
Sampling-Based Bottleneck Pathfinding with
Applications to Fréchet Matching∗

Kiril Solovey1 and Dan Halperin2

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
kirilsol@post.tau.ac.il

2 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
danha@post.tau.ac.il

Abstract
We describe a general probabilistic framework to address a variety of Fréchet-distance optimiza-
tion problems. Specifically, we are interested in finding minimal bottleneck-paths in d-dimensional
Euclidean space between given start and goal points, namely paths that minimize the maximal
value over a continuous cost map. We present an efficient and simple sampling-based framework
for this problem, which is inspired by, and draws ideas from, techniques for robot motion plan-
ning. We extend the framework to handle not only standard bottleneck pathfinding, but also
the more demanding case, where the path needs to be monotone in all dimensions. Finally, we
provide experimental results of the framework on several types of problems.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Computational geometry, Fréchet distances, sampling-based algorithms,
random geometric graphs, bottleneck pathfinding

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.76

1 Introduction

This paper studies the problem of finding near-optimal paths in d-dimensional Euclidean
space. Specifically, we are interested in bottleneck paths which minimize the maximal value
the path obtains over a generally-defined continuous cost map. As an example, suppose that
one wishes to plan a hiking route in a mountainous region between two camping grounds,
such that the highest altitude along the path is minimized [17]. In this case, the map assigns
to each two-dimensional point its altitude. A similar setting, albeit much more complex,
requires to find a pathway of low energy for a given protein molecule (see, e.g., [37]).

Our main motivation for studying bottleneck optimization over cost maps is its tight
relation to the Fréchet distance (or matching), which is a popular and widely studied
similarity measure in computational geometry. The problem has applications to various
domains such as path simplification [19], protein alignment [27], handwritten-text search [48],
and signature verification [53]. The Fréchet distance, which was initially defined for curves,
is often considered to be a more informative measure than the popular Hausdorff distance
as it takes into consideration not only each curve as a whole but also the location and the
ordering of points along it. Usually one is interested not only in the Fréchet distance between
two given curves, but also in the parametrization which attains the optimal alignment.

∗ This work has been supported in part by the Israel Science Foundation (grant no. 1102/11), by the
German-Israeli Foundation (grant no. 1150-82.6/2011), and by the Hermann Minkowski-Minerva Center
for Geometry at Tel Aviv University. Kiril Solovey is also supported by the Clore Israel Foundation.

© Kiril Solovey and Dan Halperin;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 76; pp. 76:1–76:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.76
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

76:2 Sampling-Based Bottleneck Pathfinding with Applications to Fréchet Matching

Since its introduction by Alt and Godau [2] in 1995, a vast number of works has been
devoted to the subject, and many algorithms have been developed to tackle various settings
of the problem. However, from a practical standpoint the problem is far from being solved:
for many natural extensions of the Fréchet problem only prohibitively-costly algorithms are
known. Furthermore, in some cases it was shown, via hardness proofs, that efforts for finding
polynomial-time algorithms are doomed to fail. For some variants of the problem efficient
algorithms are known to exist, however their implementation requires complex geometric
machinery that relies on geometric kernels with infinite precision [30].

Contribution. We describe a generic, efficient and simple algorithmic framework for solving
pathfinding optimization problems over cost maps. The framework is inspired by, and draws
ideas from, sampling-based methods for robot motion planning. We provide experimental
results of the framework on various scenarios. Furthermore, we theoretically analyze the
framework and show that the cost of the obtained solution converges to the optimum, as the
number of samples increases. We also consider the more demanding case, where paths need
to be monotone in all dimensions.

Organization. In Section 2 we review related work. In Section 3 we provide a formal
definition of the bottleneck pathfinding problem. In Section 4 we describe an algorithmic
framework for solving this problem. In Section 5 we provide an analysis of the method.
Finally, in Section 6 we report on experimental results.

2 Related work

This section is devoted to related work on Fréchet distance and robot motion planning.

2.1 Fréchet distance
The Fréchet distance between two curves is often described by an analogy to a person walking
her dog: each of the two creatures is required to walk along a predefined path and the person
wishes to know the length of the shortest leash which will make this walk possible. In many
cases one also likes to know how to advance along the path given the short leash.

Formally, let σ1, σ2 : [0, 1]→ Rd be two continuous curves. We wish to find a traversal
along the two curves which minimizes the distance between the two traversal points. The
traversal is defined by two continuous parametrizations α1, α2 : [0, 1] → [0, 1] of σ1, σ2
respectively, where for a given point in time τ ∈ [0, 1], the positions of the person and her
dog are specified by σ1(α1(τ)) and σ2(α2(τ)), respectively. The Fréchet distance between
σ1, σ2 is defined by the expression

min
α1,α2:[0,1]→[0,1]

max
τ∈[0,1]

‖σ1(α1(τ))− σ2(α2(τ))‖2.

Alt and Godau [2] described an O(n2 logn)-time algorithm for the setting of two polygonal
curves, where n is the number of vertices in each of the two curve. Buchin et al. [12] described
a different method for solving this problem for the same running time. Recently, Buchin
et al. [10] developed an algorithm with a slightly improved running time O(n2 log2 logn).
Har-Peled and Raichel [22] introduced a simpler randomized algorithm with running time
of O(n2 logn). Bringmann [6] showed that an algorithm with running time of O(n2−δ),
for some constant δ > 0, does not exist, unless a widely accepted conjecture, termed

Kiril Solovey and Dan Halperin 76:3

SETH [25], is wrong. In a following work [7] this conditional lower bound was extended to
(1 + ε)-approximation algorithms of the Fréchet problem, where ε ≤ 0.399.

The notion of Fréchet distance can be extended to k curves in various ways. One natural
extension can be described figuratively as having a pack of k dogs, where each of the dogs has
to walk along a predefined path, and every pair of dogs is connected with a leash. The goal
now is to find a parametrization which minimizes the length of the longest leash. Dumitrescu
and Rote [18] introduced a generalization of the Alt-Godau algorithm to this case, which
runs in O(knk logn) time, i.e., exponential in the number of input curves. They also describe
a 2-approximation algorithm with a much lower running time of O(k2n2 logn). In the work
of Har-Peled and Raichel [22] mentioned above they also consider the case of k input curves
and devise an O(nk) algorithm. Notably, their technique is flexible enough to cope with
different Fréchet-type goal functions over the k curves. Furthermore, their algorithm is also
applicable when the k curves are replaced with k simplicial complexes, and the problem is
to find k curves—one in each complex—which minimize the given goal function. A recent
work [9], which extends the conditional lower bound mentioned earlier for the setting of
multiple curves, suggests that a running time that is exponential in the number of curves is
unavoidable.

