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Abstract
We present a Logspace Approximation Scheme (LSAS), i.e. an approximation algorithm for
maximum matching in planar graphs (not necessarily bipartite) that achieves an approximation
ratio arbitrarily close to one, using only logarithmic space. This deviates from the well known
Baker’s approach for approximation in planar graphs by avoiding the use of distance computation
- which is not known to be in Logspace. Our algorithm actually works for any “recursively sparse”
graph class which contains a linear size matching and also for certain other classes like bounded
genus graphs.

The scheme is based on an LSAS in bounded degree graphs which are not known to be
amenable to Baker’s method. We solve the bounded degree case by parallel augmentation of
short augmenting paths. Finding a large number of such disjoint paths can, in turn, be reduced
to finding a large independent set in a bounded degree graph. The bounded degree assumption
allows us to obtain a Logspace algorithm.

1 Introduction

Historically, matching problems have played a central role in Algorithms and Complexity Theory.
Edmond’s blossom algorithm [14] for maximum matching was one of the first examples of a
non-trivial polynomial time algorithm. It had a considerable share in initiating the study of
efficient computation, including the class P itself; Valiant’s #P-hardness [32] for counting perfect
matchings in bipartite graphs provided surprising insights into the counting complexity classes.
The rich combinatorial structure of matching problems combined with their potential to serve as
central problems in the field invites their study from several perspectives.

The study of whether matching is parallelizable has yielded powerful tools, such as the isol-
ating lemma [27], that have found numerous other applications. The RNC bound remains the
best known parallel complexity for maximum matching till date. The best known upper bound
for Perfect-Matching is non-uniform SPL[1] whereas the best hardness known is NL-hardness [8].

Matching in Planar Graphs

A well known example where planarity is a boon is that of counting perfect matchings. The
problem in planar graphs is in P [21] and can in fact be done in NC[33]; thus Perfect-Matching
(Decision) in planar graphs is in NC. “Is the construction version of Perfect-Matching in planar
graphs in NC ?” remains an outstanding open question, whereas the bipartite planar case is
known to be in NC [26, 25, 23, 11].
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28:2 An LSAS for Maximum Matching

The space complexity of matching problems in planar graphs was first studied by Datta,
Kulkarni, and Roy [11] where it is shown that minimum weight Perfect-Matching (Min-Wt-PM)
in bipartite planar graphs is in SPL. Computing a maximum matching for bipartite planar graphs
is shown to be in NC by Hoang [16]. Kulkarni [22] shows that Min-Wt-PM in planar graphs (not
necessarily bipartite) is NL-hard. The only known hardness for Perfect-Matching in planar graphs
is L-hardness (cf. [10]).

1.1 Motivation
Time efficient approximation algorithms are well studied and have a lot of applications. Space is
arguably the second most important resource other than time. Although there is an abundance
of work on time efficient approximation, work on space efficient approximation seems limited. To
the best of our knowledge even some basic problems such as maximum matching have not been
considered. Notice that for (the construction version of) this well studied problem we know of
no better complexity bound than P∩ RNC [14, 27, 20] even in the planar case. In particular we
do not know if it is in SC or NC.

Bounded space approximation algorithms in the presence of non-determinism can be obtained
by using Baker’s approach [4] for some problems in certain sparse graphs, the most prominent
being planar graphs. Dispensing with non-determinism in algorithms even for reachability (not
to say matching) leads to either a quasipolynomial blow-up in the time requirement via Savitch’s
theorem [30] or a large space footprint (O(

√
n)) if we want to simultaneously keep the algorithms

in polynomial time (see e.g. [19, 3] for reachability in planar graphs). For general graphs the
tradeoff at the low space side is even worse, with O( n

2
√

log n
) space and polynomial time [5].

In the context of simultaneous polylogarithmic space and polynomial time (i.e. the class SC),
Logspace is the gold-standard and therefore a Logspace Approximation Scheme is the desired
result we are able to achieve for planar graphs. An LSAS for bounded degree graphs and a
plethora of related graph classes is a serendipitous side effect.

