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Abstract
For a finitely presented group, the word problem asks for an algorithm which declares whether
or not words on the generators represent the identity. The Dehn function is a complexity meas-
ure of a direct attack on the word problem by applying the defining relations. Dison and Riley
showed that a “hydra phenomenon” gives rise to novel groups with extremely fast growing (Acker-
mannian) Dehn functions. Here we show that nevertheless, there are efficient (polynomial time)
solutions to the word problems of these groups. Our main innovation is a means of comput-
ing efficiently with enormous integers which are represented in compressed forms by strings of
Ackermann functions.
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1 Ackermann functions, compressed integers, and our first theorem

Let N = {0, 1, 2, . . .}. For i ∈ N, the Ackermann functions Ai : N → N are a family of
recursively defined increasingly fast-growing functions:
(i) A0(n) = n+ 1 for all n ∈ Z,
(ii) A1(n) = 2n for all n ∈ Z,
(iii) Ai(0) = 1 for all i ≥ 2, and
(iv) Ai+1(n+ 1) = AiAi+1(n) for all n ≥ 0 and all i ≥ 1.
The following table, showing some values of Ai(n), can be constructed by first inserting the
i = 0, 1 rows and then n = 0 column, and then filling in the subsequent rows left-to-right
according to the recurrence relation.
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30:2 Ackermannian Integer Compression and the Word Problem for Hydra Groups

0 1 2 3 4 · · · n · · ·
A0 1 2 3 4 5 · · · n+ 1 · · ·
A1 0 2 4 6 8 · · · 2n · · ·
A2 1 2 4 8 16 · · · 2n · · ·

A3 1 2 4 16 65536 · · ·
22

...
2}

n · · ·

A4 1 2 4 65536
22

...
2}

65536 · · ·

...
...

...
...

...
...

Due to the increasing nesting of the recursion, the Ai represent the successive graduations in
a hierarchy of all primitive recursive functions due to Grzegorczyk (see e.g. [30]).

The functions Ai are all strictly increasing and hence injective, so have partial in-
verses:
(I) A−1

0 : Z→ Z mapping n 7→ n− 1,
(II) A−1

1 : 2Z→ Z mapping n 7→ n/2, and
(III) A−1

i : Img Ai → N for all i > 1.
Starting with zero and successively applying a few Ackermann functions and their inverses

can produce an enormous integer. For example,

A3A0A
2
1A0(0) = A3A0A

2
1(1) = A3A0A1(2) = A3A0(4) = A3(5) = 265536

because

A3(5) = A5
2A3(0) = A5

2(1) = 22222
= 265536.

Thus Ackermann functions give highly compact representations for some very large numbers.
More precisely, here is how a string w of Ackermann functions may represent an integer

w(0). For x1, . . . , xn ∈ {A±1
0 , . . . , A±1

k }, we say the word w = xnxn−1 · · ·x1 is valid if
xmxm−1 · · ·x1(0) is defined for all 0 ≤ m ≤ n. That is, if we evaluate w(0) by starting with
0 and proceeding through w from right to left applying successive xi, we never encounter the
problem that we are trying to apply xi to an integer outside its domain.

For example, w := A−1
2 A1A1A0 is valid, and w(0) = log2(2 · 2 · (0 + 1)) = 2. But A2A

−1
0

and A1A
−1
1 A0 are not valid because A−1

0 (0) = −1 is not in N (the domain of A2) and because
A0(0) = 1 is not in 2Z (the domain of A−1

1 ).
Motivated by applications in group theory that we will describe in the next section,

we wish to compute with these representations in an efficient manner. (Our choices of Z
as the domains for A0 and A1 and our definition of A0 represent small variations on the
standard definitions of Ackermann functions, which are convenient for our applications.) One
could just evaluate w(0) using standard integer arithmetic, but this can be monumentally
inefficient because of the sizes of the integers involved. Our first theorem is that is it possible
to calculate efficiently in a rudimentary way with these representations of integers:

I Theorem 1. Fix an integer k ≥ 0. There is a polynomial-time algorithm, which on input
a word w on A±1

0 , . . . , A±1
k , declares whether or not w(0) represents an integer, and if so

whether w(0) < 0, w(0) = 0 or w(0) > 0.

(In fact our algorithm halts in time bounded above by a polynomial of degree 4 + k. We
have not attempted to optimize the degrees of the polynomial bounds on time complexity
here or elsewhere in this work.)
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2 The word problem, Dehn functions, and our second theorem

Elements of a group Γ with a generating set A can be represented by words—that is, products
of elements of A and their inverses. To work with Γ, it is useful to have an algorithm which,
on input a word, declares whether that word represents the identity element in Γ. After all,
if we can recognize when a word represents the identity, then we can recognize when two
words represent the same group element, and thereby begin to compute in Γ. The issue of
whether there is such an algorithm is known as the word problem for (Γ, A) and was first
posed by Dehn [9, 10] in 1912. (He did not precisely ask for an algorithm, of course, rather
‘eine Methode angeben, um mit einer endlichen Anzahl von Schritten zu entscheiden...’—that
is, ‘specify a method to decide in a finite number of steps....’)