The notion of Fréchet distance can be generalized to more complex objects. Buchin et
al. [13] considered the problem of finding a mapping between two simple polygons, which
minimizes the maximal distance between a point and its image in the other polygon. More
formally, given two simple polygons P,Q ⊂ R2 the problem consists of finding a mapping
δ : P → Q which minimizes the expression maxp∈P ‖p− δ(p)‖2, subject to various constraints
on δ. They introduced a polynomial-time algorithm for this case. In a different paper, Buchin
et al. [11] showed that the decision problem is np-hard for more complex geometric objects,
e.g., pairs of polygons with holes in the plane or pairs of two-dimensional terrains. Another
interesting np-hard problem that was studied by Sherette and Wenk [41] is curve embedding
in which one wishes to find an embedding of a curve in R3 to a given plane, which minimizes
the Fréchet distance with the curve. In a similar setting Meulemans [34] showed that it is
np-hard to decide whether there exists a simple cycle in a plane-embedded graph that has at
most a given Fréchet distance to a simple closed curve.

The Fréchet distance between curves in the presence of obstacles have earned some
attention. Cook and Wenk [16] studied the geodesic variant, which consists of a simple
polygon and two polygonal curves inside it. As in the standard formulation, the main goal is
to minimize the length of the leash, but now the leash may wrap or bend around obstacles.
Their algorithm has running time of O(m+ n2 logmn logn), where m is the complexity of
the polygon and n is defined as the total complexity of the two curves, as before. The more
complex homotopic setting is a special case of the aforementioned geodesic setting, with
the additional constraint that the leash must continuously deform. Chambers et al. [14]
considered this problem for the specific setting of two curves in planar environment with
polygonal obstacles. They developed an algorithm whose running time is O(N9 logN), where
N = n+m for n and m as defined above.

2.2 Motion planning
Motion planning is a fundamental problem in robotics. In its most basic form, the problem
consists of finding a collision-free path for a robot R in a workspace environmentW cluttered
with obstacles. Typically, the problem is approached from the configuration space C—the set
of all robot configurations. The problem can be reformulated as finding a continuous curve in
C, which entirely consists of collision-free configurations and represents a path for the robot

ESA 2016

76:4 Sampling-Based Bottleneck Pathfinding with Applications to Fréchet Matching

from a given start configuration to another, target, configuration. An important attribute of
the problem is the number of degrees of freedom of R, using which one can specify every
configuration in C. Typically the dimension of C equals the number of degrees of freedom.

For some cases of the problem, which involve a small number of degrees of freedom,
efficient and exact analytical techniques exist (see, e.g., [4, 21, 40]), which are guaranteed
to find a solution if one exists, or report that none exists otherwise. Recently, it was
shown [46, 1, 50] that efficient and complete techniques can be developed for the multi-
robot motion-planning problem, which entails many degrees of freedom, by making several
simplifying assumptions on the separation of the start and target positions. However, it is
known that the general setting of the motion-planning problem is computationally intractable
(see, e.g., [38, 23, 47, 43]) with respect to the number of degrees of freedom.

Sampling-based algorithms for motion planning, which were first described about two
decades ago, have revolutionized the field of robotics by providing simple yet effective tools to
cope with challenging problems involving many degrees of freedom. Such algorithms (see, e.g.,
PRM by Kavraki et al. [29], RRT by Kuffner and LaValle [32], and EST by Hsu et al. [24])
explore the high-dimensional configuration space by random sampling and connecting nearby
samples, which result in a graph data structure that can be viewed as an approximation of
the free space—a subspace of C, which consists entirely of collision-free configurations. While
such techniques have weaker theoretical guarantees than analytical methods, many of them
are probabilistically complete, i.e., guaranteed to find a solution if one exists, given sufficient
processing time. More recently, asymptotically optimal sampling-based algorithms, whose
solution converges to the optimum, for various criteria, have started to emerge: Karaman
and Frazzoli introduced the RRT* and PRM* [28] algorithms, which are asymptotically
optimal variants of RRT and PRM. Following their footsteps Arslan and Tsiotras introduced
RRT# [3]. A different approach was taken by Janson and Pavone who introduced the FMT*
algorithm [26], which was later refined by Salzman and Halperin [39].

3 Problem statement

In this section we describe the general problem of bottleneck pathfinding over a given cost
map, to which we describe an algorithmic framework in Section 4. We conclude this section
we several concrete examples of the problems that will be used for experiments in Section 6.

We start with several basic definitions. Given x, y ∈ Rd, for some fixed dimension d ≥ 2, let
‖x−y‖2 denote the Euclidean distance between two points. Denote by Br(x) the d-dimensional
Euclidean ball of radius r > 0 centered at x ∈ Rd and Br(Γ) =

⋃
x∈Γ Br(x) for any Γ ⊆ Rd.

We will use the terms “path” and “curve” interchangeably, to refer to a continuous curve in
Rd parametrized over [0, 1]. Given a curve σ : [0, 1]→ Rd define Br(σ) =

⋃
τ∈[0,1] Br(σ(τ)).

Additionally, denote the image of a curve σ by Im(σ) =
⋃
τ∈[0,1]{σ(τ)}. Let A1, A2, . . . be

random variables in some probability space and let B be an event depending on An. We say
that B occurs almost surely (a.s., in short) if limn→∞ Pr[B(An)] = 1.

Let M : [0, 1]d → R be a cost map that assigns to each point in [0, 1]d a real value.
For simplicity, we assume that the domain of M is a d-dimensional unit hypercube. Let
S, T ∈ [0, 1]d denote the start and target points. Denote by Σ(S, T) the collection of paths that
start in S and end in T . Formally, every σ ∈ Σ(S, T) is a continuous path σ : [0, 1]→ [0, 1]d,
where σ(0) = S, σ(1) = T . Given a path σ we use the notationM(σ) = maxτ∈[0,1]M(σ(τ))
to represent its bottleneck cost.