1.2 Previous Work
The problem of approximating maximum matching has been considered both in time and parallel
complexity model. [13] gives a linear-time approximation scheme for maximum matching which
has the best known time complexity. An NC approximation scheme for maximum matching is
given in [18].

Two papers [31, 36] have strived to rephrase Logspace approximation algorithms in the general
approximation framework. Their well directed efforts need to be augmented with more concrete
problems.

In this direction [9] studied planar MaxCut and related problems in the context of approx-
imation but had to be satisfied with a UL ∩ co-UL approximation scheme which closely follows
Baker’s approach and is unsatisfactory since it uses non-determinism.

The folklore randomized algorithm for a 1/2-approximation to MaxCut and which can be
derandomized in L, with the help of pair-wise independence, is another example in the same
spirit.

1.3 Our Results
In this work we first show that there is a Logspace Approximation Scheme for maximum matching
in bounded degree graphs.

I Theorem 1. Let G be a graph with degrees bounded by a constant d then for any fixed ε > 0,
we can find a (1− ε) factor approximation to the maximum matching in Logspace.
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The main fact we use here is that any bounded degree graphs (assuming it’s connected) always
contains a linear size matching. Many planar graph classes are known to have the property of
containing a large matching. Such classes include 3−connected planar graphs [7]. In fact our
algorithm works for any recursively sparse graph containing a large matching.

Next we show that we can actually give Logspace Approximation Scheme for maximum match-
ing in any planar graph by reducing it to the bounded degree graphs by suitable modifications.

I Theorem 2. Let G be a planar graph then for any fixed ε > 0, we can find a (1 − ε) factor
approximation to the maximum matching in Logspace.

This result extends to many other graph classes, namely for classes which are “biparted” i.e.
sparse graphs with bipartite graphs in the class being even significantly sparser such as: in
bounded genus graphs, k-Apex graphs, (g, k)-Apex graphs, 1-planar graphs, k-page graphs.

Notice that while some of our ideas are similar to the classical sequential algorithm of Hopcroft
and Karp [17] for maximum matching in bipartite graphs, we consider graphs which are not
necessarily bipartite. Our algorithm trades off Logspace and non-bipartiteness for approximation
and sparsity.

1.4 Our Techniques
The primary algorithmic tool is augmentation along short augmenting paths. We prove that in a
bounded degree graph, if there are many unmatched but matchable vertices remaining there exist
precisely linearly many short augmenting paths. We need to pick a large subset of independent
ones from these.

This prompts us to find a large independent set in a bounded degree graph that works in
Logspace. Notice that the simple greedy strategy that removes a least degree vertex and its
neighbourhood will find a linear sized independent set but the algorithm is not implementable in
Logspace.

The above method needs the graph to be bounded degree. To convert a planar graph to a
bounded degree graph we simply delete high degree vertices and show that this does not affect
the size of the matching considerably since the number of high degree vertices is small though
possibly still linear in the graph size. This will work if we are sure that the size of the maximum
matching is at least linear.

Next we work to whittle the graph down to one containing a linear sized matching without
reducing the matching size. We show that removing some small number of vertices ensures this.
The proof of this part is based on a lengthy case analysis.

1.5 Organization
After some preliminaries in Section 2, we describe in Section 3 the approximation algorithm for
bounded degree graphs where they contain a large (linear in the number of vertices) matching. In
Section 4 we then show that our algorithm can be extended for planar graphs also. We conclude
in Section 5 with some open ends.

2 Preliminaries

A graph G = (V,E) consists of a finite set of vertices V (G) = V and edges E(G) = E ⊆ V × V .
The class L is the class of languages accepted by deterministic logspace Turing machines.

We know that undirected graph connectivity is in L[29]. For the definition of other complexity
classes we refer the reader to any standard text book, for example [34, 2]. The concept of
Logspace transducer is implicit in Definition 4.16 of [2] and is made explicit in Exercise 4.8 from
the same text.

