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Abstract
In this paper, we study the problem of computing Euclidean geodesic centers of a polygonal
domain P of n vertices. We give a necessary condition for a point being a geodesic center. We
show that there is at most one geodesic center among all points of P that have topologically-
equivalent shortest path maps. This implies that the total number of geodesic centers is bounded
by the size of the shortest path map equivalence decomposition of P, which is known to be
O(n10). One key observation is a π-range property on shortest path lengths when points are
moving. With these observations, we propose an algorithm that computes all geodesic centers
in O(n11 logn) time. Previously, an algorithm of O(n12+ε) time was known for this problem, for
any ε > 0.
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1 Introduction

Let P be a polygonal domain with a total of h holes and n vertices, i.e., P is a multiply-
connected region whose boundary is a union of n line segments, forming h+1 closed polygonal
cycles. A simple polygon is a special case of a polygonal domain with h = 0. For any two
points s and t, a shortest path or geodesic path from s to t is a path in P whose Euclidean
length is minimum among all paths from s to t in P; we let d(s, t) denote the Euclidean
length of any shortest path from s to t and we also say that d(s, t) is the shortest path
distance or geodesic distance from s to t.

A point s is a geodesic center of P if s minimizes the value maxt∈P d(s, t), i.e., the
maximum geodesic distance from s to all points of P.

In this paper, we study the problem of computing the geodesic centers of P . The problem
in simple polygons has been well studied. It is known that for any point in a simple polygon,
its farthest point must be a vertex of the polygon [20]. It has been shown that the geodesic
center in a simple polygon is unique and has at least two farthest points [18]. Due to these
helpful observations, efficient algorithms for finding geodesic centers in simple polygons have
been developed. Asano and Toussaint [2] gave an O(n4 logn) time algorithm for the problem,
and later Pollack, Sharir, and Rote [18] improved the algorithm to O(n logn) time. Recently,
Ahn et al. [1] solved the problem in linear time.

Finding a geodesic center in a polygonal domain P is much more difficult. This is partially
due to that a farthest point of a point in P may be in the interior of P [3]. Also, it is easy
to construct an example where the geodesic center of P is not unique (e.g., see Fig. 1). Bae,
Korman, and Okamoto [4] gave the first-known algorithm that can compute a geodesic center
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P

Figure 1 The boundary of P consists of an outer and inner equilateral triangles with their
geometric centers co-located. Each of the three thick points is a geodesic center of P.

in O(n12+ε) time for any ε > 0. They first showed that for any point its farthest points must
be vertices of its shortest path map in P. Then, they considered the shortest path map
equivalence decomposition (or SPM-equivalence decomposition) [7], denoted by Dspm; for
each cell of Dspm, they computed the upper envelope of O(n) graphs in 3D space, which
takes O(n2+ε) time [10], to search a geodesic center in the cell. Since the size of Dspm is
O(n10) [7], their algorithm runs in O(n12+ε) time.

A closely related concept is the geodesic diameter, which is the maximum geodesic distance
over all pairs of points in P, i.e., maxs,t,∈P d(s, t). In simple polygons, due to the property
that there always exists a pair of vertices of P whose geodesic distance is equal to the
geodesic diameter, efficient algorithms have been given for computing the geodesic diameters.
Chazelle [6] gave the first algorithm that runs in O(n2) time. Later, Suri [20] presented an
O(n logn)-time algorithm. The problem was eventually solved in O(n) time by Hershberger
and Suri [11]. Computing the geodesic diameter in a polygonal domain P is much more
difficult, partially because the diameter can be realized by two points in the interior of P , in
which case there are at least five distinct shortest paths between the two points [3]. As for the
geodesic center, this makes it difficult to discretize the search space. By an exhaustive-search
method, Bae, Korman, and Okamoto [3] gave the first algorithm for computing the diameter
of P, which runs in O(n7.73) or O(n7(logn+ h)) time.

Refer to [5, 8, 13, 15, 16, 17, 19] for other variations of geodesic diameter and center
problems (e.g., the L1 metric and the link distance case).

1.1 Our Contributions
We conduct a “comprehensive” study on geodesic centers of P . We discover many interesting
observations, and some of them may be even surprising. For example, we show that even
if a geodesic center is in the interior of P, it may have only one farthest point, which is
somewhat counter-intuitive. We give a necessary condition for a point being a geodesic
center. We show that there is at most one geodesic center among all points of P that have
topologically-equivalent shortest path maps in P . This immediately implies that the interior
of each cell or each edge of the SPM-equivalence decomposition Dspm can contain at most
one geodesic center, and thus, the total number of geodesic centers of P is bounded by the
combinatorial size of Dspm, which is known to be O(n10) [7]. Previously, the only known
upper bound on the total number of geodesic centers of P is O(n12), which is suggested by
the algorithm in [4].

These observations are all more or less due to an interesting observation, which we call
the π-range property and is one key contribution of this paper. Here we only demonstrate
an application of the π-range property. Let s and t be two points in the interior of P such



H. Wang 77:3

s

t v1

u1

u2

u3

v2

v3

b1

b2
b3

a1a2

a3

Figure 2 Illustrating the π-range property. Suppose there are
three shortest s-t paths through vertices ui and vi with i = 1, 2, 3,
respectively. If s and t move along the blue arrows simultaneously
(possibly with different speeds), then all three shortest paths
strictly decreases (it is difficult to tell whether this is true from the
figure, so these two blue directions here are only for illustration
purpose). The special case happens when the six angles ai and bi
satisfy ai = bi for i = 1, 2, 3.
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Figure 3 Illustrating a
geodesic center s with three
farthest points t1, t2, t3 such
that all these four points are
in the interior of P. There are
three shortest paths from s to
each of t1, t2, t3.

that t is a farthest point of s in P. Refer to Fig. 2 for an example. Suppose there are three
shortest paths from s to t as shown in Fig. 2. The π-range property says that unless a special
case happens, there exists an open range of exactly size π (e.g., delimited by the right open
half-plane bounded by the vertical line through s in Fig. 2) such that if s moves along any
direction in the range for an infinitesimal distance, we can always find a direction to move t
such that the lengths of all three shortest paths strictly decrease. Further, if the special case
does not happen, we can explicitly determine the above range of size π. In fact, it is the
special case that makes it possible for a geodesic center having only one farthest point.

