
BlockQuicksort: Avoiding Branch Mispredictions
in Quicksort
Stefan Edelkamp1 and Armin Weiß2

1 TZI, Universität Bremen, Bremen, Germany
2 Stevens Institute of Technology, Hoboken, NJ, USA

Abstract
Since the work of Kaligosi and Sanders (2006), it is well-known that Quicksort – which is com-
monly considered as one of the fastest in-place sorting algorithms – suffers in an essential way
from branch mispredictions. We present a novel approach to address this problem by partially de-
coupling control from data flow: in order to perform the partitioning, we split the input in blocks
of constant size (we propose 128 data elements); then, all elements in one block are compared
with the pivot and the outcomes of the comparisons are stored in a buffer. In a second pass, the re-
spective elements are rearranged. By doing so, we avoid conditional branches based on outcomes
of comparisons at all (except for the final Insertionsort). Moreover, we prove that for a static
branch predictor the average total number of branch mispredictions is at most εn logn + O(n)
for some small ε depending on the block size when sorting n elements.

Our experimental results are promising: when sorting random integer data, we achieve an
increase in speed (number of elements sorted per second) of more than 80% over the GCC
implementation of C++ std::sort. Also for many other types of data and non-random inputs,
there is still a significant speedup over std::sort. Only in few special cases like sorted or
almost sorted inputs, std::sort can beat our implementation. Moreover, even on random input
permutations, our implementation is even slightly faster than an implementation of the highly
tuned Super Scalar Sample Sort, which uses a linear amount of additional space.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases in-place sorting, Quicksort, branch mispredictions, lean programs

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.38

1 Introduction

Sorting a sequence of elements of some totally ordered universe remains one of the most
fascinating and well-studied topics in computer science. Moreover, it is an essential part
of many practical applications. Thus, efficient sorting algorithms directly transfer to a
performance gain for many applications. One of the most widely used sorting algorithms is
Quicksort, which has been introduced by Hoare in 1962 [14] and is considered to be one of the
most efficient sorting algorithms. For sorting an array, it works as follows: first, it chooses an
arbitrary pivot element and then rearranges the array such that all elements smaller than the
pivot are moved to the left side and all elements larger than the pivot are moved to the right
side of the array – this is called partitioning. Then, the left and right side are both sorted
recursively. Although its average1 number of comparisons is not optimal – 1.38n logn+O(n)
vs. n logn+O(n) for Mergesort –, its over-all instruction count is very low. Moreover, by

1 Here and in the following, the average case refers to a uniform distribution of all input permutations
assuming all elements are different.

© Stefan Edelkamp and Armin Weiß;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 38; pp. 38:1–38:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.38
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


38:2 BlockQuicksort: Avoiding Branch Mispredictions in Quicksort

choosing the pivot element as median of some larger sample, the leading term 1.38n logn
for the average number of comparisons can be made smaller – even down to n logn when
choosing the pivot as median of some sample of growing size [22]. Other advantages of
Quicksort are that it is easy to implement and that it does not need extra memory except
the recursion stack of logarithmic size (even in the worst case if properly implemented). A
major drawback of Quicksort is its quadratic worst-case running time. Nevertheless, there
are efficient ways to circumvent a really bad worst-case. The most prominent is Introsort
(introduced by Musser [23]) which is applied in GCC implementation of std::sort: as soon
as the recursion depth exceeds a certain limit, the algorithm switches to Heapsort.

Another deficiency of Quicksort is that it suffers from branch mispredictions (or branch
misses) in an essential way. On modern processors with long pipelines (14 stages for Intel
Haswell, Broadwell, Skylake processors – for the older Pentium 4 processors even more
than twice as many) every branch misprediction causes a rather long interruption of the
execution since the pipeline has to be filled anew. In [16], Kaligosi and Sanders analyzed the
number of branch mispredictions incurred by Quicksort. They examined different simple
branch prediction schemes (static prediction and 1-bit, 2-bit predictors) and showed that
with all of them, Quicksort with a random element as pivot causes on average cn logn+O(n)
branch mispredictions for some constant c = 0.34 (resp. c = 0.46, c = 0.43). In particular, in
Quicksort with random pivot element, every fourth comparison is followed by a mispredicted
branch. The reason is that for partitioning, each element is compared with the pivot and
depending on the outcome either it is swapped with some other element or not. Since for an
optimal pivot (the median), the probability of being smaller the pivot is 50%, there is no
way to predict these branches.

Kaligosi and Sanders also established that choosing skewed pivot elements (far off the
median) might even decrease the running time because it makes branches more predictable.
This also explains why, although theoretically larger samples for pivot selection were shown
to be superior, in practice the median-of three variant turned out to be the best. In [5], the
skewed pivot phenomenon is confirmed experimentally. Moreover, in [21], precise theoretical
bounds on the number of branch misses for Quicksort are given – establishing also theoretical
superiority of skewed pivots under the assumption that branch mispredictions are expensive.

In [7] Brodal and Moruz proved a general lower bound on the number of branch mispre-
dictions given that every comparison is followed by a conditional branch which depends on
the outcome of the comparison. In this case there are Ω(n logd n) branch mispredictions for
a sorting algorithm which performs O(dn logn) comparisons. As Elmasry and Katajainen re-
marked in [10], this theorem does not hold anymore if the results of comparisons are not used
for conditional branches. Indeed, they showed that every program can be transformed into a
program which induces only a constant number of branch misses and whose running time
is linear in the running time of the original program. However, this general transformation
introduces a huge constant factor overhead. Still, in [10] and [11] Elmasry, Katajainen and
Stenmark showed how to efficiently implement many algorithms related to sorting with only
few branch mispredictions. They call such programs lean. In particular, they present variants
of Mergesort and Quicksort suffering only very little from branch misses. Their Quicksort
variant (called Tuned Quicksort, for details on the implementation, see [17]) is very fast for
random permutations – however, it does not behave well with duplicate elements because it
applies Lomuto’s uni-directional partitioner (see e. g. [8]).