MFCS 2016



28:4 An LSAS for Maximum Matching

A matching in G is a set M ⊆ E, such that no two edges in M have a vertex in common. A
matchingM is called perfect ifM covers all vertices of G,M of maximum size is called maximum
matching. Vertices not incident to an M edge are free. An alternating path is one whose edges
alternate between M and E \M . An alternating path P is augmenting if P begins and ends at
free vertices, that is,M⊕P = (M \P )∪(P \M) is a matching with cardinality |M⊕P | = |M |+1.
For a complete treatment on matching see [24].

An independent set is a set of vertices in a graph, no two of which are adjacent. A maximum
independent set is an independent set of largest possible size in a given graph. A (vertex)
colouring of a graph is an assignment of labels (called “colours”) to the vertices of a graph such
that no two adjacent vertices share the same color.

An induced subgraph of a graph is another graph, formed from a subset of the vertices of
the graph and all of the edges connecting pairs of vertices in that subset. An induced path is a
path that is an induced subgraph. A graph is called recursively sparse if every subgraph of it is
a sparse graph.

I Definition 3 (Approximation Ratio). We call an algorithm A a β-approximation algorithm if,
on every instance I, the algorithm outputs a set IA such that 1/β · IA ≤ IOpt ≤ β · IA where IOpt
is the optimal result on the instance I. The β is called the approximation ratio (or approximation
factor) of the algorithm.

I Definition 4 (Approximation Scheme). Let X be a minimization (respectively, maximization)
problem.

An approximation scheme is a family of (1 + ε)-approximation algorithms Aε (respectively,
(1− ε)-approximation algorithms Aε) for problem X for any 0 < ε < 1.
A Logspace approximation scheme (LSAS) for problem X is an approximation scheme which
runs in Logspace.

For a more general treatment of LSAS, consult [36, 31].
A planar graph is a graph that can be embedded in the plane, i.e., the edges can be drawn

on the plane in such a way that no edges cross each other (i.e.the edges intersect only at their
endpoints). A graph G is said to have genus g if G has a minimal embedding (an embedding
where every face of G is homeomorphic to a disc) on a genus g surface. Euler’s formula for a
genus g graph states that χ(g) = |V | − |E| + |F | where χ(g) = 2 − 2g and |F | is the number of
faces of G. For planar graphs, this implies |E| ≤ 3n − 6 and so the average degree of a planar
graph is at most 6. See standard texts on Graph theory (e.g. [12, 35]) for further information.
Consult [28] for definitions and properties of various other sparse graph classes.

3 Approximating maximum matching in bounded degree graphs

In this section we show that given any bounded degree graph, we can give a Logspace approxim-
ation scheme for the maximum matching.

Our strategy is to design a Logspace transducer that takes in a bounded degree graph and a
matching therein as input and while the matching has size significantly smaller than the size of the
maximum matching finds a number of disjoint augmenting paths that can then be augmented
in parallel in Logspace. The output of the transducer is thus a somewhat larger matching -
in fact a matching which is larger than the previous matching by a constant fraction of the
maximum matching. We are of course assuming that we are not already very close to the
optimal matching. Since we can compose constantly many Logspace transducers to yield another
Logspace transducer we are done.

All the augmenting paths we deal with are short i.e. of length at most 2k + 1 for some
constant k. This is because such paths can be found in Logspace by say exhaustively listing all
(2k + 1)-tuples of vertices and checking if they form valid augmenting paths.
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These short augmenting paths are at most linearly many in n, at most n(2k + 1)2d2k+1 to
be more precise where d is an upper bound on the maximum degree. Now suppose that the
current matching cardinality differs significantly from the maximum matching size |Mopt| (by a
factor Ω(1/k) of the maximum matching) then we show that there are at least Ω(|Mopt|/k) many
augmenting paths of length 2k + 1 (which happen to be disjoint - though this fact is not used
subsequently).

Having demonstrated that there exist lots of paths, we have to find a large fraction in Logspace,
which are mutually disjoint. If we form an intersection graph of these short augmenting paths
by making two paths adjacent if they have a vertex in common, then we are looking for a large
independence set in this intersection graph. We would be done if we can colour the paths with
O(1) colours (so that no two intersecting paths get the same colour) because then the largest
colour class serves as the desired constant fraction independence set. Since the original graph is
bounded degree so is the intersection graph - so it is, at least existentially, O(1)-colourable. We
in fact show how to constant colour this graph in Logspace.

