Finding Large Set Covers Faster via the
Representation Method

Jesper Nederlof*

Department of Mathematics and Computer Science, Eindhoven University of

Technology, Eindhoven, The Netherlands
j.nederlof@tue.nl

—— Abstract

The worst-case fastest known algorithm for the Set Cover problem on universes with n elements

still essentially is the simple O*(2")-time dynamic programming algorithm, and no non-trivial
consequences of an O*(1.01™)-time algorithm are known. Motivated by this chasm, we study the
following natural question: Which instances of Set Cover can we solve faster than the simple
dynamic programming algorithm? Specifically, we give a Monte Carlo algorithm that determines
the existence of a set cover of size on in O* (2(1*9("4))") time. Our approach is also applicable to
Set Cover instances with exponentially many sets: By reducing the task of finding the chromatic
number x(G) of a given n-vertex graph G to Set Cover in the natural way, we show there is an
O*(2(1_Q("4))")—time randomized algorithm that given integer s = on, outputs NO if x(G) > s
and YES with constant probability if x(G) < s — 1.

On a high level, our results are inspired by the ‘representation method’ of Howgrave-Graham
and Joux [EUROCRYPT’10] and obtained by only evaluating a randomly sampled subset of the
table entries of a dynamic programming algorithm.

1998 ACM Subject Classification G.2.2 [Graph Algorithms| Hypergraphs
Keywords and phrases Set Cover, Exact Exponential Algorithms, Fine-Grained Complexity

Digital Object ldentifier 10.4230/LIPIcs.ESA.2016.69

1 Introduction

The SET COVER problem is, after determining satisfiability of CNF formulas or Boolean
circuits, one of the canonical NP-complete problems. It not only directly models many
applications in practical settings, but also algorithms for it routinely are used as tools for
theoretical algorithmic results (e.g., [17]). It is a problem ‘whose study has led to the
development of fundamental techniques for the entire field’ of approximation algorithms.!
However, the exact exponential time complexity of SET COVER is still somewhat mysterious:
We know algorithms need to use super-polynomial time assuming P # NP and (denoting n
for the universe size) O*(2(™) time assuming the Exponential Time Hypothesis, but how
large the exponential should be is not clear. In particular, no non-trivial consequences of an
O*(1.01™)-time algorithm are currently known.

Even though it is one of the canonical NP-complete problems, the amount of studies of
exact algorithms for SET COVER pales in comparison with the amount of literature on exact
algorithms for CNF-SAT: Many works focus on finding O*(¢")-time algorithms for ¢ < 2

* Funded by the NWO VENI project 639.021.438. This work was partly done while the author was visiting
the Simons Institute for the Theory of Computing during the program ‘Fine-Grained Complexity and
Algorithm Design’ in the fall of 2015.

! As the Wikipedia page on Set Cover quotes the textbook by Vazirani [32, p15].

© Jesper Nederlof;
37 licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 69; pp. 69:1-69:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.69
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

69:2

Finding Large Set Covers Faster via the Representation Method

for CNF-SAT on n-variable CNF-formulas in special cases such as, among others, bounded
clause width [31, 17, 12], bounded clause density [11, 25] or few projections [27, 29, 30].
Improved exponential time algorithms for special cases of problems other than CNF-SAT
were also studied for e.g. GRAPH COLORING or TRAVELING SALESMAN on graphs bounded
degree/average degree [8, 9, 15, 20].

In this paper we are interested in the exponential time complexity of SET COVER, and
study which properties are sufficient to have improved exponential time algorithms. Our
interest in finding faster exponential time algorithms for SET COVER does not only stem from
it being a canonical NP-complete problem, but also from its unclear relation with CNF-SAT.
Intriguingly, on one hand SET COVER has some similarities with the CNF-SAT: 1. Both
problems take an (annotated) hypergraph as input. 2. The improvability of the worst-case
complexity of CNF-SAT is essentially equivalent to the improvability of the worst-case
complexity of HITTING SET [14], which is just a reparametrization? of SET COVER. But, on
the other hand the problems are quite different to our understanding: 1. Most algorithms
for SET COVER use dynamic programming or some variant of inclusion exclusion, while
most algorithms for CNF-SAT are based on branching. 2. No connection between the
exponential time complexities of both problems is known (see [14]). One hope would be that
a better understanding of the exact complexity of SET COVER might shed more light on this
unclarity. Moreover, Cygan et al. [14] also show that if we would like to improve the run
time O*(f(k)) of several parameterized algorithms to O*(f(k)'~?(1), we first need to find
an O*(21=2M)n)_time algorithm for SET COVER. These parameterized algorithms include
the classic algorithm for SUBSET SUM, as well as more recent algorithms for CONNECTED
VERTEX COVER and STEINER TREE.

Relevant previous work. The algorithmic results on SET COVER that are the most relevant
to our work are as follows: The folklore dynamic programming algorithm runs in O*(2")
time. A notable special case of SET COVER that can be solved in O*(2(:=2(1)7) time is due
to Koivisto [28]: He gives an algorithm that runs in time O*(2(17ﬁ)")—time algorithm if
all sets are at most of size r. Bjorklund et al. [10] show that the problem can be solved in
2" poly(n) time (which is faster if the number of sets is exponentially large in n). Bjérklund
et al. [7] give a randomized algorithm that assumes all sets are of size ¢ and determines
whether there exist p pairwise disjoint sets in O*(2(*=9?9) time where € > 0 depends on q.

Our Main Results. We investigate what are sufficient structural properties of instances
of SET COVER, and the closely related SET PARTITION (in which the picked sets need to
be disjoint), problems to be solvable in time significantly faster than the currently known
algorithms. We will outline our main results now:

» Theorem 1.1. There is a Monte Carlo algorithm that takes an instance of SET COVER
on n elements and m sets and an integer s as input and determines whether there exists a
set cover of size s in 0(2(1_9(‘74))"771) time, where 0 = s/n.

