to value ε′. Then, partition A
into sets A0, A1, . . . such that |A0| = |C| and for i ≥ 1, |Ai| = |Bi|. Graph G is the disjoint
union of subgraphs G0 = (A0, C,E0) and Gi = (Ai, Bi, Ei), for i ≥ 1. Subgraph G0 is an
arbitrary graph that contains a perfect matching. If |Bi| is even, then Gi is an isomorphic
copy of Hi. If |Bi| is odd, then Gi is the disjoint union of an isomorphic copy of Hi−1 and
one edge. Then,

|Ranking(G, π, σi)| ≤
∑
Bi

(|Bi|/2 + 2) + |C| ≤ n/2 + 2ε′n+
√
n. J

5 Category Algorithms

5.1 Randomized Category Algorithm
In this section, we analyse the following randomized Ranking-algorithm:

Algorithm 1 Randomized Category Algorithm
Require: G = (A,B,E), integer parameter k ≥ 1
For every b ∈ B : c(b)← random number in {1, 2, 3, . . . , 2k}
σc ← permutation on [m] such that σc(b1) < σc(b2) iff (c(b1) < c(b2)) or (c(b1) = c(b2)
and b1 < b2), for every b1, b2 ∈ B
return Ranking(σc)

Considering Graphs with Perfect Matchings. First, similar to [5], we argue that the worst-
case performance ratio of Algorithm 1 is obtained if the input graph contains a perfect
matching. It requires the following observation:

I Theorem 14 (Monotonicity [18, 24]). Consider a fixed arrival order π and ranking σ for
an input graph G = (A,B,E). Let H = G \ {v} for some vertex v ∈ A ∪B. Let π′, σ′ be the
arrival order/ranking when restricted to vertices A ∪B \ {v}. Then, Ranking(G, π, σ) and
Ranking(H,π′, σ′) are either identical or differ by a single alternating path starting at v.

The previous theorem shows that the size of the matching produced by Algorithm 1 is
monotonic with respect to vertex removals. Hence, if H is the graph obtained from G

by removing all vertices that are not matched by a maximum matching in G, then the
performance ratio of Ranking on H cannot be better than on G. We can thus assume that
the input graph G has a perfect matching and |A| = |B| = n.
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Analysis: General Idea. Let Bi = {b ∈ B : c(b) = i}, and denote the matching computed
by the algorithm by M . The important quantities to consider for the analysis of Algorithm 1
are the probabilities:

xi = Pr
b∈B

[b ∈ V (M) | b ∈ Bi] ,

i.e., the probability that a randomly chosen B-vertex of category i is matched by the algorithm.
Determining lower bounds for the quantities xi is enough in order to bound the expected
matching size, since

E|M | =
∑
b∈B

Pr [b ∈ V (M)] =
∑
b∈B

2k∑
i=1

Pr [b ∈ Bi] · Pr [b ∈ V (M) | b ∈ Bi]

= 1
2k
∑
b∈B

2k∑
i=1

Pr [b ∈ V (M) | b ∈ Bi] = n

2k
2k∑
i=1

xi. (1)

We will first prove a bound on x1 using a previous result of Konrad et al. [25]. Then,
using similar ideas as Birnbaum and Mathieu [5], we will prove inequalities of the form
xi+1 ≥ f(xi, . . . , x1), for some function f which allow us to bound the probabilities (xi)i≥2.

Bounding x1. Let H = (U, V, F ) be an arbitrary bipartite graph and let U ′ ⊆ U be a
uniform and random sample of U such that a node u ∈ U is in U ′ with probability p.
Konrad et al. showed in [25] that when running Greedy on the subgraph induced by vertices
U ′ ∪ ΓG(U ′), a relatively large fraction of the U ′-vertices will be matched, for any order in
which the edges of the input graph are processed that is independent of the choice of U ′.
More precisely, they prove the following theorem (Greedy(H ′, ω) denotes the output of
Greedy on subgraph H ′ if edges of H ′ are considered in the order given by ω):

I Theorem 15 ([25]). Let H = (U, V, F ) be a bipartite graph, M∗ a maximum matching,
and let U ′ ⊆ U be a uniform and independent random sample of U such that every vertex
belongs to U ′ with probability p, 0 < p ≤ 1. Then for any edge arrival order ω,

E|Greedy(H[U ′ ∪ ΓH(U ′)], ω)| ≥ p

1 + p
|M∗|.