Suppose a group Γ has a finite presentation 〈 a1, . . . , am | r1, . . . , rn 〉. The Dehn function
Area : N → N quantifies the difficulty of a direct attack on the word problem: roughly
speaking Area(n) is the minimal N such that if a word of length at most n represents the
identity, then it does so ‘as a consequence of’ at most N defining relations.

Here is some notation that we will use to make this more precise. Associated to a set
{a1, a2, . . .} (an alphabet) is the set of inverse letters

{
a−1

1 , a−1
2 , . . .

}
. The inverse map is

the involution defined on
{
a±1

1 , a±1
2 , . . .

}
that maps ai 7→ a−1

i and a−1
i 7→ ai for all i. The

inverse map extends to words by sending w = x1 · · ·xs 7→ x−1
s · · ·x−1

1 = w−1 when each
xi ∈

{
a±1

1 , a±1
2 , . . .

}
. Words u and v are cyclic conjugates when u = αβ and v = βα for

some subwords α and β. Freely reducing a word means removing all a±1
j a∓1

j subwords. For
Γ presented as above, applying a relation to a word w = w(a1, . . . , am) means replacing
some subword τ with another subword σ such that some cyclic conjugate of τσ−1 is one of
r±1

1 , . . . , r±1
n .

For a word w representing the identity in Γ, Area(w) is the minimal N ≥ 0 such that
there is a sequence of freely reduced words w0, . . . , wN with w0 the freely reduced form of w,
and wN is the empty word, such that for all i, wi+1 can be obtained from wi by applying a
relation and then freely reducing. The Dehn function Area : N→ N is defined by

Area(n) := max {Area(w) | words w with `(w) ≤ n and w = 1 in Γ } .

This is one of a number of equivalent definitions of the Dehn function. While a Dehn
function is defined for a particular finite presentation for a group, its growth type—quadratic,
polynomial, exponential etc.—does not depend on this choice. Dehn functions are important
from a geometric point-of-view and have been studied extensively. There are many places to
find background, for example [4, 5, 6, 10, 15, 16, 29, 31].

If Area(n) is bounded above by a recursive function f(n), then it is possible to solve the
word problem by an exhaustive search: to tell whether or not a given word w represents the
identity, try all the possible ways of applying at most f(n) defining relations and see whether
one reduces w to the empty word. (There are finitely presented groups for which there is no
algorithm to solve the word problem [3, 27].) Conversely, when a finitely presented group
admits an algorithm to solve its word problem, Area(n) is bounded above by a recursive
function (in fact Area(n) is a recursive function) [14].

There are finitely presented groups for which an extrinsic algorithm is far more efficient
than this intrinsic brute-force approach. A simple example is Z2 = 〈 a, b | ab = ba 〉 (which
has Dehn function Area(n) ' n2). Given a word on a±1, b±1, the extrinsic approach amounts
to searching exhaustively through all the ways of shuffling letters a±1 past letters b±1 to see
if there is one which brings each a±1 together with an a∓1 to be cancelled, and likewise each
b±1 together with a b∓1. It is much more efficient to read through the word and check that

MFCS 2016
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the number of a is the same as the number of a−1, and the number of b is the same as the
number of b−1.

There are more dramatic examples of groups where Area(n) is a fast growing recursive
function (so the ‘brute force’ algorithm succeeds but is extremely inefficient), but there
are efficient ways to solve the word problem. Cohen, Madlener & Otto built extraordinary
examples in a series of papers [7, 8, 25] where Dehn functions were first introduced (under then
name derivational complexity). They designed their groups in such a way that the ‘intrinsic’
method of solving the word problem involves running a very slow algorithm which has been
suitably ‘embedded’ in the presentation. But running this algorithm to see whether it halts on
a given input is pointless as it is constructed to halt (eventually) on all inputs and so presents
no obstacle to the word representing the identity. Their examples all admit algorithms to solve
the word problem in running times that are at most n 7→ exp(`)(n) := exp(exp(. . . exp(n)))︸ ︷︷ ︸

` compositions of exp
for some `. But for each k ∈ N they have examples which have Dehn functions growing like
n 7→ Ak(n). Indeed, better, they have examples with Dehn function growing like n 7→ An(n).

Recently, yet more extreme examples were constructed by Kharlampovich, Miasnikov &
Sapir [20]. By simulating Minsky machines in groups, for every recursive function f : N→ N,
they construct a finitely presented group (which also happens to be residually finite and
solvable of class 3) with Dehn function growing faster than f , but with word problem solvable
in polynomial time.

There are also ‘naturally arising’ groups which have fast growing Dehn function but
an efficient (that is, polynomial-time) solution to the word problem. A first example is
〈 a, b | b−1ab = a2 〉. Its Dehn function grows exponentially (see, for example, [4]), but the
group admits a faithful matrix representation

a 7→
(

1 1
0 1

)
, b 7→

(
1/2 0
0 1

)
,

so it is possible to check efficiently when a word on a±1 and b±1 represents the identity by
multiplying out the corresponding string of matrices.

A celebrated 1-relator group due to Baumslag [1] provides a more dramatic example:

〈 a, b | (b−1a−1b) a (b−1ab) = a2 〉.