We remark that this generalizes the result of Koivisto [28] in the sense that it solves a
larger class of instances in O*(2(1=2(1))") time: If all set sizes are bounded by a constant r,
a set partition needs to consist of at least n/r sets and Theorem 1.1 applies with o = 1/r

2 One way of stating HITTING SET in this context, is that we have an instance of the SET COVER problem
but aim to find an O*(2~¥M)™) time algorithm, where m denotes the number of sets.

J. Nederlof

(although this gives a slower algorithm than Koivisto’s in this special case). Moreover, it
seems hard to extend the approach of Koivisto to our more general setting.

The second result demonstrates that our techniques are also applicable to SET COVER
instances with exponentially many sets, a canonical example of which being graph coloring;:

» Theorem 1.2. There is a randomized algorithm that given graph G and integer s = on, in
O*(2(1_Q(U4))”) time outputs yes with constant probability, if x(G) < s, and no, if x(G) > s.

Representation method for Set Cover. We feel the main technique used in this paper
is equally interesting as the result, and will therefore elaborate on its origin here. Our
technique is on a high level inspired by the following simple observation ingeniously used
by Howgrave-Graham and Joux [23]: Suppose S C 2[™! is a set of solutions implicitly given
and we seek for a solution X € § with |X| = s by listing all sets of (572]) and performing
pairwise checks to see which two combine to an element of S. Then we can restrict our search
in various ways since there will be as many as (5;2) pairs guiding us to X. In [23] and all
subsequent works (including [3, 4, 1, 2]), this idea was used to speed up ‘meet-in-the-middle
attacks’ (also called ‘birthday attacks’ [26, Chapter 6]). We will refer to uses of this idea as the
‘representation method’ since it crucially relies on the fact that X has many representations
as pairs. To indicate the power of this technique in the context of SET COVER and SET
PARTITION we show that without changes it already gives an O*(29-3399)_time Monte Carlo
algorithm for the SET PARTITION problem with m sets, and even for a more general linear
satisfiability problem on m variables. For the latter problem this improves the O*(2’”/ 2)

time algorithm based on the meet-in-the-middle attack that was the fastest known before.

At first sight the representation method seemed to be inherently only useful for im-
proving algorithms based on the meet-in-the-middle attack. However, the main conceptual
contribution of this work is to show that it is also useful in other settings, or at least for
improving the dynamic programming algorithm for the SET COVER and SET PARTITION
problems if the solution size is large. On a high level, we show this as follows in the case of
SET PARTITION:® for a subset W of the elements of the SET PARTITION instance, define
T[W] to be the minimum number of disjoint sets needed to cover all elements of W. Stated
slightly oversimplified, we argue that if a minimal set partition of size s is large, we have that
TW]+T[[n]\ W] = s for (5j2) sets W with || close to n/2. To relate this to later sections,
let us remark we refer to such a set W as a witness halve. Subsequently, we exploit the
presence of many witness halves by using a dynamic programming algorithm that samples a
set of the subsets with size close to n/2 and only evaluates table entries from this sample
plus the table entries required to compute the table entries from the sample.

Organization. This paper is organized as follows: In Section 2, we recall preliminaries and
introduce notation. In Section 3, we discuss new observations and basic results that we
feel are useful for developing a better understanding of the complexity of SET COVER with
respect to several structural properties of instances. In Section 4 we formally present the
notion of witness halves and prepare tools for exploiting the existence of many witness halves.
In Section 5 we prove our main results and in Section 6 we suggest further research.

3 The algorithm for SET COVER actually reduces to SET PARTITION.

69:3

ESA 2016

69:4

Finding Large Set Covers Faster via the Representation Method

2 Preliminaries and Notation

For a Boolean predicate p, we let [p] denote 1 if p is true and 0 otherwise. On the other hand, if
p is an integer we let [p] denote {1,...,p}. As usual, N denotes all positive integers. Running
times of algorithms are often stated using O*(-) notation which suppresses factors polynomial
in the input size. To avoid superscript, we sometimes use exp(x) to denote e®. We denote lg
for the base-2 logarithm. If G = (V, E) and v € V we denote N(v) = {w e V : (v,w) € E}
and for X C V we extended this notation to N(X) = (J,cx N(v). For reals a,b > 0 we
let a & b denote the interval [a — b,a + b]. A false positive (negative) of an algorithm is an
instance on which it incorrectly outputs YES (respectively, NO). In this work we call an
algorithm Monte Carlo if it has no false positives and if any instance is a false negative with
probability at most 1/4. We denote vectors with boldface for clarity. For a real number
xz € 1[0,1], h(z) = —zlgax — (1 — x)1g(1 — x) denotes the binary entropy of z, where 0lg0
should be thought of as 0. It is well known that (Z) < 2hla/b)b (and this can for example
be proved using Stirling’s approximation). It is easy to see from the definition that h(-) is
symmetric in the sense that h(z) = h(1 — x).

» Lemma 2.1. The following can be verified using standard calculus:
1. h(1/2 —2) = h(1/2+2) <1 —22 for all x € (0,1/2),

2. h(z) <zlg(4/x) for all x € (0,1),

3. (1-1/n)" < 1/e.

» Lemma 2.2 (Hoeffding bound [21]). If X1,..., X, are independent, Y =Y ;_, X; and

a; < X; <b; fori=1,...,5 then Pr[|[Y —E[Y]| > ¢] < 2-exp (Z *(ité o7)
p=100t G

Set Cover / Set Partition. In the SET COVER problem we are given a bipartite graph
G = (FUU, E) (where F and U shorthand ‘Family’ and ‘Universe’ respectively), together
with an integer s and the task is to determine whether there exists a solution S C F such
that N(S) = U and |S| < s. In the SET PARTITION problem we are given the same input as
in the SET COVER problem, but we are set to determine whether there exists S C F' with
N(S) =U, |S| = s and additionally N(f) N N(f") =0 for every f, f' € S with f # f'. We
will refer to solutions of both problems as set covers and set partitions.

