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Abstract
We derandomize G. Valiant’s [J. ACM 62 (2015) Art. 13] subquadratic-time algorithm for finding
outlier correlations in binary data. Our derandomized algorithm gives deterministic subquadratic
scaling essentially for the same parameter range as Valiant’s randomized algorithm, but the
precise constants we save over quadratic scaling are more modest. Our main technical tool
for derandomization is an explicit family of correlation amplifiers built via a family of zigzag-
product expanders in Reingold, Vadhan, and Wigderson [Ann. of Math. 155 (2002) 157–187]. We
say that a function f : {−1, 1}d → {−1, 1}D is a correlation amplifier with threshold 0 ≤ τ ≤ 1,
error γ ≥ 1, and strength p an even positive integer if for all pairs of vectors x, y ∈ {−1, 1}d
it holds that (i) |〈x, y〉| < τd implies |〈f(x), f(y)〉| ≤ (τγ)pD; and (ii) |〈x, y〉| ≥ τd implies( 〈x,y〉
γd

)p
D ≤ 〈f(x), f(y)〉 ≤

(
γ〈x,y〉
d

)p
D.
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1 Introduction

Identifying weak correlations in data. We consider the task of finding outlier-correlated
pairs from large collections of weakly correlated binary vectors in {−1, 1}d. In more precise
terms, we are interested in the following computational problem.

I Problem 1 (Outlier correlations). Suppose we are given as input two sets X,Y ⊆ {−1, 1}d
with |X| = |Y | = n and two thresholds, the outlier threshold ρ > 0 and the background
threshold τ < ρ. Our task is to output all outlier pairs (x, y) ∈ X × Y with |〈x, y〉| ≥ ρd

subject to the assumption that at most q of the pairs (x, y) ∈ X × Y satisfy |〈x, y〉| > τd.
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to the full version available at http://arxiv.org/abs/1606.05608.
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52:2 Explicit Correlation Amplifiers for Finding Outlier Correlations

I Remark. This setting of binary vectors and (Pearson) correlation is directly motivated,
among others, by the connection to Hamming distance. Indeed, for two vectors x, y ∈ {−1, 1}d
we have d − 2DH(x, y) = 〈x, y〉, where DH(x, y) = |{u = 1, 2, . . . , d : x(u) 6= y(u)}| is the
Hamming distance between x and y.

A naïve way to solve Problem 1 is to compute all the n2 inner products 〈x, y〉 for
(x, y) ∈ X × Y and filter out everything but the outliers. Our interest is in algorithms that
scale subquadratically in n when both d and q are bounded from above by slowly growing
functions of n. That is, we seek running times of the form O(n2−ε) for a constant ε > 0.
Furthermore, we seek to do this without a priori knowledge of q.

Running times of the form O(n2−cρ) for a constant c > 0 are immediately obtainable
using techniques such as the seminal locality-sensitive hashing of Indyk and Motwani [17]
and its variants1; however, such algorithms converge to quadratic running time in n unless
ρ is bounded from below by a positive constant. Our interest is in algorithms that avoid
such a “curse of weak outliers” and run in subquadratic time essentially independently of the
magnitude of ρ, provided that ρ is sufficiently separated from τ . Such ability to identify weak
outliers from large amounts of data is useful, among others, in machine learning from noisy
data.

One strategy to circumvent the curse of weak outliers is to pursue the following intuition:
(i) partition the input vectors into buckets of at most s vectors each, (ii) aggregate each
bucket into a single vector by taking the vector sum, and (iii) compute the inner products
between the dn/se × dn/se pairs of aggregate vectors. With sufficient separation between τ
and ρ, at most q of these inner products between aggregates will be large, and every outlier
pair is discoverable among the at most s× s input pairs that correspond to each large inner
product of aggregates. Furthermore, a strategy of this form is oblivious to q until we actually
start searching inside the buckets, which enables adjusting ρ and τ based on the number of
large aggregate inner products.

Randomized amplification. Such bucketing strategies have been studied before with the
help of randomization. In 2012, G. Valiant [33] presented a breakthrough algorithm that,
before bucketing, replaces each input vector with a randomly subsampled2 version of its pth

Kronecker power. Because of the tensor-power identity

〈x⊗p, y⊗p〉 = 〈x, y〉p , (1)

the ratio between outlier and background correlations gets amplified to essentially its pth

power, assuming that the sample is large enough so that sufficient concentration bounds
hold with high probability. This amplification makes the outliers stand out from the
background even after bucketing, which enables detection in subquadratic time using fast
matrix multiplication.

A subset of the present authors [20] further improved on Valiant’s algorithm by a modified
sampling scheme that simultaneously amplifies and aggregates the input by further use of
fast matrix multiplication. With this improvement, Problem 1 can be solved in subquadratic
time if the logarithmic ratio logτ ρ = (log ρ)/(log τ) is bounded from above by a constant
less than 1. Also this improved algorithm relies on randomization.

1 We postpone a more detailed discussion of related work and applications to the end of this section.
2 Random sampling is used to reduce the dimension because the full dp-dimensional Kronecker power is

too large to be manipulated explicitly to yield subquadratic running times.
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Explicit amplification. In this paper we seek deterministic subquadratic algorithms. As
with the earlier randomized algorithms, we seek to map the d-dimensional input vectors to a
higher dimension D so that inner products are sufficiently amplified in the process. Towards
this end, we are interested in explicit functions f : {−1, 1}d → {−1, 1}D that approximate
the tensor-power identity (1).

