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Abstract
A ride sharing problem is considered where we are given a graph, whose edges are equipped with
a travel cost, plus a set of objects, each associated with a transportation request given by a pair of
origin and destination nodes. A vehicle travels through the graph, carrying each object from its
origin to its destination without any bound on the number of objects that can be simultaneously
transported. The vehicle starts and terminates its ride at given nodes, and the goal is to compute
a minimum-cost ride satisfying all requests. This ride sharing problem is shown to be tractable
on paths by designing a O(h log h + n) algorithm, with h being the number of distinct requests
and with n being the number of nodes in the path. The algorithm is then used as a subroutine
to efficiently solve instances defined over cycles, hence covering all graphs with maximum degree
2. This traces the frontier of tractability, since NP-hard instances are exhibited over trees whose
maximum degree is 3.
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1 Introduction

Ride Sharing. Vehicle routing problems have been drawn to the attention of the research
community in the late 50’s [8]. Since then, they have attracted much attention in the
literature due to their pervasive presence in real-world application scenarios, till becoming
nowadays one of the most studied topics in the field of operation research and combinatorial
optimization (see, e.g., [24, 29, 10] and the references therein).

Within the broad family of vehicle routing problems, a noticeable class is constituted by
the pickup and delivery problems, where a given set of objects, such as passengers or goods,
have to be picked at certain nodes of a transportation network and delivered at certain
destinations [11]. Pickup and delivery problems can be divided in two main groups [27]. The
first group refers to situations where we have a single type of object to be transported, so that
pickup and delivery locations are unpaired (see, e.g., [21]). The second group deals, instead,
with problems where each transportation request is associated with a specific origin and a
specific destination, hence resulting in paired pickup and delivery points (see, e.g., [22, 9]).
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36:2 Ride Sharing with a Vehicle of Unlimited Capacity

In the paper, we focus on problems of the latter kind, and we deal with the most basic
setting where one vehicle is available only. The vehicle is initially located at some given
source node and it must reach a given destination node by means of a feasible ride, that is,
of a ride satisfying all requests. The edges of the network are equipped with weights, and
the goal is to compute an optimal ride, that is, a feasible ride minimizing the sum of the
weights of the edges traversed by the vehicle.

Vehicles of Limited Capacity. Ride sharing with one vehicle has attracted much research
in the literature and most of the foundational results in the area of vehicle routing precisely
refer to this setting. In fact, earlier works have mainly focused on the case where the capacity
of the vehicle is bounded by some given constant. In particular, based on whether or not
we allow objects to be temporarily unloaded at some vertex of the transportation network,
two versions of ride sharing problems emerge: preemptive (where drops are allowed) and
non-preemptive (where drops are not allowed). An orthogonal classification comes, moreover,
from the capacity c of the given vehicle. The setting with unit capacity (c = 1) has received
much attention in the literature, where it often comes in the form of a stacker crane problem
(see [15, 28] and the references therein). A natural generalization is then when the vehicle
can carry more than one object at time, that is, when c is any given natural number possibly
larger than 1.

Given these two orthogonal dimensions, a total of four different configurations can be
studied (cf. [19]). In all the possible configurations, vehicle routing is known to be NP-
hard [15, 16] when the underlying transportation network is an arbitrary graph. In fact,
motivated by applications in a wide range of real-world scenarios, complexity and algorithms
for ride sharing problems have been studied for networks with specific topologies, such as
path, cycles, and trees. Consider first the unit capacity setting. In this case, ride sharing
is known to be polynomial time solvable on both paths [2] and cycles [13], no matter of
whether drops are allowed. Moving to trees, instead, the preemptive case remains efficiently
solvable [14], while the non-preemptive case becomes NP-hard [12]. Consider now the case
where c ≥ 1 holds. Clearly enough, the intractability result over trees established for c = 1
still holds in this more general setting. In fact, in this setting, ride sharing appears to be
intrinsically more complex. Indeed, it has been shown that the non-preemptive version of the
problem is NP-hard on all the considered network topologies and that the preemptive version
is NP-hard even on trees [18]. Good news comes instead when the problem is restricted
over paths and cycles in the preemptive case. Indeed, the problem has been shown to be
feasible in polynomial time on paths [19]. Moreover, the algorithm by [19] is also applicable
to cycles, under the constraint that, for each object, the direction of the transportation
(either clockwise, or anticlockwise) is a-priori given. More efficient algorithms are know for
paths when the ride starts from one endpoint [18, 23].