In some applications, monotone paths are desired. For instance, in the classical problem
of Fréchet matching between two curves it is often the case that backward motion along the

Kiril Solovey and Dan Halperin 76:5

curves is forbidden. Here we consider monotonicity in all d coordinates of points along the
path. Formally, given two points p, p′ ∈ Rd, where p = (p1, . . . , pd), p′ = (p′1, . . . , p′d), we use
the notation p � p′ to indicate that pi ≤ p′i, for every 1 ≤ i ≤ d. A path σ ∈ Σ(S, T) is said
to be monotone if for every 0 ≤ τ ≤ τ ′ ≤ 1 it holds that σ(τ) � σ(τ ′).

I Definition 1. Given the triplet 〈M, S, T 〉, the bottleneck-pathfinding problem (BPP, for
short) consists of finding a path σ ∈ Σ(S, T) which minimizes the expression
maxτ∈[0,1]M(σ(τ)). A special case of the bottleneck pathfinding problem, termed strong-
BPP, requires that the path will be monotone.

3.1 Examples
We provide three examples of BPPs, which will be used for experiments in Section 6. Each
example is paired with the d-dimensional configuration space C := [0, 1]d, start and target
points S, T ∈ C, and a cost map M : [0, 1]d → R. The examples below are defined for
two-dimensional input objects, but can generalized to higher dimensions.

Problem 1: We start with the classical Fréchet distance among k curves (see, e.g., [22]).
Let σ1, . . . , σk : [0, 1]→ [0, 1]2 be k continuous curves embedded in Euclidean plane. Here
C = [0, 1]k is defined as the Cartesian product of the various positions along the k curves.
Namely, a point P = (p1, . . . , pk) ∈ C describes the location σi(pi) along σi, for each 1 ≤ i ≤ k.
To every such P we assign the costM(P) = max1≤i<j≤k ‖σi(pi)− σj(pj)‖2. We note that
more complex formulations ofM can be used, depending on the exact application. The start
and target positions are defined to be S = (σ1(0), . . . , σk(0)), T = (σ1(1), . . . , σk(2)).

Problem 2: We introduce the problem of Fréchet distance with visibility, whose basis is
similar to P1 with k = 3. In addition to the curves, we are given a subspace F ⊆ [0, 1]2.
The goal is to find a traversal of the curves which minimizesM as defined in P1, with the
additional constraint that the traversal point along σ1 must be “seen” by one of the traversal
points of σ2, σ3. Formally, for every P = (p1, p2, p3) ∈ C it must hold that p1p2 ⊂ F or
p1p3 ⊂ F (but not necessarily both), where pipj is the straight-line path from pi to pj .

Problem 3: In curve embedding (see, [41, 34]), the input consists of a curve σ : [0, 1] →
[0, 1]2, a subspace F ⊆ [0, 1]2 and a pair of two-dimensional points s, t ∈ F . A point
P = (p1, p2, p3) ∈ C = [0, 1]3 describes the location σ(p1) along σ and the point (p2, p3) ∈ F .
The BPP is defined for the start and target points S = (0, s), T = (1, t) ∈ C and the cost
mapM(P) = ‖σ(p1)− (p2, p3)‖2.

4 Algorithmic framework

In this section we describe an algorithmic framework that will be used for solving standard
and strong regimes of BPP (Definition 1). The framework can be viewed as a variant of
the PRM algorithm [28], and we chose to describe it here in full detail for completeness.
However, the analysis provided in Section 5 is brand new.

The framework consists of three conceptually simple steps: In the first step, we construct
a random graph embedded in [0, 1]d, whose vertices consist of the start and target points
S, T , and of a collection of randomly sampled points; the edges connect points that are
separated by a distance of at most a given connection threshold rn. In the second step the
edges of the graph are assigned with weights corresponding to their bottleneck cost overM.

ESA 2016

76:6 Sampling-Based Bottleneck Pathfinding with Applications to Fréchet Matching

In the third and final step, the discrete graph is searched for a path connecting S to T which
minimizes the bottleneck cost.

Before proceeding to a more elaborate description of the framework we provide a formal
definition of the random graphs that are at the heart of the technique. Let Xn = {X1, . . . , Xn}
be n points chosen independently and uniformly at random from the Euclidean d-dimensional
cube [0, 1]d. The following definition corresponds to the standard and well-studied model of
random geometric graphs (see, e.g., [36, 51, 5] and the literature review in [45]).

I Definition 2. The random geometric graph (RGG) Gn = G(Xn; rn) is a directed graph
with vertex set Xn and edge set {(x, y) : x 6= y, x, y ∈ Xn, ‖x− y‖2 ≤ rn}.

We are ready to describe the framework, which has two parameters: n represents the
number of samples generated and rn defines the Euclidean connection radius used in the
construction of the graphs. In the next section we show that for a range of values of rn,
which is a function of the number of samples n, the cost of the returned solution converges
to the optimum, as n tends to infinity. The framework consists of the following steps:

Step I: We construct the RGG Gn = (Xn ∪ {S, T}; rn). For the purpose of generating Gn a
collection of n samples Xn is generated and a nearest-neighbor structure is employed to find
for every x ∈ Xn ∪ {S, T} the set of samples that located within a Euclidean distance of rn
from it.

Step II: We assign to each edge of the graph the bottleneck cost of the straight-line path
connecting its endpoints underM. In particular, for the standard BPP, for every edge (x, y)
the cost maxτ∈[0,1]M(x+ τ(y − x)) is assigned. The same applies for strong-BPP, unless
x 6� y, in which case the value +∞ is assigned.

Step III: For the final step we find a path over Gn from S to T which minimizes the
bottleneck cost. Several efficient algorithms solving this problem exist (see, e.g., [52, 15]).

5 Theoretical foundations

We study the behavior of the framework for the standard and the strong case of BPP
(Definition 1). Recall the framework uses the two parameters n and rn, which specify the
number of samples and the connection radius.We establish a range of connection radii, rn,
for which the cost of the returned solution is guaranteed to converge to a relaxed notion of
the optimum.