Another development in recent years is multi-pivot Quicksort (i. e. several pivots in each
partitioning stage [3, 4, 19, 28, 29]). It started with the introduction of Yaroslavskiy’s dual-
pivot Quicksort [31] – which, surprisingly, was faster than known Quicksort variants and, thus,



S. Edelkamp and A. Weiß 38:3

became the standard sorting implementation in Oracle Java 7 and Java 8. Concerning branch
mispredictions all these multi-pivot variants behave essentially like ordinary Quicksort [21];
however, they have one advantage: every data element is accessed only a few times (this is
also referred to as the number of scans). As outlined in [4], increasing the number of pivot
elements further (up to 127 or 255), leads to Super Scalar Sample Sort, which has been
introduced by Sanders and Winkel [25]. Super Scalar Sample Sort not only has the advantage
of few scans, but also is based on the idea of avoiding conditional branches. Indeed, the
correct bucket (the position between two pivot elements) can be found by converting the
results of comparisons to integers and then simply performing integer arithmetic. In their
experiments Sanders and Winkel show that Super Scalar Sample Sort is approximately twice
as fast as Quicksort (std::sort) when sorting random integer data. However, Super Scalar
Sample Sort has one major draw-back: it uses a linear amount of extra space (for sorting n
data elements, it requires space for another n data elements and additionally for more than
n integers). In the conclusion of [16], Kaligosi and Sander raised the question:

However, an in-place sorting algorithm that is better than Quicksort with skewed pivots
is an open problem.

(Here, in-place means that it needs only a constant or logarithmic amount of extra space.)
In this work, we solve the problem by presenting our block partition algorithm, which allows
to implement Quicksort without any branch mispredictions incurred by conditional branches
based on results of comparisons (except for the final Insertionsort – also there are still
conditional branches based on the control-flow, but their amount is relatively small). We call
the resulting algorithm BlockQuicksort. Our work is inspired by Tuned Quicksort from [11],
from where we also borrow parts of our implementation. The difference is that by doing the
partitioning block-wise, we can use Hoare’s partitioner, which is far better with duplicate
elements than Lomuto’s partitioner (although Tuned Quicksort can be made working with
duplicates by applying a check for duplicates similar to what we propose for BlockQuicksort
as one of the further improvements in Section 3.2). Moreover, BlockQuicksort is also superior
to Tuned Quicksort for random permutations of integers.

Our Contributions

We present a variant of the partition procedure that only incurs few branch mispredictions
by storing results of comparisons in constant size buffers.
We prove an upper bound of εn logn+O(n) branch mispredictions on average, where
ε < 1

16 for our proposed block size (Theorem 1).
We propose some improvements over the basic version.
We implemented our algorithm with an stl-style interface2.
We conduct experiments and compare BlockQuicksort with std::sort, Yaroslavskiy’s
dual-pivot Quicksort and Super Scalar Sample Sort – on random integer data it is faster
than all of these and also Katajainen et al.’s Tuned Quicksort.

Outline. Section 2 introduces some general facts on branch predictors and mispredictions,
and gives a short account of standard improvements of Quicksort. In Section 3, we give
a precise description of our block partition method and establish our main theoretical
result – the bound on the number of branch mispredictions. Finally, in Section 4, we

2 Code available at https://github.com/weissan/BlockQuicksort

ESA 2016

https://github.com/weissan/BlockQuicksort


38:4 BlockQuicksort: Avoiding Branch Mispredictions in Quicksort

experimentally evaluate different block sizes, different pivot selection strategies and compare
our implementation with other state of the art implementations of Quicksort and Super
Scalar Sample Sort.

Further experimental results as well as the C++ Code of the basic version of BlockQuick-
sort can be found in [9].

2 Preliminaries

Logarithms denoted by log are always base 2. The term average case refers to a uniform
distribution of all input permutations assuming all elements are different. In the following
std::sort always refers to its GCC implementation.

Branch Misses. Branch mispredictions can occur when the code contains conditional jumps
(i. e. if statements, loops, etc.). Whenever the execution flow reaches such a statement,
the processor has to decide in advance which branch to follow and decode the subsequent
instructions of that branch. Because of the length of the pipeline of modern microprocessors,
a wrong predicted branch causes a large delay since, before continuing the execution, the
instructions for the other branch have to be decoded.

Branch Prediction Schemes. Precise branch prediction schemes of most modern processors
are not disclosed to the public. However, the simplest schemes suffice to make BlockQuicksort
induce only few mispredictions.

The easiest branch prediction scheme is the static predictor : for every conditional jump
the compiler marks the more likely branch. In particular, that means that for every if
statement, we can assume that there is a misprediction if and only if the if branch is not
taken; for every loop statement, there is precisely one misprediction for every time the
execution flow reaches that loop: when the execution leaves the loop. For more information
about branch prediction schemes, we refer to [13, Section 3.3].

How to avoid Conditional Branches. The usual implementation of sorting algorithms
performs conditional jumps based on the outcome of comparisons of data elements. There
are at least two methods how these conditional jumps can be avoided – both are supported
by the hardware of modern processors:

Conditional moves (CMOVcc instructions on x86 processors) – or, more general, conditional
execution. In C++ compilation to a conditional move can be (often) triggered by

i = (x < y) ? j : i;

Cast Boolean variables to integer (SETcc instructions x86 processors). In C++:

int i = (x < y);

Also many other instruction sets support these methods (e. g. ARM [2], MIPS [24]). Still, the
Intel Architecture Optimization Reference Manual [15] advises only to use these instructions
to avoid unpredictable branches (as it is the case for sorting) since correctly predicted
branches are still faster. For more examples how to apply these methods to sorting, see [11].