Throughout this paper, we let n, m respectively denote |U| and |F|, and refer to instances
of SET COVER or SET PARTITION as (n,m, s)-instances to quantify their parameters. Since
this work concerns SET COVER or SET PARTITION with large solutions we record the following
basic observation that follows by constructing for each? c-tuple t = (f1,..., f.) € F° of sets
in the original instance a set f* with N(f?) = Ji_, f; in the output instance:

» Observation 2.3 ([14]). There is a polynomial time algorithm that takes a constant ¢ > 1
dividing s, and a (n,m, s)-instance of SET COVER (resp. SET PARTITION) as input and
outputs an equivalent (n,m¢, s/c)-instance of SET COVER (resp. SET PARTITION).

Often it will be useful dispense with linear sized sets. To this end, the following can be
achieved by simply iterating over all f € F' with |[N(f)| > en and checking for each such set
whether there is a solution containing it using the 2" poly(n) algorithm for SET COVER [10].

4 For SET PARTITION only do this for c-tuples (f1,..., f.) with N(f;) disjoint.

J. Nederlof

» Observation 2.4. There is an algorithm that, given a real number € > 0, takes an (n,m, s)-
instance of SET COVER as input and outputs an equivalent (n,m’, s)-instance with m’ < m
satisfying |N(f)| < en for every f € F. The algorithm runs in O(m2(=9" poly(n)) time.

As we will see in Theorem 3.4, it makes a difference in the SET PARTITION problem
whether empty sets are allowed since we need to find a set partition of size exactly s. To
exclude such sets, we will simply say that an instance is ‘without empty sets’.

3 Observations and Basic Results on Set Cover and Set Partition

To improve our understanding of which properties of instances of SET COVER and SET
PARTITION allow faster algorithms, and which techniques are useful for obtaining such faster
algorithms, we will record some observations and basic results in this section. To stress that
the proof techniques in this section are not our main technical contribution, we postpone all
proofs to full version.

We prefer to state our results in terms of SET COVER because it is slightly more natural
and common, but since SET PARTITION often is easier to deal with for our purposes we will
sometimes use the following easy reduction, all of whose steps are contained in [14]:

» Theorem 3.1. There is an algorithm that, given a real 0 < € < 1/2, takes an (n,m,s)-
instance of SET COVER as input and outputs an equivalent (n,m’,s)-instance of SET
PARTITION with m’ < m2™ sets in time O(m21 ™).

For completeness, we show that in fact SET COVER and SET PARTITION are equivalent
with respect to being solvable in time O*(Q(l’ﬂ(l))”). This was never stated in print to the
best of our knowledge, but the proof uses standard ideas and is found in the full version.

» Theorem 3.2. For some ¢ > 0 there is an O*(21=9") time algorithm for SET COVER if
and only if for some € > 0 there is an O*(Q(I’e')”) time algorithm for SET PARTITION.

The following natural result is a rather direct consequence of a paper by Koivisto [28].
It reveals some more similarity with the k-CNF-SAT problem: Koivisto shows® that for
maximum set size r, SET COVER can be solved in O*(2(1=2())") which is analogous to
k-CNF-SAT being in O*(2=2()n) time [31, 17, 12], and similarly the following result is
the counterpart of O*(2(:=2(3)n)_time algorithms for CNF-formula’s of density § (i.e. at
most dn clauses) [11, 25]. Again, this result was never explicitly stated in print to the best
of our knowledge, and therefore is proved in the full version.

» Theorem 3.3. There is an algorithm solving (n,m, s)-instances of SET COVER or SET
PARTITION in time m - poly(n)2" ™ 0Tetm/n))

Relevant to our work is the following subtlety on solution sizes in SET PARTITION. It
shows that for SET PARTITION with empty sets, finding large solutions is as hard as the
general case. The proof is postponed to the full version.

» Theorem 3.4. Suppose there exist 0 < €1,€3 < 1/2 and an algorithm solving (n,m,e1n)-
instances of SET PARTITION in time O*(2(1=¢)"). Then there exists an O*(2(1=2/2™)_time
algorithm for SET PARTITION.

5 Koivisto only showed this for SET PARTITION, but the straightforward reductions in this section carry
this result over to SET COVER.

69:5

ESA 2016

69:6

Finding Large Set Covers Faster via the Representation Method

Finally, it is insightful to see how well the representation method performs on the SET
PARTITION problem with few sets (e.g., we consider running times of the O*(2™), where m
is the number of sets). A straightforward approach of the meet-in-the-middle attack leads
directly to an O*(2™/2) time algorithm. We show that the representation method combined
with the analysis of [2, 1] in fact solves the more general LINEAR SAT problem. In LINEAR
SAT, one is given an integer ¢, matrix A € Z5*™ and vectors b € Z% and w € N™ the task is
to find & € Z3' satisfying Ax =band w-x <t

» Theorem 3.5. There is an O*(2°-3399™)_time Monte Carlo algorithm solving LINEAR SAT.

To our best knowledge no O*(2(0-5=2(1)m)_time algorithm for LINEAR SAT was known
before. We get as a corollary that given a bipartite graph G = (FUU, E) we can determine
the smallest size of a set partition in time O*(2°-3399™) which we take as a clear first signal
that the representation method is useful for solving SET PARTITION (and SET COVER) for
instances with small universe. To see this consequence, note we can reduce this problem to
LINEAR SAT as follows: for every f € F' add the incidence vector of N(f) as a column to
A, and set cost w; of picking this column to be n|N(f)| + 1. Then the minimum of w - x
subject to Az = 1 will be n? + s where s is the number of sets in a minimum set partition.
Let us remark that [16, Page 130] solves (a counting version) of SET PARTITION in time
0*(1.2561™) = O0*(2°:329™) " and Drori and Peleg [18] solve the problem in O*(2°-3212m)
time,® so by no means our algorithm is the fastest in this setting. However, both use
sophisticated branching and we find it intriguing that the representation method does work
quite well even for the more general LINEAR SAT problem.