I Definition 2 (Correlation amplifier). Let d, D and p be positive integers, with p even, and
let 0 ≤ τ ≤ 1 and γ ≥ 1. A function f : {−1, 1}d → {−1, 1}D is a correlation amplifier with
parameters (d,D, p, τ, γ) if for all pairs of vectors x, y ∈ {−1, 1}d we have

if
∣∣〈x, y〉∣∣ < τd, then

∣∣〈f(x), f(y)〉
∣∣ ≤ (τγ)pD ; and (2)

if
∣∣〈x, y〉∣∣ ≥ τd, then (〈x,y〉γd

)p
D ≤ 〈f(x), f(y)〉 ≤

(
γ〈x,y〉
d

)p
D . (3)

I Remark. A correlation amplifier f guarantees by (2) that correlations below τ in absolute
value stay bounded; and by (3) that correlations at least τ in absolute value become positive
and are governed by the two-sided approximation with multiplicative error γ ≥ 1. In
particular, (3) implies that correlations at least τ cannot mask outliers under bucketing
because all such correlations get positive sign under amplification.

It is immediate that correlation amplifiers exist. For example, take f(x) = x⊗p, with
p even, to obtain a correlation amplifier with D = dp, τ = 0, and γ = 1 by (1). For our
present purposes, however, we seek correlation amplifiers with D substantially smaller than
dp. Furthermore, we seek constructions that are explicit in the strong3 form that there
exists a deterministic algorithm that computes any individual coordinate of f(x) in time
poly(logD, p) by accessing poly(p) coordinates of a given x ∈ {−1, 1}d. In what follows
explicitness always refers to this strong form.

Our results. The main result of this paper is that sufficiently powerful explicit amplifiers
exist to find outlier correlations in deterministic subquadratic time.

I Theorem 3 (Explicit amplifier family). There exists an explicit correlation amplifier f :
{−1, 1}d → {−1, 1}2K with parameters (d, 2K , 2`, τ, γ) whenever 0 < τ < 1, γ > 1, and
d,K, ` are positive integers with

2K ≥ d
(

210(1− γ−1/2)−1
)20`+1(

γ

τ

)60 · 2`

. (4)

As a corollary we obtain a deterministic algorithm for finding outlier correlations in
subquadratic time using bucketing and fast matrix multiplication. Let us write α for the
limiting exponent of rectangular integer matrix multiplication. That is, for all constants η > 0
there exists an algorithm that multiplies anm×bmαc integer matrix with an bmαc×m integer
matrix in O(m2+η) arithmetic operations. In particular, it is known that 0.3 < α ≤ 1 [22].

I Theorem 4 (Deterministic subquadratic algorithm for outlier correlations). For any constants
0 < ε < 1, 0 < τmax < 1, 0 < δ < α, and C > 60, there exists a deterministic algorithm that
solves a given instance of Problem 1 in time

O

(
n2− 0.99ε(α−δ)

4C+1 + qnδ+
1.99ε(α−δ)

4C+1

)
(5)

3 In comparison, a weaker form of explicitness could require, for example, that there exists a deterministic
algorithm that computes the entire vector f(x) from a given x in time D · poly(logD, p).
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assuming that the parameters n, d, ρ, τ satisfy the following three constraints
1. d ≤ nδ,
2. n−Θ(1) ≤ τ ≤ τmax, and
3. logτ ρ ≤ 1− ε.

I Remark. Observe in particular that (5) is subquadratic regardless of the magnitude of
ρ provided that the separation between ρ and τ via logτ ρ ≤ 1 − ε holds.4 The constants
in (4) and (5) have not been optimized beyond our desired goal of obtaining deterministic
subquadratic running time when d and q are bounded by slowly growing functions of n.
In particular, (5) gives substantially worse subquadratic running times compared with the
existing randomized strategies [20, 33]. The algorithm in Theorem 4 needs no a priori
knowledge of q and is oblivious to q until it starts searching inside the buckets.

Overview and discussion of techniques. A straightforward application of the probabilistic
method establishes that low-dimensional correlation amplifiers can be obtained by subsam-
pling uniformly at random the dimensions of the tensor power x⊗p as long as the sample
size D is large enough.

I Lemma 5 (Existence †). There exists a correlation amplifier f : {−1, 1}d → {−1, 1}D
with parameters (d,D, p, τ, γ) whenever 0 < τ < 1, γ > 1, and d, p,D are positive integers
satisfying

D ≥ 3d (γp − 1)−2
(γ
τ

)2p
. (6)

Thus, in essence our Theorem 3 amounts to derandomizing such a subsampling strategy
by presenting an explicit sample that is, up to the error bounds (2) and (3), indistinguishable
from the “perfect” amplifier x 7→ x⊗p under taking of inner products.

The construction underlying Theorem 3 amounts to an `-fold composition of explicit
squaring amplifiers (p = 2) with increasingly strong control on the error (γ) and the interval
of amplification ([τ, 1]) at each successive composition. Towards this end, we require a
flexible explicit construction of squaring amplifiers with strong control on the error and
the interval. We obtain such a construction from an explicit family of expander graphs
(Lemma 9) obtainable from the explicit zigzag-product constructions of Reingold, Vadhan,
and Wigderson [31]. In particular, the key to controlling the error and the interval is that
the expander family gives Ramanujan-like5 concentration λ/∆ ≤ 16∆−1/4 of the normalized
second eigenvalue λ/∆ by increasing the degree ∆. In essence, since we are working with
{−1, 1}-valued vectors, by increasing the degree we can use the Expander Mixing Lemma
(Lemma 8) and the Ramanujan-like concentration to control (Lemma 11) how well the
restriction xG to the edges of an expander graph G approximates the full tensor square x⊗2

under taking of inner products.
Our construction has been motivated by the paradigm of gradually increasing indepen-

dence [6, 11, 12, 18] in the design of pseudorandom generators. Indeed, we obtain the final
amplifier gradually by successive squarings, taking care that the degree ∆i of the expander

4 The technical constraint n−Θ(1) ≤ τ only affects inputs where the dimension d grows essentially as a
root function of n since τ ≥ 1/d. The constant subsumed by Θ(1) depends on the chosen constants
ε, τmax, δ, C but not on the other parameters.