Vehicles of Unlimited Capacity. There are application scenarios where the capacity of the
vehicle can be better thought as being unlimited, as it happens, for instance, when we are
transporting intangible objects, such as messages. More generally, we might know beforehand
that the number of objects to be transported is less than the capacity of the vehicle; and,
accordingly, we would like to use solution algorithms that are more efficient than those
proposed in the literature and designed in a way that this knowledge is not suitably taken
into account. In fact, the NP-hardness results discussed above exploit a given constant
bound on the capacity and, hence, they do not immediately apply to the unbounded setting.
However, specific reductions have been exhibited showing the NP-hardness on general graphs
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(cf. [30, 3]). Moreover, heuristic methods (see, e.g., [17, 25]) and approximation algorithms
(see, e.g., [1, 20]) have been defined, too. On the other hand, a number of tractability results
for vehicles with unlimited capacity transporting objects of the same type can be inherited
even in the paired context we are considering. Indeed, for cases where such identical objects
are initially stored at the same node (or, equivalently, have to be transported to the same
destination) [3, 4, 6, 5], efficient algorithms have been designed for transportation networks
that are trees and cycles [30]. Moreover, the algorithm for paths proposed by [19] can be still
applied over the unlimited capacity scenario. But, it was not explored so far whether better
performances can be obtained by means of algorithms specifically designed for vehicles with
unlimited capacity.

Contributions. The goal of the paper is to address the above research question, and to
study complexity and algorithmic issues arising with ride sharing problems in presence of
one vehicle of unlimited capacity. The analysis has been conducted by considering different
kinds of undirected graph topologies, which have been classified on the basis of the degree
of their nodes. Let n be the number of nodes in the underlying graph, let q be the number
of requests (hence, of objects to be transported), and let h denote the number of distinct
requests (so, h ≤ q and h ≤ n2). Then, our results can be summarized as follows:

In Section 3, we show that optimal rides can be computed in polynomial time over
graphs that are paths. In particular, an algorithm is exhibited to compute an optimal
ride in O(h log h + n). This improves the O(qn + n2) bound that we obtain with the
state-of-the-art algorithm by Guan and Zhu [19] for vehicles with limited capacity, by
naïvely setting the limit to k.
The design and the analysis of the above algorithm is the main technical achievement of
the paper. By using the algorithm as a basic subroutine, we are then able to show in
Section 4 that optimal rides can be computed in polynomial time over cycles too, formally
in O(m2 · (h log h+ n)), with m being the number of distinct nodes that are endpoints of
some request, so that m ≤ 2h and m ≤ n. The result has no counterpart in the limited
capacity setting, since differently from [19], we do not require that the direction of the
transportation of the objects is fixed beforehand.
Path and cycles completely cover all graphs whose maximum degree is 2. In fact, this
value precisely traces the frontier of tractability for the ride sharing problem we have
considered, as NP-hard instances are exhibited over graphs whose maximum degree is 3
and which are moreover trees.

2 Ride Sharing Scenarios

Let G = (V,E,w) be an undirected weighted graph, where V is a set of nodes and E is a
set of edges. Each edge e ∈ E is a set e ⊆ V with |e| = 2, and it is equipped with a cost
w(e) ∈ Q+. A ride π in G is a sequence of nodes π1, . . . , πk such that πi ∈ V is the node
reached at the time step i and {πi, πi+1} ∈ E, for each i with 1 ≤ i ≤ k − 1. The time step
k > 0 is called the length of π, hereinafter denoted by len(π). The value

∑k−1
i=1 w({πi, πi+1})

is the cost of π (w.r.t. w) and is denoted by w(π). Moreover, nodes(π) denotes the set of all
nodes v ∈ V occurring in π.

A request on G = (V,E,w) is a pair (s, t) such that {s, t} ⊆ V . Note that s and t are not
necessarily distinct, and they are called the starting and terminating nodes, respectively, of
the request. We say that a ride π in G satisfies the request (s, t) if there are two time steps i
and i′ such that 1 ≤ i ≤ i′ ≤ len(π), πi = s and πi′ = t. If C is a set of requests on G, then
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36:4 Ride Sharing with a Vehicle of Unlimited Capacity

VC is the set of all starting and terminating nodes occurring in it. A ride-sharing scenario
consists of a tuple R = 〈G, (s0, t0), C〉, where G = (V,E,w) is an undirected weighted graph,
(s0, t0) is a request on G and C is a non-empty set of requests.

A ride π = π1, . . . , πk in G is feasible for R if π1 = s0, πk = t0, and π satisfies each
request in C. The set of all feasible rides for R is denoted by feasible(R). A feasible ride
π is optimal if w(π′) ≥ w(π), for each feasible ride π′. The set of all optimal rides for R is
denoted by opt(R).

Let R = 〈G, (s0, t0), C〉 be a ride-sharing scenario, and let π be a ride in G. Let i and
i′ be two time steps such that 1 ≤ i ≤ i′ ≤ len(π). Then, we denote by π[i, i′] the ride
πi, . . . , πi′ obtained as the sequence of the nodes occurring in π from time step i to time
step i′. If π and π′ are two rides on G, then we write π′ � π if either π′ = π or, recursively,
if there are two time steps i and i′ such that 1 ≤ i < i′ ≤ len(π), πi+1 = πi′ or πi = πi′−1,
and π′ � π[1, i], π[i′, len(π)] (informally speaking, π′ can be obtained from π by removing a
subsequence of nodes).