Quicksort and improvements. The central part of Quicksort is the partitioning procedure.
Given some pivot element, it returns a pointer p to an element in the array and rearranges
the array such that all elements left of the p are smaller or equal the pivot and all elements



S. Edelkamp and A. Weiß 38:5

on the right are greater or equal the pivot. Quicksort first chooses some pivot element, then
performs the partitioning, and, finally, recurses on the elements smaller and larger the pivot –
see Algorithm 1. We call the procedure which organizes the calls to the partitioner the
Quicksort main loop.

Algorithm 1 Quicksort
1: procedure Quicksort(A[`, . . . , r])
2: if r > ` then
3: pivot ← choosePivot(A[`, . . . , r])
4: cut ← partition(A[`, . . . , r], pivot)
5: Quicksort(A[`, . . . , cut− 1])
6: Quicksort(A[cut, . . . , r])
7: end if
8: end procedure

There are many standard improvements for Quicksort. For our optimized Quicksort main
loop (which is a modified version of Tuned Quicksort [11, 17]), we implemented the following:

A very basic optimization due to Sedgewick [27] avoids recursion partially (e. g. std::sort)
or totally (here – this requires the introduction of an explicit stack).

Introsort [23]: there is an additional counter for the number of recursion levels. As soon
as it exceeds some bound (std::sort uses 2 logn – we use 2 logn+ 3), the algorithms
stops Quicksort and switches to Heapsort [12, 30] (only for the respective sub-array). By
doing so, a worst-case running time of O(n logn) is guaranteed.

Sedgewick [27] also proposed to switch to Insertionsort (see e. g. [18, Section 5.2.1]) as
soon as the array size is less than some fixed small constant (16 for std::sort and our
implementation). There are two possibilities when to apply Insertionsort: either during
the recursion, when the array size becomes too small, or at the very end after Quicksort
has finished. We implemented the first possibility (in contrast to std::sort) because for
sorting integers, it hardly made a difference, but for larger data elements there was a
slight speedup (in [20] this was proposed as memory-tuned Quicksort).

After partitioning, the pivot is moved to its correct position and not included in the
recursive calls (not applied in std::sort).

The basic version of Quicksort uses a random or fixed element as pivot. A slight
improvement is to choose the pivot as median of three elements – typically the first,
in the middle and the last. This is applied in std::sort and many other Quicksort
implementations. Sedgewick [27] already remarked that choosing the pivots from an even
larger sample does not provide a significant increase of speed. In view of the experiments
with skewed pivots [16], this is no surprise. For BlockQuicksort, a pivot closer to the
median turns out to be beneficial (Figure 2 in Section 4). Thus, it makes sense to invest
more time to find a better pivot element. In [22], Martinez and Roura show that the
number of comparisons incurred by Quicksort is minimal if the pivot element is selected
as median of Θ(

√
n) elements. Another variant is to choose the pivot as median of three

(resp. five) elements which themselves are medians of of three (resp. five) elements. We
implemented all these variants for our experiments – see Section 4.

Our main contribution is the block partitioner, which we describe in the next section.

ESA 2016



38:6 BlockQuicksort: Avoiding Branch Mispredictions in Quicksort

3 Block Partitioning

The idea of block partitioning is quite simple. Recall how Hoare’s original partition procedure
works (Algorithm 2):

Algorithm 2 Hoare’s Partitioning
1: procedure Partition(A[`, . . . , r], pivot)
2: while ` < r do
3: while A[`] < pivot do `++ end while
4: while A[r] > pivot do r−− end while
5: if ` < r then swap(A[`], A[r]); `++; r−− end if
6: end while
7: return `

8: end procedure

Two pointers start at the leftmost and rightmost elements of the array and move towards
the middle. In every step the current element is compared to the pivot (Line 3 and 4). If
some element on the right side is less or equal the pivot (resp. some element on the left side
is greater or equal), the respective pointer stops and the two elements found this way are
swapped (Line 5). Then the pointers continue moving towards the middle.

The idea of BlockQuicksort (Algorithm 3) is to separate Lines 3 and 4 of Algorithm 2
from Line 5: fix some block size B; we introduce two buffers offsetsL[0, . . . , B − 1] and
offsetsR[0, . . . , B− 1] for storing pointers to elements (offsetsL will store pointers to elements
on the left side of the array which are greater or equal than the pivot element – likewise
offsetsR for the right side). The main loop of Algorithm 3 consists of two stages: the scanning
phase (Lines 5 to 18) and the rearrangement phase (Lines 19 to 26).

Like for classical Hoare partition, we also start with two pointers (or indices as in the
pseudocode) to the leftmost and rightmost element of the array. First, the scanning phase
takes place: the buffers which are empty are refilled. In order to do so, we move the respective
pointer towards the middle and compare each element with the pivot. However, instead
of stopping at the first element which should be swapped, only a pointer to the element is
stored in the respective buffer (Lines 8 and 9 resp. 15 and 16 – actually the pointer is always
stored, but depending on the outcome of the comparison a counter holding the number of
pointers in the buffer is increased or not) and the pointer continues moving towards the
middle. After an entire block of B elements has been scanned (either on both sides of the
array or only on one side), the rearranging phase begins: it starts with the first positions of
the two buffers and swaps the data elements they point to (Line 21); then it continues until
one of the buffers contains no more pointers to elements which should be swapped. Now the
scanning phase is restarted and the buffer that has run empty is filled again.

The algorithm continues this way until fewer elements than two times the block size
remain. Now, the simplest variant is to switch to the usual Hoare partition method for
the remaining elements (in the experiments with suffix Hoare finish). But, we also can
continue with the idea of block partitioning: the algorithm scans the remaining elements
as one or two final blocks (of smaller size) and performs a last rearrangement phase. After
that, some elements to swap in one of the two buffers might still remain, while the other
buffer is empty. With one run through the buffer, all these elements can be moved to the left
resp. right (similar as it is done in the Lomuto partitioning method, but without performing
actual comparisons). We do not present the details for this final rearranging here because on
one hand it gets a little tedious and on the other hand it does neither provide a lot of insight
into the algorithm nor is it necessary to prove our result on branch mispredictions.