The analysis below does not restrict itself to a specific type of cost maps M, e.g.,
continuous or smooth. Thus, due to the stochastic nature of the framework, and the general
definition ofM, we cannot guarantee that the returned solution will tend to the absolute
optimum. As an example consider the cost map M such that for a given x = (x1, x2),
M(x) = 0 if x1 = x2, and M(x) = 1 otherwise. For the start and target points S =
(0.1, 0.1), T = (0.9, 0.9) the optimal solution is a subset of the diagonal. Obviously, the
probability of having a single point of Xn, let alone a whole path in Gn, that lie on the
diagonal is equal to 0.

We can however guarantee convergence to a robustly-optimal path, which is defined below.
Informally, such paths have “well-behaved” neighborhoods, in terms of the value ofM. We
provide below a formal definition of this notion for the bottleneck cost function. Recall that
given a path σ the notationM(σ) represents its bottleneck cost.

Kiril Solovey and Dan Halperin 76:7

I Definition 3. Given the triplet 〈M, S, T 〉, a path σ ∈ Σ(S, T) is called robust if for every
ε > 0 there exists δ > 0 such that M(σ′) ≤ (1 + ε)M(σ), for any σ′ ∈ Σ(S, T) such that
Im(σ′) ⊂ Bδ(σ). A path that attains the infimum cost, over all robust paths, is termed
robustly optimal.

5.1 (Standard) Bottleneck cost
For a given triplet 〈M, S, T 〉 representing an instance of BPP, denote by σ∗ a robustly-optimal
solution. Note that we do not require here that σ∗ or the returned solution will be monotone.
We obtain the following result. All logarithms stated henceforth are to base e.

I Theorem 4. Let Gn = G(Xn ∪ {S, T}; rn) be an RGG with

rn = γ

(
logn
n

)1/d
, γ > 2(2dθd)−1/d,

where θd denotes the Lebesgue measure of a unit ball in Rd. Then Gn contains a path
σn ∈ Σ(S, T) such thatM(σn) = (1 + o(1))M(σ∗), a.s.

We mention that this connection radius is also essential for connectivity of RGGs, i.e.,
a smaller radius results in a graph that is disconnected with high probability (see, e.g.,[8]).
This fact is instrumental to our proof. We also mention that a result similar to Theorem 4
can be obtained through a different proof technique [28], albeit with a larger value of the
constant γ.

For simplicity, we assume for the purpose of the proof that exists a finite constant δ′ > 0
such that Bδ′(σ∗) ⊂ [0, 1]d, namely the robustly-optimal solution is at least δ′ away from
the boundary of the domain [0, 1]d. This constraint can be easily relaxed by transforming
〈M, S, T 〉 into an equivalent instance 〈M′, S′, T ′〉 where this condition is met. In particular
the original input can be embedded to a cube of side length 1− ε for some constant ε > 0,
which is centered in the middle of [0, 1]d. The cost along the boundaries of the smaller cube
should be extended to the remaining parts of the [0, 1]d cube.

Given an RGG Gn and a subset Γ ⊂ [0, 1]d denote by Gn(Γ) the graph obtained from the
intersection of Gn and Γ: it consists of the vertices of Gn that are contained in Γ and the
subset of edges of Gn that are fully contained in Γ. Each edge is considered as a straight-line
segment connecting its two end points.

A main ingredient in the proof of Theorem 4 is the following Lemma. We employ the
localization-tessellation framework [45], which was developed by the authors. The framework
allows to extend properties of RGGs to domains with complex geometry and topology.

I Lemma 5. Let Gn be the RGG defined in Theorem 4. Additionally let Γ ⊂ [0, 1]d be a
fixed subset, where S, T ∈ Γ, and let ρ > 0 be some fixed constant, such that Bρ(Γ) ⊂ [0, 1]d.
Then S, T are connected in Gn(Bρ(Γ)) a.s.

Proof. We rely on the well-known result that Gn is connected a.s. in the domain [0, 1]d
for the given connection radius rn (see, e.g., [45, Theorem 1]). We then use Lemma 1 and
Theorem 6 in [45] which state that if Gn is connected a.s., and is localizable (see, Definition 6
therein), then S, T are connected a.s. over Gn(Bρ(Γ)). J

Proof of Theorem 4. We first show that for any ε > 0 it follows thatM(σn) ≤ (1+ε)M(σ∗)
a.s. Fix some ε > 0. Due to the fact that σ∗ is robustly optimal, there exists δε > 0
independent of n such that for every σ ∈ Σ(S, T) such that Im(σ) ⊂ Bδε

(σ∗) we have

ESA 2016

76:8 Sampling-Based Bottleneck Pathfinding with Applications to Fréchet Matching

that M ≤ (1 + ε)M(σ∗) a.s. Additionally, recall that there exists some δ′ > 0 such
Bδ′(σ∗) ⊂ [0, 1]d.

Set δ = min{δε, δ′} and define the sets Γδ/2 = Bδ/2(σ∗),Γδ = Bδ(σ∗) and notice that
S, T ∈ Γδ/2. By Lemma 5 we have that S, T are connected in Gn(Γδ). Moreover, a path
connecting S, T in Gn(Γδ) must a have a bottleneck cost of at most (1 + ε)M(σ∗).

We have shown that for any fixed ε > 0,M(σn) ≤ (1 + ε)M(σ∗) a.s. By defining the
sequence εi = 1/i one can extend the previous result and show thatM(σn) ≤ (1+o(1))M(σ∗).
This part is technical and its details are omitted (see a similar proof in [44, Theorem 6]).
This concludes the proof. J

5.2 Strong bottleneck cost
We now focus on the strong case of the problem, where the solution is restricted to paths that
are monotone in each of the d coordinates. Denote by ~σ∗ the robustly-optimal monotone
solution for a given instance 〈M, S, T 〉.

I Theorem 6. Let Gn = G(Xn ∪ {S, T}; rn) be an RGG with rn = ω(1)
(

logn
n

)1/d
. Then Gn

contains a monotone path ~σn ∈ Σ(S, T) such thatM(~σn) = (1 + o(1))M(~σ∗), a.s.

Let x, x′ ∈ [0, 1]d be two points such that x � x′. For a given δ > 0 the notation
x �δ x′ indicates that δ = min{x′i − xi}di=1, where x = (x1, . . . , xd), x′ = (x′1, . . . , x′d).
Given two points x, x′ ∈ [0, 1]d, such that x � x′, denote by H(x, x′) the d-dimensional box
[x1, x

′
1]× . . .× [xd, x′d]. In addition to the assumption that the robustly-optimal solution ~σ∗

is separated from the boundary of [0, 1]d that we have taken in the previous analysis, we also
assume that there exists a constant 0 < δ′′ ≤ 1 such that S �δ′′ T .