Platonov [28] proved its Dehn function grows like n 7→

blog2 nc︷ ︸︸ ︷
exp2( exp2 · · · (exp2(1)) · · · ), where

exp2(n) := 2n. (Earlier results in this direction are in [2, 14, 15].) Nevertheless, Miasnikov,
Ushakov & Won [26] solve its word problem in polynomial time. (In unpublished work
I. Kapovich and Schupp showed it is solvable in exponential time [33].)

Higman’s group

〈 a, b, c, d | b−1ab = a2, c−1bc = b2, d−1cd = c2, a−1da = d2 〉

from [19] is another example. Diekert, Laun & Ushakov [11] recently gave a polynomial time
algorithm for its word problem and, citing a 2010 lecture of Bridson, claim it too has Dehn
function growing like a tower of exponentials.

The groups we focus on here are yet more extreme ‘natural examples.’ They arose in
the study of hydra groups by Dison & Riley [13] . Let θ : F (a1, . . . , ak)→ F (a1, . . . , ak) be
the automorphism of the free group of rank k such that θ(a1) = a1 and θ(ai) = aiai−1 for
i = 2, . . . , k. The family

Gk := 〈 a1, . . . , ak, t | t−1ait = θ(ai) ∀i > 1 〉,
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are called hydra groups. Define

Γk := 〈 a1, . . . , ak, t, p | t−1ait = θ(ai), [p, ait] = 1 ∀i ≥ 1 〉,

which is an HNN-extension of Gk in which an additional stable letter p commutes with all
elements of the subgroup Hk := 〈a1t, . . . , akt〉. It is shown in [13] that for k = 1, 2, . . ., the
subgroup Hk is free of rank k and Γk has Dehn function growing like n 7→ Ak(n). Our second
theorem is that nevertheless:

I Theorem 2. For all k, the word problem of Γk is solvable in polynomial time.

(In fact, our algorithm halts in time at most a polynomial of degree 3k2 + k + 2.)

3 The membership problem, subgroup distortion, and our third
theorem

A geometric feature known as distortion is the root cause of the Dehn function of the
group Γk of the previous section growing like n 7→ Ak(n). The massive gap described in
Theorem 2 between Dehn function and the time-complexity of the word problem for Γk is
attributable to a similarly massive gap between a distortion function and the time-complexity
of a membership problem. Here are more details.

Suppose H is a subgroup of a group G and G and H have finite generating sets S and
T , respectively. So G has a word metric dS(g, h), the length of a shortest word on S±1

representing g−1h, and H has a word metric dT similarly. The distortion of H in G is

DistGH(n) := max{ dT (1, g) | g ∈ H with dS(1, g) ≤ n }.

(Distortion is defined here with respect to specific S and T , but their choices do not affect
the qualitative growth of DistGH(n).) A fast growing distortion function signifies that H ‘folds
back on itself’ dramatically as a metric subspace of G.

The membership problem for H in G is to find an algorithm which, on input of a word on
S±1, declares whether or not it represents an element of H.

If the word problem of G is decidable (as it is for all Gk, because, for instance, they are
free-by-cyclic) and we have a recursive upper bound on DistGH(n), then there is a brute-force
solution to the membership problem for H in G. If the input word w has length n, then
search through all words on T±1 of length at most DistGH(n) for one representing the same
element as w. This is, of course, likely to be extremely inefficient, and especially so for Hk in
Gk as the distortion DistGk

Hk
grows like n 7→ Ak(n). Nevertheless:

I Theorem 3. For all k, the membership problem for Hk in Gk is solvable in polynomial
time.

(The algorithm we construct to prove this halts in time at most polynomial of degree
3k2 + k.)

Reducing Theorem 2 to Theorem 3 is straight-forward, requiring little more than a
standard result about HNN-extensions. We detail this in Section 5 of [12].

4 Comparing our methods for Theorem 1 with power circuits and
straight-line programs

Our strategy compares and contrasts with those used to solve the word problem for Baumslag’s
group in [26] and Higman’s group in [11], where power circuits are the key tool. Power

MFCS 2016
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circuits provide concise representations of integers: power circuits of ‘size’ n represent (some)
integers up to a height-n tower of powers of 2. There are efficient algorithms to perform
addition, subtraction, and multiplication and division by 2 with power-circuit representations
of integers, and to declare which of two power circuits represents the larger integer.

We too use concise representations of large integers, but in place of power circuits we use
strings of Ackermann functions. These have the advantage that they may represent much
larger integers. After all, A3(n) = exp(n−1)

2 (1) already produces a tower of exponents, and
the higher rank Ackermann functions grow far faster. However, we are aware of fewer efficient
algorithms to perform operations with strings of Ackermann functions than are available for
power circuits: we only have Theorem 1.

Our methods also bear comparison with the work of Lohrey, Schleimer and their coauthors
[17, 18, 21, 22, 23, 24, 32] on efficient computation in groups and monoids where words are
given in compressed forms using straight-line programs and are compared and manipulated
using polynomial-time algorithms due to Hagenah, Plandowski and Lohrey. For instance
Schleimer obtained polynomial-time algorithms solving the word problem for free-by-cyclic
groups and automorphism groups of free groups and the membership problem for the
handlebody subgroup of the mapping class group in [32].