With these observations, we propose an exhaustive-search algorithm to compute a set
S of candidate points such that all geodesic centers must be in S. For example, refer to
Fig. 3, where a geodesic center s has three farthest points t1, t2, t3 and all these four points
are in the interior of P . The nine shortest paths from s to t1, t2, t3 provide a system of eight
equations, which give eight (independent) constraints that can determine the four points
s, t1, t2, t3 if we consider the coordinates of these points as eight variables. This suggests
our exhaustive-search to compute candidate points for such a geodesic center s. However,
if a geodesic center s has only one farthest point (e.g., Fig. 2), then we have only three
shortest paths (in the non-degenerate case), which give only two constraints. In order to
determine s and t, which have four variables, we need two more constraints. It turns out the
π-range property (i.e., the special case) provides exactly two more constraints (on the angles
as shown in Fig. 2). In this way, we can still compute candidate points for such s. Also, if
s has two farthest points, we will need one more constraint, which is also provided by the
π-range property (the non-special case).

The number of candidate points in S is O(n11). To find all geodesic centers from S, a
straightforward solution is to compute the shortest path map for every point of S, which
takes O(n12 logn) time in total. Again, with the help of the π-range property, we propose a
pruning algorithm to eliminate most points from S in O(n11 logn) time such that none of
the eliminated points is a geodesic center and the number of the remaining points of S is
only O(n10). Consequently, we can find all geodesic centers in additional O(n11 logn) time.

Although we improve the previous O(n12+ε) time algorithm in [4] by a factor of roughly
n1+ε, the running time is still huge. We feel that our observations (e.g., the π-range property)
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may be more interesting than the algorithm itself. We suspect that they may also find other
applications. The paper is lengthy, which is mainly due to a considerable number of cases
depending on whether a geodesic center and its farthest points are in the interior, on an
edge, or at vertices of P, although the essential idea is quite similar for all these cases.

The rest of the paper is organized as follows. In Section 2, we introduce notation and
review some concepts. In Section 3, we give our observations. We present the π-range
property in Section 4. Computing the candidate points is discussed in Section 5. Finally,
we find all geodesic centers from the candidate points in Section 6. Due to the space limit,
many details and proofs are omitted but can be found in the full paper.

2 Preliminaries

Consider any point s ∈ P . Let dmax(s) be the maximum geodesic distance from s to all points
of P , i.e., dmax(s) = maxt∈P d(s, t). A point t ∈ P is a farthest point of s if d(s, t) = dmax(s).
Let F (s) denote the set of all farthest points of s. For any two points p and q in P, we say
that p is visible to q if the line segment pq is in P and the interior of pq does not contain any
vertex of P . We use |pq| to denote the (Euclidean) length of any line segment pq. Note that
two points s and t in P may have more than one shortest path between them, and if not
specified, we use π(s, t) to denote any such shortest path.

For simplicity of discussion, we make a general position assumption that any two vertices
of P have only one shortest path and no three vertices of P are on the same line.

Denote by I the set of all interior points of P, V the set of all vertices of P, and E the
set of all relatively interior points on the edges of P (i.e., E is the boundary of P minus V).

Shortest path maps. A shortest path map of a point s ∈ P [7], denoted by SPM(s), is
a decomposition of P into regions (or cells) such that in each cell σ, the combinatorial
structures of shortest paths from s to all points t in σ are the same, and more specifically,
the sequence of obstacle vertices along π(s, t) is fixed for all t in σ. Further, the root of σ,
denoted by r(σ), is the last vertex of V ∪ {s} in the path π(s, t) for any point t ∈ σ (hence
π(s, t) = π(s, r(σ)) ∪ r(σ)t; note that r(σ) is s if s is visible to t). As in [7], we classify
each edge of σ into three types: a portion of an edge of P, an extension segment, which is
a line segment extended from r(σ) along the opposite direction from r(σ) to the vertex of
π(s, t) preceding r(σ), and a bisector curve/edge that is a hyperbolic arc. For each point t
in a bisector edge of SPM(s), t is on the common boundary of two cells and there are two
shortest paths from s to t through the roots of the two cells, respectively (and neither path
contains both roots). The vertices of SPM(s) include V ∪ {s} and all intersections of edges
of SPM(s). If a vertex t of SPM(s) is an intersection of two or more bisector edges, then
there are more than two shortest paths from s to t. The map SPM(s) has O(n) vertices,
edges, and cells, and can be computed in O(n logn) time [12]. It was shown [4] that any
farthest point of s in P must be a vertex of SPM(s). For differentiation, we will refer to the
vertices of V as polygon vertices and refer to the edges of E as polygon edges.

The SPM-equivalence decomposition Dspm [7] is a subdivision of P into regions such that
for all points s in the interior of the same region or edge of Dspm, the shortest path maps of
s are topologically equivalent. Chiang and Mitchell [7] showed that the combinatorial size of
Dspm is bounded by O(n10) and Dspm can be computed in O(n11) time.

Directions and ranges. We will have intensive discussions on moving points along certain
directions. For any direction r, we represent r by the angle α(r) ∈ [0, 2π) counterclockwise
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from the positive direction of the x-axis. For convenience, whenever we are talking about
an angle α, unless otherwise specified, depending on the context we may refer to any angle
α + 2π · k for k ∈ Z. For any two angles α1 and α2 with α1 ≤ α2 < α1 + 2π, the interval
[α1, α2] represents a direction range that includes all directions whose angles are in [α1, α2],
and α2 − α1 is called the size of the range. Note that the range can also be open (e.g.,
(α1, α2)) and the size of any direction range is no more than 2π.

Consider a half-plane h whose bounding line is through a point s in the plane. We say h
delimits a range of size π of directions for s that consists of all directions along which s will
move towards inside h. If h is an open half-plane, then the range is open as well.

A direction r for s ∈ P is called a free direction of s if we move s along r for an infinitesimal
distance then s is still in P. We use Rf (s) to denote the range of all free directions of s.
Clearly, if s ∈ I, Rf (s) contains all directions; if s ∈ E, Rf (s) is a (closed) range of size π; if
s ∈ V , Rf (s) is delimited by the two incident polygon edges of s.

3 Observations

Consider any point s ∈ P and let t be any farthest point of s. Recall that t is a vertex
of SPM(s) [4]. Suppose we move s infinitesimally along a free direction r to a new point
s′. Since |ss′| is infinitesimal, we can assume that s and s′ are in the same cell σ of Dspm.
Further, if s is in the interior of σ, then s′ is also in the interior of σ. Regardless of whether
s is in the interior of σ or not, there is a vertex t′ ∈ SPM(s′) corresponding to the vertex t
of SPM(s) in the following sense [7]: If the line segment s′t′ is a shortest path from s′ to
t′, then st is a shortest path from s to t; otherwise, if s′, u1, u2, . . . , uk, t

′ is the sequence of
the vertices of V ∪ {s′, t′} in a shortest path from s′ to t′, then s, u1, u2, . . . , uk, t is also the
sequence of the vertices of V ∪ {s, t} in a shortest path from s to t.

In the case that s is on the boundary of σ while s′ is in the interior of σ, there might
be more than one such vertex t′ ∈ Dspm corresponding to t (refer to [7] for the details) and
we use Mt(s′) to denote the set of all such vertices t′. We should point out that although
a vertex in SPM(s) may correspond to more than one vertex in SPM(s′), any vertex in
SPM(s′) can correspond to one and only one vertex in SPM(s) (because s′ is always in the
interior of σ).