In preparation for the main proof we prove the following lemma.

I Lemma 7. Choose any1 fn ∈ ω(1) and set rn = ω(1)
(

logn
n

)1/d
. Let q, q′ ∈ [0, 1]d be two

points such that q �δ q′, where δ is independent of n. Then a.s. there exist X,X ′ ∈ Xn with
the following properties: (i) ‖X − q‖2 ≤ rn/2, ‖X ′ − q′‖ ≤ rn/2; (ii) q � X,X ′ � q′; (iii)
X,X ′ are connected in Gn with a monotone path.

Proof. We apply a tessellation argument similar to the one used to show that the standard
(and undirected) RGG is connected (see, e.g., [51, Section 2.4]). Set ` =

⌈
2‖q′−q‖2

rn

⌉
and

observe that ` ≤ 2
√
d/rn. Define the normalized vector ~v = q′−q

‖q′−q‖2
and let H1, . . . ,H` be a

sequence of ` hyperboxes, where

Hj = H
(
q + (j − 1) · rn2 · ~v, q + j · rn2 · ~v

)
,

for every 1 ≤ j ≤ ` (see Figure 1). Observe that for every 1 ≤ j < ` and every Xj ∈
Hj , Xj+1 ∈ Hj+1, we have

Xj � Xj+1, ‖Xj+1 −Xj‖2 ≤ rn. (1)

We show that for every 1 ≤ j ≤ ` it follows that Xn ∩Hj 6= ∅, a.s. We start by bounding
the volume of Hj . Denote by c1, . . . , cd the side lengths of Hj , and denote by δ1, . . . , δd the

1 For instance, fn can be either one of the following functions: logn, log∗ n, or the inverse Ackerman
function α(n).

Kiril Solovey and Dan Halperin 76:9

δ1

δ2

c2

c1

H1

H2

H3

q

q′

H(q, q′)

X1

X2

X3

rn
/2

Figure 1 Visualization of the proof of Lemma 7 for d = 2. The blue rectangle represents H(q, q′)
and the three red rectangles represent H1, . . . , H` for ` = 3 (the small value of ` was selected for the
clarity of visualization and in reality rn � δ1). The length of the largest diagonal in each of the
small rectangles is rn/2, which implies that a distance between Xj ∈ Hj , Xj+1 ∈ Hj+1 is at most
rn. The blue dashed arrows represent the directed graph edges (X1, X2), (X2, X3) which correspond
to a monotone path connecting X1 to X3.

side lengths of H(q, q′). Note that δi is independent of n and ci = δi/`. Consequently, we
can represent ci = αirn, where αi > 0 is constant, for every 1 ≤ i ≤ d. Thus, |Hj | = crdn for
some constant c > 0. Now,

Pr [Xn ∩Hj = ∅] = (1− |Hj |)n ≤ exp {−n|Hj |} = exp {−ω(1) · c logn} ≤ n−1.

In the last transition we used the fact that the function fn ∈ ω(1) can “absorb” any constant
c. We are ready to show that every Hi contains a point from Xn a.s.:

Pr [∃Hj : Xn ∩Hj = ∅] ≤
∑̀
j=1

Pr [Xn ∩Hi = ∅]

≤ ` · n−1 ≤ 2
√
d

rn
· n−1

= 2
√
d

ω(1) · n1−1/d log1/d n
.

Thus, a.s. there exists for every 1 ≤ j ≤ ` a point xj ∈ Hj . Observe that X := X1, X
′ := X`

satisfy (i),(ii). Condition (iii) follows from Equation 1. J

Proof of Theorem 6. Similarly to the proof of Theorem 4, we fix ε > 0 and select δ ≤
min{δ′, δ′′} such thatM(~σ) ≤ (1 + ε)M(~σ∗) for every ~σ ∈ ~Σ(S, T) with Im(~σ) ⊂ Bδ(~σ∗) ⊂
[0, 1]d.

The crux of this proof is that there exists a sequence of k points q1, . . . , qk ∈ Im(~σ∗),
where S = q1, T = qk, such that qj ≺δ/2 qj+1 for every 1 ≤ j < k (see Figure 2). Moreover,
due to fact that ~σ∗ is monotone we can determine that such k is finite and independent of n.
Thus, by Lemma 7, for every 1 ≤ j < k there exist Xj , X

′
j ∈ Xn which satisfy the following

conditions a.s.: (i) ‖Xj − qj‖2 ≤ rn/2, ‖X ′j − qj+1‖2 ≤ rn/2; (ii) qj � Xj , X
′
j � qj+1; (iii)

Xj , X
′
j are connected in Gn. By conditions (i),(ii), for every 1 ≤ j < k the graph Gn contains

the edge (X ′j , Xj+1). Combined with condition (iii) this implies that S is connected to T in
Gn a.s.

ESA 2016

76:10 Sampling-Based Bottleneck Pathfinding with Applications to Fréchet Matching

δ/2

δ/2

S = q1

q2

T = q3

X ′
1

X1

X ′
2

X2

~σ
∗

~σ2

~σ1

Bδ(~σ∗)

Figure 2 Visualization of the proof of Theorem 6 for d = 2 and k = 3. The red curve represents
~σ∗, on which lie the points q1, q2, q3 such that q1 ≺δ/2 q2 ≺δ/2 q3. The dashed blue curves represent
~σ1, ~σ2. The gray area represents Bδ(~σ∗).