S. Edelkamp and A. Weiß 38:7

Algorithm 3 Block partitioning
1: procedure BlockPartition(A[`, . . . , r], pivot)
2: integer offsetsL[0, . . . , B − 1], offsetsR[0, . . . , B − 1]
3: integer startL, startR, numL, numR ← 0
4: while r − ` + 1 > 2B do . start main loop
5: if numL = 0 then . if left buffer is empty, refill it
6: startL ← 0
7: for i = 0, . . . , B − 1 do
8: offsetsL[numL]← i

9: numL += (pivot ≥ A[` + i]) . scanning phase for left side
10: end for
11: end if
12: if numR = 0 then . if right buffer is empty, refill it
13: startR ← 0
14: for i = 0, . . . , B − 1 do
15: offsetsR[numR]← i

16: numR += (pivot ≤ A[r − i]) . scanning phase for right side
17: end for
18: end if
19: integer num = min(numL, numR)
20: for j = 0, . . . , num− 1 do
21: swap(A

[
` + offsetsL[startL + j]

]
, A

[
r − offsetsR[startR + j]

]
) . rearrangement phase

22: end for
23: numL, numR −= num; startL, startR += num
24: if (numL = 0) then ` += B end if
25: if (numR = 0) then r −= B end if
26: end while . end main loop
27: compare and rearrange remaining elements
28: end procedure

3.1 Analysis
If the input consists of random permutations (all data elements different), the average
numbers of comparisons and swaps are the same as for usual Quicksort with median-of-three.
This is because both Hoare’s partitioner and the block partitioner preserve randomness of
the array.

The number of scanned elements (total number of elements loaded to the registers) is
increased by two times the number of swaps, because for every swap, the data elements have
to be loaded again. However, the idea is that due to the small block size, the data elements
still remain in L1 cache when being swapped – so the additional scan has no negative effect on
the running time. In Section 4 we see that for larger data types and from a certain threshold
on, an increasing size of the blocks has a negative effect on the running time. Therefore,
the block size should not be chosen too large – we propose B = 128 and fix this constant
throughout (thus, already for inputs of moderate size, the buffers also do not require much
more space than the stack for Quicksort).

Branch mispredictions. The next theorem is our main theoretical result. For simplicity we
assume here that BlockQuicksort is implemented without the worst-case-stopper Heapsort
(i. e. there is no limit on the recursion depth). Since there is only a low probability that a
high recursion depth is reached while the array is still large, this assumption is not a real
restriction. We analyze a static branch predictor: there is a misprediction every time a loop
is left and a misprediction every time the if branch of an if statement is not taken.

ESA 2016



38:8 BlockQuicksort: Avoiding Branch Mispredictions in Quicksort

I Theorem 1. Let C be the average number of comparisons of Quicksort with constant size
pivot sample. Then BlockQuicksort (without limit to the recursion depth and with the same
pivot selection method) with blocksize B induces at most 6

B ·C+O(n) branch mispredictions on
average. In particular, BlockQuicksort with median-of-three induces less then 8

Bn logn+O(n)
branch mispredictions on average.

Theorem 1 shows that when choosing the block size sufficiently large, the n logn-term
becomes very small and – for real-world inputs – we can basically assume a linear number of
branch mispredictions. Moreover, Theorem 1 can be generalized to samples of non-constant
size for pivot selection. Since the proof might become tedious, we stick to the basic variant
here. The constant 6 in Theorem 1 can be replaced by 4 when implementing Lines 19, 24,
and 25 of Algorithm 3 with conditional moves.

I Remark. The O(n)-term in Theorem 1 can be bounded by 3n by taking a closer look to
the final rearranging phase. For a heuristic argument see [9].

Proof. First, we show that every execution of the block partitioner Algorithm 3 on an array
of length n induces at most 6

Bn + c branch mispredictions for some constant c. In order
to do so, we only need to look at the main loop (Line 4 to 27) of Algorithm 3 because the
final scanning and rearrangement phases consider only a constant (at most 2B) number of
elements. Inside the main loop there are three for loops (starting Lines 7, 14, 20), four if
statements (starting Lines 5, 12, 24, 25) and the min calculation (whose straightforward
implementation is an if statement – Line 19). We know that in every execution of the main
loop at least one of the conditions of the if statements in Line 5 and 12 is true because in
every rearrangement phase at least one buffer runs empty. The same holds for the two if
statements in Line 24 and 25. Therefore, we obtain at most two branch mispredictions for
the if s, three for the for loops and one for the min in every execution of the main loop.

In every execution of the main loop, there are at least B comparisons of elements with the
pivot. Thus, the number of branch misses in the main loop is at most 6

B times the number of
comparisons. Hence, for every input permutation the total number of branch mispredictions
of BlockQuicksort is at most 6

B ·#comparisons + (c+ c′) ·#calls to partition +O(n), where
c′ it the number of branch mispredictions of one execution of the main loop of Quicksort
(including pivot selection, which only needs a constant number of instructions) and the O(n)
term comes from the final Insertionsort. The number of calls to partition is bounded by n
because each element can be chosen as pivot only once (since the pivots are not contained in
the arrays for the recursive calls). Thus, by taking the average over all input permutations,
the first statement follows.

The second statement follows because Quicksort with median-of-three incurs 1.18n logn+
O(n) comparisons on average [26]. J

3.2 Further Tuning of Block Partitioning

We propose and implemented further tunings for our block partitioner:
1. Loop unrolling: since the block size is a power of two, the loops of the scanning phase

can be unrolled four or even eight times without causing additional overhead.
2. Cyclic permutations instead of swaps: We replace

1: for j = 0, . . . , num− 1 do
2: swap(A

[
` + offsetsL[startL + j]

]
, A

[
r − offsetsR[startR + j]

]
)

3: end for



S. Edelkamp and A. Weiß 38:9

by the following code, which does not perform exactly the same data movements, but
still in the end all elements less than the pivot are on the left and all elements greater
are on the right:
1: temp ← A

[
` + offsetsL[startL]

]
2: A

[
` + offsetsL[startL]

]
← A

[
r − offsetsR[startR]

]
3: for j = 1, . . . , num− 1 do
4: A

[
r − offsetsR[startR + j − 1]

]
← A

[
` + offsetsL[startL + j]

]
5: A

[
` + offsetsL[startL + j]

]
← A

[
r − offsetsR[startR + j]

]
6: end for
7: A

[
r − offsetsR[startR + num− 1]

]
← temp

Note that this is also a standard improvement for partitioning – see e. g. [1].
In the following, we always assume these two improvements since they are of very basic
nature (plus one more small change in the final rearrangement phase). We call the variant
without them block_partition_simple.