We introduce the following definition which is crucial to the paper.

I Definition 1. A free direction r is an admissible direction of s with respect to t if as we
move s infinitesimally along r to a new point s′, d(s′, t′) < d(s, t) holds for each t′ ∈Mt(s′).

For any t ∈ F (s), let R(s, t) denote the set of all admissible directions of s with respect to
t; let R(s) =

⋂
t∈F (s) R(s, t). The following Lemma 3, which gives a necessary condition for

a point being a geodesic center of P , explains why we consider admissible directions. Before
presenting Lemma 3, we introduce some notation and Observation 2.

Consider any two points s and t in P . Suppose the vertices of V ∪ {s, t} along a shortest
s-t path π(s, t) are s = u0, u1, . . . , uk = t. By our definition of “visibility”, s is visible to t
if and only if k = 1. If s is not visible to t, then k 6= 1 and we call u1 an s-pivot and uk−1
a t-pivot of π(s, t). It is possible that there are multiple shortest paths between s and t,
and thus there might be multiple s-pivots and t-pivots for (s, t). We use Us(t) and Ut(s) to
denote the sets of all s-pivots and t-pivots for (s, t), respectively. By our above definition,
for any u ∈ Us(t), the line segment su does not contain any polygon vertex in its interior.

We have the following observation. Similar results have been given in [3].

ESA 2016
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Figure 4 The definitions of the angles γs
and γt.
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Figure 5 The definitions of the angles.

I Observation 2. Suppose t is a farthest point of a point s.
1. If t is in I, then |Ut(s)| ≥ 3 and t must be in the interior of the convex hull of the vertices

of Ut(s).
2. If t is in E, say, t ∈ e for a polygon edge e of E, then |Ut(s)| ≥ 2 and Ut(s) has at least

one vertex in the open half-plane bounded by the supporting line of e and containing the
interior of P in the small neighborhood of e. Further, Ut(s) has at least one vertex in
each of the two open half-planes bounded by the line through t and perpendicular to e.

I Lemma 3. If s is a geodesic center of P, then R(s) = ∅.

As explained in Section 1, we will compute candidate points for geodesic centers. As a
necessary condition, Lemma 3 will be helpful for computing those candidate points.

Consider any point s ∈ P. Let t be a farthest point of s. To determine the admissible
direction range R(s, t), we will give a sufficient condition for a direction being in R(s, t). We
first assume that s is not visible to t, and as will be seen later, the other case is trivial.

Let u and v respectively be the s-pivot and the t-pivot of (s, t) in a shortest s-t path
π(s, t). Clearly, d(s, t) = |su|+ d(u, v) + |vt|. We define du,v(s, t) = |su|+ d(u, v) + |vt| as a
function of s ∈ R2 and t ∈ R2. Suppose we move s along a free direction rs with the unit
speed and move t along a free direction rt with a speed τ ≥ 0. Let γs denote the smaller
angle between the following two rays originated from s (e.g., see Fig. 4): one with direction
rs and one with direction from u to s. Similarly, let γt denote the smaller angle between the
following two rays originated from t: one with direction rt and one with direction from v to t.
In fact, as discussed in [3], if we consider d(s, t) as a four-variate function, the triple (rs, rt, τ)
corresponds to a vector ρ in R4, and the directional derivative of du,v(s, t) at (s, t) ∈ R4

along ρ, denoted by d′u,v(s, t), and the second directional derivative of du,v(s, t) at (s, t) along
ρ, denoted by d′′u,v(s, t), are

d′u,v(s, t) = cos γs + τ cos γt, d′′u,v(s, t) = sin2 γs
|su|

+ τ · sin2 γt
|tv|

. (1)

Since τ ≥ 0, d′′u,v(s, t) ≥ 0. Further, if τ 6= 0, then d′′u,v(s, t) = 0 if and only if sin2 γs =
sin2 γt = 0, i.e., each of γs and γt is either 0 or π. Below, in order to make the discussions
more intuitive, we choose to use the parameters rs, rt, and τ , instead of the vectors of R4.

For each vertex u ∈ Us(t), there must be a vertex v ∈ Ut(s) such that the concatenation
of su, π(u, v), and vt is a shortest path from s to t, and we call such a vertex v a coupled
t-pivot of u (if u has more than one such vertex, then all of them are coupled t-pivots of u).
Similarly, for each vertex v ∈ Ut(s), we also define its coupled s-pivots in Us(t).

The following lemma provides a sufficient condition for a direction being in R(s, t).

I Lemma 4. Suppose t is a farthest point of s and s is not visible to t.
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1. For t ∈ I, a free direction rs is in R(s, t) if there is a free direction rt for t with a speed
τ ≥ 0 such that when we move s along rs with unit speed and move t along rt with speed
τ , each vertex v ∈ Ut(s) has a coupled s-pivot u with either d′u,v(s, t) < 0, or d′u,v(s, t) = 0
and d′′u,v(s, t) = 0.

2. For t ∈ E, a free direction rs is in R(s, t) if there is a free direction rt for t that is parallel
to the polygon edge of E containing t with a speed τ ≥ 0 such that when we move s along
rs with the unit speed and move t along rt with speed τ , each vertex v ∈ Ut(s) has a
coupled s-pivot u with either d′u,v(s, t) < 0, or d′u,v(s, t) = 0 and d′′u,v(s, t) = 0.

3. For t ∈ V, a free direction rs is in R(s, t) if we move s along rs with the unit speed, each
vertex v ∈ Ut(s) has a coupled s-pivot u with either d′u,v(s, t) < 0, or d′u,v(s, t) = 0 and
d′′u,v(s, t) = 0.

Lemma 4 is on the case where s is not visible to t. If s is visible to t, the result is trivial.

I Observation 5. Suppose t is a farthest point of s and s is visible to t. Then t must be a
polygon vertex of V . Further, a free direction rs of s is in R(s, t) if and only if rs is towards
the interior of hs(t), where hs(t) is the open half-plane containing t and bounded by the line
through s and perpendicular to st.

By Observation 5, if s is visible to t, then the range R(s, t) is the intersection of the free
direction range Rf (s) and an open range of size π delimited by the open half-plane hs(t).

The next lemma is proved by using Lemmas 3 and 4 as well as Observation 5.

I Lemma 6. Among all points of P that have topologically equivalent shortest path maps in
P, there is at most one geodesic center. This implies that each cell or edge of Dspm contains
at most one geodesic center in its interior, which further implies that the number of geodesic
centers of P is O(|Dspm|), where |Dspm| is the combinatorial complexity of Dspm.