It remains to show that the path constructed above has a cost of at most (1 + ε)M(~σ∗).
For every 1 ≤ j ≤ k denote by ~σj the path induced by Lemma 7 from Xj to X ′j , i.e.,
~σj(0) = Xj , ~σj(1) = X ′j and Im(~σj) ⊂ Hi. Additionally, for every 1 ≤ j < k denote
by ~σ′j the straight-line segment (sub-path) from X ′j to Xj+1. Now, define ~σ to be a
concatenation of ~σ1, ~σ

′
1, . . . , ~σk−1, ~σ

′
k−1, ~σk. We showed in the previous paragraph that such

a path exists in Gn a.s. Observe that for every 1 ≤ j ≤ k it holds that ~σj ⊂ H(qj , qj+1),
where H(qj , qj+1) ⊂ Bδ/2(~σ∗). This implies that M(~σi) ≤ (1 + ε)M(~σ∗). Additionally,
recall that for every 1 ≤ j < k it holds that ‖X ′j − qj+1‖2 ≤ rn/2, ‖Xj+1 − qj+1‖2 ≤ rn/2,
which implies that Im(~σ′j) ⊂ Brn(qj+1) ⊂ Bδ(~σ∗), and consequentlyM(σ′j) ≤ (1 + ε)M(~σ∗).
Finally,M(~σn) ≤M(~σ) ≤ (1 + ε)M(~σ∗). This concludes the proof. J

6 Experimental results

In this section we validate the theoretical results that were described in the previous section.
We observe that the framework can cope with complex scenarios involving two or three
degrees of freedom (d ∈ {2, 3}), and converges quickly to the optimum.

Before proceeding to the results we provide details regrading the implementation. We
implemented the framework in C++, and tested it on scenarios involving two-dimensional
objects. Nearest-neighbor search, which is used for the construction of RGGs, was imple-
mented using flann [35]. We note that other nearest-neighbor search data structures that
are tailored for the implementation of RGGs exist (see, e.g., [31]). Geometric objects, such
as points, curves, and polygons were represented with cgal [49]. For the representation of
graphs and related algorithms we used boost [42]. Experiments were conducted on a PC
with Intel i7-2600 3.4GHz processor with 8GB of memory, running a 64-bit Windows 7 OS.

We proceed to describe the implementation involving the computation of non-trivial
cost maps. For curve embedding we used pqp [20] for collision detection, i.e., determining
whether a given point lies in the forbidden region [0, 1]2 \ F . Finally, the cost of an edge

Kiril Solovey and Dan Halperin 76:11

with respect to a given cost map was approximated by dense sampling along the edge, as is
customary in motion planning (see, e.g., [33]).

The majority of running time (over %90) in the experiments below is devoted to the
computation ofM for given point samples or edges. Thus, we report only the overall running
time in the following experiments. We mention that we also implemented a simple grid-based
method for the purpose of comparison with the framework. However, it performed poorly in
easy scenarios and did not terminate in hard cases. Thus, we chose to omit theses results
here.

Unless stated otherwise, we use in the experiments the connection radius which is described
in Theorem 4, and denote it by r∗n. This applies both to the standard and strong regimes
of the problem. A discussion regarding the connection radius in the strong regime appears
below in Section 6.3.

6.1 Various scenarios
In this set of experiments we demonstrate the flexibility of the framework and test it on the
three different scenarios. We emphasize that we employ a shared code framework to solve
these three problems and the ones described later. The only difference in the implementation
lies in the type of cost function used. The following problems are solved using a planner for
the strong case of BPP.

Figure 3 (left) depicts an instance of P1 (see Section 3.1), which consists of two
geometrically-identical curves (red and blue). The curves are bounded in [0, 1]2 and the
red curve is translated by (0.05, 0.05) from the blue curve. The optimal solution has a cost
of 0.07, in which the curves are traversed identically. Our program was able to produce a
solution of cost 0.126 in 27 seconds and n = 100,000 samples. Results reported throughout
this section are the averaged over 10 trials.

Figure 4 (left) depicts an instance of P2. The goal is to find a traversal of the three
curves such that the traversal point along the purple curve is visible from either the blue or
red curve, while of course minimizing the lengths of the leashes between the three curves.
Note that the view can be obstructed by the gray rectangular obstacles. A trivial, albeit
poor, solution is to move the point along the purple curve from start to end, while the
traversal point of, say, the red curve stays put in the start position. A much better solution,
which maintains short leashes, is described as follows: we move along the purple curve until
reaching the first resting point, indicated by the leftmost black disc. Then we move along the
red curve until we reach to the position directly below the black circle. Only then we move
along the blue curve from start until reaching the point directly below the first black disc.
We use a similar parametrization with respect to the second “pit stop”, and so on. Such a
solution was obtained by our program in 11 seconds using n = 20,000 samples.

Figure 4 (right) depicts an instance of P3. The input consists of a curve (depicted in
red), and polygonal obstacles (depicted in gray). The solution obtained by our program after
600 seconds with n = 100,000, is drawn in blue.

6.2 Increasing difficulty
Here we focus on P1 for two curves in the standard regime. We study how the difficulty of
the problem affects the running time and the rate of convergence of the returned cost. We
start with a base scenario, depicted in Figure 3 (right), and gradually increase its difficulty.
In the depicted scenario the bottom (blue) curve consists of five circular loops of radius 0.15,
where the entrance and exit point to each circle is indicated by a bullet. The top curve

ESA 2016

76:12 Sampling-Based Bottleneck Pathfinding with Applications to Fréchet Matching

Figure 3 Scenarios involving two curve.

Figure 4 Scenarios involving curves and obstacles.

is similarly defined, and the two curves are separated by a vertical distance of 0.04. The
optimal matching of cost 0.34 is obtained in the following manner: when a given circle of the
red curve is traversed, the position along the blue curve is fixed to the entrance point of the
circle directly below the traversed circle, and vice versa. In a similar fashion we construct
scenarios with 10,20,40 and 80 loops in each curve.

In Figure 5 we report for each of the scenarios the cost of the obtained solution as a
function of the number of samples n. We set n = 2i for the integer value i between 12 and
18. For i = 12 and i = 18 the running times were roughly 2 and 66 seconds, respectively. In
between, the values were linearly proportional to the number of samples (results omitted).
Observe that as the difficulty of the problem increases the convergence rate of the cost slightly
decreases, but overall a value near the optimum is reached fairly quickly.

6.3 Connection radius in the strong regime

Here we consider the strong regime and study the behavior of the framework for varying
connection radii. For this purpose, we use the two-curves scenario with 20 loops that was
described in Section 6.2. We set the connection radius to rn := gn · r∗n, where r∗n is the radius
of the standard regime (see Theorem 4). We set gn ∈ {1, 1.1, log logn+ 1,

√
logn}. Results

are depicted in Figure 6.

Kiril Solovey and Dan Halperin 76:13

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

C
os
t

0 20000 40000 60000 80000 100000 120000

Samples

80 loops
40 loops
20 loops
10 loops
5 loops

Figure 5 Results for scenarios of increasing difficulty, as described in Section 6.2.

