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—— Abstract

Vertex deletion problems ask whether it is possible to delete at most k vertices from a graph
so that the resulting graph belongs to a specified graph class. Over the past years, the pa-
rameterized complexity of vertex deletion to a plethora of graph classes has been systematically
researched. Here we present the first single-exponential fixed-parameter algorithm for vertex
deletion to distance-hereditary graphs, a well-studied graph class which is particularly important
in the context of vertex deletion due to its connection to the graph parameter rank-width. We
complement our result with matching asymptotic lower bounds based on the exponential time
hypothesis.
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1 Introduction

Vertex deletion problems include some of the best studied NP-hard problems in theoreti-
cal computer science, including VERTEX COVER or FEEDBACK VERTEX SET. In general,
the problem asks whether it is possible to delete at most k vertices from a graph so that
the resulting graph belongs to a specified graph class. While these problems are studied
in a variety of contexts, they are of special importance for the parameterized complexity
paradigm [11, 9], which measures the performance of algorithms not only with respect to
the input size but also with respect to an additional numerical parameter. Vertex dele-
tion problems allow a highly natural choice of the parameter (specifically, k), and many
vertex deletion problems are known to admit so-called single-exponential fized-parameter
algorithms, which are algorithms running in time O(cF - n®™1) for input size n and some
constant c.

Over the past years, the parameterized complexity of vertex deletion to a plethora of
graph classes has been systematically researched. However, there still remain a few impor-
tant classes where the existence of a single-exponential fixed-parameter algorithm remains
open. One such class has, until now, been the class of distance-hereditary graphs [17] (also
called completely separable graphs [15]). Distance-hereditary graphs have several equivalent
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characterizations; for instance, they are the graphs where every induced path is a short-
est path. But perhaps the main reason why distance-hereditary graphs are particularly
important in the context of vertex deletion problems is their connection to the structural
parameter rank-width [24, 23]. While TREEWIDTH-t VERTEX DELETION! is known to ad-
mit a single-exponential fixed-parameter algorithm for every fixed ¢ [12, 22], the existence
of such algorithms for the analogous RANK-WIDTH-t VERTEX DELETION is a challenging
open problem. Since distance-hereditary graphs are exactly the graphs of rank-width 1 [23],
a single-exponential fixed-parameter algorithm for DISTANCE-HEREDITARY VERTEX DELE-
TION represents the first step towards handling RANK-WIDTH-t VERTEX DELETION.

DISTANCE-HEREDITARY VERTEX DELETION

Instance : A graph G and an integer k.

Parameter : k.

Task : Is there a vertex set ) C V(G) with |Q| < k such that G—(Q is distance-hereditary?

The main result of this paper is an O(37% - |V(G)|["(JV(G)| + |E(G)|))-time algorithm
for DISTANCE-HEREDITARY VERTEX DELETION, solving an open problem of Kanté, Kim,
Kwon, and Paul [20]. The core of our approach exploits two distinct characterizations of
distance-hereditary graphs: one by forbidden induced subgraphs (obstructions), and the
other by admitting a special kind of split decomposition [7].

The algorithm can be conceptually divided into three parts. First, we use the well-known
iterative compression technique [25] to reduce the problem to the easier DISJOINT DISTANCE-
HEREDITARY VERTEX DELETION, where we assume that the instance additionally contains
a certain form of advice to aid us in our computation. Specifically, this advice is a vertex
deletion set S to distance-hereditary graphs which is disjoint from and slightly larger than
the desired solution. Then we exhaustively apply two branching rules to simplify the given
instance of DISJOINT DISTANCE-HEREDITARY VERTEX DELETION. At a high level, these
branching rules allow us to assume that the resulting instance contains no small obstructions
and furthermore that certain connectivity conditions hold on G[S]. Lastly, we compute
the split decomposition of G — S and exploit the properties of our instance G guaranteed
by branching to prune the decomposition. In particular, we show that the connectivity
conditions and non-existence of small obstructions mean that S must interact with the split
decomposition of G — S in a special way, and this allows us to identify irrelevant vertices in
G — S. This is by far the most technically challenging part of the algorithm.

A more detailed explanation of our algorithm is provided in Section 3, after the definition
of required notions. We complement this result with an algorithmic lower bound which
rules out a subexponential fixed-parameter algorithm for DISTANCE-HEREDITARY VERTEX
DELETION under well-established complexity assumptions.