3.1 Lower bounding the number of short paths
Let G = (V,E) (where n = |V |) be the given bounded degree graph with an upper bound of d on
the degrees. Let Mopt be an optimal maximum matching contained in G. Let M be any other
matching which is not necessarily maximum. We assume that the gap |Mopt|− |M | is sufficiently
large so that lot of augmenting paths exist since the number of unmatched but matchable vertices
is large. Yet conceivably very few or none of these paths may be short. Because we can only
hope to explore augmenting paths of a constant length in L such a possibility would be very
injurious to the approach. Fortunately, we can show that as long as we are not very close to the
maximum matching there are many short augmenting paths that survive. The following lemma
is an adaptation of Corollary 2 of [17] tailored for augmenting paths of constant length where
the number of such paths is also important to us.

I Lemma 5. If |M | < (1− 3
k )|Mopt| for some positive integer k then there are at least 3|Mopt|/2k

augmenting paths consisting of at most 2k + 1 edges.

Proof. The maximum number of vertices that can be matched in any matching is precisely,
2|Mopt|. The symmetric difference M ⊕Mopt consists of |Mopt| − |M | augmenting paths and
a number of alternating cycles, which are all mutually disjoint. Suppose the length of the i-th
augmenting path is `i. Then

∑|Mopt|−|M |
i=1 (`i − 1) ≤ 2|Mopt|. This is because an augmenting

path of length ` contains ` − 1 matched vertices which are distinct across other paths. Thus,
(|Mopt| − |M |)`avg ≤ 3|Mopt| − |M | ≤ 3|Mopt| where `avg is the average path length. Thus,
`avg ≤ k.

Since at least half fraction of the paths have length at most double the average, we get that
at least 3|Mopt|/2k paths have length at most 2k. J

3.2 Approximating Maximum Independent Set
As graph G still contains a large set of (linearly many) disjoint augmenting paths, we find a
constant factor approximation to the maximum independent set in intersection graph of bounded
length augmenting paths of G.

Let H be the intersection graph of augmenting paths of length at most 2k + 1 in G.

I Lemma 6. A β-factor approximation to the maximum independent set in the graph H can be
computed in L where β = 2−(2k+1)2d2k+1

MFCS 2016
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Proof. The graph H has maximum degree upper bounded by D = (2k + 1)2d2k+1 since there
are at most did2k+1−i = d2k+1 paths in which a fixed vertex appears as the i-th vertex1. Since
d, k are constants D is also a constant. If we can colour the intersection graph by at most f(D)
colours then we would be done because the largest colour class will be a constant (say β) factor
approximation to the maximum independent set. Now we give a simple procedure to do this.

For a graph with maximum degree bounded by D, we can find at most D disjoint forests
that partition the edge set. This can be done by running Reingold’s algorithm for undirected
connectivity [29] at most D times on the graph. Now we colour each forest with 2 colours and it
gives D bit colours to every node (1 bit for every colouring). This yields an f(D) = 2D colouring
of the graph because two vertices that are adjacent must belong to at least one common forest. J

I Theorem 7. Let G be a graph with degrees bounded by a constant d then for any fixed ε > 0,
we can find a (1− ε) factor approximation to the maximum matching in Logspace.

Proof. Fix integer k =
⌈ 3
ε

⌉
. If the current matching is of size at most (1− 3/k) fraction of the

maximum matching there are a lot (at least |Mopt|/2k from Lemma 5) of augmenting paths of
length 2k + 1 remaining. Thus the number of vertices in H is at least linear in |Mopt|.

By Lemma 6 we can find an independent set of size at least β|V (H)| = β|Mopt|/2k. This
yields a linear number in the size of the maximum matching, of short (length ≤ 2k+1) augmenting
paths which are vertex disjoint and thus are augmentable in parallel. In fact a L-transducer can
do the augmentation and output the new matching (it just has to interchange the matched and
the unmatched edges in every picked augmenting path).