The following corollary implies that if t is a farthest point of s, then slightly moving s
along a free direction that is not in R(s, t) can never obtain a geodesic center.

I Corollary 7. Suppose t is a farthest point of s. If we move s infinitesimally along a free
direction that is not in R(s, t), then dmax(s) will become strictly larger.

To compute the candidate points, we need to determine R(s, t). It turns out that it is
sufficient to determine R(s, t) when t is at a non-degenerate position of s in the following
sense: Suppose t is a farthest point of s; we say that t is non-degenerate with respect to s if
there are exactly three, two, and one shortest s-t paths for t in I, E, and V , respectively (by
Observation 2, this implies that |Ut(s)| is 3, 2, and 1, respectively for the three cases).

Lemma 4 gives a sufficient condition for a direction in R(s, t). The following lemma gives
both a sufficient and a necessary condition for a direction in R(s, t) when t is non-degenerate,
and the lemma will be used to explicitly compute the range R(s, t) in Section 4. Note that
Observation 5 already gives a way to determine R(s, t) when s is visible to t.

I Lemma 8. Suppose t is a non-degenerate farthest point of s and s is not visible to t. Then,
a free direction rs is in R(s, t) if and only if
1. for t ∈ I, there is a free direction rt for t with a speed τ ≥ 0 such that when we move s

along rs with unit speed and move t along rt with speed τ , each vertex v ∈ Ut(s) has a
coupled s-pivot u with d′u,v(s, t) < 0.

2. for t ∈ E, there is a free direction rt for t that is parallel to the polygon edge containing t
with a speed τ ≥ 0 such that when we move s along rs with unit speed and move t along
rt with speed τ , each vertex v ∈ Ut(s) has a coupled s-pivot u with d′u,v(s, t) < 0.

3. for t ∈ V, when we move s along rs with unit speed, each vertex v ∈ Ut(s) has a coupled
s-pivot u with d′u,v(s, t) < 0.

ESA 2016
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4 Determining the Range R(s, t) and the π-Range Property

In this section, we determine the admissible direction range R(s, t) for any point s and any
of its non-degenerate farthest point t. In particular, we will present the π-range property.

Depending on whether t is in V, E, and I, there are three cases. Recall that Rf (s) is
the range of free directions of s. In each case, we will show that R(s, t) is the intersection of
Rf (s) and an open range Rπ(s, t) of size π. We call Rπ(s, t) the π-range. As will be seen
later, Rπ(s, t) can be explicitly determined based on the positions of s, t, and the vertices of
Us(t) and Ut(s). In fact, for each case, we will give a more general result on shortest path
distance functions. These general results will be useful for computing the candidate points.

4.1 The Case t ∈ V
We first discuss the case t ∈ V. The result is relatively straightforward in this case. If s is
visible to t, the π-range Rπ(s, t) is defined to be the open range of directions delimited by the
open half-plane hs(t) as defined in Observation 5; by Observation 5, R(s, t) = Rf (s)∩Rπ(s, t).

Below, we assume s is not visible to t. We first present a more general result on a shortest
path distance function. Let s and t be any two points in P such that t is in V and s is not
visible to t. Let π(s, t) be any shortest s-t path in P . Let u and v be the s-pivot and t-pivot
in π(s, t), respectively. Thus, du,v(s, t) = |su| + d(u, v) + |vt|. Now we consider du,v(s, t)
as a function of s and t in the entire plane R2 (not only in P; namely, when we move s
and t, they are allowed to move outside P, but the function du,v(s, t) is always defined as
|su|+ d(u, v) + |vt|, where d(u, v) is a fixed value).

The π-range Rπ(s, t) is defined with respect to t and the path π(s, t) as follows: a direction
rs for s is in Rπ(s, t) if d′u,v(s, t) < 0 when we move s along rs with unit speed.

I Lemma 9. Rπ(s, t) is exactly the open range of size π delimited by hs(u), where hs(u) is
the open half-plane containing u and bounded by the line through s and perpendicular to su.

Now we are back to our original problem to determine R(s, t) for a non-degenerate farthest
point t of s with t ∈ V . Since t is non-degenerate and t is in V , there is only one shortest path
π(s, t) from s to t. We define Rπ(s, t) as above. Based on Observation 5 and Lemmas 8(3),
we have Lemma 10, and thus R(s, t) can be determined by Observation 5 and Lemma 9.

I Lemma 10. R(s, t) = Rf (s) ∩Rπ(s, t).

4.2 The Case t ∈ E

The analysis for this case is substantially more complicated than the previous case, although
the next case for t ∈ I is even more challenging. As in the previous case, we first present a
more general result that is on two shortest path distance functions.

Let s and t be any two points in P such that t is in E and there are two shortest s-t
paths π1(s, t) and π2(s, t) (this implies that s is not visible to t). Let e be the polygon edge
containing t and let l(e) denote the line containing e. For each i = 1, 2, let πi(s, t) = πui,vi

(s, t),
i.e., ui and vi are the s-pivot and t-pivot of πi(s, t), respectively. We further require the
set {v1, v2} to satisfy the same condition as Ut(s) in Observation 2(2), i.e., {v1, v2} has
at least one vertex in the open half-plane bounded by l(e) and containing the interior of
P in the small neighborhood of e, and it has at least one vertex in each of the two open
half-planes bounded by the line through t and perpendicular to e. We say that the two
shortest paths π1(s, t) and π2(s, t) are canonical with respect to s and t if {v1, v2} satisfies
the above condition. In the following, we assume π1(s, t) and π2(s, t) are canonical. Note
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u1 = u2
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u1
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α1 26.66◦

Figure 6 Illustrating some examples for Lemma 11. Left: the special case (the vertical line
through t bisects ∠v1tv2); in this case, Rπ(s, t) = ∅. Middle: the case where α1 = α2, and thus
α = 0, sin(α) = 0, and u1 = u2; in this case, Rπ(s, t) = (α1 − π/2, α1 + π/2), which is delimited
by the open half-plane (marked with red color in the figure) bounded by the line through s and
perpendicular to su1. Right: the most general case where α1 = 30◦, α2 = 90◦, β1 = 30◦, β2 = 135◦;
by calculation, λ ≈ 1.3165, arctan( γ

sin(α) ) ≈ 56.66◦, and thus, Rπ(s, t) ≈ (α1−56.66◦, α1 +56.66◦) =
(−26.66◦, 153.34◦); the open half-plane that delimits Rπ(s, t) is marked with red color in the figure.

that the condition implies that v1 6= v2. However, u1 = u2 is possible. For each i = 1, 2, we
consider dui,vi(s, t) = |sui|+ d(ui, vi) + |vit| as a function of s ∈ R2 and t ∈ e.