The set of induced subgraph obstructions for distance-hereditary graphs consists of three
small graphs, and induced cycles of length at least 5. We remark that Heggernes et al. [16]
showed that the problem asking whether it is possible to delete k vertices so that the resulting
graph has no induced cycles of length at least 5 is W[2]-hard. Therefore, one cannot simply
obtain a single-exponential fixed-parameter algorithm for DISTANCE-HEREDITARY VERTEX
DELETION using the problem of hitting induced cycles of length at least 5.

The paper is organized as follows. Section 2 contains the necessary preliminaries and
notions required for our results. In Section 3, we set the stage for the process of simplifying

! TREEWIDTH-t VERTEX DELETION asks whether it is possible to delete k vertices so that the resulting
graph has treewidth at most ¢.
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Figure 1 Small DH obstructions which are not cycles.

the split decomposition, which entails the definition of DISJOINT DISTANCE-HEREDITARY
VERTEX DELETION, introduction of our branching rules, and a few technical lemmas which
will be useful throughout the later sections. Section 4 then introduces and proves the
safeness of 8 polynomial-time reduction rules; crucially, the exhaustive application of these
rules guarantees that the resulting instance will have a certain “inseparability” property.
In Section 5, we introduce and prove the safeness of our final reduction rule using this
inseparability property. Finally, the proof of our main result as well as the corresponding
lower bound are presented in Section 6.

2 Preliminaries

For a graph G, let V(G) and E(G) denote the vertex set and the edge set of G, respectively.
For S C V(G), let G[S] denote the subgraph of G induced on S. For v € V(G) and
S C V(G), let G — v be the graph obtained from G by removing v, and let G — S be the
graph obtained by removing all vertices in S. For v € V(G), the set of neighbors of v in
G is denoted by Ng(v). For A C V(QG), let Ng(A) denote the set of all vertices in G — A
that have a neighbor in A. The length of a path is the number of edges on the path. For
v € V(G) and a subgraph H of G — v, we say v is adjacent to H if it has a neighbor in H.

Two vertices v, w in a graph G are called twins if they have the same set of neighbors on
V(G) \ {v,w}. For two vertex sets A and B, we say that

A is complete to B if for every a € A, b € B, a is adjacent to b,

A is anti-complete to B if for every a € A, b € B, a is not adjacent to b.

2.1 Distance-Hereditary Graphs

A graph G is called distance-hereditary if for every connected induced subgraph H of G and
every v,w € V(H), the distance between v and w in H is the same as the distance between
v and w in G. This graph class was first introduced by Howorka [17], and deeply studied
by Bandelt and Mulder [3].

The house, the gem, the domino graphs are depicted in Figure 1. A graph isomorphic to
one of the house, the gem, the domino, and induced cycles of length at least 5 will be called
a distance-hereditary obstruction or shortly a DH obstruction. A DH obstruction with at
most 6 vertices will be called a small DH obstruction. Note that every DH obstruction does
not contain any twins.

It is known that distance-hereditary graphs are precisely the graphs not containing any
DH obstruction as an induced subgraph [3]. The following lemma will be used to find DH
obstructions later on.

» Lemma 1 (Kanté, Kim, Kwon, and Paul [20]). Let G be a graph obtained from an induced
path of length at least 3 by adding a vertex v adjacent to its end vertices where v may be
adjacent to some internal vertices of the path. Then G has a DH obstruction containing v.
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In particular, if the given path has length at most 4, then G has a small DH obstruction
containing v.

2.2 Split decompositions

We follow the notations in [4]. A split of a connected graph G is a vertex partition (X,Y)
of G such that | X| > 2,|Y| > 2, and Ng(Y) is complete to Ng(X). Splits are also called
1-joins, or simply joins [13]. A connected graph G is called a prime graph if |V (G)| > 5 and
it has no split.

A connected graph D with a distinguished set of edges M (D) is called a marked graph
if the edges in M (D) form a matching and each edge in M (D) is a cut edge. An edge in
M (D) is called a marked edge, and every other edge is called an unmarked edge. A vertex
incident with a marked edge is called a marked vertezr, and every other vertex is called an
unmarked vertex. Each connected component of D — M (D) is called a bag of D.

When G admits a split (X,Y"), we construct a marked graph D on the vertex set V(G)U
{z',3’} such that

for vertices z,y with {z,y} C X or {z,y} C Y, zy € E(G) if and only if zy € E(D),

z'y’ is a new marked edge,

X is anti-complete to Y,

{2} is complete to Ng(Y) N X and {y'} is complete to Ng(X)NY (with unmarked

edges).