In Ranking, the vertices B1 are always preferred over vertices B \B1. Thus, the matching
M1 = {ab ∈M | b ∈ B1} is identical to the matching obtained when running Ranking on the
subgraph induced by A∪B1. Since the previous theorem holds for any edge arrival order (that
is independent from the choice of B′), we can apply the theorem (setting B′ = B1, p = 1

2k )
and we obtain:

E|B1 ∩ V (M)| ≥
1

2k

1 + 1
2k

n = 1
2k + 1n.

Since E|B1 ∩ V (M)| =
∑
b∈B Pr [b ∈ B1] · Pr [b ∈ V (M) | b ∈ B1] = n

2k x1, we obtain x1 ≥
1− 1

2k+1 .

Bounding (xi)i≥2. The key idea of the analysis of Birnbaum and Mathieu for the KVV-
algorithm is the observation that, if a B-vertex of rank i is not matched by the algorithm,
then its partner in an optimal matching is matched to a vertex of rank smaller than i.
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Applied to our algorithm, if a B-vertex of category i is not matched, then its optimal partner
M∗(b) is matched to a B-vertex that belongs to a category j ≤ i. Thus:

1− xi = Pr
b∈B

[b /∈ V (M) | b ∈ Bi] =

Pr
b∈B

[b /∈ V (M) and M∗(b) matched in M to a b′ with c(b′) ≤ i | b ∈ Bi] . (2)

The following lemma is similar to a clever argument by Birnbaum and Mathieu [5].

I Lemma 16.

Pr
b∈B

[b /∈ V (M) and M∗(b) matched in M to a b′ with c(b′) ≤ i | b ∈ Bi]

≤ Pr
b∈B

[M∗(b) matched in M to a b′ with c(b′) ≤ i] . (3)

Proof. Let c be uniformly distributed and let σc be the respective ranking. Pick now a
random b̃ ∈ B and create new categories c′ such that c′(b̃) = i and for all b 6= b̃ : c′(b) = c(b).
Let σc′ be the ranking given by c′.

Let ã = M∗(b̃). Suppose that in a run of Ranking(σc′), ã is matched to a vertex d′ with
c′(d′) ≤ i and b̃ remains unmatched. Then, we will show that in the run of Ranking(σc), ã
is matched to a vertex d with c(d) ≤ i. This implies our result.

First, suppose that b̃ remains unmatched in Ranking(σc). Then, Ranking(σc) =
Ranking(σc′) and the claim is trivially true. Suppose now that b̃ is matched in Ranking(σc).
Then, similar to the argument of [5], it can be seen that Ranking(σc) and Ranking(σc′)
differ only by one alternating path b0, a1, b1, a2, b2, . . . starting at b0 = b̃ such that for all
i, (1) ai+1bi ∈ Ranking(σc), (2) aibi ∈ Ranking(σc′), and (3) σc(bi) > σc(bi+1). Property
(3) implies c(bi) ≤ c(bi+1). Thus if the category σc′ of the node that ai is matched to in
Ranking(σc′) is k, then the category c of the node that ai is matched to in Ranking(σc) is
also at most k. J

The right side of Inequality 3 can be computed explicitly as follows:

Pr
b∈B

[M∗(b) matched in M to a b′ with c(b′) ≤ i] = Pr
b∈B

[c(b) ≤ i and b ∈ V (M)]

= 1
2k

i∑
j=1

xj .

This, together with Inequalities 2 and 3, yields 1− xi ≤ 1
2k

∑i
j=1 xj . We obtain:

I Theorem 17. Let k ≥ 1 be an integer. Then Algorithm 1 is a randomized online algorithm
for MBM with competitive ratio 1−

(
2k

2k+1

)2k
that uses k ·m random bits.

Proof. Following [5], the inequality 1− xi ≤ 1
2k

∑i
j=1 xj yields Si(1 + 1

2k ) ≥ 1 + Si−1, where
Si =

∑i
j=1 xi and S1 = x1 ≥ 1− 1

2k+1 . According to Equality 1, we need to bound S2k from
below. Quantity S2k is minimized if Si(1 + 1

2k ) = 1 + Si−1, for all i ≥ 2, which yields

Si =
i∑

j=1
(1− 1

2k + 1)j = 2k ·
(

1−
(

2k

2k + 1

)i)
.