0.35

0.4

0.45

0.5

0.55

C
os
t

0 20000 40000 60000 80000 100000 120000

Samples

√
log n · r∗n

(1 + log log n) · r∗n
1.1 · r∗n
r∗n

0

50

100

150

200

250

300

T
im

e
[s
ec
]

0 20000 40000 60000 80000 100000 120000

Samples

√
log n · r∗n

(1 + log log n) · r∗n
1.1 · r∗n
r∗n

Figure 6 Results for varying connection radii in the strong regime, as described in Section 6.3.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

C
os
t

0 20000 40000 60000 80000 100000 120000

Samples

5 curves
4 curves
3 curves
2 curves

0

200

400

600

800

1000

1200

T
im

e
[s
ec
]

0 20000 40000 60000 80000 100000 120000

Samples

5 curves
4 curves
3 curves
2 curves

Figure 7 Figures for the first set of experiments, as described in Section 6.4.

Not surprisingly, larger values of rn lead to quicker convergence, in terms of the number
of samples required, to the optimum. However, this comes at the price of a denser RGG,
which results in poor running times. Note that the program terminated due to lack of space
for the two largest functions of gn for n = 128,000. Interestingly, the connection radius r∗n
of the standard regime seems to converge to the optimum, albeit slowly. This leads to the
question whether such a function also results in connectivity in the strong regime. Note
that our proof of the convergence in the strong regime requires a larger value of rn (see
Theorem 6).

6.4 Increasing dimensionality
We test how the dimension of the configuration space d affects the performance. For this
purpose we study the behavior of the framework on weak k-curve Fréchet distance with k
ranging from 2 to 5. For k = 2 we use the scenario described in Section 6.2 with 10 loops.
For k = 3 we add another copy of the blue curve, for k = 4 an additional copy of the red

ESA 2016

76:14 Sampling-Based Bottleneck Pathfinding with Applications to Fréchet Matching

curve, and another blue curve for k = 5. We report running time and cost in Figure 7 for
various values of n, as described earlier.

Note that that for k = 4 the program ran out of memory for n = 64,000, and for k = 5
around n = 32,000. This phenomena occurs since the connection radius obtained in Theorem 4
grows exponentially in d. In particular, for rn = γ

(
logn
n

)1/d
, where γ = 2(2dθd)−1/d, each

sample has in expectancy Θ(2d logn) neighbors in the obtained RGG.

References
1 Aviv Adler, Mark de Berg, Dan Halperin, and Kiril Solovey. Efficient multi-robot motion

planning for unlabeled discs in simple polygons. IEEE Trans. Automation Science and
Engineering, 12(4):1309–1317, 2015.

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Int. J. Comput. Geometry Appl., 5:75–91, 1995.

3 Oktay Arslan and Panagiotis Tsiotras. Use of relaxation methods in sampling-based al-
gorithms for optimal motion planning. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 2421–2428. IEEE, 2013.

4 Francis Avnaim, Jean-Daniel Boissonnat, and Bernard Faverjon. A practical exact motion
planning algorithm for polygonal objects amidst polygonal obstacles. In Robotics and
Automation, 1988. Proceedings., 1988 IEEE International Conference on, pages 1656–1661.
IEEE, 1988.

5 Paul Balister, Amites Sarkar, and Béla Bollobás. Percolation, connectivity, coverage and
colouring of random geometric graphs. In Béla Bollobás, Robert Kozma, and Dezso Mik-
lós, editors, Handbook of Large-Scale Random Networks, pages 117–142. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

6 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly
subquadratic algorithms unless SETH fails. In Foundations of Computer Science, pages
661–670, 2014.

7 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
Journal of Computational Geometry, 7(2):46–76, 2016.

8 Nicolas Broutin, Luc Devroye, Nicolas Fraiman, and Gábor Lugosi. Connectivity threshold
of bluetooth graphs. Random Struct. Algorithms, 44(1):45–66, 2014.

9 Kevin Buchin, Maike Buchin, Maximilian Konzack, Wolfgang Mulzer, and André Schulz.
Fine-grained analysis of problems on curves. In EuroCG, Lugano, Switzerland, 2016.

10 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets walk
the dog – with an application to Alt’s conjecture. In ACM-SIAM Symposium on Discrete
Algorithms, pages 1399–1413, 2014.

11 Kevin Buchin, Maike Buchin, and André Schulz. Fréchet distance of surfaces: Some simple
hard cases. In European Symposium of Algorithms, pages 63–74, 2010.

12 Kevin Buchin, Maike Buchin, Rolf van Leusden, Wouter Meulemans, and Wolfgang Mulzer.
Computing the Fréchet distance with a retractable leash. In European Symposium of
Algorithms, pages 241–252, 2013.

13 Kevin Buchin, Maike Buchin, and Carola Wenk. Computing the Fréchet distance between
simple polygons. Comput. Geom., 41(1-2):2–20, 2008.

14 Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Sylvain Lazard, Francis Lazarus,
and Shripad Thite. Homotopic Fréchet distance between curves or, walking your dog in
the woods in polynomial time. Comput. Geom., 43(3):295–311, 2010.

15 Shiri Chechik, Haim Kaplan, Mikkel Thorup, Or Zamir, and Uri Zwick. Bottleneck paths
and trees and deterministic graphical games. In Symposium on Theoretical Aspects of
Computer Science, pages 27:1–27:13, 2016.

Kiril Solovey and Dan Halperin 76:15

16 Atlas F. Cook and Carola Wenk. Geodesic Fréchet distance inside a simple polygon. ACM
Transactions on Algorithms, 7(1):9, 2010.

17 Mark de Berg and Marc J. van Kreveld. Trekking in the alps without freezing or getting
tired. Algorithmica, 18(3):306–323, 1997.

18 Adrian Dumitrescu and Günter Rote. On the Fréchet distance of a set of curves. In
Canadian Conference on Computational Geometry, pages 162–165, 2004.

19 Chenglin Fan, Omrit Filtser, Matthew J. Katz, Tim Wylie, and Binhai Zhu. On the chain
pair simplification problem. In Symposium on Algorithms and Data Structures, pages 351–
362, 2015.