The marked graph D is called a simple decomposition of G. A split decomposition of a
connected graph G is a marked graph D defined inductively to be either G or a marked
graph defined from a split decomposition D’ of G by replacing a connected component H
of D' — M(D') with a simple decomposition of H. See Figure 2 for an example of a split
decomposition. We note that when D is a split decomposition of a graph G and u, v are two
vertices in G, wv € E(G) if and only if there is a path from u to v in D where its first and
last edges are unmarked, and an unmarked edge and a marked edge alternatively appear in
the path [1, Lemma 2].

Naturally, we can define a reverse operation of decomposing into a simple decomposition;
for a marked edge xy of a split decomposition D, recomposing xy is the operation of removing
two vertices  and y and making Np(z)\ {y} complete to Np(y)\ {z} with unmarked edges.
It is not hard to observe that if D is a split decomposition of GG, then G can be obtained
from D by recomposing all marked edges.

Note that there are many ways of decomposing a complete graph or a star, because
every its non-trivial vertex partition is a split. Cunningham and Edmonds [8] developed a
canonical way to decompose a graph into a split decomposition by not allowing to decompose
a bag which is a star or a complete graph. A split decomposition D of G is called a canonical
split decomposition if each bag of D is either a prime graph, a star, or a complete graph, and
D cannot be obtained from a split decomposition with the same property by recomposing
a marked edge. It is not hard to observe that every canonical split decomposition has no
marked edge linking two complete bags, and no marked edge linking a leaf of a star bag and
the center of another star bag [4]. Furthermore, for each pair of twins a,b in G, it holds that
a,b must both be located in the same bag of the canonical split decomposition.

» Theorem 2 (Cunningham and Edmonds [8]). Every connected graph has a unique canonical
split decomposition, up to isomorphism.

» Theorem 3 (Dahlhaus [10]). The canonical split decomposition of a graph G can be com-
puted in time O(|V(G)| + |E(G))).
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Figure 2 A graph GG and its canonical split decomposition. Marked edges are represented by
dashed edges, and bags are indicated by circles. Note that path(Bi, Bs) = {Bi1, B2, Bs, B5}, bags
By, Bs are (C1, C2)-separator bags, and By is a (B1, Bs)-separator bag.

We can now give the second characterization of distance-hereditary graphs that is crucial
for our results. For convenience, we call a bag a star bag or a complete bag if it is a star or
a complete graph, respectively.

» Theorem 4 (Bouchet [4]). A graph is a distance-hereditary graph if and only if every bag
in its canonical split decomposition is either a star bag or a complete bag.

We will later on also need a little bit of additional notation related to split decomposi-
tions. Let D be a canonical split decomposition. For two distinct bags By and B, we denote
by comp(Bj, Bs) the connected component of D — V(Bj) containing Bs. Technically, when
B; = By, we define comp(Bj, Bs) to be the empty set. For two bags B; and Bs, we denote
by path(Bj, By) the set of all bags containing a vertex in a shortest path from B; to By in
D. Note that path(By, Bs) contains By and By. See Figure 2 for an example.

Let C1, C be two disjoint vertex subsets of D such that each Cy,Cs is a set of unmarked
vertices contained in (not necessarily distinct) bags By, Bo, respectively. A bag B is called a
(C1, Cy)-separator bag if B is a star bag contained in path(Bj, Bs) whose center is adjacent
to neither comp(B, By) nor comp(B, By). We remark that B can be B; for some i € {1, 2},
and especially when B; = B and it is a star bag and each C; consists of leaves of B, B is
a (C1, Cy)-separator bag. For convenience, we also say that a bag B is a (By, Bs)-separator
bag if B is a star bag contained in path(B1, B2)\{B1, B2} whose center is adjacent to neither
comp(B, By) nor comp(B, Bs). For this notation, B cannot be By nor Bs. It is not hard
to check that the length of the shortest path from Cy to Cs in the original graph is exactly
the same as one plus the number of (Cy, Cy)-separator bags.

3 Setting the Stage

We begin by applying the iterative compression technique [25]. This technique allows us to
transform our problem to a simpler problem called DISJOINT DISTANCE-HEREDITARY VER-
TEX DELETION. Our goal for the majority of the paper will be to obtain a single-exponential
fixed-parameter algorithm for DISJOINT DISTANCE-HEREDITARY VERTEX DELETION; this
is then used to obtain the sought after algorithm for DISTANCE-HEREDITARY VERTEX DELE-
TION in Section 6.