5 The hydra phenomenon: connecting the group theory to
Ackermann’s functions

The reason Gk are named hydra groups is that the extreme distortion of Hk in Gk stems
from a string-rewriting phenomenon which is a reimagining of the battle between Hercules
and the Lernean Hydra, a mythical beast which grew two new heads for every one Hercules
severed. Think of a hydra as a word w on a1, a2, a3, . . .. Hercules fights w as follows. He
removes its first letter, then the remaining letters regenerate in that for all i > 1, each
remaining ai becomes aiai−1 (and each remaining a1 is unchanged). This repeats. An
induction on the highest index present shows that every hydra eventually becomes the empty
word. (Details are in [13].) Hercules is then declared victorious. For example, the hydra
a2a3a1 is annihilated in 5 steps:

a2a3a1 → a3a2a1 → a2a1a1 → a1a1 → a1 → empty word.

Define H(w) to be the number of steps required to reduce a hydra w to the empty word.
(So H(a3a3a1) = 5.) Then, for k = 1, 2, . . ., define functions Hk : N→ N by Hk(n) = H(ank ).
It is shown in [13] that Hk and Ak grow at the same rate for all k, since the two families of
functions exhibit a similar recursion relation.

Here is an outline of the argument from [13] as to why DistGk

Hk
grows at least as fast as

n 7→ Hk(n) (and so as fast as n 7→ Ak(n)). When k ≥ 2 and n ≥ 1, there is a reduced
word uk,n on {a1t, . . . , akt}±1 of length Hk(n) representing ank tHk(n) in Gk on account of
the hydra phenomenon. (For example, u2,3 = (a2t)2(a1t)(a2t)(a1t)3 equals a3

2t
7 in G2 since

a2, a2, a1, a2, a1, a1, and a1 are the H2(3) = 7 initial letters removed by Hercules as he
vanquishes the hydra a3

2.) It follows that in Gk

anka2 ta1 a
−1
2 a−nk = uk,n (a2t) (a1t) (a2t)−1 uk,n

−1.

The word on the left is a product of length 2n+ 4 of the generators a±1
1 , . . . , a±1

n , t±1 of Gk
and that on the right is a product of length 2Hk(n) + 3 of the generators (a1t)±1, . . . , (akt)±1

of Hk. As Hk is free of rank k and this word is reduced, it is not equal to any shorter word
on these generators.
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Hydra functions and Ackermann functions grow at the same rates, but do not precisely
agree. So for Theorem 3 we, in fact, need a variation of Theorem 1, namely Proposition 3.4
in [12] which concerns a recursively defined family of functions ψi we call ψ-functions. Like
strings of Ackermann functions, strings of ψ-functions (which we call ψ-words) can concisely
represent extremely large integers. We do not have a direct proof of the equivalence of this
proposition to Theorem 1, but they can be proved in essentially the same ways as the defining
recurrence for the ψi is very similar to that for the Ai. We prefer to highlight Theorem 1
here because Ackermann functions have a long history and so are of intrinsic interest.

6 An outline of our strategy for Theorem 1

Here is a sketch of the algorithm we construct in Section 2 of [12] to prove Theorem 1. A
more detailed high-level description is in Section 2.2 of [12].

Suppose we have a word w on A±1
0 , . . . , A±1

k and we seek to determine in polynomial time
whether it is valid and, if so, whether the integer w(0) is negative, zero, or positive.

We will attempt to pass to successive new words w = w0, w1, . . . that are equivalent to
w (denoted w ∼ wj) in that each wj is valid if and only if w is, and when they both are,
w(0) = wj(0). These words are obtained by making substitutions such as replacing a letter
Ai+1 in w by a subword AiAi+1A

−1
0 (the recursion defining the Ackermann functions), or

deleting a subword AiA−1
i or A−1

i Ai. The lengths of these wj will all be at most a constant
times the length of w, which is important for our proof that our algorithm halts in polynomial
time. The aim of the substitutions is to reach a w′ ∼ w which contains no A−1

1 , . . . , A−1
k .

Eliminating these letters represents progress because they denote functions which have sparse
domains and so present the greatest obstacle to checking whether a word is valid.

We will look at how to make these substitutions momentarily, but first here’s what
happens when we have reached such a w′. Consider calculating a succession of integers
beginning with 0 and ending with w′(0) by evaluating w′(0) letter-by-letter starting from
the right. Only A±1

0 can trigger decreases in absolute value. So, to determine the sign of
w′(0), we can stop our evaluation if the integer calculated ever exceeds the length of w′: after
all, whatever sign our evaluation then has will be the sign of w′(0). This threshold for the
integers in our calculation allow for a polynomial time bound.

So how do we reach this w′? The rough idea is to ‘cancel’ each A−1
i (where i ≥ 1)

in w with some Ai (if present) further to the right in w′. We do this inductively on i by
manipulating suffixes of the form σ = A−1

i uAiv such that u is a word on A±1
0 , . . . , A±1

i−1
and v a word on A0, . . . , Ak. A number of complications may arise. For instance, there
are exceptional cases when substituting a Ai+1 with AiAi+1A

−1
0 fails to preserve validity.

Another issue is that we may have to introduce an Ai ‘artificially’ to cancel with an A−1
i .