5 Actual Ramanujan graphs (see [15, 23]) would give somewhat stronger concentration λ/∆ = O(∆−1/2)
and hence improved constants in (4). However, we are not aware of a sufficiently fine-grained family of
explicit Ramanujan graphs to comfortably support successive squaring.
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that we apply in each squaring i = 0, 1, . . . , `− 1 increases with a similar squaring schedule
given by (10) and (12) to simultaneously control the error and the interval, and to bound the
output dimension roughly by the square of the degree of the last expander in the sequence.6
The analogy with pseudorandom generators can in fact be pushed somewhat further. Namely,
a correlation amplifier can be roughly seen as a pseudorandom generator that by (3) seeks to
fool a “truncated family of uniform combinatorial rectangles” with further control requested
by (2) below the truncation threshold τ .7 Our goal to obtain a small output dimension D
roughly corresponds to optimizing the seed length of a pseudorandom generator.

While our explicit construction (4) does not reach the exact output dimension obtainable
by Lemma 5, it should be observed that in our parameter range of interest (with γ > 1
a constant and 0 < τ ≤ τmax for a constant 0 < τmax < 1), both (4) and (6) are of the
form D ≥ dτ−Θ(p); only the constants hidden by the asymptotic notation differ between the
explicit and nonconstructive bounds. Moreover, using results of Alon [3] we show a lower
bound on the output dimension D of any correlation amplifier: namely, that D ≥ dτ−Θ(p) if
6pτ−2d−1 log 1

γτ is bounded from above by a constant strictly less than 1 (†). Thus, viewed
as a pseudorandom generator with “seed length” logD, Theorem 3 essentially does not admit
improvement except possibly at the multiplicative constants.

Related work and applications. Problem 1 is a basic problem in data analysis and machine
learning admitting many extensions, restrictions, and variants. A large body of work exists
studying approximate near neighbour search via techniques such as locality-sensitive hashing
(e.g. [4, 5, 17, 10, 26, 27]), with recent work aimed at derandomization (see Pagh [28] and
Pham and Pagh [30]) and resource tradeoffs (see Kapralov [19]) in particular. However, these
techniques enable subquadratic scaling in n only when ρ is bounded from below by a positive
constant, whereas the algorithm in Theorem 4 remains subquadratic even in the case of
weak outliers when ρ tends to zero with increasing n, as long as ρ and τ are separated. Ahle,
Pagh, Razenshteyn, and Silvestri [1] show that subquadratic scaling in n is not possible for
logτ ρ = 1 − o(1/

√
logn) unless both the Orthogonal Vectors Conjecture and the Strong

Exponential Time Hypothesis [16] fail.
In small dimensions, Alman and Williams [2] present a randomized algorithm that

finds exact Hamming-near neighbours in a batch-query setting analogous to Problem 1 in
subquadratic time in n when the dimension is constrained to d = O(logn). Recently, Chan
and Williams [7] show how to derandomize related algorithm designs, but the probabilistic
polynomials for symmetric Boolean functions used in [2] to our knowledge have not yet been
derandomized.

6 The term “gradual” is of course not particularly descriptive since growth under successive squaring
amounts to doubly exponential growth in the number of squarings. Yet such growth can be seen as
gradual and controlled since we obtain strong amplification compared with the final output dimension
precisely because the first ` − 1 squarings “come for free” since ∆0∆1 · · ·∆`−2 is (up to low-order
multiplicative terms) no more than ∆2

`−1, essentially because we are taking the sum of powers of 2 in
the exponent.

7 To see the rough analogy, let z ∈ {−1, 1}d be the Hadamard product of the vectors x, y ∈ {−1, 1}d
and observe that (3) seeks to approximate (with multiplicative error) the expectation of a uniform
random entry in the dp-length Kronecker power z⊗p by instead taking the expectation over an explicit
D-dimensional sample given by f . The Kronecker power z⊗p is a uniform special case (with z = z1 =
z2 = · · · = zp) of a “combinatorial rectangle” formed by a Kronecker product z1 ⊗ z2 ⊗ · · · ⊗ zp, and
truncation means that we only seek approximation in cases where |

∑d

u=1 z(u)| ≥ τd, and accordingly
want constructions that take this truncation into account—that is, we do not seek to fool all combinatorial
rectangles and accordingly want stronger control on the dimension D (that is, the “seed length” logD).
For a review of the state of the art in pseudorandom generators we refer to Gopalan, Kane, and Meka [11]
and Kothari and Meka [21].

ESA 2016
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One special case of Problem 1 is the problem of learning a weight 2 parity function in the
presence of noise, or the light bulb problem.

I Problem 6 (Light bulb problem, L. Valiant [34]). Suppose we are given as input a parameter
0 < ρ < 1 and a set of n vectors in {−1, 1}d such that one planted pair of vectors has inner
product at least ρd in absolute value, and all other n− 2 vectors are chosen independently
and uniformly at random. Our task is to find the planted pair among the n vectors.

I Remark. From e.g. the Hoeffding bound (20) it follows that there exists a constant c such
that when d ≥ cρ−2 logn the planted pair is with high probability (as n increases) the unique
pair in the input with the maximum absolute correlation.

For a problem whose instances are drawn from a random ensemble, we say that an
algorithm solves almost all instances of the problem if the probability of drawing an instance
where the algorithm fails tends to zero as n increases.

Paturi, Rajasekaran, and Reif [29], Dubiner [8], and May and Ozerov [24] present
randomized algorithms that can be used to solve almost all instances of the light bulb
problem in subquadratic time if we assume that ρ is bounded from below by a positive
constant; if ρ tends to zero these algorithms converge to quadratic running time in n.