Di1sJOINT DISTANCE-HEREDITARY VERTEX DELETION

Instance : A graph G, an integer k, and S C V(G) with |S| < k + 1 such that G — S is
distance-hereditary.

Parameter : k.

Task : Is there Q@ C V(G) \ S with |Q| < k such that G — @ is distance-hereditary?
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We will denote instances of DISJOINT DISTANCE-HEREDITARY VERTEX DELETION as
a tuple (G, S, k). By Theorem 4, every connected component of G — S admits a canonical
split decomposition whose bags are either a star or a complete graph.

Before explaining the general approach for solving DISJOINT DISTANCE-HEREDITARY
VERTEX DELETION, it will be useful to introduce a few definitions. Since the canonical split
decomposition guaranteed by Theorem 4 only helps us classify twins in G — S and not in
G, we explicitly define an equivalence ~ on the vertices of G — S which allows us to classify
twins in G: for two vertices u,v € V(G — S), u ~ v iff they are twins in G.

We denote by tc(G — S) the set of equivalence classes of ~ on V(G — S), and each
individual equivalence class will be called a twin class in G — S. We can observe that if
U € tc(G — S) lies in a single connected component of G — S, then U must be contained
in precisely one bag of the split decomposition of this connected component of G — S, as U
is a set of twins in G — S as well. A twin class is S-attached if it has a neighbor in S, and
non-S-attached if it has no neighbors in S. Similarly, we say that a bag in the canonical
split decomposition of G — S is S-attached if it has a neighbor in S, and non-S-attached
otherwise.

3.1 Overview of the Approach

Now that we have introduced the required terminology, we can provide a high-level overview

of our approach for solving DISJOINT DISTANCE-HEREDITARY VERTEX DELETION.

1. We exhaustively apply the branching rules described in Section 3.2. Branching rules will
be applied when G has a small subset X C V(G — S) such that S U X induces a DH
obstruction, or there is a small connected subset X C V(G — 5) such that adding X to
S decreases the number of connected components in G[S].

2. We exhaustively apply the initial reduction rules described in Section 4. Each of these
rules runs in polynomial time, finds a part in the canonical split decomposition of a
connected component of G — S that can be simplified, and modifies the decomposition.
Each application of a reduction rule from Section 4 either reduces the number of vertices
in G — S or reduces the total number of bags in the canonical split decomposition (of a
connected component of G — 5). It is well known that the total number of bags in the
canonical split decomposition of a graph is linear in the number of vertices. Therefore,
the total number of applications of these initial reduction rules will also be at most linear
in the number of vertices.

3. Wesay that G and the canonical split decompositions of G—.S are reduced if the branching
rules in Section 3.2 and reduction rules in Section 4 cannot be applied anymore. We will
obtain the following simple structure of the decompositions in the reduced instance:

Each canonical split decomposition D of a connected component of G — S contains at
least two distinct S-attached twin classes (Reduction Rule 1).

Each bag contains at most one S-attached twin class (Reduction Rule 3).

When B is a bag and D’ is a connected component of D — V(B) containing no bags
having a neighbor in S, D’ consists of one bag and B is a star bag whose center is
adjacent to D’ (Lemma 8).

When B is a bag and D’ is a connected component of D —V(B) such that D’ contains
exactly one S-attached bag B’, there is no (B’, B)-separator bag (Lemma 10).

4. We choose a canonical split decomposition D of a connected component of G — S and
assign any bag as a root bag of D. We choose a bag farthest from the root bag such that
there are two descendant bags having S-attached twin classes C7 and Cs, respectively.
Then the length of every shortest path from C; to C5 in G — S is at most 2, and we
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introduce a special polynomial-time reduction rule in Section 5 which simplifies this
configuration.

Whenever we introduce a new rule, we need to show that it is safe; for branching rules
this means that there exists at least one subinstance resulting from the rule which is a YES-
instance iff the original graph was a YEs-instance, while for reduction rules this means that
the application of the rule preserves the property of being a YEs-instance.