It is only possible to give a few details of our algorithm in the space available here. We
choose to present a subroutine BasePinch, which serves as the base case of this inductive
process of manipulating suffixes (the instance where u only contains letters A±1

0 ). It displays
the crucial idea that allows us to operate within polynomial time: because the gaps between
elements of ImgAi are large, we can either recognize efficiently that σ (and hence w) is
invalid on account of u not being able to carry Aiv(0) ∈ ImgAi to another element of ImgAi
(this is what the commentary on line 12 below is about), or σ is long enough that computing
letter-by-letter by usual integer arithmetic is possible in polynomial time.

BasePinch will call two other subroutines (from Section 2.3 of [12]):
Bounds which, on input ` ∈ N (expressed in binary), returns in time O(`) a list of all the
(at most (log2 `)2) triples of integers (r, n,Ar(n)) such that r ≥ 2, n ≥ 3, and Ar(n) ≤ `.

MFCS 2016



30:8 Ackermannian Integer Compression and the Word Problem for Hydra Groups

Algorithm 1 BasePinch.
◦ Input a word σ = A−1

r uArv where r ≥ 1, u is a word on A±1
0 , and v is a word on A±1

0 , . . . , Ak.
◦ Either return that σ is invalid, or return a valid word σ′ = Al

′
0 v ∼ σ such that `(σ′) ≤ `(σ)− 2.

◦ Halt in time O(`(σ)4).
1 l := u(0) (so A−1

r Al0Arv ∼ w)
if Positive(Arv) = Invalid, halt and return invalid
run Positive(v) to determine whether v(0) < 0

4 if r ≥ 2 and v(0) < 0, halt and return invalid
if l = 0, halt and return σ′ := v

if r = 1, halt and return σ′ := A
l/2
0 v if i is even or invalid otherwise

7

we now have l 6= 0 and r > 1
run Positive(Al0Arv) to determine if Al0Arv(0) ≤ 0 (so /∈ domain of A−1

r )
10 if so , halt and return invalid

run Positive(A−2|l|
0 Arv) to determine whether Arv(0) > 2|l|

if so , halt and return invalid
13

we now have that 0 ≤ v(0) ≤ |l| and 0 < Arv(0) ≤ 2|l| and Arv(0) + l ≤ 3|l|
calculate v(0) by running Positive(A−i0 v) for i = 0, 1, . . . , |l|

16 run Bounds(3 |l|)
search the output of Bounds(3 |l|) to find Arv(0)
set m := Arv(0) + l

19 search the output of Bounds(3 |l|) for c with Ar(c) = m

(so c = A−1
r Al0Arv(0) = σ(0))

if such a c exists , halt and return σ′ := A
c−v(0)
0 v

22 else halt and return invalid

Positive which, on input a word w on A±1
0 , A1, . . . , Ak in time O(`(w)3) either declares

w invalid or declares whether w(0) < 0, w(0) = 0, or w(0) > 0.

We use these properties of Ackermann functions:

I Lemma 4.

Ai(n) +m ≤ Ai(n+m) ∀i, n,m ≥ 0, (1)

|Ai(n)−Ai(m)| ≥ 1
2Ai(n) ∀i ≥ 2 and n 6= m. (2)

The proofs follow by inductive arguments applied to the definition of an Ackermann function.
Refer to Lemma 2.1 of [12] for details.

Correctness of BasePinch. Here are the salient points line-by-line.
4: If v(0) < 0, then σ is invalid.
5: If r < 2 or v(0) ≥ 0, A−1

r Arv ∼ v.
6: Since A1 is the function n 7→ 2n, the parity of Al0Arv(0) is the parity of l when r = 1,

and determines the validity of σ.
9, 11: We know Al0Arv and A−2|l|

0 Arv are valid at these points because Arv is valid.
12: Let q = v(0). For all p 6= q we have |Ar(q) − Ar(p)| ≥ 1

2Ar(q) by Lemma 4, and
so |Ar(q) − Ar(p)| > |l|. If A−1

r Al0Arv is valid, then there exists p ∈ N such that
Ar(p) = Al0Arv(0) = l + Ar(q), but then |Ar(p) − Ar(q)| = |l| for some p 6= q (since
l 6= 0), contradicting |Ar(q)−Ar(p)| > l. Thus w is invalid.
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14: The reason 0 < Arv(0) is that r > 1 and so ImgAr contains only positive integers.
And Arv(0) ≤ 2 |l| because of lines 11 and 12. It follows that v(0) ≤ |l| because
2v(0) = A1v(0) ≤ Arv(0) ≤ 2 |l|. And v(0) ≥ 0 since v(0) is in the domain of Ar,
which is N when r > 1. We have Al0Arv(0) ≤ 3|l| here because Arv(0) ≤ 2 |l| and so
Al0Arv(0) ≤ l + 2 |l|.

20: If m = Arv(0) + l = Al0Arv(0) is in the domain of A−1
r , then m > 0. And, from line 14,

we know m ≤ 3 |l|, so this will find c if it exists. If no such c exists, σ is invalid.
21: Ac−v(0)

0 v(0) = c = A−1
r (l +Arv(0)) = A−1

r Al0Arv(0).