G. Valiant [33] showed that a randomized algorithm can identify the planted correlation
in subquadratic time on almost all inputs even when ρ tends to zero as n increases. As a
corollary of Theorem 4, we can derandomize Valiant’s design and still retain subquadratic
running time (but with a worse constant) for almost all inputs, except for extremely weak
planted correlations with ρ ≤ n−Ω(1) that our amplifier is not in general able to amplify with
sufficiently low output dimension to enable an overall subquadratic running time.

I Corollary 7 (Deterministic subquadratic algorithm for the light bulb problem). For any
constants 0 < δ < α, C > 60, 0 < ρmax < 1, and κ > 1, there exists a deterministic algorithm
that solves almost all instances of Problem 6 in time

O

(
n2− 0.99(1−1/κ)(α−δ)

4C+1

)
assuming the parameters n, d, ρ satisfy the two constraints
1. 5ρ−2κ logn ≤ d ≤ nδ and
2. n−Θ(1) ≤ ρ ≤ ρmax.8

Corollary 7 extends to parity functions of larger (constant) weight (cf. [13, 20, 33]),
however, we omit the details from this conference abstract. Algorithms for learning parity
functions enable extensions to further classes of Boolean functions such as sparse juntas and
DNFs (cf. [9, 25, 33]).

Conventions and notation. All vectors in this paper are integer-valued. For a vector
x ∈ Zd we denote the entry u = 1, 2, . . . , d of x by x(u). For two vectors x, y ∈ Zd we write
〈x, y〉 =

∑d
u=1 x(u)y(u) for the inner product of x and y. We write log for the logarithm

with base 2 and ln for the logarithm with base exp(1).

8 The constant hidden by the Θ(1) notation depends on the constants δ, α, C, ρmax but not on the other
parameters. For details consult the proof.
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2 Explicit amplifiers by approximate squaring

This section proves Theorem 3. We start with preliminaries on expanders, show an ap-
proximate squaring identity using expander mixing, and then rely on repeated approximate
squaring for our main construction. The proof is completed by some routine preprocessing.

Preliminaries on expansion and mixing. We work with undirected graphs, possibly with
self-loops and multiple edges. A graph G is ∆-regular if every vertex is incident to exactly ∆
edges, with each self-loop (if present) counting as one edge. Suppose that G is ∆-regular with
vertex set V , and let L be a set of ∆ labels such that the ∆ edge-ends incident to each vertex
have been labeled with unique labels from L. The rotation map RotG : V ×L→ V ×L is the
bijection such that for all u ∈ V and i ∈ L we have RotG(u, i) = (v, j) if the edge incident to
vertex u and labeled with i at u leads to the vertex v and has the label j at v.

For S, T ⊆ V (G), let us write E(S, T ) for the set of edges of G with one end in S and
the other end in T . Suppose that G has D vertices and let λ1, λ2, . . . , λD be the eigenvalues
of the adjacency matrix of G with |λ1| ≥ |λ2| ≥ · · · ≥ |λD|. Let us say that a graph G is a
(D,∆, λ)-graph if G has D vertices, G is ∆-regular, and |λ2| ≤ λ. For an excellent survey on
expansion and expander graphs, we refer to Hoory, Linial, and Wigderson [15].

I Lemma 8 (Expander mixing lemma, [15, Lemma 2.5]). For all S, T ⊆ V (G) we have∣∣∣∣|E(S, T )| − ∆|S||T |
D

∣∣∣∣ ≤ λ√|S||T | .
We work with the following family of graphs obtained from the zig-zag product of Reingold,

Vadhan, and Wigderson [31]. In particular Lemma 9 gives us λ/∆ ≤ 16∆−1/4, which will
enable us to control relative inner products by increasing ∆.

I Lemma 9. For all integers t ≥ 1 and b ≥ 10 there exists a (216bt, 24b, 16 · 23b)-graph whose
rotation map can be evaluated in time poly(b, t).9

Proof. See Appendix A. J

Main construction. The main objective of this section is to prove the following lemma,
which we will then augment to Theorem 3 by routine preprocessing of the input dimension.

I Lemma 10 (Repeated approximate squaring). There exists an explicit correlation amplifier
f̂ : {−1, 1}2k → {−1, 1}2K with parameters (2k, 2K , 2`, τ0, γ0) whenever 0 < τ0 < 1, γ0 > 1,
and k,K, ` are positive integers with

2K ≥ 2k
(

210(1− γ−1
0
)−1
)20`(

γ0

τ0

)40 · 2`−20
. (7)

Approximate squaring via expanders. For a vector x ∈ {−1, 1}D, let us write x⊗2 ∈
{−1, 1}D2 for the Kronecker product of x with itself. Our construction for correlation
amplifiers will rely on approximating the squaring identity

〈x⊗2, y⊗2〉 = 〈x, y〉2 ,

9 Caveat. Reingold, Vadhan, and Wigderson [31] work with eigenvalues of the normalized adjacency
matrix (with |λ1| = 1) whereas we follow Hoory, Linial, and Wigderson [15] and work with unnormalized
adjacency matrices (with |λ1| = ∆) in the manuscript proper. Appendix A works with normalized
adjacency matrices for compatibility with Reingold, Vadhan, and Wigderson [31].

ESA 2016
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for vectors in {−1, 1}D. In more precise terms, let G be a (D,∆, λ)-graph and let xG ∈
{−1, 1}∆D be a vector that contains each coordinate x(u)x(v) of x⊗2 with (u, v) ∈ V (G)×
V (G) exactly once for each edge of G that joins the vertex u to the vertex v. Equivalently,
let RotG : V × L → V × L be a rotation map for G, and define xG for all u ∈ V and all
i ∈ L by xG(u, i) = x(u)x(v) where v ∈ V is given by RotG(u, i) = (v, j). In particular, xG
has exactly ∆D coordinates.

I Lemma 11 (Approximate squaring). For all x, y ∈ {−1, 1}D we have∣∣∣∣〈xG, yG〉 − ∆
D
〈x⊗2, y⊗2〉

∣∣∣∣ ≤ 2λD .