At every step we increase the matching size by an additive term of |Mopt|/(2k/β) (unless we
get closer than a factor of (1 − 3/k) to the maximum matching). We chain (1 − 3/k)2k/β such
transducers. Note that since we start with an empty matching, after K rounds the approximation
ratio would be at least (1 − 3/k). Thus we get an approximation ratio of at least (1 − 3/k) ≤
1− ε. J

4 Approximating Planar Maximum Matching

In this section we show that we can give Logspace Approximation Scheme for finding maximum
matching in planar graphs using the LSAS for bounded degree graphs. We first show that a tame
graph and so a minimum degree 3 planar graph contains a linear size matching in Subsection 4.1.
In Subsection 4.2 we describe the Logspace Approximation Scheme.

4.1 Existence of a linear matching subgraph
We say that a maximal induced path is k-isolated if its length is k > 1 edges and each of its
(k − 1)-internal vertices have degree precisely two in G. A k-isolated path is long if k > 2. An
endpoint of an isolated path is called a branch vertex if its degree is G is at least 3 and a pendant
vertex if its degree is 1.

Consider the set P of all isolated paths in a graph G. Let P0 represent the paths in P which
contain an even number of edges. Let B0 represent the set of pairs of endpoints of all the paths
in P0 which support at least two paths from P0. For each pair in B0 pick exactly two paths from
P0 supported by vertices of B0 to yield set P ′0. Let E0 be the set of extreme2 edges of all paths
in P0 \ P ′0.

I Definition 8. A graph is tame if all pairs in B0 support exactly two paths from P0.

1 This is a very crude upper bound which does not take into account that the 2k + 1 length length path is
augmenting so the bound of k2dk is closer to truth. Our bound however suffices for the purpose at hand

2 i.e. the first and the last
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We can use the following Lemma to compress the graph preserving maximum matching size:

I Lemma 9. The size of the maximum matching in G− E0 is the same as in G.

Proof. Every matching in G− E0 is a matching in G. Thus we just need to prove that for any
maximum matching in G there is a matching in in G − E0 of the same cardinality. To see this
notice that for any pair {u, v} ∈ B0 in any matching M it is the case that 0, 1 or 2 edges from
E0 are used. If 1 or 2 edges of E0 are used in the matching then 1 or 2 paths, respectively,
in P ′0 which are incident on u, v have at least one unmatched vertex (because they contain odd
number of vertices apart from their externally matched endpoints). Switching the 1, 2 matched
edges incident on u, v to these 1, 2 paths in P ′0 so that the unmatched vertices on these paths are
matched we reach a matching with the same cardinality as M . J

Notice that for a tame graph there may be zero, one or two isolated even length paths between
any pair of vertices. Removing the edges in E0 ensures that we are left with a tame graph. The
following is the property of tame graphs that we plan to exploit:

I Lemma 10. A tame planar graph has a linear sized maximum matching.

Proof. Let N0 be a yet to be fixed threshold3. We use a case analysis:
1. The total length of long isolated paths N ≥ N0. We have a matching of size at least N0/4 in

this case by Lemma 11.
2. The total length of long isolated paths N < N0: In this case for every pair of endpoints of

long paths.
a. We replace each such long path by a path of length 2 or 3 depending on whether the path

was even and odd. This reduces the max matching size by at most N/2 without increasing
the number of vertices.

b. If there are more than 2 paths of length 3 between u, v then delete all but 2. This further
reduces the max matching size by at most 2ν without increasing the number of vertices.
Here ν is the number of odd paths in the initial graph. Thus the loss in matching in this
step is at most 2N/3.

c. Attach the Lollipop graph (i.e. aK4 with a pendant edge attached to one of the vertices) to
each of the 2 internal vertices of the 3-isolated paths. This does not decrease the matching
size. The number of vertices goes up by at most 4N . In the resulting graph only 2-isolated
paths have degree 2 vertices.
i. If there are at least N ′ ≥ N ′0 isolated 2-paths in the graph.
A. Consider the subgraph of this graph where all edges not incident on vertices of degree

2 have been deleted and all isolated vertices formed as a result have been deleted.
The resulting subgraph has at least 2N ′ edges and N ′ (degree 2) vertices.