A vertex v in G — S is called irrelevant if (G,S,k) is a YES-instance if and only if
(G —v,8,k) is a YES-instance. We will be identifying and removing irrelevant vertices in
several of our reduction rules. When removing a vertex v from G — S, it is easy to modify
the canonical split decomposition containing v, and thus it is not necessary to recompute
the canonical split decomposition of the resulting graph from scratch [14].

3.2 Branching Rules

We state our two branching rules below.

» Branching Rule 1. For every vertex subset X of G — S with | X| < 5, if G[S U X] is not
distance-hereditary, then we remove one of the vertices in X, and reduce k by 1.

» Branching Rule 2. For every vertex subset X of G — S with |X| < 5 such that G[X] is
connected and the set Ng(X) NS is not contained in a connected component of G[S], then
we either remove one of the vertices in X and reduce k by 1, or put all of them into S (which
reduces the number of connected components of G[5]).

The safeness of Branching Rules 1 and 2 are clear, and these rules can be performed
in polynomial time. The exhaustive application of these branching rules guarantees the
following structure of the instance.

» Lemma 5. Let (G, S, k) be an instance reduced under Branching Rules 1 and 2.

1. G has no small DH obstructions.

2. Letv € V(G —S8). For every two vertices x,y € Ng(v) NS, they are contained in the
same connected component of G[S] and there is no induced path of length at least 3 from
x toy in G[S]. Specifically, if xy ¢ E(G), then there is an induced path xzpy for some
peSs.

3. There is no induced path vy ---vs of length 4 in G — S where vy and vs have neighbors
in S but v and vy have no neighbors in S.

4. There is no induced path vy ---vg of length 3 in G — S where v1 and v4 have neighbors
on S but va has no neighbors on S.

Lemma 5, and especially point (2) in the lemma, is used in many parts of our proofs.
Since we will apply the branching rules exhaustively at the beginning and also after each
new application of a reduction rule, these properties will be implicitly assumed to hold in
subsequent sections.

4 Reduction Rules in Split Decompositions

In this section, we assume that the given instance (G, S, k) is reduced under Branching
Rules 1 and 2. The reduction rules introduced here either remove some irrelevant vertex, or
move some vertex into .S, or reduce the number of bags in the decomposition by modifying
the instance into an equivalent instance. After we apply any of these reduction rules, we
will run the two branching rules from Section 3 again.

34:7
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Before we move on to the reduction rules themselves, we introduce a generic way of
finding an irrelevant vertex which will be used in many reduction rules. For a vertex v in
G — S and an induced cycle H of length at least 5 in G containing a vertex v and two
neighbors w, z of v in H, a vertex v’ in S is called a bad vertex for H and v if v/ is adjacent
to w and z. If such a vertex v’ exists, it is clear that v’ is not contained in H because vwv’zv
is a cycle of length 4. More importantly, since H — v is an induced path of length at least 3
from w to z and v’ is adjacent to both of its endpoints, by Lemma 1, G[(V(H) \ {v}) U{v'}]
contains a DH obstruction. This implies that one of the vertices in V/(H) \ {v} must be
contained in every solution (note that v’ € S and so v’ itself cannot be part of a solution).
This property results in the following two lemmas.

» Lemma 6. Let (G, S, k) be an instance reduced under Branching Rule 1. Let v be a vertex
in G — 8 such that for every induced cycle H of length at least 7 containing v, there is a bad
vertex for H and v. Then v is irrelevant.

» Lemma 7. Let (G, S, k) be an instance reduced under Branching Rules 1 and 2. Let v be
a vertex in G — S and H be an induced cycle of length at least 7 containing v, and let w, z
be the two neighbors of v in H. If w,z € S, then there is a bad vertex for H and v, and thus
GI(V(H)\ {v})US] contains a DH obstruction.

We are now ready to start with our reduction rules. For the remainder of this section, let
us fix a canonical split decomposition D of a connected component of G — S.

» Reduction Rule 1. If D has at most one S-attached twin class, then we remove all unmarked
vertices of D from G.

» Reduction Rule 2. Let B be a star bag whose center is unmarked, and let v be a leaf
unmarked vertex in B. If v has no neighbor in S, then we remove v. If v has a neighbor in
S, then we move v into S.

We remark that when we move v into S in Reduction Rule 2, k + cc(G[S]) does not
increase. Next, we introduce an important rule which reduces the number of S-attached
twin classes in each bag.

» Reduction Rule 3. Let B be either a complete bag or a star bag whose center is marked.
Let Cy, Cs be two distinct S-attached twin classes in B such that (Ng(C1) \ Ng(C2))N S is
non-empty. Then we remove C].