Proof. Let S = {u ∈ V (G) : x(u) = y(u)} and let us write S̄ = V (G) \ S. Since x, y are
{−1, 1}-valued, we have

〈xG, yG〉 = |E(S, S)|+ |E(S̄, S̄)| − |E(S, S̄)| − |E(S̄, S)| .

Observing that

|S|2 + |S̄|2 − |S||S̄| − |S̄||S| =
(
2|S| −D

)2 = 〈x, y〉2 = 〈x⊗2, y⊗2〉

and applying Lemma 8 four times, we have∣∣∣∣〈xG, yG〉 − ∆
D
〈x⊗2, y⊗2〉

∣∣∣∣ ≤ λ(D + 2
√
|S|(D − |S|)

)
≤ 2λD . J

The amplifier function. We now construct an amplifier function f̂ that uses ` approximate
squarings, ` ≥ 1, with the graphs drawn from the graph family in Lemma 9. Accordingly, we
assume that all vectors have lengths that are positive integer powers of 2.

The input x = x̃0 ∈ {−1, 1}d0 to the amplifier has dimension d0 = 2k for a positive
integer k. For i = 0, 1, . . . , ` − 1, suppose we have the vector x̃i ∈ {−1, 1}di . Let bi be a
positive integer whose value will be fixed later. Let ti be the unique positive integer with

di ≤ Di = 216biti < 216bidi .

Note in particular that di divides Di since di is a power of 2. Let Gi be a (216biti , 24bi , 16·23bi)-
graph from Lemma 9. Take Di/di copies of x̃i to obtain the vector xi ∈ {−1, 1}Di . Let
x̃i+1 = xGii ∈ {−1, 1}di+1 with di+1 = ∆iDi and ∆i = 24bi . The amplifier outputs f̂(x) = x̃`
with x̃` ∈ {−1, 1}d` .

Since the graph family in Lemma 9 admits rotation maps that can be computed in time
poly(b, t), we observe that f̂ is explicit. Indeed, from the construction it is immediate that
to compute any single coordinate of f̂(x) it suffices to (i) perform in total 2`−1−i evaluations
of the rotation map of the graph Gi for each i = 0, 1, . . . , ` − 1, and (ii) access at most
2` coordinates of x. Since biti = O(log d`) for all i = 0, 1, . . . , ` − 1, we have that we can
compute any coordinate of f̂(x) in time poly(log d`, 2`) and accessing at most 2` coordinates
of x.

Parameterization and analysis. Fix τ0 > 0 and γ0 > 1. To parameterize the amplifier
(that is, it remains to fix the values bi), let us track a pair of vectors as it proceeds through
the ` approximate squarings for i = 0, 1, . . . , `− 1.

We start by observing that copying preserves relative inner products. That is, for any
pair of vectors x̃i, ỹi ∈ {−1, 1}di we have 〈x̃i, ỹi〉 = νidi if and only if 〈xi, yi〉 = νiDi for
0 ≤ νi ≤ 1.
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An easy manipulation of Lemma 11 using the parameters in Lemma 9 gives us additive
control over an approximate squaring via

ν2
i − 32∆−1/4

i ≤ νi+1 ≤ ν2
i + 32∆−1/4

i . (8)

For all inner products that are in absolute value above a threshold, we want to turn this
additive control into multiplicative control via

ν2
i γ
−1
0 ≤ νi+1 ≤ ν2

i γ0 . (9)

Let us insist this multiplicative control holds whenever |νi| ≥ τi for the threshold parameter
τi defined for all i = 0, 1, . . . , `− 1 by

τi+1 = γ−1
0 τ2

i . (10)

Enforcing (9) via (8) at the threshold, let us assume that

τ2
i γ
−1
0 ≤ τ2

i − 32∆−1/4
i . (11)

The next lemma confirms that assuming (11) gives two-sided control of inner products which
is retained to the next approximate squaring. The following lemma shows that small inner
products remain small.
I Lemma 12 (†). If τi ≤ |νi|, then ν2

i γ
−1
0 ≤ νi+1 ≤ ν2

i γ0 and τi+1 ≤ νi+1.
I Lemma 13 (†). If |νi| < τi, then |νi+1| ≤ τ2

i γ0.
Let us now make sure that (11) holds. Solving for ∆i in (11), we have

∆i ≥
(
32(1− γ−1

0 )−1τ−2
i

)4
. (12)

In particular, we can make sure that (12) and hence (11) holds by simply choosing a large
enough ∆i (that is, a large enough bi).

Before proceeding with the precise choice of bi for i = 0, 1, . . . , `−1, let us analyze the input–
output relationship of the amplifier f̂ using Lemma 12 and Lemma 13. Let x, y ∈ {−1, 1}d0

be two vectors given as input with 〈x, y〉 = ν0d0. The outputs f̂(x), f̂(y) ∈ {−1, 1}d` then
satisfy 〈f̂(x), f̂(y)〉 = ν`d`, where the following two lemmas control ν` via ν0.

I Lemma 14 (†). If |ν0| ≥ τ0, then ν2`
0 γ
−2`+1
0 ≤ ν` ≤ ν2`

0 γ
2`−1
0 .

I Lemma 15 (†). If |ν0| < τ0, then |ν`| ≤ τ2`
0 γ2`−1

0 .
Since γ0 > 1, from Lemma 14 and Lemma 15 it now follows that f̂ meets the required
amplification constraints (2) and (3) with p = 2`, τ = τ0, and γ = γ0.

Let us now complete the parameterization and derive an upper bound for d`. For each
i = 0, 1, . . . , `−1, take bi to be the smallest nonnegative integer so that bi ≥ 10 and ∆i = 24bi

satisfies (12). Since Di ≤ 216bidi = ∆4
i di, we have di+1 = ∆iDi ≤ ∆5

i di, and hence

d` ≤ (∆`−1∆`−2 · · ·∆0)5
d0 .