B. Find a spanning forest of this graph and root every tree in the forest at a vertex
which wasn’t a degree 2 vertex in G. It is easy to see that all the vertices of degree
2 in G are matchable in the forest - just match them to their unique child in the
rooted forest. Thus a matching size of N ′ ≥ N ′0 is guaranteed in G.

ii. If there are at most N ′ < N ′0 isolated 2-paths in the graph.
A. Attach the Lollipop graph to each degree 2 vertex of the graph. This does not

decrease the matching size and increases the number of vertices by at most 4N ′. We
obtain a min degree 3 graph.

3 which will turn out to be n/35

MFCS 2016
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Thus we have a matching of size at least min (N0/4, N ′0,m− (N0/2 + 2N0/3)) and the number
of vertices is at most n+ 4N0 + 4N ′0 in the last case of the minimum. Since the ratio of matching
edges and vertices cannot be better than 1/140 from Lemma 12, we just need to assume that:
N0/4 ≥ n/140, N ′0 ≥ n/140, (m− 5N0/6) ≥ (n+ 4N0 + 4N ′0)/140. Taking N0 = 4n/140 = n/35
and N ′0 = n/140, we get:

m− n/42 ≥ (n+ n/7)/140

or
m ≥ n/42 + n/140 + n/980 > n/140.

Thus, overall, m ≥ n/140. J

I Lemma 11. A graph in which the total length of long isolated paths is N has a matching of
size at least N/4.

Proof. Let the sum of lengths, number of odd, even isolated paths be denoted by respectively
Nodd, Neven and νodd, νeven An isolated path of odd length Ni has a matching of size at least
(Ni − 1)/2 (leaving out the two extreme edges). Similarly, an even length isolated path has a
matching of size at least Ni/2− 1. Thus the size of a matching from long odd isolated paths is
at least Nodd/2− νodd/2 and from even isolated paths is at least Neven/2− νeven. Now each long
even isolated path has length at least 4 so 4νeven ≤ Neven and each long odd isolated path has
length at least 3 so that 3νodd ≤ Nodd. Thus the total size of matchings is at least∑

i

Ni/2− νodd/2− νeven ≥ N/2−Nodd/6−Neven/4 ≥ N/2−Nodd/4−Neven/4 = N/4

J

I Lemma 12. A minimum degree 3 planar graph has a matching of size at least n/140.

Proof. Consider the set S of all vertices of degree at least d in G. Let S0 be the isolated vertices in
G−S i.e. those vertices in V (G)−S all whose neighbours are in S. Consider the bipartite graph
G′ with bipartitions S0, S where we connect a vertex u ∈ S0 to all v ∈ S such that (u, v) ∈ E(G).
Now the number of edges incident on S0 is at least 3|S0| (because every edge incident on u ∈ S0
is still present in G′). On the other hand, the number of edges from average degree is at most
2(|S|+ |S0|). Thus |S0| ≤ 2|S|. But |S| ≤ 6n/d. thus together the number of vertices deleted is
at most 3|S| = 18n/d. Hence the number of remaining vertices is at least (1− 18/d)n.

Now suppose the graph has c components. Find a spanning forest of this graph. Vertices in
each spanning tree have degree at most d− 1. Then,

I Claim 1. Any tree on n vertices and maximum degree d supports a matching of size at least
(n− 1)/d.

Proof. To see this fix a root to the tree and consider a deepest leaf v in the tree. Remove the
other endpoint w of the pendant edge (v, w) leads to a tree containing d lesser vertices. Since at
the end we might be left with just the root as an isolated vertex, the claimed bound follows. J

Thus the tree supports a matching of size at least (n′′ − 1)/(d − 1) where n′′ is the number
of vertices in the component. Therefore the total size of the matching is at least (n′ − c)/(d− 1)
where n′ ≥ (1 − 18/d)n is the number of vertices spanned by the forest. Since none of the
components is a singleton it must be that c ≤ n′/2. So the size of the maximum matching is at
least (1− 18/d)(1/(2d− 2))n. Putting d = 36, we get that the size of the maximum matching is
at least n/140. J
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4.2 Finding a large planar matching
I Theorem 13. There is a Logspace Approximation Scheme for maximum matching in planar
graphs.