20 GAMMA group. PQP – a proximity query package, 1999. University of North Carolina at
Chapel Hill, USA.

21 Dan Halperin and Micha Sharir. A near-quadratic algorithm for planning the motion of a
polygon in a polygonal environment. Discrete & Computational Geometry, 16(2):121–134,
1996.

22 Sariel Har-Peled and Benjamin Raichel. The Fréchet distance revisited and extended. ACM
Transactions on Algorithms, 10(1):3, 2014.

23 John E. Hopcroft, Jacob T. Schwartz, and Micha Sharir. On the complexity of motion
planning for multiple independent objects; PSPACE-hardness of the “Warehouseman’s
problem”. International Journal of Robotics Research, 3(4):76–88, 1984.

24 David Hsu, Jean-Claude Latombe, and Rajeev Motwani. Path planning in expansive con-
figuration spaces. Int. J. Comput. Geometry Appl., 9(4/5):495–512, 1999.

25 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

26 Lucas Janson, Edward Schmerling, Ashley A. Clark, and Marco Pavone. Fast marching tree:
A fast marching sampling-based method for optimal motion planning in many dimensions.
I. J. Robotic Res., 34(7):883–921, 2015.

27 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure–structure alignment with
discrete Fréchet distance. Journal of bioinformatics and computational biology, 6(01):51–
64, 2008.

28 Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. International Journal of Robotics Research, 30(7):846–894, 2011.

29 Lydia E. Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H. Overmars. Proba-
bilistic roadmaps for path planning in high dimensional configuration spaces. IEEE Trans-
actions on Robotics and Automation, 12(4):566–580, 1996.

30 Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee-Keng Yap. Classroom
examples of robustness problems in geometric computations. Comput. Geom., 40(1):61–78,
2008.

31 Michal Kleinbort, Oren Salzman, and Dan Halperin. Efficient high-quality motion planning
by fast all-pairs r-nearest-neighbors. In IEEE International Conference on Robotics and
Automation, pages 2985–2990, 2015.

32 James J. Kuffner and Steven M. LaValle. RRT-Connect: An efficient approach to single-
query path planning. In International Conference on Robotics and Automation (ICRA),
pages 995–1001, 2000.

33 S. M. LaValle. Planning algorithms. Cambridge University Press, 2006.
34 Wouter Meulemans. Map matching with simplicity constraints. CoRR, abs/1306.2827,

2013.
35 M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm

configuration. In VISSAPP, pages 331–340. INSTICC Press, 2009.
36 Mathew Penrose. Random geometric graphs, volume 5. Oxford University Press, 2003.

ESA 2016

http://gamma.cs.unc.edu/SSV/

76:16 Sampling-Based Bottleneck Pathfinding with Applications to Fréchet Matching

37 Barak Raveh, Angela Enosh, Ora Schueler-Furman, and Dan Halperin. Rapid sampling of
molecular motions with prior information constraints. PLoS Computational Biology, 5(2),
2009.

38 John H Reif. Complexity of the mover’s problem and generalizations: Extended abstract.
In Foundations of Computer Science, pages 421–427, 1979.

39 Oren Salzman and Dan Halperin. Asymptotically-optimal motion planning using lower
bounds on cost. In IEEE International Conference on Robotics and Automation (ICRA),
pages 4167–4172, 2015.

40 Micha Sharir. Algorithmic motion planning. In Jacob E. Goodman and Joseph O’Rourke,
editors, Handbook of Discrete and Computational Geometry, Second Edition., pages 1037–
1064. Chapman and Hall/CRC, 2004.

41 Jessica Sherette and Carola Wenk. Simple curve embedding. CoRR, abs/1303.0821, 2013.
42 J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library User Guide and

Reference Manual. Addison-Wesley, 2002.
43 Kiril Solovey and Dan Halperin. On the hardness of unlabeled multi-robot motion planning.

In Robotics: Science and Systems (RSS), 2015.
44 Kiril Solovey, Oren Salzman, and Dan Halperin. Finding a needle in an exponential

haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion plan-
ning. International Journal of Robotics Research, 35(5):501–513, 2016.

45 Kiril Solovey, Oren Salzman, and Dan Halperin. New perspective on sampling-based motion
planning via random geometric graphs. In Robotics: Science and Systems (RSS), Ann
Arbor, Michigan, 2016. doi:10.15607/RSS.2016.XII.003.

46 Kiril Solovey, Jingjin Yu, Or Zamir, and Dan Halperin. Motion planning for unlabeled
discs with optimality guarantees. In Robotics: Science and Systems (RSS), 2015.

47 Paul G. Spirakis and Chee-Keng Yap. Strong NP-hardness of moving many discs. Infor-
mation Processing Letters, 19(1):55–59, 1984.

48 R Sriraghavendra, K Karthik, and Chiranjib Bhattacharyya. Fréchet distance based ap-
proach for searching online handwritten documents. In Document Analysis and Recognition,
volume 1, pages 461–465. IEEE, 2007.

49 The CGAL Project. CGAL user and reference manual. CGAL editorial board, 4.8 edition,
2016. URL: http://www.cgal.org/.

50 Matthew Turpin, Nathan Michael, and Vijay Kumar. Concurrent assignment and planning
of trajectories for large teams of interchangeable robots. In International Conference on
Robotics and Automation (ICRA), pages 842–848, 2013.

51 Mark Walters. Random geometric graphs. In Robin Chapman, editor, Surveys in Combi-
natorics 2011, chapter 8, pages 365–401. Cambridge University Press, 2011.

52 Virginia Vassilevska Williams. Efficient Algorithms for Path Problems in Weighted Graphs.
Ph.D. thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
USA, 2008.

53 Jianbin Zheng, Xiaolei Gao, Enqi Zhan, and Zhangcan Huang. Algorithm of on-line hand-
writing signature verification based on discrete Fréchet distance. In Advances in Compu-
tation and Intelligence, pages 461–469. Springer, 2008.

http://dx.doi.org/10.15607/RSS.2016.XII.003
http://www.cgal.org/

	Introduction
	Related work
	Fréchet distance
	Motion planning

	Problem statement
	Examples

	Algorithmic framework
	Theoretical foundations
	(Standard) Bottleneck cost
	Strong bottleneck cost

	Experimental results
	Various scenarios
	Increasing difficulty
	Connection radius in the strong regime
	Increasing dimensionality