Recall that d0 = 2k. From (12) we have that

∆i = 24bi ≤ max
(
240, 24(32(1− γ−1

0 )−1τ−2
i

)4) ≤ (210(1− γ−1
0 )−1τ−2

i

)4
.

Since τi = τ2i
0 γ−2i+1

0 by (10), it follows that

d` ≤ 2k
(

210(1− γ−1
0
)−1
)20`(

γ0

τ0

)20(2`+1−1)
.

Repeatedly taking two copies of the output as necessary, for all 2K with 2K ≥ d` we obtain
a correlation amplifier with parameters (2k, 2K , 2`, τ0, γ0). This completes the proof of
Lemma 10. J
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Copy-and-truncate preprocessing of the input dimension. We still want to remove the
assumption from Lemma 10 that the input dimension is a positive integer power of 2. The
following copy-and-truncate preprocessing will be sufficient towards this end.

Let x ∈ {−1, 1}d and let k be a positive integer. Define the vector x̂ ∈ {−1, 1}2k by
concatenating d2k/de copies of x one after another, and truncating the result to the 2k first
coordinates to obtain x̂.

Let us study how the map x 7→ x̂ operates on a pair of vectors x, y ∈ {−1, 1}d. For
notational compactness, let us work with relative inner products ν, ν̂ with 〈x, y〉 = νd and
〈x̂, ŷ〉 = ν̂2k.

I Lemma 16 (†). For any 0 < τ0 < 1, γ0 > 1, and 2k ≥ 2dτ−1
0 (1−γ−1

0 )−1 we have that
1. |ν| < τ0 implies |ν̂| ≤ γ0τ0,
2. |ν| ≥ τ0 implies γ−1

0 ν ≤ |ν̂| ≤ γ0ν.

Completing the proof of Theorem 3. Let d,K, `, τ, γ be parameters meeting the constraints
in Theorem 3, in particular the constraint (4). To construct a required amplifier f , we
preprocess each input vector x with copy-and-truncate, obtaining a vector x̂ of length 2k.
We then then apply an amplifier f̂ : {−1, 1}2k → {−1, 1}2K given by Lemma 10. In symbols,
we define f : {−1, 1}d → {−1, 1}2K for all x ∈ {−1, 1}d by f(x) = f̂(x̂). It is immediate
from Lemma 10 and Lemma 16 that the resulting composition is explicit.

We begin by relating the given parameters of Theorem 3 to those of Lemma 10. Take
γ0 = γ1/2, τ0 = τγ−1, and select the minimal value of k so that the constraint in Lemma 16
is satisfied; that is 2k is constrained as follows,

2d(1− γ−1/2)−1γτ−1 ≤ 2k < 4d(1− γ−1/2)−1γτ−1 .

Substituting this upper bound into the bound of Lemma 10, we get a lower bound for 2K ,

2K ≥ 2−8d
(

2−10(1− γ−1/2)−1
)20`+1 γ

τ

(
γ60

τ40

)2`
τ20

γ30 . (13)

Observe that an integer 2K satisfying (4) also satisfies (13). We have not attempted to
optimise our construction, and prefer the the statement of Theorem 3 as it is reasonably
clean and is sufficient to prove Theorem 4.

Let us study how the map x 7→ f(x) operates on a pair of vectors x, y ∈ {−1, 1}d. For
notational compactness, again we work with relative inner products ν, ν̂, φ with 〈x, y〉 = νd,
〈x̂, ŷ〉 = ν̂2k, and 〈f(x), f(y)〉 = φ2K . Observe that in the notation of the proof of Lemma 10,
we have ν̂ = ν0 and φ = ν`.

I Lemma 17 (†). If |ν| < τ then |φ| ≤ (γτ)2` .

I Lemma 18 (†). If |ν| ≥ τ then (νγ−1)2` ≤ φ ≤ (νγ)2` .

Now, f satisfies (2) and (3) with p = 2` by Lemmas 17 and 18 respectively.
This completes the proof of Theorem 3. J

3 A deterministic algorithm for outlier correlations

This section proves Theorem 4. We start by describing the algorithm, then parameterize it
and establish its correctness, and finally proceed to analyze the running time.
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The algorithm. Fix the constants ε, τmax, δ, C as in Theorem 4. Based on these constants,
fix the constants 0 < σ < 1 and γ > 1. (We fix the precise values of σ and γ later during the
analysis of the algorithm, and stress that σ, γ do not depend on the given input.)

Suppose we are given as input the parameters 0 < τ < ρ < 1 and X,Y ⊆ {−1, 1}d with
|X| = |Y | = n so that the requirements in Theorem 4 hold. We work with a correlation
amplifier f : {−1, 1}d → {−1, 1}D with parameters (d,D, p, τ, γ). (We fix the precise values
of the parameters p and D later during the analysis of the algorithm so that f originates
from Theorem 3.)

The algorithm proceeds as follows. First, apply f to each vector in X and Y to obtain
the sets Xf and Yf . Let s = bnσc. Second, partition the n vectors in both Xf and Yf into
dn/se buckets of size at most s each, and take the vector sum of the vectors in each bucket
to obtain the sets X̃f , Ỹf ⊆ {−s,−s+ 1, . . . , s− 1, s}D with |X̃f |, |Ỹf | ≤ dn/se. Third, using
fast rectangular matrix multiplication on X̃f and Ỹf , compute the matrix Z whose entries
are the inner products 〈x̃, ỹ〉 for all x̃ ∈ X̃f and all ỹ ∈ Ỹf . Fourth, iterate over the entries of
Z, and whenever the detection inequality

〈x̃, ỹ〉 > n2σ(τγ)p (14)

holds, brute-force search for outliers among the at most s× s inner products in the corre-
sponding pair of buckets. Output any outliers found.