4 Exploiting the Presence of Many Witness 3-halves

For convenience we will work with SET PARTITION in this section; the results straightforwardly
extend to SET COVER but we will not need this in the subsequent section.

» Definition 4.1. Given an (n,m, s) instance of SET PARTITION, a subset W C U is said to
be a witness 3-halve if |[W| € (3 & B)n and there exist disjoint subsets S, S C F such that
N(S1US2) =U, > res,us, IN()l =n, N(S1) =W, N(S2) =U \ W and [S1| + [S2| = s.

Note that this is similar to the intuitive definition outlined in Section 1, except that we
require [W| € (1 +8)|U| and we adjusted the definition to the SET PARTITION problem. Since
S1U S5 is a set partition of size s we see that if a witness S-halve exists, we automatically
have a yes instance.

In this section we will give randomized algorithms that solve promise-variants of SET
PARTITION with the promise that, if the instance is a yes-instance, there will be an exponential
number of witness halves that are sufficiently balanced (i.e. of size close to n/2). In the first
subsection we outline the basic algorithm and in the second subsection we show how tools
from the literature can be combined with our approach to also give a faster algorithm if the
number of sets is exponential in n.

5 We attempted to find any more recent faster algorithm, but did not find this. Though, we would not
be surprised if using more recent tools in branching algorithms as [19] one should be able to more
significantly outperform our algorithm for SET PARTITION.

J. Nederlof

Algorithm Al(G = (FUU,E),s,(, B).
Output: An estimate of whether there exists a set partition of size s.
1: for integer [satisfying |(1/2 — B)n] <1 < [(1/2+ B8)n] do
2: Sample W C (Ilj) by including every set of ([lj) with probability 27¢™.
3: For every W € W and i € [n], compute ¢;(W) and ¢;(U \ W).
4: if Ji e [n]: ¢;(W) Acs—i(U \ W) then return yes.
5: return no.

Figure 1 High level description of the Algorithm implementing Theorem 4.2.

4.1 The basic algorithm

» Theorem 4.2. There exists an algorithm Al that takes an (n,m,s)-instance of SET
PARTITION and real numbers (3, > 0 satisfying 2/B < ¢ < 1/4 as input, runs in time
2(1=(¢/2)")m poly(n)m, and has the following property: if there exist at least Q(2™) witness
B-halves it returns yes with at least constant probability, and if there does not exist a set
partition of size s it returns no.

Note that the theorem does not guarantee anything on Algorithm A1 if a partition of s sets
exists and there are only few witness halves, but we will address this later. A high level
description of the Algorithm A1 is given in Figure 1:

Here, we define ¢;(WW) to be true if and only if there exists S; C F with |S;| = 4,
N(S1) = W, and for every f,f € Sy with f # f', N(f)NN(f') = 0. Given a set
family W, we denote {W = {X : IW € WA X C W} for the down-closure of W, and
MW ={X:3IW e WA X D W} for the up-closure of W. The following lemma concerns the
sub-routine invoked in Algorithm 1 and can be proved via known dynamic programming
techniques, and is postponed to the full version.

» Lemma 4.3. There exists an algorithm that given a bipartite graph G = (FUU, E) and
W C 2V with [U| = n and |F| = m, computes c;(W) for all W € W and i € n in
O(poly(n){W|m) time.

Thus, for further preparation of the proof of Theorem 4.2, we need to analyze the
maximum size of the (down/up)-closure of W in Algorithm A1 in Figure 1:
» Lemma 4.4. Let (, 3 be positive real numbers satisfying 2+/8 < ¢ < 1/4 and |U| = n.
Suppose W C ((1/23_5)n) with W] < 20=9n_ Then [tW)|, |IW] < n20=(¢/2Mn,

Proof. The upper bound on the up-closure is directly obtained by using Part 1 of Lemma 2.1:

W] < n< > < p2h(/248)n < 1 o(1=B)n 1 0(1=(¢/2)")n

n
12+ 5
We continue with upper bounding the down closure. Let A < 8 and wy = |[{W € (W : |[W]| =
An}|, so JW| < n-maxy wy. Then we have the following upper bounds:

ws < (/\n) <o < |W|((1/2/\+ ﬁ)n> < o(=0+h(2m) a/248)n.
n

n

To see the second upper bound, note that any set W € W can have at most (fZ) subsets of
size An. Thus, we see that [[WW|/n is upper bounded by 2/(¢#)" where

6. = e i {3, (1=)4 (5) a2+ 9

AS1/2+8

69:7

ESA 2016

69:8

Finding Large Set Covers Faster via the Representation Method

The remainder of the proof is therefore devoted to upper bounding f({,). We establish
this by evaluating both terms of the minimum, setting A to be X = (1 — ¢?)(1/2 + 8). First
note that by our assumption
N=(1-¢)1/2+p8)=1/2=-C/2+8-B<1/2-C/2+%/4- (8 <1/2,
N/(1)2+8)=1-¢ > 1/2.
Therefore, since h(z) is increasing for x < 1/2, h(A\) < h(XN) for A < XN. Similarly,
h (1/2%[3) is at most h(ﬁ) for A >)\, and we may upper bound f(¢,5) by the

maximum of the two terms of the minimum in f({, §) obtained by setting A = X’. For the
first term of the minimum, note that by Lemma 2.1, Item 1:

h(N) = h((1— ¢?)(1/2+ 8)) < 1— (1/2— (1 - ¢*)(1/2 + B))?
=1 (32— B+ 52
<1-(¢3/2-p)°
<1— (/42 =1-(¢/2)"

For the second term we have

1-(+h <W) (1/2+B)=1-C+h(1—-C¢H(1/2+B) by Lemma 2.1, Ttem 2
=1-C+h(H(1/2+P) B < 45 by assumption
4
SlCHng(@)éi g (%)<}
S1-C+(3 5
<1-¢/10.