The result follows by plugging S2k into Equality 1. J
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Ranking(σ) Ranking(σc)

A2 B2 A2 B2

A1 B1 A1 B1

MG M22

M21

M12

Figure 2 Quantities employed in the analysis of Algorithm 2.

5.2 Advice Category Algorithm
Let σ : [m]→ [m] be the identity function, and let M = Ranking(σ). It is well-known that
M might be as poor as a 1

2 -approximation. Intuitively, B-vertices that are not matched in
M are ranked too high in σ and have therefore no chance of being matched. We therefore
assign category 1 to B-vertices that are not matched in M , and category 2 to all other nodes,
see Algorithm 2. We will prove that this strategy gives a 3

5 -approximation algorithm.

Algorithm 2 Category-Advice Algorithm
Computation of advice bits
σ ← permutation such that σ(b) = b, MG ← Ranking(σ), M∗ ← maximum matching

∀b ∈ B : c(b)←
{

1, if b /∈ V (M),
2, otherwise.

Online Algorithm with Advice {Function c is provided using m advice bits}
σc ← permutation on [m] such that σc(b1) < σc(b2) iff (c(b1) < c(b2)) or (c(b1) = c(b2)
and b1 < b2), for every b1, b2 ∈ B
return Ranking(σc)

Our analysis requires a property of Ranking that has been previously used, e.g., in [5].

I Lemma 18 (Upgrading unmatched vertices, Lemma 4 of [5]). Let σ be a ranking and let
M = Ranking(σ). Let b ∈ B be a vertex that is not matched in M . Let σ′ be the ranking
obtained from σ by changing the rank of b to any rank that is smaller than σ(b) (and shifting
the ranks of other vertices accordingly), and let M ′ = Ranking(σ′). Then, every vertex
a ∈ A matched in M to a vertex b ∈ B is matched in M ′ to a vertex b′ ∈ B with σ(b′) ≤ σ(b).

I Theorem 19. Alg. 2 is a 3
5 -competitive online algorithm for MBM using m advice bits.

Proof. Let M denote the matching computed by the algorithm. Let A2 ⊆ A, B2 ⊆ B be
the subsets of vertices that are matched in MG. Further, let A1 = A \A2 and B1 = B \B2
(the vertices not matched in MG). See Figure 2 for an illustration of these quantities.

Then, for i ∈ {1, 2}, let B∗i = Bi ∩ V (M∗). Let Mij = {ab ∈ M | a ∈ Ai and b ∈ Bj}.
Then, M = M21 ∪M12 ∪M22 since M11 = ∅ (the input graph does not contain any edges
between A1 and B1 since otherwise some of them would also be contained in MG). This
setting is illustrated in Figure 2 in the appendix. We will bound now the sizes of M21,M12
and M22 separately:

Bounding |M21|. Since B1-vertices are preferred over B2-vertices in Ranking(σc) and
since there are no edges between A1 and B1, M21 is a maximal matching between A2
and B1. Since opt(A2, B1) = |B∗1 |, we have |M21| ≥ 1

2 |B
∗
1 |.

Bounding |M22|. By Lemma 18, all A2-vertices are matched in M . Thus, |M22| =
|A2| − |M21|.
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Bounding |M12|. The algorithm finds a maximal matching between A1 and B2 \B(M22).
Since opt(A1, B2) ≥ |A∗1|, we have opt(A1, B2 \ B(M22)) ≥ |A∗1| − |M22|, and thus
|M12| ≥ 1

2 (|A∗1| − |M22|).

We combine the previous bounds and we obtain:

|M | = |M21|+ |M22|+ |M12| ≥ |A2|+
1
2(|A∗1| − |A2|+ |M21|) ≥

1
2(|A∗1|+ |A2|+

1
2 |B

∗
1 |).

Next, note that |A2| ≥ |B∗1 | and |A∗1|+ |B∗1 | = |M∗|. We thus obtain |M | ≥ 1
2 |M

∗|+ 1
4 |B

∗
1 |.

Since |B∗1 | ≥ |M∗|−|MG|, we obtain |M | ≥ 3
4 |M

∗|− 1
4 |MG|. Furthermore, Lemma 18 implies

|M | ≥ |MG|, and hence |M | ≥ max{|MG|, 3
4 |M

∗| − 1
4 |MG|} which is at least 3

5 |M
∗|. J
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