Parameterization and correctness. Let us now parameterize the algorithm and establish
its correctness. Since γ > 1 is a constant and assuming that p is large enough, by Theorem 3
we can select D to be the integer power of 2 with

1
2d
(
γ

τ

)Cp
< D ≤ d

(
γ

τ

)Cp
.

Recall that we write α for the exponent of rectangular matrix multiplication. To apply fast
rectangular matrix multiplication in the third step of the algorithm, we want

D ≤ 2
(
n

s

)α
, (15)

so recalling that d ≤ nδ and nσ − 1 < s, it suffices to require that(
γ

τ

)Cp
≤ n(1−σ)α−δ .

Let us assume for the time being that (1−σ)α− δ > 0. (We will justify this assumption later
when we choose a value for σ.) Let p be the unique positive-integer power of 2 such that

((1− σ)α− δ) logn
2C log γ

τ

< p ≤ ((1− σ)α− δ) logn
C log γ

τ

. (16)

Observe that p exists and is positive for all large enough n since γ > 1 is a constant and
n−Θ(1) ≤ τ by our assumption.10 By the detection inequality (14), we require each entry
of Z to have value strictly greater than n2σ(τγ)p if among the correspoding at most s× s

10 In particular, since σ, δ, α, C, γ are constants, we can choose the constant hidden by the Θ(1) so that
1 ≤ (((1− σ)α− δ) logn)/(2C log γ

τ ).
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inner products between the two buckets there is at least one inner product with absolute
value at least ρd. Furthermore, we want (14) to hold only if among the at most s× s inner
products between the two buckets there is at least one inner product with absolute value
strictly greater than τd. Since f satisfies (2) and (3), and recalling that s ≤ nσ, it suffices to
require that

s2(τγ)p ≤ n2σ(τγ)p < (ργ−1)p − n2σ(τγ)p . (17)

Rearranging the right-hand side of (17) and solving for p, we require that

p >
1 + 2σ logn

log ρ
τγ2

. (18)

From (16) and (18) we thus see that it suffices to have

p >
((1− σ)α− δ) logn

2C log γ
τ

≥ 1 + 2σ logn
log ρ

τγ2
,

or equivalently,

log ρ
τγ2

log γ
τ

≥
2C

logn + 4Cσ
(1− σ)α− δ . (19)

Let us derive a lower bound for the left-hand side of (19). Fix the constant γ > 1 so that
log γ = − ε log τmax

100000 . By our assumptions we have τ ≤ τmax and 1− logτ ρ ≥ ε, so we have the
lower bound

log ρ
τγ2

log γ
τ

= log ρ− log τ − 2 log γ
log γ − log τ =

1− logτ ρ+ 2 log γ
log τ

1− log γ
log τ

≥
ε+ 2 log γ

log τmax

1− log γ
log τmax

> 0.99ε .

Thus, (19) holds for all large enough n when we require

0.99ε ≥ 4Cσ
(1− σ)α− δ .

Since αε < 1, we have that (19) holds when we set

σ = 0.99ε(α− δ)
4C + 1 ≤ 0.99ε(α− δ)

4C + 0.99αε .

We also observe that (1− σ)α− δ > 0, or equivalently, σ < (α− δ)/α holds for our choice of
σ. This completes the parameterization of the algorithm.

Running time. Let us now analyze the running time of the algorithm. The first and second
steps run in time Õ(nD) since p = O(logn) by (16) and f originates from Theorem 3 and
hence is explicit. From (15) and nσ − 1 < s, we have nD ≤ 4n1+(1−σ)α ≤ 4n2−σ. Since (15)
holds, the third step of the algorithm runs in time O

(
(n/s)2+η) for any constant η > 0 that

we are free to choose. Since n/s ≤ 2n1−σ for all large enough n, we can choose η > 0 so that
(2 + η)(1− σ) ≤ 2− σ. Thus, the first, second, and third steps together run in time O(n2−σ).
The fourth step runs in time O(n2−σ + qs2d). Indeed, observe from (17) that the inequality
(14) holds for at most q entries in Z. We have qs2d ≤ qn2σ+δ, which completes the running
time analysis and the proof of Theorem 4. J
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4 Proof of Corollary 7

A useful variant of the Problem 1 asks for all outlier pairs of distinct vectors drawn from a
single set S ⊆ {−1, 1}d rather than two sets X,Y . We observe that the single-set variant
reduces to dlog |S|e instances of the two-set variant by numbering the vectors in S with
binary numbers from 0 to |S| − 1 and splitting S into two sets Xi, Yi based on the value of
the ith bit for each i = 0, 1, . . . , dlog |S|e − 1.

We will need the following bound due to Hoeffding which provides an exponentially small
upper bound on the deviation of a sum of bounded independent random variables from its
expectation.

I Theorem 19 (Hoeffding [14, Theorem 2]). Let Z1, Z2, . . . , ZD be independent random
variables satisfying `i ≤ Zi ≤ ui for all 1 ≤ i ≤ D, and let Z =

∑D
i=1 Zi. Then, for all c > 0,

the following holds:

Pr (Z − E[Z] ≥ c) ≤ exp
(
− 2c2∑D

i=1(ui − `i)2

)
. (20)

I Corollary 7. For any constants 0 < δ < α, C > 60, 0 < ρmax < 1, and κ > 1, there exists
a deterministic algorithm that solves almost all instances of Problem 6 in time

O

(
n2− 0.99(1−1/κ)(α−δ)

4C+1

)
assuming the parameters n, d, ρ satisfy the two constraints
1. 5ρ−2κ logn ≤ d ≤ nδ and
2. n−Θ(1) ≤ ρ ≤ ρmax. 11

Proof. We reduce to (the single-set version of) Problem 1 and apply Theorem 4. Towards
this end, in Theorem 4 set ε = 1− 1/κ and τmax = ρκmax. Suppose we are given an instance
of Problem 6 whose parameters n, d, ρ satisfy the constraints. Set τ = ρκ. We observe that
the constraints in Theorem 4 are satisfied since (i) d ≤ nδ holds by assumption, (ii) τ ≤ τmax
holds since τ = ρκ ≤ ρκmax, (iii) since κ > 1 is a constant and τ = ρκ we can satisfy the
requirement that τ ≥ n−Θ(1) for any desired constant hidden by the Θ(1) notation 12 by our
assumption that ρ ≥ n−Θ(1), and (iv) logτ ρ = log ρ

log τ = log ρ
log ρκ = 1/κ ≤ 1− ε.