The next improvement is a slight change of the algorithm: in our experiments we noticed
that for small arrays with many duplicates the recursion depth becomes often higher than
the threshold for switching to Heapsort – a way to circumvent this is an additional check for
duplicates equal to the pivot if one of the following two conditions applies:

the pivot occurs twice in the sample for pivot selection (in the case of median-of-three),
the partitioning results very unbalanced for an array of small size.

The check for duplicates takes place after the partitioning is completed. Only the larger
half of the array is searched for elements equal to the pivot. This check works similar to
Lomuto’s partitioner (indeed, we used the implementation from [17]): starting from the
position of the pivot, the respective half of the array is scanned for elements equal to the
pivot (this can be done by one less than comparison since elements are already known to be
greater or equal (resp. less or equal) the pivot)). Elements which are equal to the pivot are
moved to the side of the pivot. The scan continues as long as at least every fourth element is
equal to the pivot (instead every fourth one could take any other ratio – this guarantees that
the check stops soon if there are only few duplicates).

After this check, all elements which are identified as being equal to the pivot remain
in the middle of the array (between the elements larger and the elements smaller than the
pivot); thus, they can be excluded from further recursive calls. We denote this version with
the suffix duplicate check (dc).

4 Experiments

We ran thorough experiments with implementations in C++ on different machines with
different types of data and different kinds of input sequences. The experiments are run
on an Intel Core i5-2500K CPU (3.30GHz, 4 cores, 32KB L1 instruction and data cache,
256KB L2 cache per core and 6MB L3 shared cache) with 16GB RAM and operating system
Ubuntu Linux 64bit version 14.04.4. We used GNU’s g++ (4.8.4); optimized with flags -O3
-march=native.

For time measurements, we used std::chrono::high_resolution_clock, for generating
random inputs, the Mersenne Twister pseudo-random generator std::mt19937. All time
measurements were repeated with the same 20 deterministically chosen seeds – the displayed
numbers are the average of these 20 runs. Moreover, for each time measurement, at least
128MB of data were sorted – if the array size is smaller, then for this time measurement
several arrays have been sorted and the total elapsed time measured. Our running time plots
all display the actual time divided by the number of elements to sort on the y-axis.

ESA 2016



38:10 BlockQuicksort: Avoiding Branch Mispredictions in Quicksort

21 23 25 27 29 211 213 215 217 219 221 223

block size

0

50

100

150

200

250

300

350

ti
m
e
p
er

el
em

en
t
[n
s] Record, n=1048576

Record, n=16777216

Vector, n=1048576

Vector, n=16777216

int, n=1048576

int, n=134217728

Figure 1 Different block sizes for random permutations.

2 4 6 8 10 12 14 16

skew factor

30

40

50

60

70

80

ti
m
e
p
er

el
em

en
t
[n
s]

block partition, n=1048576

block partition, n=16777216

GCC partition, n=1048576

GCC partition, n=16777216

Figure 2 Sorting random permutations of 32-bit integers with skewed pivot. A skew factor k

means that
⌊

n
k

⌋
-th element is chosen as pivot of an array of length n.

We performed our running time experiments with three different data types:
int: signed 32-bit integers.
Vector: 10-dimensional array of 64-bit floating-point numbers (double). The order is
defined via the Euclidean norm – for every comparison the sums of the squares of the
components are computed and then compared.
Record: 21-dimensional array of 32-bit integers. Only the first component is compared.

The code of our implementation of BlockQuicksort as well as the other algorithms and our
running time experiments is available at https://github.com/weissan/BlockQuicksort.

Different Block Sizes. Figure 1 shows experimental results on random permutations for
different data types and block sizes ranging from 4 up to 224.

We see that for integers only at the end there is a slight negative effect when increasing
the block size. Presumably this is because up to a block size of 219, still two blocks fit
entirely into the L3 cache of the CPU. On the other hand for Vector a block size of 64 and
for Record of 8 seem to be optimal – with a considerably increasing running time for larger
block sizes.

As a compromise we chose to fix the block size to 128 elements for all further experiments.
An alternative approach would be to choose a fixed number of bytes for one block and adapt
the block size according to the size of the data elements.

Skewed Pivot Experiments. We repeated the experiments from [16] with skewed pivot for
both the usual Hoare partitioner (std::__unguarded_partition, from the GCC implement-
ation of std::sort) and our block partition method. For both partitioners we used our

https://github.com/weissan/BlockQuicksort


S. Edelkamp and A. Weiß 38:11

tuned Quicksort loop. The results can be seen in Figure 2: classic Quicksort benefits from
skewed pivot, whereas BlockQuicksort works best with the exact median. Therefore, for
BlockQuicksort it makes sense to invest more effort to find a good pivot.

Different Pivot Selection Methods. We implemented several strategies for pivot selection:
median-of-three, median-of-five, median-of-twenty-three,
median-of-three-medians-of-three, median-of-three-medians-of-five, median-of-five-me-
dians-of-five: first calculate three (resp. five) times the median of three (resp. five)
elements, then take the pivot as median of these three (resp. five) medians,
median-of-

√
n.