We proceed by introducing a reduction rule which sequentially arranges non-S-attached
bags in a canonical split decomposition. The number of bags in D is strictly reduced when
applying Reduction Rule 4.

» Reduction Rule 4. Let B be a leaf bag and B’ be the neighbor bag of B.

1. If B is a complete bag having exactly one twin class and B’ is a star bag whose leaf
is adjacent to B, then we transform B into a star whose center is adjacent to B’, and
recompose the marked edge connecting B and B’.

2. If B is a star bag having exactly one twin class, the center of B is adjacent to B’, and
B’ is a complete bag, then we transform B into a complete graph, and recompose the
marked edge connecting B and B’.

The next reduction rule allows us to remove a non-S-attached twin class under certain
conditions (see Figure 3).

» Reduction Rule 5. Let By be a leaf bag containing at most one S-attached twin class and
B be a bag distinct from B; such that
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By iy

By By

By h By

Figure 3 Reduction Rule 5.

Figure 4 Reduction Rule 6.

every bag in path(Bjy, B2) \ {B1, B2} is non-S-attached, not a (Bj, Bg)-separator bag,
and has exactly two neighbor bags, and
Bs is a star bag whose center is adjacent to comp(Bs, By).

If By contains a non-S-attached twin class C, then we remove C'.

We can now show that after the exhaustive application of the reduction rules introduced
up to this point, every connected component of D — V(B) containing no S-attached bags is
“simple”, as formalized in the next lemma.

» Lemma 8. Let D be the canonical split decomposition of a connected component of G — S
reduced under Reduction Rules 1-5. Let B be a bag and D’ be a connected component of
D — V(B) containing no S-attached bags. Then D' consists of one bag and B is a star bag
whose center is adjacent to D’.

Next, we introduce some rules simplifying connected components of D — V(B) for some
bag B containing one S-attached twin class. The following rule is depicted in Figure 4.

» Reduction Rule 6. Let By be a leaf bag having exactly one S-attached twin class and Bs
be a bag distinct from B; such that
B is not a star whose leaf is adjacent to a neighboring bag,
every bag in path(By, B2) \ {Bi1, B2} is non-S-attached, not a (Bi, By)-separator bag
and has exactly two neighbor bags, and
By is a star whose center is either an unmarked vertex, or adjacent to a connected
component of D — V(Bsy) consisting of one non-S-attached bag.
If By contains a non-S-attached twin class C, then we can safely remove C.

By applying Reduction Rules 4, 5, and 6, we can simplify the decomposition near an
S-attached leaf containing one S-attached twin class; for instance, in Figure 4, B; will be

349
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Figure 5 Reduction Rule 8.

eventually merged with By. We state the properties that are guaranteed by the reduction
rules introduced up to this point in the following lemma.

» Lemma 9. Let D be the canonical split decomposition of a connected component of G — S
reduced under Reduction Rules 1-6. Let B be a star bag whose center is unmarked or adjacent
to a connected component of D — V(B) consisting of one non-S-attached bag. Let D’ be a
connected component of D — V(B) such that

D’ contains exactly one S-attached bag B', and

there is no (B’, B)-separator bag.
Then B’ is a star whose leaf is adjacent to comp(B’, B) and there is a leaf bag B" where
the center of B’ is adjacent to B".

The final two rules in this section help us simplify the configuration specified in Lemma 9;
using Reduction Rule 7 we can remove all unmarked vertices in path(B, B’) \ {B, B'}, and
then Reduction Rule 8 allows us to merge B’ with B.

» Reduction Rule 7. Let B; and By be two star bags in D such that
for each i, either the center of B; is an unmarked vertex, or the center of B; is adjacent
to a connected component of D — V(B;) consisting of one non-S-attached bag,
every bag in path(By, B2) \ {B1, B2} is a non-S-attached bag, has two neighbor bags,
and is not a (Bj, By)-separator bag.
Then we remove every unmarked vertex in every bag in path(By, Bs) \ {Bi1, B2}.
» Reduction Rule 8. Let By, By, B3 be distinct bags in D such that
B is a non-S-attached leaf bag whose neighbor bag is Bs, and it is not a star whose leaf
is adjacent to B,
B> has exactly two neighbor bags B; and Bs, it is a star whose center is adjacent to By,
and the set of unmarked vertices in B is the unique S-attached twin class Cs in Bs, and
B3 is a star whose center is either an unmarked vertex, or adjacent to a connected
component of D — V(Bj3) consisting of one non-S-attached bag.
Let C'; be the set of unmarked vertices in By. Then we remove By and Bs, and add a leaf set
of unmarked vertices C' with min(|Cy|,|Ca|) vertices to Bs, that is complete to Ng(Cs) NS
and has no other neighbors in S.