We claim that q = 1 for almost all instances of Problem 6 whose parameters satisfy the
constraints in Corollary 7. Indeed, by the Hoeffding bound (20) and the union bound, the
probability that some other pair than the planted pair in an instance has inner product that
exceeds τd in absolute value is at most

2n2 exp
(
−τ2d/2

)
≤ 2n2 exp

(
−ρ2κ · 5ρ−2κ logn

)
= 2n−1/2 ,

so q = 1 with high probability as n increases. The claimed running time follows by substituting
the chosen constants and q = 1 to (5). J
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A An expander family

This section proves Lemma 9 following Reingold, Vadhan and Wigderson [31]; we present the
proof for completeness of exposition only with no claim of originality. Following Reingold,
Vadhan and Wigderson [31] we will work with normalized eigenvalues. To avoid confusion with
the unnormalized treatment in the manuscript proper, we say that a graph is a [D,∆, λ]-graph
if the graph has D vertices, is ∆-regular, and |λ2|/∆ ≤ λ. (Here |λ2| is the unnormalized
second eigenvalue as defined in the manuscript proper.)

We refer to Sections 2.3 and 3.1 of Reingold, Vadhan, and Wigderson [31] for the
definition of the square G2 of a graph G, the tensor product G1 ⊗G2 of graphs G1, G2, and
the zigzag product G Z©H of graphs G,H. The following omnibus result collects elements
of Propositions 2.3, Proposition 2.4, Theorem 3.2 and Theorem 4.3 of [31] which will be
sufficient to control the second normalized eigenvalue for our present purposes. (We choose
to omit the details of the rotation maps with the understanding that they can be found in
[31].)

I Lemma 20 (Reingold, Vadhan, and Wigderson [31]). The following bounds hold.
1. If G is a [D,∆, λ]-graph, then G2 is a [D,∆2, λ2]-graph.
2. If G1 is a [D1,∆1, λ1]-graph and G2 is a [D2,∆2, λ2]-graph,

then G1 ⊗G2 is a [D1D2,∆1∆2,max(λ1, λ2)]-graph.
3. If G is a [D1,∆1, λ1]-graph and H a [∆1,∆2, λ2]-graph,

then G Z©H is a [D1∆1,∆2
2, f(λ1, λ2)]-graph with

f(λ1, λ2) = 1
2
(
1− λ2

2
)
λ1 + 1

2

√
(1− λ2

2)2
λ2

1 + 4λ2
2 ≤ λ1 + λ2 .

Let us study the following sequence of graphs. Let H be a [D,∆, λ]-graph. Let G1 = H2,
G2 = H ⊗H, and for t = 3, 4, . . . let

Gt =
(
Gd t−1

2 e
⊗Gb t−1

2 c

)2
Z©H . (21)

From Lemma 20 it is easily seen that Gt is a [Dt,∆2, λt]-graph with λt defined by

λ1 = λ2 ,

λ2 = λ ,

λ2t−1 = λ+ λ2
t−1 , for t = 2, 3 . . . , and

λ2t = max(λ+ λ2
t , λ+ λ2

t−1) , for t = 2, 3, . . . .

I Lemma 21 (Reingold, Vadhan, and Wigderson [31, Theorem 3.3]). The rotation map RotGt
can be computed in time poly(t, logD) and by making poly(t) evaluations of RotH .

I Lemma 22. If 0 ≤ λ ≤ 1/4 then λt ≤ λ+ 4λ2 for all t ≥ 1.

Proof. The conclusion is immediate for t ≤ 2. So suppose that the conclusion holds up to
2t− 2. We need to show that the conclusion holds for λ2t−1 and λ2t. By induction, it suffices
to show that

λ2t−1 ≤ λ+ (λ+ 4λ2)2 ≤ λ+ 4λ2 .

Observing that λ2 + 8λ3 + 16λ4 ≤ 4λ2 holds for 0 ≤ λ ≤ 1/4 yields the desired conclusion.
The proof for λ2t is identical. J
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Finally, we construct the expanders that we require in the manuscript proper.

I Lemma 23 (Lemma 9 stated with normalized eigenvalue notation). For all integers t ≥ 1
and b ≥ 10 there exists a [216bt, 24b, 16 · 2−b]-graph whose rotation map can be evaluated in
time poly(b, t).

Proof. Take q = 2b and d = 15 in Proposition 5.3 of Reingold, Vadhan, and Wigderson [31]
to obtain a [216b, 22b, 15 · 2−b]-graph H whose rotation map can be computed in time poly(b).
(Indeed, observe that an irreducible polynomial to perform the required arithmetic in the
finite field of order 2b can be constructed in deterministic time poly(b) by an algorithm of
Shoup [32].) Let us study the sequence Gt given by (21). The time complexity of the rotation
map follows immediately from Lemma 21. Since b ≥ 10, Lemma 22 gives that λt ≤ λ+ 4λ2

for all t ≥ 1. Take λ = 15 · 2−b and observe that since b ≥ 10 we have 2−b < 1/900. Thus,
λt ≤ 15 · 2−b + 4(15 · 2−b)2 = 15 · 2−b + 900 · 2−2b ≤ 16 · 2−b. J
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