All pivot selection strategies switch to median-of-three for small arrays. Moreover, the median-
of-
√
n variant switches to median-of-five-medians-of-five for arrays of length below 20000 (for

smaller n even the number of comparisons was better with median-of-five-medians-of-five).
The medians of larger samples are computed with std::nth_element.

Despite the results on skewed pivots Figure 2, there was no big difference between the
different pivot selection strategies (for the results, see [9]). As expected, median-of-three was
always the slowest for larger arrays. Median-of-five-medians-of-five was the fastest for int
and median-of-

√
n for Vector. We think that the small difference between all strategies is

due to the large overhead for the calculation of the median of a large sample – and maybe
because the array is rearranged in a way that is not favorable for the next recursive calls.

4.1 Comparison with other Sorting Algorithms
We compare variants of BlockQuicksort with the GCC implementation of std::sort3 (which is
known to be one of the most efficient Quicksort implementations – see e. g. [6]), Yaroslavskiy’s
dual-pivot Quicksort [31] (we converted the Java code of [31] to C++) and an implementation
of Super Scalar Sample Sort [25] by Hübschle-Schneider4. For random permutations and
random values modulo

√
n, we also test Tuned Quicksort [17] and three-pivot Quicksort

implemented by Aumüller and Bingmann5 from [4] (which is based on [19]) – for other types
of inputs we omit these algorithms because of their poor behavior with duplicate elements.

Branch mispredictions. We experimentally determined the number of branch mispredictions
of BlockQuicksort and the other algorithms with the chachegrind branch prediction profiler,
which is part of the profiling tool valgrind6. The results of these experiments on random
int data can be seen in Figure 3 – the y-axis shows the number of branch misprediction

3 For the source code see e. g. https://gcc.gnu.org/onlinedocs/gcc-4.7.2/libstdc++/api/a01462_
source.html – be aware that in newer versions of GCC the implementation is slightly different: the old
version uses the first, middle and last element as sample for pivot selection, whereas the new version
uses the second, middle and last element. For decreasingly sorted arrays the newer version works far
better – for random permutations and increasingly sorted arrays, the old one is better. We used the
old version for our experiment. The new version is included in some plots in [9] (Figures 9 and 10);
this reveals a enormous difference between the two versions for particular inputs and underlines the
importance of proper pivot selection.

4 URL: https://github.com/lorenzhs/ssssort/blob/b931c024cef3e6d7b7e7fd3ee3e67491d875e021/
ssssort.h – retrieved April 12, 2016

5 URL: http://eiche.theoinf.tu-ilmenau.de/Quicksort-experiments/ – retrieved March, 2016
6 For more information on valgrind, see http://valgrind.org/. To perform the measurements we used

the same Python script as in [11, 17], which first measures the number of branch mispredictions of the
whole program including generation of test cases and then, in a second run, measures the number of
branch mispredictions incurred by the generation of test cases.

ESA 2016

https://gcc.gnu.org/onlinedocs/gcc-4.7.2/libstdc++/api/a01462_source.html
https://gcc.gnu.org/onlinedocs/gcc-4.7.2/libstdc++/api/a01462_source.html
https://github.com/lorenzhs/ssssort/blob/b931c024cef3e6d7b7e7fd3ee3e67491d875e021/ssssort.h
https://github.com/lorenzhs/ssssort/blob/b931c024cef3e6d7b7e7fd3ee3e67491d875e021/ssssort.h
http://eiche.theoinf.tu-ilmenau.de/Quicksort-experiments/
http://valgrind.org/


38:12 BlockQuicksort: Avoiding Branch Mispredictions in Quicksort

210 212 214 216 218 220 222 224

number of elements n

0

2

4

6

8

10

br
an
ch

m
is
se
s
p
er

el
em

en
t

Yaroslavskiy

BlockQS

BlockQS (no IS)

Tuned QS

Tuned QS (no IS)

SSSSort

std::sort

Figure 3 Number of branch mispredictions.

divided the the array size. We only display the median-of-three variant of BlockQuicksort
since all the variants are very much alike. We also added plots of BlockQuicksort and Tuned
Quicksort skipping final Insertionsort (i. e. the arrays remain partially unsorted).

We see that both std::sort and Yaroslavskiy’s dual-pivot Quicksort incur Θ(n logn)
branch mispredictions. The up and down for Super Scalar Sample Sort presumably is because
of the variation in the size of the arrays where the base case sorting algorithm std::sort is
applied to. For BlockQuicksort there is an almost non-visible n logn term for the number of
branch mispredictions. Indeed, we computed an approximation of 0.02n logn+ 1.75n branch
mispredictions. Thus, the actual number of branch mispredictions is still better then our
bounds in Theorem 1. There are two factors which contribute to this discrepancy: our rough
estimates in the mentioned results, and that the actual branch predictor of a modern CPU
might be much better than a static branch predictor. Also note that approximately one half
of the branch mispredictions are incurred by Insertionsort – only the other half by the actual
block partitioning and main Quicksort loop.

Finally, Figure 3 shows that Katajainen et al.’s Tuned Quicksort is still more efficient
with respect to branch mispredictions (only O(n)). This is no surprise since it does not need
any checks whether buffers are empty etc. Moreover, we see that over 80% of the branch
misses of Tuned Quicksort come from the final Insertionsort.

Running Time Experiments. In Figure 4 we present running times on random int permuta-
tions of different BlockQuicksort variants and the other algorithms including Katajainen’s
Tuned Quicksort and Aumüller and Bingmann’s three-pivot Quicksort. The optimized
BlockQuicksort variants need around 45ns per element when sorting 228 elements, whereas
std::sort needs 85ns per element – thus, there is a speed increase of 88% (i. e. the number
of elements sorted per second is increased by 88%)7.

The same algorithms are displayed in Figure 5 for sorting random ints between 0 and√
n. Here, we observe that Tuned Quicksort is much worse than all the other algorithms

(already for n = 212 it moves outside the displayed range). All variants of BlockQuicksort
are faster than std::sort – the duplicate check (dc) version is almost twice as fast.