In this case, the π-range Rπ(s, t) of s is defined with respect to t and the two paths
π1(s, t) and π2(s, t) as follows: a direction rs for s is in Rπ(s, t) if there exists a direction rt
parallel to e for t with a speed τ ≥ 0 such that when we move s along rs with unit speed
and move t along rt with speed τ ≥ 0, d′ui,vi

(s, t) < 0 holds for i = 1, 2.

In Section 4.1, we showed that the π-range for the case s ∈ V is an open range of size π.
Here we will show a similar result in Lemma 11 unless a special case happens. Although
the result in Section 4.1 is quite straightforward, the result here for two functions dui,vi(s, t)
with i = 1, 2 is somewhat surprising. We first introduce some notation.

For any two points p and q in the plane, define −→pq as the direction from p to q.

Recall that the angle of any direction r is defined to be the angle in [0, 2π) counterclockwise
from the positive direction of the x-axis. Let α1 denote the angle of the direction −→su1, and let
α2 denote the angle of the direction −→su2 (e.g., see Fig. 5). Note that by our way of defining
pivot vertices, α1 = α2 if and only if u1 = u2.

Note that v1 and v2 are in a closed half-plane bounded by the line l(e). We assign a
direction to l(e) such that each of v1 and v2 are to the left or on l(e). Define βi as the
smallest angle to rotate l(e) counterclockwise such that the direction of l(e) becomes the
same as −→tvi, for each i = 1, 2 (e.g., see Fig. 5). Hence, both β1 and β2 are in [0, π]. Without
of loss of generality, we assume β1 ≤ β2 (otherwise the analysis is symmetric). Since {v1, v2}
contains at least one vertex in each of the open half-planes bounded by the line through t
and perpendicular to e, we have β1 ∈ [0, π/2) and β2 ∈ (π/2, π]. Further, since at least one
of v1 and v2 is not on l(e), it is not possible that both β = 0 and β = π hold.

Let α = α2 − α1. We refer to the case where β1 + β2 = π and α = ±π (i.e., α is π or
−π) as the special case. In the special case, s is on u1u2 and the vertical line through t and
perpendicular to l(e) bisects the angle ∠v1tv2.
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t

s
P

Figure 7 Illustrating an example in which a geodesic center s is in I and has only one farthest
point t. The polygonal domain P is between two (very close) concentric squares plus an additional
(very small) triangle so that s is in I. The point s is at the middle of the top edge of the inner
square, and t is at the middle of the bottom edge of the outer square. One can verify that s is a
geodesic center and t is the only farthest point of s. The two shortest paths from s to t are shown
with red dashed segments. Note that the middle point of every edge of the inner square is a geodesic
center.

I Lemma 11. The π-range Rπ(s, t) is determined as follows (e.g., see Fig. 6).

Rπ(s, t) =



(α1 − arctan( λ
sin(α) ), α1 − arctan( λ

sin(α) ) + π) if sin(α) > 0,
(α1 − arctan( λ

sin(α) )− π, α1 − arctan( λ
sin(α) )) if sin(α) < 0,

(α1 − π/2, α1 + π/2) if sin(α) = 0 and λ > 0,
(α1 − 3π/2, α1 − π/2) if sin(α) = 0 and λ < 0,
∅ if sin(α) = 0 and λ = 0,

where λ = cosα − cos β2
cos β1

. Further, α = ±π and β1 + β2 = π (i.e., the special case) if and
only if sin(α) = 0 and λ = 0.

By Lemma 11, if the special case happens, Rπ(s, t) = ∅; otherwise, it is an open range of
size π. Since α = 0 if and only if u1 = u2, the case u1 = u2 is also covered by the lemma.

Now consider our original problem of determining the range R(s, t) for a non-degenerate
farthest point t ∈ E of s. By Observation 5, s is not visible to t. Further, s and t have
exactly two shortest paths π1(s, t) and π2(s, t). Clearly, by Observation 2(2), the two paths
are canonical. Therefore, the π-range Rπ(s, t) of s with respect to t and the two shortest
paths π1(s, t) and π2(s, t) can be determined by Lemma 11. Lemma 8(2) leads to Lemma 12.

I Lemma 12. R(s, t) = Rπ(s, t) ∩Rf (s).

Suppose t is the only farthest point of s and t is non-degenerate. By Lemma 11, if the
special case happens, Rπ(s, t) = ∅ and R(s, t) = ∅. By Corollary 7, if we move s along any
free direction infinitesimally, dmax(s) will be strictly increasing. Therefore, it is possible that
the point s, which is in I and has only one farthest point, is a geodesic center. It is not
difficult to construct such an example by following the left figure of Fig. 6; e.g., see Fig. 7.
Hence, we have the following corollary.

I Corollary 13. It is possible that a geodesic center is in I and has only one farthest point.

4.3 The Case t ∈ I
The analysis for this case is substantially more difficult than the case t ∈ E. As before, we
first present a more general result that is on three shortest path distance functions.
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Let s and t be two points in P such that t is in I and there are three shortest s-t paths
π1(s, t), π2(s, t), and π3(s, t) (this implies that s is not visible to t). For each i = 1, 2, 3, let
πi(s, t) = πui,vi

(s, t), i.e., ui and vi are the s-pivot and t-pivot of πi(s, t), respectively. We
say that the three paths are canonical with respect to s and t if they have two properties:
1. t is in the interior of the triangle 4v1v2v3.
2. Suppose we reorder the indices such that v1, v2, and v3 are clockwise around t, then u1,

u2, and u3 are counterclockwise around s (e.g., see Fig. 2).

The above first property implies that v1, v2, and v3 are distinct, but this may not be
true for u1, u2, u3. In the following, we assume that the three shortest paths πi(s, t) with
1 ≤ i ≤ 3 are canonical, and we reorder the indices as in the above second property. For
each i = 1, 2, 3, we consider dui,vi(s, t) = |sui|+ d(ui, vi) + |vit| as a function of s ∈ R2 and
t ∈ R2. In this case, the π-range Rπ(s, t) of s is defined with respect to t and the three paths
πi(s, t) for i = 1, 2, 3 as follows: a direction rs for s is in Rπ(s, t) if there exists a direction
rt for t with a speed τ ≥ 0 such that when we move s along rs with unit speed and move t
along rt with speed τ , d′ui,vi

< 0 holds for i = 1, 2, 3.
As Lemma 11 in the previous cases, we will have a similar lemma (Lemma 14), which

says that unless a special case happens Rπ(s, t) is an open range of size exactly π. The proof
is much more challenging. Before presenting Lemma 14, we introduce some notation.

For each i = 1, 2, 3, let βi denote the angle of the direction −→tvi (i.e., the angle of −→tvi
counterclockwise from the positive x-axis). Further, we define three angles bi for i = 1, 2, 3 as
follows (e.g., see Fig. 2). Define b1 as the smallest angle we need to rotate the direction −→tv1
clockwise to −→tv2; define b2 as the smallest angle we need to rotate the direction −→tv2 clockwise
to −→tv3; define b3 as the smallest angle we need to rotate the direction −→tv3 clockwise to −→tv1.