note for the penultimate inequality that lg(%) is monotone increasing for 0 < ¢ < 1/4 and
substituting ¢ = 1/4 in this expression thus upper bounds it with 3/2. |

Now we are ready to wrap up this section with the proof of Theorem 4.2:

Proof of Theorem 4.2. We can implement Line 3 by invoking the algorithm of Lemma 4.3
with both [W|and W = {W : [n]\W € W}. Since [{W'| = |{X : IW € WAX C [n]\W}| =
[TW], this will take time O(poly(n)(|[{W|+ [tW|)m). This is clearly the bottleneck of the
algorithm, so it remains to upper bound (the expectation of) [{W|+ [tW| by applying
Lemma 4.4. To do this, note that W C (7), and we may assume [> n/2 since we could either
apply the lemma using W or W’. Moreover, we have that [< (1/2 + 8)n and 21/3 < ¢ by
assumption so indeed Lemma 4.4 applies. On expectation |[W| < ((1/27-:-[&)11)2{” < 2(1=0n
thus the running time? indeed is as claimed.

For the correctness, it is easily checked that the algorithm never returns false positives.
Moreover, if there exist at least Q(25") witness S-halves then for some [in the loop of
Line 1, there are at least (25" /n) witness halves of size [. Thus in this iteration we see by
Lemma 2.1, Part 3 that

<e lm, (4.1)

1 Q25" /n)
— 2?

Pr[# witness halve W € W] < (1

7 Due to the sampling in Line 2, we actually only get an upper bound on the expectation of the running
time, but by Markov’s inequality we can simply ignore iterations where W exceeds twice the expectation.

J. Nederlof

and if a witness halve W € W exists the algorithm returns yes since ¢;(W) A cs—;(U \ W)
holds for some i by the definition of witness halve. Therefore, if we perform n independent
trials of Algorithm A it return yes with probability at least 1 — 1/e. <

4.2 Improvement in the case with exponentially many input sets

In this section we show that under some mild conditions, the existence of many witness
halves can also be exploited in the presence of exponentially many sets. This largely builds
upon machinery developed by Bjorklund et al. [10, 8]. To state our result as general as
possible we assume the sets are given via an oracle so our running can be sublinear in the
input if the number of sets is close to 2™.

» Theorem 4.5. There exists an algorithm that, given oracle access to an (n,m,s)-instance
of SET PARTITION and real numbers 3, > 0 satisfying 2/8 < ¢ < 1/4, runs in time
2(1=(¢/2)")n poly(n)T and has the following property: if there exist at least 2(25") witness
B-halves, it outputs yes with constant probability and if there does not exist a set partition
of size s it outputs no.

Here the oracle algorithm accepts X C U as input, and decides whether there exists f € F
with N(f) = X in time T.

The proof of Theorem 4.5 is identical to the proof of Theorem 4.2 (and therefore omitted),
except that here we use the following lemma instead of Lemma 4.3:

» Lemma 4.6. There exists an algorithm that, given W C 2Y and oracle access to a bipartite
graph G = (FUU, E), computes the values c;(W) for all W € W in O(T|{W|poly(n)) time.
Here the oracle algorithm accepts X C U as input, and decides whether there exists f € F
with N(f) = X in time T.

This lemma mainly reiterates previous work developed by Bjorklund et al. [10, 8], but since
they did not prove this lemma as such we include a proof here in the full version.

5 Finding Large Set Covers Faster

In this section we will use the tools of the previous sections to prove our main results,
Theorems 1.1 and 1.2. We first connect the existence of large solutions to the existence of
many witness halves in the following lemma:

» Lemma 5.1. If an (n,m, s)-instance of SET PARTITION has no empty sets and satisfies
s > oon and [N(f)| < on/8 for every f € F, there is a solution if and only if there exist at
least 27°™ /4 witness (03 /4)-halves.

Proof. Note that the backward direction is trivial since by definition the existence of a
witness halve implies the existence of a solution.

For the other direction, suppose S = {fi,..., fs} is a set partition, and denote d; = | N(f;)|.
Suppose S’ C S is obtained by including every element of S with probability 1/2 in S’.

since N(f;) N N(f;) =0 for i # j, we have that the random variable |N(S”)| is a sum of s
independent random variables that equal 0 and d; with probability 1/2. By the Hoeffding
bound (Lemma 2.2) we see that

—n2od/8 —n20/8
Pr H IN(S")] — E[|N(S’)|]‘ > na§/4] <2 exp <Zoc/i2> <2-exp <n2040/é> <3,
ecS Ye 0

69:9

ESA 2016

69:10 Finding Large Set Covers Faster via the Representation Method

Algorithm A2(G = (FUU, E), 0).
Ensure |N(f)| < 0%n/1000 using Observation 2.4.

—

2: for every integer s satisfying |on/2| < s < on do

3: Create an (n,m/, s)-instance ((F"UU, E), s) of SET PARTITION where F’ is con-
structed by adding a vertex f’ with N(f’) = X for all f € F, X C N(f).

4: Let 09 = s/n.

5. if AL((F'UU,E),s,00,03/4) = yes then return yes.

6: Pick an arbitrary subset X € (n%)

7: Find the sizes [and r of the smallest set covers in the instances induced by elements

X and respectively elements U \ X in O(2"/2 poly(n)m) time with standard dynamic
programming.
8: if [+r <= on then return yes else return no.

Figure 2 Algorithm for SET COVER large solutions (implementing Theorem 1.1).

where the second inequality follows from d. < ogn/8 and > .gde = n. So for at least
2181/4 > 290m /4 subsets S’ C S we have that |N(S’)| € (3 £ 02/4)n. Thus, since for each
such S’, N(S’) determines S’ and thus gives rise to a distinct witness halve, there are at
least 270" /4 witness (02 /4)-halves. <

Now we are ready to prove the first main theorem, which we recall here for convenience.