7 In an earlier version of [9], we presented slightly different outcomes of our experiments. One reason it
the usage of another random number generator. Otherwise, we introduced only minor changes in test
environment – and no changes at all in the sorting algorithms themselves.



S. Edelkamp and A. Weiß 38:13

210 212 214 216 218 220 222 224 226 228

number of elements

20

30

40

50

60

70

80

90
ti

m
e

p
er

el
em

en
t

[n
s]

Yaroslavskiy

BlockQS

BlockQS (mo-sq, dc)

BlockQS (Hoare finish)

BlockQS simple

Tuned QS

3-pivot QS

SSSSort

std::sort

Figure 4 Random permutation of int.

Figure 6 presents experiments with data containing a lot of duplicates and having specific
structures – thus, maybe coming closer to “real-world” inputs (although it is not clear what
that means). Since here Tuned Quicksort and three-pivot Quicksort are much slower than all
the other algorithms, we exclude these two algorithms from the plots. The array for the left
plot contains long already sorted runs. This is most likely the reason that std::sort and
Yaroslavskiy’s dual-pivot Quicksort have similar running times to BlockQuicksort (for sorted
sequences the conditional branches can be easily predicted what explains the fast running
time). The arrays for the middle and right plot start with sorted runs and become more and
more erratic; the array for the right one also contains a extremely high number of duplicates.
Here the advantage of BlockQuicksort – avoiding conditional branches – can be observed
again. In all three plots the check for duplicates (dc) established a considerable improvement.

In Figure 7, we show the results of selected algorithms for random permutations of Vector
and Record. We conjecture that the good results of Super Scalar Sample Sort on Records
are because of its better cache behavior (since Record are large data elements with very
cheap comparisons). More running time experiments also on other machines and compiler
flags can be found in [9].

More Statistics. Table 1 shows the number of branches taken / branch mispredicted as well
as the instruction count and cache misses. Although std::sort has a much lower instruction
count than the other algorithms, it induces most branch misses and (except Tuned Quicksort)
most L1 cache misses (= L3 refs since no L2 cache is simulated). BlockQuicksort does not
only have a low number of branch mispredictions, but also a good cache behavior – one
reason for this is that Insertionsort is applied during the recursion and not at the very end.

5 Conclusions and Future Research

We have established an efficient in-place general purpose sorting algorithm, which avoids
branch predictions by converting results of comparisons to integers. In the experiments we
have seen that it is competitive on different kinds of data. Moreover, in several benchmarks
it is almost twice as fast as std::sort. Future research might address the following issues:

ESA 2016



38:14 BlockQuicksort: Avoiding Branch Mispredictions in Quicksort

210 212 214 216 218 220 222 224 226 228

number of elements

10

15

20

25

30

35

40

45

50

55

ti
m

e
p

er
el

em
en

t
[n

s]
Yaroslavskiy

BlockQS

BlockQS (mo-sq, dc)

BlockQS (Hoare finish)

BlockQS simple

Tuned QS

3-pivot QS

SSSSort

std::sort

Figure 5 Random int values between 0 and
√

n.

210 214 217 220 224 228

number of elements

0

10

20

30

40

50

60

ti
m
e
p
er

el
em

en
t
[n
s]

210 214 217 220 224 228

number of elements

0

10

20

30

40

50

60

70

80

90

ti
m
e
p
er

el
em

en
t
[n
s]

Yaroslavskiy

BlockQS (mo-sq, dc)

BlockQS simple

SSSSort

std::sort

210 214 217 220 224 228

number of elements

0

10

20

30

40

50

60

70

ti
m
e
p
er

el
em

en
t
[n
s]

Figure 6 Arrays A of int with duplicates: left: A[i] = i mod
⌊√

n
⌋
; middle: A[i] = i2 + n/2

mod n; right: A[i] = i8 + n/2 mod n. Since n is always a power of two, the value n/2 occurs
approximately n7/8 times in the last case.

We used Insertionsort as recursion stopper – inducing a linear number of branch misses.
Is there a more efficient recursion stopper that induces fewer branch mispredictions?
More efficient usage of the buffers: in our implementation the buffers on average are not
even filled half. To use the space more efficiently one could address the buffers cyclically
and scan until one buffer is filled. By doing so, also both buffers could be filled in the
same loop – however, with the cost of introducing additional overhead.
The final rearrangement of the block partitioner is not optimal: for small arrays the
similar problems with duplicates arise as for Lomuto’s partitioner.
Pivot selection strategy: though theoretically optimal, median-of-

√
n pivot selection is

not best in practice. Also we want to emphasize that not only the sample size but also
the selection method is important (compare the different behavior of the two versions
of std::sort observed in [9]). It might be even beneficial to use a fast pseudo-random
generator (e. g. a linear congruence generator) for selecting samples for pivot selection.



S. Edelkamp and A. Weiß 38:15

210 214 217 220 224

number of elements n

100

150

200

250

300

350

ti
m
e
p
er

el
em

en
t
[n
s]

210 214 217 220 224

number of elements n

60

80

100

120

140

160

180

200

ti
m
e
p
er

el
em

en
t
[n
s]

Yaroslavskiy

BlockQS (mo-
√
n, dc)

BlockQS simple

SSSSort

std::sort

Figure 7 Random permutations – left: Vector; right: Record.

Table 1 Instruction count, branch and cache misses when sorting random int permutations of
size 16777216 = 224. All displayed numbers are divided by the number of elements.

algorithm branches
taken

branch
misses

instructions L1 refs L3 refs L3 misses

std::sort 37.81 10.23 174.82 51.96 1.05 0.41
SSSSort 16.2 3.87 197.06 68.47 0.82 0.5

Yaroslavskiy 52.92 9.51 218.42 59.82 0.79 0.27
BlockQS (mo-

√
n, dc) 20.55 2.39 322.08 89.9 0.77 0.27

BlockQS (mo5-mo5) 20.12 2.31 321.49 88.63 0.78 0.28
BlockQS 20.51 2.25 337.27 92.45 0.88 0.3

BlockQS (no IS) 15.38 1.09 309.85 84.66 0.88 0.3
Tuned QS 29.66 1.44 461.88 105.43 1.23 0.39

Tuned QS (no IS) 24.53 0.26 434.53 97.65 1.22 0.39

Parallel versions: the block structure is very well suited for parallelism.
A three-pivot version might be interesting, but efficient multi-pivot variants are not trivial:
our first attempt was much slower.