For any two angles α′ and α′′, we use α′ ≡ α′′ to denote α′ = α′′ mod 2π.
It is easy to see that b1 ≡ β1 − β2, b2 ≡ β2 − β3, and b3 ≡ β3 − β1. Note that since t is in

the interior of 4v1v2v3, it holds that bi ∈ (0, π) for i = 1, 2, 3. Note that b1 + b2 + b3 = 2π.
For each i = 1, 2, 3, let αi denote the angle of the direction −→sui. According to our definition

of pivot vertices, ui = uj if and only if αi = αj for any two i, j ∈ {1, 2, 3}. We define three
angles ai for i = 1, 2, 3 as follows (e.g., see Fig. 2). Define a1 as the smallest angle we need to
rotate the direction −→su1 counterclockwise to −→su2; define a2 as the smallest angle we need to
rotate the direction −→su2 clockwise to −→su3; define a3 as the smallest angle we need to rotate
the direction −→su3 clockwise to −→su1. Hence, a1 ≡ α2 − α1, a2 ≡ α3 − α2, and a3 ≡ α1 − α3.

We refer to the case where ai = bi for each i = 1, 2, 3 as the special case.

I Lemma 14. The π-range Rπ(s, t) is determined as follows (e.g., see Fig. 8).

Rπ(s, t) =



(α1 − arctan( δ1−δ2
δ ), α1 − arctan( δ1−δ2

δ ) + π) if δ > 0,
(α1 − arctan( δ1−δ2

δ )− π, α1 − arctan( δ1−δ2
δ )) if δ < 0,

(α1 − π/2, α1 + π/2) if δ = 0 and δ1 > δ2,

(α1 − 3π/2, α1 − π/2) if δ = 0 and δ1 < δ2,

∅ if δ = 0 and δ1 = δ2,

where δ = sin(α3−α1)
sin(β3−β1) −

sin(α2−α1)
sin(β2−β1) , δ1 = cos(β2−β1)−cos(α2−α1)

sin(β2−β1) , and δ2 = cos(β3−β1)−cos(α3−α1)
sin(β3−β1) .

Further, ai = bi for each i = 1, 2, 3 (i.e., the special case) if and only if δ = 0 and δ1 = δ2.

According to Lemma 14, if the special case happens, then Rπ(s, t) is empty; otherwise, it
is an open range of size exactly π.

Now we are back to our original problem to determine the range R(s, t) for a non-
degenerate farthest point t ∈ I of s. Since there are exactly three shortest s-t paths πi(s, t)
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s t v1u1

u2

u3
v2

v3

b1 = 90◦
b2

b3 = 120◦
a2

a3 = 140◦

t v1u1

u2 = u3

v2

v3

b1 = 90◦
b2

b3 = 120◦a1 = 100◦

a3 = 260◦

a1 = 100◦

s

Figure 8 Illustrating two examples for Lemma 14. Left: The sizes of the angles of ai and bi for
1 ≤ i ≤ 3 are already shown in the figure with α1 = 0. By calculation, δ ≈ 0.2426, δ1 ≈ −0.1736,
δ2 ≈ 0.3072, arctan( δ1−δ2

δ
) ≈ −63.23◦, and thus Rπ(s, t) ≈ (α1 + 63.23◦, α1 + 63.23◦ + 180◦) =

(63.23◦, 243.23◦). Right: a case where α2 = α3 with α1 = 0. Thus, a2 = 0 and u2 = u3. The sizes of
other angles are already shown in the figure. By calculation, δ ≈ 2.1220, δ1 ≈ −0.1736, δ2 ≈ −0.3768,
arctan( δ1−δ2

δ
) ≈ 5.47◦, and thus Rπ(s, t) ≈ (α1− 5.47◦, α1− 5.47◦ + 180◦) = (−5.47◦, 174.53◦). The

open half-planes that delimit Rπ(s, t) in both examples are marked with red color.

for i = 1, 2, 3, the three paths must be canonical. To see this, by Observation 2, t is in the
interior of 4v1v2v3. Further, it is easy to see that no two of the three paths cross each other
since otherwise there would be more than three shortest s-t paths, this implies that the
second property of the canonical paths holds. Let Rπ(s, t) be the π-range of s with respect
to t and the above three shortest paths. By Lemma 8(1), we have the following lemma.

I Lemma 15. R(s, t) = Rπ(s, t) ∩Rf (s).

5 Computing the Candidate Points

In this section, with the help of the observations in Sections 3 and 4, we compute a set S of
candidate points such that all geodesic centers must be in S.

Let s be any geodesic center. Recall that F (s) is the set of all farthest points of s.
Depending on whether s is in V, E, or I, the size |F (s)|, whether some points of F (s) are
in V, E, or I, whether s has a degenerate farthest point, there are a significant (but still
constant) number of cases. For each case, we use an exhaustive-search approach to compute
a set of candidate points such that s must be in the set. In particular, there are four cases,
called dominating cases, for which the number of candidate points is O(n11). But the total
number of the candidate points for all other cases is only O(n10). Therefore, the set S has a
total of O(n11) candidate points. We will show that S can be computed in O(n11 logn) time.

To find the geodesic centers in S, a straightforward algorithm works as follows. For each
point ŝ ∈ S, we can compute dmax(ŝ) in O(n logn) time by first computing the shortest path
map SPM(ŝ) of ŝ in O(n logn) time [12] and then obtaining the maximum geodesic distance
from ŝ to all vertices of SPM(ŝ). Since all geodesic centers are in S, the points of S with the
smallest dmax(ŝ) are geodesic centers of P.

Since |S| = O(n11), the above algorithm runs in O(n12 logn) time. Let Sd denote the set
of the candidate points for the four dominating cases. Clearly, the bottleneck is on finding
the geodesic centers from Sd. To improve the algorithm, when we compute the candidate
points of Sd, we will maintain the corresponding path information. By using these path
information and based on new observations, we will present in Section 6 an O(n11 logn)
time “pruning algorithm” that can eliminate most of the points from Sd such that none of
the eliminated points is a geodesic center and the number of remaining points in Sd is only
O(n10). Consequently, we can find all geodesic centers in additional O(n11 logn) time.
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The dominating cases. In order to discuss our pruning algorithm in Section 6, we explain
the four dominating cases as follows. Suppose s is a geodesic center in I that has the following
three properties. (1) s does not have a degenerate farthest point. (2) For any farthest point
t of s, the π-range Rπ(s, t) 6= ∅ (i.e., the special cases in Lemmas 11 and 14 do not happen).
(3) s has at least three farthest points. By Lemma 3, these properties further imply that s
must have three farthest points t1, t2, t3 such that Rπ(s, t1) ∩Rπ(s, t2) ∩Rπ(s, t3) = ∅ since
the size of Rπ(s, ti) is π for each ti. Depending on whether each ti for i = 1, 2, 3 is in I, E,
V, there are several cases. We use (x, y, z) to refer to the case where x, y, and z points of
t1, t2, t3 are in I, E, and V, respectively, with x+ y + z = 3. For example, (3, 0, 0) refers to
the case where t1, t2, t3 are all in I. The four dominating cases are: (3, 0, 0), (2, 1, 0), (1, 2, 0),
and (0, 3, 0). For any geodesic center s, if s does not belong to the dominating cases, then our
algorithm guarantees that s is in S \ Sd. Below, due to the space limit, we only sketch how
to compute candidate points for three “representative” cases, and other details are omitted.