» Theorem 1.1 (restated). There is a Monte Carlo algorithm that takes an instance of SET
COVER on n elements and m sets and an integer s as input and determines whether there
exists a set cover of size s in 020~ D) time, where o = s/n.

Proof. The algorithm implementing Theorem 1.1 is given in Figure 2.

We first focus on the correctness of this algorithm. It is clear that the algorithm never
returns false positives on Line 5 since Algorithm Al also has this property. If yes is returned
on Line 8 it is also clear there exists a solution.

Now suppose that a set cover S of size at most on exists. First suppose on/2 < |S| < on.
We consider s = |S| in some iteration of the loop on Line 2. Notice that now in Line 3 we
have reduced the problem to a yes-instance of SET PARTITION without empty sets satisfying
IN(f)] < on/1000 for every f € F. Therefore Lemma 5.1 applies with o9 > ¢ /2 and we
see there are at least 270" /4 witness (03 /4)-halves. Thus, we can apply Theorem 4.2 with
¢ =09 and 3 = 03/4 to find the set S with constant probability, since 8 < (¢/2)2.

Now suppose |S| < on/2. Then picking every element in S twice is a solution (as a
multiset), and it implies that for every X C U the sizes of the smallest set covers [and r (as
defined in the algorithm) satisfy [4+ < on. Thus Lines 6-8 find such a set and the algorithm
returns yes.

For the running time, Line 1 takes at most O(
tion 2.4. For Line 5, due to Theorem 4.2 this runs in time

2(1=0%/1000)n 161y (n)m) due to Observa-

0(2(17(4/2)4)71 poly(n)) 0(2(1 (00/2))n poly(n)204n/1000m)

9(1- (/)N 204n/1000m)

<0 poly(n)
= (2040 (1/1000=1/4")n 1) 1 (1))
< O(

2(1=(e"))n poly(n)m).

as claimed in the theorem statement. <

J. Nederlof

As a more direct consequence of the tools of the previous section we also get the following
result for SET PARTITION:

» Theorem 5.2. There exists a Monte Carlo algorithm for SET PARTITION that, given
oracle access to an (n,m,on)-instance satisfying 0 < |N(f)| < o*n/8 for every f € F, runs
in 20-2(*)n poly(n)T time.

Here the oracle algorithm accepts X C U as input, and decides whether there exists f € F
with N(f) = X in time T.

Proof. Lemma 5.1 implies the instance is a YES-instance if and only if there exist 2°™ /4
witness (02/4)-halves. Thus Theorem 4.5 implies the theorem statement. <

Note that this theorem also implies an O((m + 2(179("4))”) poly(n)) time algorithm for
SET PARTITION where the sets are given explicitly because we can construct a binary search
tree after which we can implement the oracle to run in 7' = n query time. We remark that it
would be interesting to see whether the assumption |N(f)| < 0?n/4 is needed, but removing
this assumption seems to require more ideas than the ones from this work: For example if
the solution has three sets of size 3n/10 there will be no witness halve that is sufficiently
balanced, and alternatively using Observation 2.4 seems to be too slow.

However, if we settle for a additive 1-approximation we can deal with this issue in a simple
way and have as a particular consequence the second result mentioned in the beginning of
this paper:

» Theorem 1.2 (restated). There is a randomized algorithm that given graph G and integer
s=on, in O*(2(1_Q("4))") time outputs yes with constant probability, if x(G) < s, and no,
if Xx(G) > s.

Proof. Let G = (V, E) and define a SET PARTITION instance where for every independent
set I CV of G there is an element f € F with N(f) = I. Tt is easy to see that this instance
of SET PARTITION has a solution of size s if and only if x(G) < s.

Check in (042/8) time whether G' has an independent set of size o*n/8. If such an
independent set is found, remove this set from the graph and return yes if the obtained graph
has a (k — 1)-coloring and no otherwise. Using the O*(2™) time algorithm by Bjorklund et
al. [10] in the second step, this procedure clearly runs in time O* (2(1_9("4))”), and always
finds a coloring using at most one more color than the minimum number of colors if a large
enough independent set exists.

On the other hand, if the maximum independent set of G is of size at most on /8, we
may apply Theorem 5.2 with T' = poly(n) since it can be verified in polynomial time whether
a given X C V is an independent set, and the theorem follows. |

6 Directions for Further Research

In this section, we relate the work presented to some notorious open problems. The obvious
open question is to determine the exact complexity of the SET COVER problem:

» Open Problem 1. Can SET COVER be solved in time O*((2 — Q(1))")?

This question was already stated at several places. It is known that if a version of SET
COVER where the number of solutions modulo 2 is counted can be solved in (2 — (1))™ the
Strong Exponential Time Hypothesis fails. We refer to [14], for more details.

Less ambitiously, it is natural to wonder whether our dependency on ¢ can be improved.

Our algorithm and analysis seem loose, but we feel the gain of a sharpening this analysis does

69:11

ESA 2016

69:12

Finding Large Set Covers Faster via the Representation Method

not outweigh the technical effort currently: For a better dependence, we need both a better
bound in Lemma 4.4 and to reduce the set sizes more efficiently than in Observation 2.4.
As further research we suggest to find a different algorithmic way to deal with the case
where many witness halves are unbalanced. But this alone will not suffice to give linear
dependence in o since in Lemma 4.4 we do not expect to get linear dependence on (even if
B = 0. It would also be interesting to see which other instances of SET COVER can be solved
in O*((2 —Q(1))™) time. One that might be worthwhile studying is whether this includes
instances with optimal set covers in which the sum of the set sizes is at least (1 + Q(1))n;
one may hope to find exponentially many (balanced) witness halves here as well.

In [14], the authors also give a reduction from SUBSET SUM to SET PARTITION. The
exact complexity of SUBSET SUM with small integers is also something we explicitly like to
state as open problem here, especially since the O*(¢) time algorithm (where ¢ is the target
integer) is perhaps one of the most famous exponential time algorithms:

» Open Problem 2. Can SUBSET SUM with target t be solved in time O*(t'=M), or can
we exclude the existence of such an assuming the Strong Exponential Time Hypothesis?