Acknowledgments. Thanks to Jyrki Katajainen and Max Stenmark for allowing us to use
their Python scripts for measuring branch mispredictions and cache missses and to Lorenz
Hübschle-Schneider for his implementation of Super Scalar Sample Sort. We are also indebted
to Jan Philipp Wächter for all his help with creating the plots, to Daniel Bahrdt for answering
many C++ questions, and to Christoph Greulich for his help with the experiments.

References
1 D. Abhyankar and M. Ingle. Engineering of a quicksort partitioning algorithm. Journal of

Global Research in Computer Science, 2(2):17–23, 2011.
2 ARMv8 Instruction Set Overview, 2011. Document number: PRD03-GENC-010197 15.0.
3 Martin Aumüller and Martin Dietzfelbinger. Optimal partitioning for dual pivot quicksort

– (extended abstract). In ICALP, pages 33–44, 2013.
4 Martin Aumüller, Martin Dietzfelbinger, and Pascal Klaue. How good is multi-pivot quick-

sort? CoRR, abs/1510.04676, 2015.
5 Paul Biggar, Nicholas Nash, Kevin Williams, and David Gregg. An experimental study of

sorting and branch prediction. J. Exp. Algorithmics, 12:1.8:1–39, 2008.
6 Gerth Stølting Brodal, Rolf Fagerberg, and Kristoffer Vinther. Engineering a cache-

oblivious sorting algorithm. J. Exp. Algorithmics, 12:2.2:1–23, 2008.

ESA 2016



38:16 BlockQuicksort: Avoiding Branch Mispredictions in Quicksort

7 Gerth Stølting Brodal and Gabriel Moruz. Tradeoffs between branch mispredictions and
comparisons for sorting algorithms. In WADS, volume 3608 of LNCS, pages 385–395.
Springer, 2005.

8 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3nd edition, 2009.

9 Stefan Edelkamp and Armin Weiß. Blockquicksort: How branch mispredictions don’t affect
quicksort. CoRR, abs/1604.06697, 2016.

10 Amr Elmasry and Jyrki Katajainen. Lean programs, branch mispredictions, and sorting.
In FUN, volume 7288 of LNCS, pages 119–130. Springer, 2012.

11 Amr Elmasry, Jyrki Katajainen, and Max Stenmark. Branch mispredictions don’t affect
mergesort. In SEA, pages 160–171, 2012.

12 Robert W. Floyd. Algorithm 245: Treesort 3. Comm. of the ACM, 7(12):701, 1964.
13 John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, 5th edition, 2011.
14 Charles A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.
15 Intel 64 and IA-32 Architecture Optimization Reference Manual, 2016. Order Number:

248966-032.
16 Kanela Kaligosi and Peter Sanders. How branch mispredictions affect quicksort. In ESA,

pages 780–791, 2006.
17 Jyrki Katajainen. Sorting programs executing fewer branches. CPH STL Report

2263887503, Department of Computer Science, University of Copenhagen, 2014.
18 Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.

Addison Wesley Longman, 2nd edition, 1998.
19 Shrinu Kushagra, Alejandro López-Ortiz, Aurick Qiao, and J. Ian Munro. Multi-pivot

quicksort: Theory and experiments. In ALENEX, pages 47–60, 2014.
20 Anthony LaMarca and Richard E Ladner. The influence of caches on the performance of

sorting. J. Algorithms, 31(1):66–104, 1999.
21 Conrado Martínez, Markus E. Nebel, and Sebastian Wild. Analysis of branch misses in

quicksort. In Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2015, San
Diego, CA, USA, January 4, 2015, pages 114–128, 2015.

22 Conrado Martínez and Salvador Roura. Optimal Sampling Strategies in Quicksort and
Quickselect. SIAM J. Comput., 31(3):683–705, 2001. doi:10.1137/S0097539700382108.

23 David R. Musser. Introspective sorting and selection algorithms. Software—Practice and
Experience, 27(8):983–993, 1997.

24 Charles Price. MIPS IV Instruction Set, 1995.
25 Peter Sanders and Sebastian Winkel. Super Scalar Sample Sort. In ESA, pages 784–796,

2004.
26 Robert Sedgewick. The analysis of quicksort programs. Acta Inf., 7(4):327–355, 1977.
27 Robert Sedgewick. Implementing quicksort programs. Commun. ACM, 21(10):847–857,

1978.
28 Sebastian Wild and Markus E. Nebel. Average case analysis of java 7’s dual pivot quicksort.

In ESA, pages 825–836, 2012.
29 Sebastian Wild, Markus E. Nebel, and Ralph Neininger. Average case and distributional

analysis of dual-pivot quicksort. ACM Transactions on Algorithms, 11(3):22:1–42, 2015.
30 J. W. J. Williams. Algorithm 232: Heapsort. Communications of the ACM, 7(6):347–348,

1964.
31 Vladimir Yaroslavskiy. Dual-Pivot Quicksort algorithm, 2009. URL: http://codeblab.

com/wp-content/uploads/2009/09/DualPivotQuicksort.pdf.

http://dx.doi.org/10.1137/S0097539700382108
http://codeblab.com/wp-content/uploads/2009/09/DualPivotQuicksort.pdf
http://codeblab.com/wp-content/uploads/2009/09/DualPivotQuicksort.pdf

	Introduction
	Preliminaries
	Block Partitioning
	Analysis
	Further Tuning of Block Partitioning

	Experiments
	Comparison with other Sorting Algorithms

	Conclusions and Future Research