Case 1. Consider the dominating case (3, 0, 0) discussed above. We compute the candidate
points for the geodesic center s as follows. For each i = 1, 2, 3, since ti is in I, there are three
shortest paths from s to ti: πuij ,vij

(s, t) with j = 1, 2, 3 (i.e., uij and vij are the s-pivot and
t-pivot, respectively). Hence, we have the following

|t1v11|+ d(v11, u11) + |u11s| = |t1v12|+ d(v12, u12) + |u12s| = |t1v13|+ d(v13, u13) + |u13s|
=|t2v21|+ d(v21, u21) + |u21s| = |t2v22|+ d(v22, u22) + |u22s| = |t2v23|+ d(v23, u23) + |u23s|
=|t3v31|+ d(v31, u31) + |u31s| = |t3v32|+ d(v32, u32) + |u32s| = |t3v33|+ d(v33, u33) + |u33s|.

By considering the coordinates of s, t1, t2, and t3 as eight variables, the above equations
on the lengths of the nine shortest paths provide eight (independent) constraints, which are
sufficient to compute all four points. Correspondingly, we compute the candidate points for s
by the exhaustive-search algorithm below (similar methods were also used before, e.g., [3, 7]).

We enumerate all possible combinations of nine polygon vertices as vi1, vi2, vi3, with
i = 1, 2, 3. For each combination, we compute the overlay of the shortest path maps of the
nine vertices. The overlay is of size O(n2) and can be computed in O(n2 logn) time [3, 7].
For each cell C of the overlay, we obtain nine roots of the shortest path maps and consider
them as ui1, ui2, ui3 for i = 1, 2, 3. We form the above system of eight equations and solve it
to obtain a constant number of quadruples (ŝ, t̂1, t̂2, t̂3) and each such ŝ is a candidate point.
In this way, for each combination of nine polygon vertices, we can obtain O(n2) candidate
points in O(n2 logn) time. Since there are O(n9) combinations, we can compute O(n11)
candidate points in O(n11 logn) time and s must be one of these candidate points.

If this were not a dominating case, we would have done for this case. Since this is a
dominating case, we need to maintain certain path information. To this end, we perform a
“validation procedure” on each such quadruple (ŝ, t̂1, t̂2, t̂3) computed above, as follows.

In the above procedure for computing (ŝ, t̂1, t̂2, t̂3), we also obtain a path length, denoted by
d(ŝ), which is equal to the value in the above equations, e.g., d(ŝ) = |ŝu11|+d(u11, v11)+|v11t̂1|.
First, we check whether ŝ is in C, which can be done in O(logn) time by using a point location
data structure [9, 14] with O(n2) time and space preprocessing on the overlay. If yes, for each
ti with i = 1, 2, 3, we check whether d(ŝ) is equal to d(ŝ, t̂i), which can be computed in O(logn)
time by using the two-point shortest path query data structure [7] with O(n11) time and space
preprocessing on P . If yes, we check whether vi1, vi2, vi3 satisfy the condition in Observation
2(1), i.e., whether t̂i is in the interior of the triangle 4vi1vi2vi3 for each i = 1, 2, 3. If yes, for
each t̂i with i = 1, 2, 3, we check whether the order of the vertices of vi1, vi2, vi3 around t̂i

ESA 2016



77:14 On the Geodesic Centers of Polygonal Domains

are consistent with the order of the vertices of ui1, ui2, ui3 (we say that the two orders are
consistent if after reordering the indices, vi1, vi2, vi3 are clockwise around t̂i while ui1, ui2, ui3
are counterclockwise around s; note that this consistency is needed for determining the
π-range in Lemma 14). If yes, for each t̂i with i = 1, 2, 3, we compute the π-range Rπ(s, t̂i)
determined by Lemma 14, and then check whether Rπ(ŝ, t̂1) ∩Rπ(ŝ, t̂2) ∩Rπ(ŝ, t̂3) is empty.
If yes, we say that the quadruple (ŝ, t̂1, t̂2, t̂3) passes the validation procedure and we call ŝ a
valid candidate point and add ŝ to the set Sd. In addition, we maintain the following path
information: d(ŝ), t̂i, vij , and uij , with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3.

In the worst case, we can have O(n11) valid candidate points for Sd. Note that the
geodesic center s and the quadruple (s, t1, t2, t3) discussed above must pass the validation
procedure, and thus the quadruple (s, t1, t2, t3) will be computed by our exhaustive-search
algorithm and s will be computed as a valid candidate point in Sd.

Based on our validation procedure, the following observation summarizes the properties
of the valid candidate points, which will be useful for our pruning algorithm in Section 6.

I Observation 16. Suppose (ŝ, t̂1, t̂2, t̂3) a quadruple that passes the validation procedure,
with uij and vij , i = 1, 2, 3 and j = 1, 2, 3 defined as above. Then the following hold.
1. For each i = 1, 2, 3, ŝuij ∪ π(uij , vij) ∪ vij t̂i is a shortest path from ŝ to t̂i for each

j = 1, 2, 3.
2. For each i = 1, 2, 3, vi1, vi2, vi3 satisfy the condition of Observation 2(1), i.e., t̂i is in the

interior of the triangle 4vi1vi2vi3.
3. d(ŝ) = d(ŝ, t̂i) for each i = 1, 2, 3.
4. Rπ(ŝ, t̂1) ∩Rπ(ŝ, t̂2) ∩Rπ(ŝ, t̂1) = ∅.

Case 2. Consider the case where s is a geodesic center that has only one farthest point t
such that t is non-degenerate with respect to s, with both s and t in I. We compute the
candidate points for s as follows. We will need the π-range property in this case.