Note this question was before asked in [24] by the present author. It would be interesting to
study the complexity of SUBSET SUM in a similar vein as we did in this paper: are there some
special properties allowing a faster algorithm? For example, a faster algorithm for instances of
high ‘density’ (e.g., n/lgt) may be used for improving an algorithm of Horowitz&Sahni [22].
Note that here the ‘density’ of a SUBSET SUM instance is the inverse of what one would
expect when relating to the definition of density of k-CNF formula.

Another question that has already open for a while is:

» Open Problem 3. Can GrRAPH COLORING be solved in time O*(2(1=%(1)n) 2

Could the techniques of this paper be used to make progress towards resolving this question?
While our algorithm seems to benefit from the existence of many optimal colorings, in an
interesting paper Bjorklund [5] actually shows that the existence of few optimal colorings can
be exploited in graphs of small pathwidth. Related to this is also the Hamiltonicity problem.
In our current understanding this problem becomes easier when there is a promise that there
are few Hamiltonian cycles (see [6], but also e.g. [13] allows derandomizations of known
probabilistic algorithms in this case), so a natural approach would be to deal explicitly with
instances with many solutions by sampling dynamic programming table in a similar vein as
done in this paper.

Acknowledgements. The author would like to thank Per Austrin, Petteri Kaski, Mikko
Koivisto for their collaborations resulting in [1, 2] that mostly inspired this work, Karl
Bringmann for discussions on applications of [2] to SET PARTITION, and anonymous reviewers
for their useful comments.

—— References

1 Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Subset sum in the ab-
sence of concentration. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International
Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015,
Garching, Germany, volume 30 of LIPIcs, pages 48-61. Schloss Dagstuhl — Leibniz-Zentrum
fuer Informatik, 2015. URL: http://www.dagstuhl.de/dagpub/978-3-939897-78-1,
doi:10.4230/LIPIcs.STACS.2015.48.

http://www.dagstuhl.de/dagpub/978-3-939897-78-1
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.48

J. Nederlof

10

11

12

13

14

Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Dense subset sum may
be the hardest. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on
Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans,
France, volume 47 of LIPIcs, pages 13:1-13:14. Schloss Dagstuhl — Leibniz-Zentrum fuer
Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.13.

Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic algorithms
for hard knapsacks. In Kenneth G. Paterson, editor, Advances in Cryptology — EURO-
CRYPT 2011 — 30th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632
of Lecture Notes in Computer Science, pages 364-385. Springer, 2011. doi:10.1007/
978-3-642-20465-4_21.

Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random bin-
ary linear codes in 2 n/20: How 1 4+ 1 = 0 improves information set decoding. In EURO-
CRYPT, volume 7237 of Lecture Notes in Computer Science, pages 520-536. Springer,
2012. Talk at http://www.iacr.org/cryptodb/data/paper.php?pubkey=24271. doi:
10.1007/978-3-642-29011-4_31.

Andreas Bjorklund. Uniquely coloring graphs over path decompositions. CoRR,
abs/1504.03670, 2015. URL: http://arxiv.org/abs/1504.03670.

Andreas Bjorklund, Holger Dell, and Thore Husfeldt. The parity of set systems under ran-
dom restrictions with applications to exponential time problems. In Magnis M. Halldérsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming — 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-
10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages
231-242. Springer, 2015. doi:10.1007/978-3-662-47672-7_19.

Andreas Bjorklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. CoRR, abs/1007.1161, 2010. URL: http://arxiv.org/
abs/1007.1161.

Andreas Bjorklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Trimmed moebius
inversion and graphs of bounded degree. Theory Comput. Syst., 47(3):637-654, 2010. doi:
10.1007/s00224-009-9185-7.

Andreas Bjorklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. The traveling
salesman problem in bounded degree graphs. ACM Transactions on Algorithms, 8(2):18,
2012. doi:10.1145/2151171.2151181.

Andreas Bjorklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546-563, 2009. doi:10.1137/070683933.

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause
width and clause density for SAT. In 21st Annual IEEE Conference on Computational
Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 252-260. IEEE
Computer Society, 2006. doi:10.1109/CCC.2006.6.

Timothy M. Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1246-1255. SIAM, 2016. doi:10.1137/
1.9781611974331.ch87.

Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. Randomness-optimal unique ele-
ment isolation with applications to perfect matching and related problems. SIAM J. Com-
put., 24(5):1036-1050, 1995. doi:10.1137/S0097539793250330.

Marek Cygan, Holger Dell, Daniel Lokshtanov, Déaniel Marx, Jesper Nederlof, Yoshio
Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlstrém. On problems

69:13

ESA 2016

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.13
http://dx.doi.org/10.1007/978-3-642-20465-4_21
http://dx.doi.org/10.1007/978-3-642-20465-4_21
http://www.iacr.org/cryptodb/data/paper.php?pubkey=24271
http://dx.doi.org/10.1007/978-3-642-29011-4_31
http://dx.doi.org/10.1007/978-3-642-29011-4_31
http://arxiv.org/abs/1504.03670
http://dx.doi.org/10.1007/978-3-662-47672-7_19
http://arxiv.org/abs/1007.1161
http://arxiv.org/abs/1007.1161
http://dx.doi.org/10.1007/s00224-009-9185-7
http://dx.doi.org/10.1007/s00224-009-9185-7
http://dx.doi.org/10.1145/2151171.2151181
http://dx.doi.org/10.1137/070683933
http://dx.doi.org/10.1109/CCC.2006.6
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.1137/S0097539793250330

69:14

Finding Large Set Covers Faster via the Representation Method

15

16

17

18

19

20

21

22

23

24

25

26

27

28

as hard as CNF-SAT. In Proceedings of the 27th Conference on Computational Com-
plexity, CCC 2012, Porto, Portugal, June 26-29, 2012, pages 74-84. IEEE, 2012. doi:
10.1109/CCC.2012.36.