We provide an illustration of Reduction Rule 8 in Figure 5.
Finally, after applying all the reduction rules in this section, our instance has the desired
inseparability property. We formalize and prove this property below.

» Lemma 10. Let D be the canonical split decomposition of a connected component of G— .S
reduced under Reduction Rules 1-8. Let B be a bag and let D' be a connected component of
D — V(B) such that D' contains exactly one S-attached bag B'. Then there is no (B’, B)-
separator bag.
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» Proposition 11. Let (G, S, k) be an instance reduced under Branching Rules 1 and 2.
Given a canonical split decomposition D of a connected component of G — S, we can in time
O(|V(G)|?) either apply one of Reduction Rules 1-8, or correctly answer that Reduction
Rules 1-8 cannot be applied anymore.

5 Twin Class Reduction Rule

In this section, we introduce our last, but perhaps most important, reduction rule. Later on
in the proof of Theorem 13, we will show that whenever the other rules cannot be applied,
we can either apply Reduction Rule 9 or our instance is trivial.

» Reduction Rule 9. Suppose that (G, S, k) and all canonical split decompositions of con-
nected components of G—S are reduced under Branching Rules 1-2 and Reduction Rules 1-8.
Let D be the canonical split decomposition of a connected component of G — S, and let B
be a bag, and By, B2 be two distinct S-attached bags (possibly B; = B for some i € {1,2}).
Furthermore, let C7,C5 be two distinct S-attached twin classes in Bj, Bo, respectively,
such that for each ¢ € {1,2}, either B; = B or C; is the unique S-attached twin class in
comp(B, B;). Then we apply one of the following:

1. If the distance from C; to C2 in G — S is 2 and the unique (Ci,Cy)-separator bag is
contained in comp(B, Bz), then we remove C. (We show that B cannot be the (Cy, Cs)-
separator bag.)

2. If 4 is complete to Co, B # Bs, and B is a star bag whose center is adjacent to
comp(B, Bs), then we remove Cf.

3. If C4 is complete to Cy, B # Bj, and B is a complete bag, then B; contains a non-S-
attached twin class C] and we remove Cj.

» Proposition 12. Reduction Rule 9 is safe.

Sketch of Proof. Here we prove the proposition for one important special case. Suppose
that C is anti-complete to Cy and the (Cy, Cq)-separator bag is contained in comp(B, Bs).
We claim that every vertex in Cj is irrelevant. For each ¢ € {1,2}, let ¢; € C; and let
T; = Ng(C;). Let B’ be the (Cy, Cy)-separator bag. We first confirm that By = B’. If not,
then B’ is a (Bsg, B)-separator bag. However, since comp(B, Bs) has exactly one S-attached
bag Bi, by Lemma 10, there is no (Bsg, B)-separator bag, a contradiction. We conclude that
B’ = Bs. There is a leaf bag Bj where the center of Bs is adjacent to Bj, otherwise, we can
apply Reduction Rule 2.

Let v € C3. We claim that for every induced cycle H of length at least 7 containing v,
there is a bad vertex for H and v. If this is true, then the result follows from Lemma 6. Let
w and z be the two neighbors of v in H. If w and z are contained in .S, then by Lemma 7,
there is a bad vertex. On the other hand, w and z cannot be contained in V(G —S) together,
because the vertices in B} form a twin class. We may assume that w € (T;NT) NV (G —S)
and z € S. We actually show that this is not possible. Note that since w € V(Bj), w has
no neighbors in S.

We divide cases depending on the location of z: specifically, to conclude the proof, we
separately consider the case of z € (T \ T1) NS and z € (T3 NTy) N S. We show that the
former case always leads to a contradiction with w having no neighbors in S. On the other
hand, it can be shown that the latter case necessarily implies the existence of a small DH
obstruction, contradicting the exhaustive application of Branching Rules 1-2. <
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6 The Algorithm and Lower Bounds

Our goal in this section is to give a proof of our main result, Theorem 14, and prove
corresponding lower bounds.