Since t is non-degenerate, there are exactly three shortest s-t paths: πui,vi
(s, t) with

i = 1, 2, 3. We have |su1|+d(u1, v1)+ |v1t| = |su2|+d(u2, v2)+ |v2t| = |su3|+d(u3, v3)+ |v3t|.
If we consider the coordinates of s and t as four variables, the equations give two constraints,
and to determine s and t, we need two more constraints, which are provided by the π-
range property (this kind of situation does not appear in the previous work [3, 7] and
thus they do not need the π-range property). Indeed, since t is the only farthest point
of s, we have R(s) = R(s, t). By Lemma 3, R(s) = ∅. Hence, R(s, t) = ∅. Since s ∈ I,
Rπ(s, t) = R(s, t) = ∅. Since t ∈ I, Rπ(s, t) is determined by Lemma 14. We define the
angles ai, bi, for i = 1, 2, 3, in the same way as those for Lemma 14 in Section 4.3. By
Lemma 14, Rπ(s, t) = ∅ if and only if ai = bi for i = 1, 2, 3. The identities of the three pairs
of angles provide another two (independent) constraints. Using the above four constraints,
we can determine s and t. Correspondingly, the candidate points for s can be computed in
an exhaustive manner, as follows.

We enumerate all possible combinations of three polygon vertices as v1, v2, v3. We compute
the shortest path maps of v1, v2, and v3 in O(n logn) time. Next we compute the overlay of
the three shortest path maps. Then, for each cell of the overlay, we obtain the three roots of
the cell in the three shortest path maps and consider them as u1, u2, u2. Finally, we use the
above four constraints to determine a constant number of pairs (ŝ, t) (we assume this can be
done in constant time since the angles ai and bi can be parameterized by the coordinates of ŝ
and t), and each such ŝ is considered as a candidate point. In this way, for each combination
of v1, v2, v3, we can compute O(n2) candidate points in O(n2 logn) time. Since there are
O(n3) combinations, we can compute O(n5) candidate points in O(n5 logn) time.
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Case 3. Consider the case where s is a geodesic center that has only two farthest point t1
and t2 such that both t1 and t2 are non-degenerate, with s, t1, t2 all in I.

For each ti, i = 1, 2, there are exactly three shortest paths from s. The equations on the
lengths of the six paths give five constraints for s, t1, t2 if we consider their coordinates as
six variables. To determine s, t1, t2, we need one more constraint, which is provided by the
π-range property as follows. Since s, t1, t2 are all in I, for each i = 1, 2, R(s, ti) = Rπ(s, ti),
and Rπ(s, ti) is determined by Lemma 14. We assume neither Rπ(s, t1) nor Rπ(s, t2) is
empty since otherwise the candidate points could be computed by the algorithm for the
above Case 2. Hence, each Rπ(s, ti), i = 1, 2, is an open range of size π. By Lemma 3,
R(s) = R(s, t1) ∩ R(s, t2) = Rπ(s, t1) ∩ Rπ(s, t2) = ∅. Since each Rπ(s, ti), i = 1, 2, is an
open range of size π (i.e., it is delimited by an open half-plane whose bounding line contains
s), to have Rπ(s, t1)∩Rπ(s, t2) = ∅, the two bounding lines of the two half-planes delimiting
the two π-ranges must be overlapped, and this provides the sixth constraint to determine
s, t1, t2. Correspondingly, the candidate points for s can be computed in an exhaustive way.

6 Computing the Geodesic Centers

In this section, we find all geodesic centers from the candidate point set S. Recall that Sd is
the set of candidate points for the four dominating cases. Let S′ denote the set of candidate
points for all other cases, and thus S = Sd ∪ S′. As discussed in Section 5, |S′| = O(n10)
and we can find all geodesic centers in S′ in O(n11 logn) time by computing shortest path
maps. Below, we focus on finding all geodesic centers in Sd.

We first remove all points from Sd that are also in S′, which can be done in O(n11 logn)
time (e.g., by first sorting these points by their coordinates). Then, according to our
definitions of the four dominating cases in Section 5, for any point s ∈ Sd, if s is a geodesic
center, s does not have any degenerate farthest point since otherwise s was also in S′ and
thus would have already been removed from Sd. Recall that each point s of Sd is a valid
candidate point and we have maintained its path information (in particular, the value d(s)).

We first perform the following duplication-cleanup procedure: for each point s ∈ Sd, if
there are many copies of s, we only keep the one with the largest value d(s) (if more than
one copy has the largest value, we keep an arbitrary one). This procedure can be done in
O(n11 logn) time (e.g., by first sorting all points of Sd by their coordinates). According to
our algorithm for computing the candidate points of Sd, we have the following observation.

I Lemma 17. After the duplication-cleanup procedure, for any point s ∈ Sd, if s is a geodesic
center, then dmax(s) = d(s).

Recall that all points of Sd are in I. In the following, we give a pruning algorithm that
can eliminate most of the points from Sd such that none of these eliminated points is a
geodesic center and the number of remaining points of Sd is O(n10). Our pruning algorithm
relies on the property that each candidate point s of Sd is valid. Specifically, if s is computed
for the dominating case (3, 0, 0), then s is associated with the following path information
d(s), ti, vij , and uij for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3, such that Observation 16 holds (i.e., s is
ŝ and each ti is t̂i). For other three dominating cases (e.g., (2, 1, 0), (1, 2, 0), and (0, 3, 0)),
there are similar properties. By using these properties, we have the following key lemmas.

I Lemma 18. Let s be any point in Sd. If s is in the interior of a cell or an edge of Dspm,
then for any other point s′ in the interior of the same cell or edge of Dspm, it holds that
dmax(s′) > d(s).
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I Lemma 19. For any two points s1 and s2 of Sd that are in the interior of the same cell
or the same edge of Dspm, if d(s1) < d(s2), then s1 cannot be a geodesic center, and if
d(s1) = d(s2), then neither s1 nor s2 is a geodesic center.

Based on Lemma 19, our pruning algorithm for Sd works as follows. For each point s of
Sd, we determine the cell, edge, or vertex of Dspm that contains s in its interior, which can
be done in O(logn) time by using a point location data structure [9, 14] with O(n10) time
and space preprocessing on Dspm. For each edge or cell, let S′d be the set of points of Sd
that are contained in its interior. We find the point s of S′d with the largest value d(s). If
there are more than one such point in S′d, we remove all points of S′d from Sd; otherwise,
remove all points of S′d except s from Sd. By Lemma 19, none of the points of Sd that are
removed above is a geodesic center. After the above pruning algorithm, Sd contains at most
one point in the interior of each cell, edge, or vertex of Dspm. Hence, |Sd| = O(|Dspm|).
Since |Dspm| = O(n10) [7], we obtain |Sd| = O(n10). Consequently, we can find all geodesic
centers in Sd in O(n11 logn) time by computing shortest path maps.

We thus conclude that all geodesic centers of P can be computed in O(n11 logn) time.

I Theorem 20. All geodesic centers of P can be computed in O(n11 logn) time.

Acknowledgment. We wish to thank Yan Sun for the discussions on proving the π-range
property.
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