We must show that `(σ′) ≤ `(σ)− 2. In the cases of lines 5 and 6, this is immediate, so
suppose r ≥ 2. As for line 21, by Lemma 4:

|c− v(0)| ≤ |Ar(v(0) + c− v(0))−Arv(0)| = |Ar(c)−Ar(v(0)| = |l|

from which `(σ′) ≤ `(σ)− 2 follows immediately.
The integer calculations performed by the algorithm involve integers of absolute value at

most 3`(σ). See [12] for details.
That BasePinch halts in time O(`(σ)4) follows the following. Positive and Bounds

halt in cubic and linear time, respectively. BasePinch may add a pair of positive binary
numbers each at most 2`(σ), may determine the parity of a number of absolute value at
most `(σ), and may halve an even positive number less than `(σ). It calls Positive at most
|l|+ 3 ≤ `(σ) + 3 times, always on a word of length at most 2`(σ). It calls Bounds at most
once and on a non-negative integer that is at most 3`(σ). The output of Bounds is then
searched at most twice and has size O((log2 `(σ))2). J

7 An outline of our strategy for Theorem 3

Here is an outline of our algorithm solving the membership problem for Hk in Gk from
Section 4 of [12], proving Theorem 3. For a more detailed high-level description, see Section 4.1
of [12].

Suppose w is a word on a±1
1 , . . . , a±1

k , t±1, so represents an element of Gk. To tell whether
or not w represents an element of Hk, first collect all the t±1 at the front by shuffling them
to the left through the word, applying θ±1 as appropriate to the intervening ai so that the
element of Gk represented does not change. The result is a word trv where |r| ≤ `(w) and
v, a word on a±1

1 , . . . , a±1
k has length at most a constant times `(w)k since θ is a free group

automorphism of such polynomial growth.
Here is an example (one of a number in Section 4.2 of [12]). Suppose w = a4

3a2ta1a
−1
2 a−4

3 .
This equals tv in G3 where v = (a3a2)4a2a

2
1a
−1
2 a−4

3 because a2t = a2a1 and a3t = a3a2.
We next look to carry the tr back through v working from left to right, converting (if

possible) what lies to the left of the power of t to a word on the generators (a1t)±1, . . . , (akt)±1

of Hk. However the power of t being carried along will vary as this proceeds and, in fact,
can get extremely large as a result of the hydra phenomenon. Similarly, the length of the
word on the generators of Hk appearing to the left can be impractically long. For instance,
in our example, the calculation outlined in Section 5 shows that w equals an element of the
subgroup H3 of G3 which has length 247 · 3− 1 as a reduced word on the generators (a1t)±1,
(a2t)±1, (a3t)±1 of H3.

So, instead of keeping track of the power of t directly, we record it as a word on ψ-functions
(the functions that are analogues of Ackermann functions, as we explained in Section 5).
Roughly speaking, checking whether this process ever gets stuck (in which case w /∈ Hk)
amounts to checking whether an associated ψ-word is valid. If the end of the word is reached,
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we then have a word on (a1t)±1, . . . , (akt)±1 times some power of t, where the power is
represented by a ψ-word whose length is at most a polynomial function of the length of
w. We then determine whether or not w ∈ Hk by checking whether or not that ψ-word
represents 0. Both tasks can be accomplished suitably efficiently thanks to Proposition 3.4
in [12] (a variation of Theorem 1 as we explained in Section 5).

A complication is that we do not carry the power of t through from left to right one
letter at a time. Rather, we partition v into subwords we call rank k-pieces and are
determined by the locations of the ak and a−1

k in v. Each contains at most one ak and
at most one a−1

k , and if the ak is present in a piece, it is the first letter of that piece,
and if the a−1

k is present, it is the last letter. For instance, in our example k = 3 and
v = (a3a2)(a3a2)(a3a2)(a3a

2
2a

2
1a
−1
2 a−1

3 )(a−1
3 )(a−1

3 )(a−1
3 ). We look to carry the power of t

through v one piece at a time. Lemma 6.2 of [13] details how v ∈
⋃
s∈ZHkt

s if and only if
this is possible.

Whether the power of t can be carried through a piece aε1
k ua

−ε2
k (here, ε1, ε2 ∈ {0, 1} and

u is a reduced word on a±1
1 , . . . , a±1

k−1) depends on u in a manner that can be recursively
analyzed by decomposing u into pieces with respect to the locations of the a±1

k−1 it contains.
The main technical result behind our algorithm is our ‘Piece Criterion’ (Proposition 4.10
in [12]). This determines whether a power tr can pass through a piece π—that is, whether
trπ ∈ Hkt

s for some s ∈ Z—and, if it can, how to represent s by a ψ-word. The way this
plays out in our example is:

t(a3a2) ∈ Hkt
f1(0) where f1 = ψ1ψ

−1
1 ,

tf1(0)(a3a2) ∈ Hkt
f2(0) where f2 = ψ2ψ3f1,

tf2(0)(a3a2) ∈ Hkt
f3(0) where f3 = ψ2ψ3f2,

tf3(0)(a3a
2
2a

2
1a
−1
2 a−1

3 ) ∈ Hkt
f4(0) where f4 = ψ−1

3 ψ−1
2 (ψ1)2ψ2

2ψ3f3.

tf4(0)(a−1
3 ) ∈ Hkt

f5(0) where f5 = ψ−1
3 f4,

tf5(0)(a−1
3 ) ∈ Hkt

f6(0) where f6 = ψ−1
3 f5,

tf6(0)(a−1
3 ) ∈ Hkt

f7(0) where f7 = ψ−1
3 f6.