» Theorem 13. DiSJOINT DISTANCE-HEREDITARY VERTEX DELETION can be solved in
time (9(36k . |V(G)|6(\V(G)| + E(@))).

Sketch of Proof. The main argument in the proof is that whenever we cannot apply one of
Branching Rules 1-2 and Reduction Rules 1-8, either we have a trivial instance, or we run
into a situation where we can apply Reduction Rule 9. Suppose that D is the canonical split
decomposition of a connected component of G — S such that G and D are reduced under
those rules. If D contains at most one S-attached twin class, then we can apply Reduction
Rule 1. Thus, we know that D contains at least two distinct S-attached twin classes.

We choose a root bag of D, and choose a bag B that is farthest from the root bag such
that there are two descendant bags Bi, Bo of B having distinct S-attached twin classes
C1, Co, respectively. By Reduction Rule 3, we have By # Bs. Using the structure that
if B; # B, then there is no (B;, B)-separator bag by Lemma 10, we can observe that the
distance between C7 and Cy in G — S is at most 2, and then C; and C5 satisfy one of the
conditions in Reduction Rule 9.

We can notice that each branching rule reduces either k& or the number of connected
components in S and branch into at most 6 subinstances. Since none of the reduction
rules change k or the number of components in S, branching rules are applied at most
2k times. Due to the application of reduction rules (which we also consider as nodes of
the branching tree and which may be applied independently in different branches), the
branching tree will have at most O(36%-|V (G)|) nodes, and the runtime in every node will not
exceed O(|V(G)|?(|[V(G)| +|E(G)|)). Hence, the whole algorithm for DISJOINT DISTANCE-
HEREDITARY VERTEX DELETION can be implemented in time O(36% - |V(G)|®(|V(G)| +

[E(G)]))- <

» Theorem 14. DISTANCE-HEREDITARY VERTEX DELETION can be solved in time O(37% -
V@I (VG| + [E(G)]).-

Sketch of Proof. Let n:=|V(G)| and m := |E(G)|. Fix an arbitrary labeling vy, ..., v, of
V(G) and let G; := G[{v1,...,v;}] for 1 <i <mn. From ¢ = 1 up to n, given a graph G; and
S; C V(G;) with |S;] < k+ 1 such that G; — S; is distance-hereditary, we aim to find a set
S! C V(G;) with |S| < k such that G; — 5! is distance-hereditary if one exists. We further
guess all possible S/ NS; as I, and we aim to find a deletion set S/’ of size at most k — |I| in
G; — I where S N (S; \ I) = 0 if one exists. We can recursively resolve this problem using
Di1sJOINT DISTANCE-HEREDITARY VERTEX DELETION. As we iterate the subproblem n
times, we obtain the runtime n~Zf:0 (kjl) 0365 - nS(n+m)) = OB7*-n"(n+m)). =

Our lower bound result is based on the well-established exponential time hypothesis [19],
and specifically uses the fact that there is no 2°%) .|V (G)|°(") algorithm for VERTEX COVER,
unless ETH fails [5]. The proof relies on a reduction which is similar to the one used for
vertex deletion to graphs of linear rank-width 1 [20].

» Theorem 15. There is no 2°%) - |V(G)|°M) algorithm for DISTANCE-HEREDITARY VER-
TEX DELETION unless ETH fails.
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7 Concluding Notes

We conclude with a few remarks on why we believe that the presented algorithm is of high
interest. First, it intrinsically exploits the properties guaranteed by distinct, seemingly un-
related characterization of distance-hereditary graphs; this approach can likely be used to
design or improve algorithms for other vertex deletion problems. Second, it uses highly
nontrivial reduction rules which simplify canonical split decompositions, and an adaptation
or extension of the presented rules could be highly relevant for other graph classes character-
ized by special canonical split decompositions, such as parity graphs [6] or circle graphs [13].
Third, it is the first of its kind which targets a “full” class of graphs of bounded rank-width
(contrasting previous results for specific subclasses of graphs of rank-width 1 [18, 2, 21, 20]).

It is worth noting that there remains a number of interesting open problems in this
general area. Perhaps the most prominent one is the question of whether vertex deletion
to graphs of rank-width ¢, for any constant ¢, admits a single-exponential fixed-parameter
algorithm. Our algorithm represents the first steps in this general direction. The existence
of a polynomial kernel or an approximation algorithm for such vertex deletion problems also
remains open, even for the case of distance-hereditary graphs.
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