Marek Cygan and Marcin Pilipczuk. Faster exponential-time algorithms in graphs of
bounded average degree. Inf. Comput., 243:75-85, 2015. doi:10.1016/j.1ic.2014.12.007.

Vilhelm Dahllof. Ezact Algorithms for Exact Satisfiability Problems. PhD thesis, Linkoping
University, TCSLAB, The Institute of Technology, 2006.

Evgeny Dantsin, Andreas Goerdt, Edward A Hirsch, Ravi Kannan, Jon Kleinberg, Christos
Papadimitriou, Prabhakar Raghavan, and Uwe Schéning. A deterministic (2 —2/(k +1))n
algorithm for k-SAT based on local search. Theoretical Computer Science, 289(1):69-83,
2002. doi:10.1016/50304-3975(01)00174-8.

Limor Drori and David Peleg. Faster exact solutions for some NP-hard problems. Theoret-
ical Computer Science, 287(2):473-499, 2002. Algorithms. doi:10.1016/30304-3975(01)
00257-2.

Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach
for the analysis of exact algorithms. J. ACM, 56(5), 2009. doi:10.1145/1552285.1552286.

Alexander Golovnev, Alexander S. Kulikov, and Ivan Mihajlin. Families with infants: A
general approach to solve hard partition problems. In Javier Esparza, Pierre Fraigniaud,
Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming
— 41st International Colloguium, ICALP 201/, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 551-562.
Springer, 2014. doi:10.1007/978-3-662-43948-7_46.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13-30, 1963.

Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack
problem. J. ACM, 21(2):277-292, 1974. doi:10.1145/321812.321823.

Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In
Henri Gilbert, editor, Advances in Cryptology — EUROCRYPT 2010, 29th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, French
Riviera, May 30 — June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer
Science, pages 235-256. Springer, 2010. doi:10.1007/978-3-642-13190-5_12.

Thore Husfeldt, Ramamohan Paturi, Gregory B. Sorkin, and Ryan Williams. Exponen-
tial Algorithms: Algorithms and Complexity Beyond Polynomial Time (Dagstuhl Seminar
13331). Dagstuhl Reports, 3(8):40-72, 2013. doi:10.4230/DagRep.3.8.40.

Russell Impagliazzo, Shachar Lovett, Ramamohan Paturi, and Stefan Schneider. 0-1 integer
linear programming with a linear number of constraints. CoRR, abs/1401.5512, 2014. URL:
http://arxiv.org/abs/1401.5512.

Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall/CRC, 1st edition, 2009.

Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Homomorphic hashing for sparse
coefficient extraction. In Dimitrios M. Thilikos and Gerhard J. Woeginger, editors, Para-
meterized and Exact Computation — 7th International Symposium, IPEC 2012, Ljubljana,
Slovenia, September 12-14, 2012. Proceedings, volume 7535 of Lecture Notes in Computer
Science, pages 147-158. Springer, 2012. doi:10.1007/978-3-642-33293-7_15.

Mikko Koivisto. Partitioning into sets of bounded cardinality. In Jianer Chen and
Fedor V. Fomin, editors, Parameterized and Ezact Computation, 4th International Work-
shop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Pa-
pers, volume 5917 of Lecture Notes in Computer Science, pages 258-263. Springer, 2009.
doi:10.1007/978-3-642-11269-0_21.

http://dx.doi.org/10.1109/CCC.2012.36
http://dx.doi.org/10.1109/CCC.2012.36
http://dx.doi.org/10.1016/j.ic.2014.12.007
http://dx.doi.org/10.1016/S0304-3975(01)00174-8
http://dx.doi.org/10.1016/S0304-3975(01)00257-2
http://dx.doi.org/10.1016/S0304-3975(01)00257-2
http://dx.doi.org/10.1145/1552285.1552286
http://dx.doi.org/10.1007/978-3-662-43948-7_46
http://dx.doi.org/10.1145/321812.321823
http://dx.doi.org/10.1007/978-3-642-13190-5_12
http://dx.doi.org/10.4230/DagRep.3.8.40
http://arxiv.org/abs/1401.5512
http://dx.doi.org/10.1007/978-3-642-33293-7_15
http://dx.doi.org/10.1007/978-3-642-11269-0_21

J. Nederlof

29

30

31

32

Daniel Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model counting for cnf for-
mulas of bounded modular treewidth. Algorithmica, pages 1-27, 2015. doi:10.1007/
s00453-015-0030-x.

Sigve Hortemo Seether, Jan Arne Telle, and Martin Vatshelle. Solving maxsat and #sat on
structured CNF formulas. In Carsten Sinz and Uwe Egly, editors, Theory and Applications
of Satisfiability Testing — SAT 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume
8561 of Lecture Notes in Computer Science, pages 16-31. Springer, 2014. doi:10.1007/
978-3-319-09284-3_3.

Uwe Schoning. A probabilistic algorithm for k-SAT based on limited local search and
restart. Algorithmica, 32(4):615-623, 2002. doi:10.1007/s00453-001-0094-7.

Vijay V. Vazirani. Approxzimation Algorithms. Springer-Verlag New York, Inc., New York,
NY, USA, 2001.

69:15

ESA 2016

http://dx.doi.org/10.1007/s00453-015-0030-x
http://dx.doi.org/10.1007/s00453-015-0030-x
http://dx.doi.org/10.1007/978-3-319-09284-3_3
http://dx.doi.org/10.1007/978-3-319-09284-3_3
http://dx.doi.org/10.1007/s00453-001-0094-7

	Introduction
	Preliminaries and Notation
	Observations and Basic Results on Set Cover and Set Partition
	Exploiting the Presence of Many Witness beta-halves
	The basic algorithm
	Improvement in the case with exponentially many input sets

	Finding Large Set Covers Faster
	Directions for Further Research