(The integers encoded here are f1(0) = 0, f2(0) = −3, f3(0) = −45, f4(0) = −46, f5(0) = −4,
f6(0) = −1, and f7(0) = 0. The conclusion is that w ∈ H3 since f7(0) = 0.)

Like in the previous section, we do not have space here to present many of the details,
and so will only give an illustrative subroutine, namely ‘Backm.’ This attempts to pass a
power tr through a rank m-piece which has the special form ua−ε2

m where ε2 ∈ {0, 1}, u is a
word a±1

1 · · · a
±1
m−1 and m ≥ 3. There are several precursors to the construction of Backm:

The construction is inductive on m. Backm calls an algorithm Pushm−1 (of Section 4.5
of [12]) which takes as input a word v on a±1

0 , . . . , a±1
m−1 and a ψ-word f representing an

integer, and declares whether tf(0)v ∈ Hkt
s for some s ∈ Z; if so, Pushm−1 also returns

a ψ-word g so that tf(0)v ∈ Hkt
g(0).

The Piece Criterion (Proposition 4.10 in [12]) stipulates (in particular) that if trua−ε2
m ∈

Hkt
s for some s ∈ Z, exactly one of the following three conditions must hold:

(a) ε2 = 0 and trua−ε2
m = tru ∈ Hkt

s (the trivial case).
(b) ε2 = 1, s ≤ 0 and tru ∈ Hkt

ψm(s).
(c) ε2 = 1, s > 0, trua−1

m θs(am) ∈ Hkt
s−1 and θs−1(a−1

m ) is a suffix of ua−ε2
m .

(Here, θ is the free group automorphism we defined in Section 2.)
A routine Prefixm (of Section 4.5 of [12]) inputs a rank-m piece π = amua

−ε2
m where

m ≥ 3. It returns the largest integer i > 0 (if any) such that θi−1(am) is a prefix of π
and halts in time in O(`(π)2).
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Algorithm 2 Backm.
◦ Input a rank-m piece π = ua−ε2

m with m ≥ 3 (so u is a reduced word on a±1
1 , . . . , a±1

m−1 and
ε2 ∈ {0, 1}) and a valid ψ-word f on ψ±1

1 , . . . , ψ±1
k . Let r := f(0).

◦ Declare whether or not trπ ∈
⋃
s∈ZHkt

s. And, if it is, return a valid ψ-word f ′ such that
tf(0)π ∈ Hktf

′(0), `(f ′) ≤ `(f) + 2(m− 1)`(π) + 1 and rank (f ′) ≤ max{rank (f),m}.
◦ Halt in time O((`(π) + `(f))2m+k).
run Pushm−1(u, f) to test whether or not tru ∈

⋃
s∈ZHkt

s

2 if so , let g be the valid ψ-word it outputs such that tru ∈ Hktg(0)

if ε2 = 0,
if tru ∈ Hktg(0) (so , (a) of the Piece Criterion holds with s = g(0)),

5 return f ′ := g

else declare trπ /∈
⋃
s∈ZHkt

s

halt
8

we now have that ε2 = 1
run Psi(ψ−1

m g) to check validity of ψ−1
m g (so whether g(0) ∈ Imgψm)

11 and , if so , to check ψ−1
m g(0) ≤ 0

(i.e. whether (2) of the Criterion holds with s = ψ−1
m g(0))

if so , halt and return f ′ := ψ−1
m g

14

run Prefixm(π−1) to determine the maximum i (if any)
such that a−1

m−1θ
i−1(a−1

m ) is a suffix of π

17 if there is no such i, halt and declare trπ /∈
⋃
s∈ZHkt

s

for s = 1 to i:
run Pushm−1(u′, f) where u′ is the reduced word representing ua−1

m θs(am)
20 if it outputs a ψ-word h, run Psi(ψs−1

1 h) to check if h(0) = s− 1
if so halt and return f ′ := ψ1h

declare that tf(0)w /∈
⋃
s∈ZHkt

s

Psi is our algorithm (of Section 3.3 of [12]) determining in polynomial time whether a
ψ-word is valid and, if so, whether the integer it represents is negative, zero, or positive.
We discussed its Ackermann-function analogue in the previous section.

Proof of correctness. Here is our justification line-by-line.
2: It follows from the workings of Pushm−1 (proved in Section 4.5 of [12]) that `(g) ≤

`(u) + `(f) and rank (g) ≤ max{rank (f),m}.
3–6: Pushm−1 in lines 1–2 tests whether or not tru is in

⋃
s∈ZHkt

s and, if so, it identifies
the s such that tru ∈ Hkt

s. The Piece Criterion then tells us that the answer to whether
trπ ∈

⋃
s∈ZHkt

s is the same, and if affirmative the s agrees. By our comment on line 2,
`(f ′) ≤ `(f) + `(u) = `(f) + `(π), and rank(f ′) ≤ max{rank(f),m}, as required.