Proof. We first convert the original graph G into a tame graph G′ by using Lemma 9. This
preserves the maximum matching size. Suppose there are least αn matching edges in G′ for some
α < 1/2. Fix a positive ε < α.

We will delete all vertices of degrees greater than d from G′ to yield graph G′′ which is of
degree bounded by d. Since the number of vertices of degree at least d in G′ is at most 6n/d,
the number of matching edges removed by deleting the high degree vertices is at most 6n/d.
So we will have a large = (α − 6/d)n sized matching remaining after this if α − 6/d = ε/2 i.e.
d = 12

2α−ε . Thus it suffices to find a (1 − ε/2) factor approximation to the maximum matching
using Theorem 7 in Logspace. J

Notice that, here we had to tame the graph only to ensure the existence of a linear size
matching. But given promise that the graph contains a linear size matching, we can get a
approximation scheme, for any recursively sparse graph, without taming it.

I Corollary 14. There is a Logspace Approximation Scheme for maximum matching in recursively
graphs which contains a linear size matching.

I Note 1. We require only the following properties of planar graphs in proving Lemma 12:

Sparsity: The average degree is upper bounded by 6.
Bipartite sparsity: The average degree of every bipartite subgraph is even lower i.e. 4.
Min-degree: The minimum degree is at least 3 i.e. at least half the average degree.

Thus the proof of Lemma 12 goes through for any family of graphs satisfying these properties.
Also notice that Lemma 9 works for arbitrary graphs and Lemma 10 works for any family of graphs
satisfying the first two properties above. Hence we also get Logspace Approximation Schemes
for the following families of graphs [15]:

1. Genus g graphs: graphs that are embeddable on a surface of genus g = O(1).
2. k-Apex graphs: graphs such that deleting k vertices leads to planar graphs.
3. (g, k)-Apex graphs: graphs such that deleting k vertices leads to genus g graphs.
4. 1-planar graphs: graphs that can be drawn with at most one crossing per edge.
5. k-page graphs: graphs such that all edges can be accommodated on a k-page book with

vertices on the spine.

4.3 The Algorithm
Here we present the full algorithm for finding the approximate maximum matching. First we
present the algorithms for finding the approximate maximum matching in bounded degree graphs
in Algorithm 1 and then we present our main algorithm, describing the taming procedure and
using the previous algorithm as subroutine, in Algorithm 2.

5 Conclusion and Open-Ends

The main open question which remains is to show that whether we can devise an LSAS for
maximum matching in general graphs or at least in arbitrary sparse graphs. In this work, we
have been able to resolve this for bounded degree graphs, planar graphs and some related classes
of sparse graphs.
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Algorithm 1 (Matching in Bounded Degree Graphs)
Input : (G, ε,M) where G = (V,E) is bounded degree graph with deg(v) ≤ d for all
v ∈ V, ε > 0 and M is a set of matched edges.
Output : A set M ′ ⊆ E of matched edges.

1: Fix integer k =
⌈ 3
ε

⌉
.

2: Construct the intersection graph of augmenting paths of length at most 2k + 1 in G.
3: Let the graph be H with maximum degree ≤ D = (2k + 1)2d2k+1

4: Find at most D disjoint forests that partition the edge set.
5: Colour each forest with 2 colours, giving D bit colours to every node
6: Augment the vertex disjoint augmenting paths in parallel using L-transducer
7: Add the new matching to M
8: return M

Biedl [6] showed that there exists a linear-time (also in Logspace) reduction from maximum
matching in arbitrary graphs to maximum matching in 3-regular graphs, though it is not imme-
diate that it is approximation preserving. It will interesting to show such a reduction which is
also approximation preserving.

Proving lower bounds for maximum matching in the context of approximation is another
important goal. Currently we do not know of any non-trivial hardness results including NC1-
hardness or even TC0-hardness let alone a L-hardness for approximation to any factor.

Acknowledgements. The first author would like to thank Abhishek Kadian for work on a
previous avatar of this paper.
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