10–13: Again, we refer back to lines 1–2 for whether or not tru is in
⋃
s0∈ZHkt

s0 . Assuming
that it is, in fact, in Hkt

g(0), then Condition 2, is satisfied if and only if g(0) = ψm(s) for
some s ≤ 0. And that is checked in line 10. The Piece Criterion then tells us that the
answer to this is the same as the answer to whether tru ∈

⋃
s∈ZHkt

s, and, if affirmative,
the s agrees. By our comment on line 2, `(f ′) = `(g) + 1 ≤ `(f) + `(u) + 1 = `(f) + `(π)
and rank(f ′) ≤ max{rank(f),m}, as required.

16–21: The aim here is to determine whether Condition 3 holds—that is, whether

trua−1
m θs(am) ∈ Hkt

s−1
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and a−1
m−1θ

s−1(a−1
m ) is a suffix of π for some s > 0—and, if so, output a ψ-word f ′ such

that f ′(0) = s. (This s must be unique, if it exists, because, by the Criterion, it is the s
such that trπ ∈ Hkt

s, and we know that is unique.)
The possibilities for s are limited to the range 1, . . . , i by the suffix condition and the
requirement that s > 0, where i is as found in line 16 and must be at most `(π). If
there is such a suffix a−1

m−1θ
i−1(a−1

m ) of π, then a−1
m−1θ

s−1(a−1
m ) is a suffix of π for all

s ∈ {1, . . . , i}. If there is no such suffix, then Condition 3 fails, and, as we know at this
point that Conditions 1 and 2 also fail, we declare in line 17 that (by the Criterion),
trπ /∈

⋃
s∈ZHkt

s.
For each s in the range 1, . . . , i, lines 18–21 address the question of whether or not
trua−1

m θs(am) ∈ Hkt
s−1. First Pushm−1 is called, which can be done because, on freely

reducing ua−1
m θs(am), the a−1

m cancels with the am at the start of θs(am) to give a word
of rank at most m− 1. Pushm−1 either tells us that trua−1

m θs(am) /∈
⋃
s′∈ZHkt

s′ , or it
gives a ψ-word h such that trua−1

m θs(am) ∈ Hkt
h(0). In the latter case, Psi is then used

to test whether or not h(0) = s− 1.
By the specifications of Pushm−1, `(h) ≤ `(f) + 2(m − 1)`(u′). And, as π = ua−1

m

has suffix θs−1(a−1
m ), when we form u′ by freely reducing ua−1

m θs(am), at least half of
θs(am) = θs−1(am)θs−1(am−1) cancels into π. So `(u′) ≤ `(π), and

`(f ′) = `(h) + 1 ≤ `(f) + 2(m− 1)`(u′) + 1 ≤ `(f) + 2(m− 1)`(π) + 1,

as required. Also, it is immediate that rank(f ′) ≤ max{rank(f),m}, as required.
22: At this point, we know 1, 2 and 3 fail for all s ∈ Z, so trπ /∈

⋃
s∈ZHkt

s.

Backm runs Pushm−1(u, f) once (with `(u) ≤ `(π)), Psi(ψ−1
m g) at most once (with

`(g) ≤ `(π) + `(f)), Prefixm(π−1) at most once, Pushm−1(u′, f) at most i ≤ `(π) times
(with `(u′) < `(π)), and Psi(ψs−1

1 h) at most i ≤ `(π) times (with 1 ≤ s ≤ `(π) and
`(h) < `(f) + `(π)). Other operations such as free reductions of words etc. do not contribute
significantly to the running time. Referring to the specifications of Pushm−1, Psi, and
Prefixm, we see that they (respectively) contribute:

`(π)O((`(π) + `(f))2(m−1)+k+1) + `(π)O((`(f) + 2`(π))4+k) +O(`(π)2)
= O((`(π) + `(f))2m+k)

which is the claimed bound on the halting time of Backm. J

There is also an algorithm Frontm which takes a rank-m-piece π and a ψ-word f and
determines (in a manner similar to Backm, see [12] Algorithm 4.2 for details) whether tf(0)

can efficiently pass an initial am (if it exists) in π. If so, Frontm outputs a word of the
form ua−1

m suitable for input into Backm and a valid ψ word g such that checking whether
tf(0)π ∈ Hts for some s ∈ Z is equivalent to checking whether tg(0)ua−1

m ∈ Hts for some
s ∈ Z. If tf(0) does not pass through an initial am of π in one of three ways, Proposition 4.10
in [12] says that tf(0)π /∈ Hkt

S for all s ∈ Z. Putting together the algorithm Frontm with
Backm and implicitly Pushm−1, we can construct the algorithm Pushm. That way, given a
word v on a±1

1 , . . . , a±1
m and a ψ-word f , we have a polynomial time algorithm to determine

whether or not tf(0)v ∈ Hkt
s and if so, to give a ψ-word g such that g(0) = s. We can then

use Psi to determine whether g represents zero, and so whether tf(0)v represents an element
of Hk.
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A Reference to the technical details

The technical details are set out in full in Taming the hydra: the word problem and extreme
integer compression [12], which is available from the arXiv repository at http://arxiv.org/
abs/1509.02557.
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