I Fact 1. Let π and π′ be two rides such that π′ � π. Then: w(π′) ≤ w(π); if π′
satisfies a request (s, t) ∈ C, then π satisfies (s, t), too; if π is feasible (resp., optimal) and
VC ∩ (nodes(π) \ nodes(π′)) = ∅, then π′ is feasible (resp., optimal), too.

It is easily seen that computing optimal rides is an intractable problem (NP-hard), for
instance, by exhibiting a reduction from the well-known traveling salesman problem (see, e.g.,
[16]). Actually, we can strengthen this result, in a way that suggest to focus our subsequent
analysis on ride-sharing scenarios over graphs whose maximum degree is 2 (at most). In fact,
these graphs must be either paths or cycles.

I Theorem 2. Computing optimal rides is NP-hard over trees whose maximum degree is 3.

3 Optimal Rides on Paths

In this section we describe an algorithm that, given as input a ride-sharing scenario R =
〈G, (s0, t0), C〉 where G = (V,E,w) is a path, returns an optimal ride for R. In order to
keep notation simple, we assume that nodes in V are (indexed as) natural numbers, so that
V = {1, . . . , n}. Hence, for each node v ∈ V \ {n}, the edge {v, v+ 1} is in E; and no further
edge is in E. Moreover, let us define left(R) = minv∈VCv and right(R) = maxv∈VCv, as the
extreme (left and right) endpoints of any request in C.

Based on these notions, we distinguish two mutually exclusive cases:

“outer”: where either s0 ≤ left(R) ≤ right(R) ≤ t0 or t0 ≤ left(R) ≤ right(R) ≤ s0; that is,
the starting and the terminating nodes s0 and t0 are not properly included in the range
{left(R), ..., right(R)}.

“inner”: where {s0, t0} ∩ {v ∈ V | left(R) < v < right(R)} 6= ∅; in particular, in this case,
left(R) < right(R) necessarily holds.

In the following two subsections we describe methods to address the two different cases,
while their complexity will be later analyzed in Section 3.3. A basic ingredient for both
methods is the concept of concatenation of rides. Let π = π1, . . . , πk and π′ = π′1, . . . , π

′
h be

two rides. Their concatenation π 7→ π′ is the ride inductively defined as follows: if πk = π′1
and h > 1, then π 7→ π′ = π1, . . . , πk, π

′
2, . . . , π

′
h; if πk = π′1 and h = 1, then π 7→ π′ = π; if
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Algorithm 1: RideOnPath_Outer
Input: A scenario R = 〈G, (s0, t0), C〉, where G = (V,E,w) is a path,
and with s0 ≤ left(R) ≤ right(R) ≤ t0 or t0 ≤ left(R) ≤ right(R) ≤ s0;
Output: An optimal ride for R;

1 if s0 > t0 then
2 π ← RideOnPath_Outer(sym(R));
3 return sym(π);
4 else
5 C∗ = {(s1, t1), . . . , (sh, th)} ←Normalize(C); /* s1 ≤ s2 · · · ≤ sh */
6 return s0 7→ s1 7→ t1 7→ s2 7→ . . . 7→ sh 7→ th 7→ t0;

πk 6= π′1, then π 7→ π′ is defined as the concatenation1 π 7→ π̄ 7→ π′, where π̄ = πk, . . . , π
′
1 is

the ride obtained as the sequence of nodes connecting πk and π′1 with the smallest length.
Note that π̄ is univocally determined on paths.

3.1 Solution to the “outer” case

Consider Algorithm 1, named RideOnPath_Outer. In the first step, it distinguishes the
case s0 > t0 from the case s0 ≤ t0. Indeed, the former can be reduced to the latter by
introducing the concept of symmetric scenario. For every node v ∈ V , let sym(v) = n− v+ 1.
Denote by sym(π) and sym(C) the ride and the set of requests derived from the ride π and
the set of requests C, respectively, by replacing each node v with its “symmetric” counterpart
sym(v). Finally, denote by sym(R) the scenario 〈G, (sym(s0), sym(t0)), sym(C)〉, referred to
as the symmetric scenario of R. Then, the following is immediately seen to hold.

I Fact 3. Let π be a ride. Then, π is optimal for R if, and only if, sym(π) is optimal for
sym(R).

According to the previous observation, step 5 and step 6 are the core of the computation by
addressing the case s0 ≤ t0, where hence s0 ≤ left(R) ≤ right(R) ≤ t0. The idea is to reduce
the set of requests C to an “equivalent” set of requests C∗, which presents a simpler structure
that we call normal form. Formally, let C∗ = {(s1, t1), . . . , (sh, th)}, and let us say that C∗ is
in normal form if ti < si for each i ∈ {1, . . . , h}, and si < ti+1 for each i ∈ {1, . . . , h − 1}.
The reduction is performed at step 5, where Normalize is invoked.

The definition of Normalize is shown in Algorithm 2: Step 1 is responsible of filtering
out all requests (s, t) such that s ≤ t. Steps 2 and 3 iteratively “merge” all pairs of requests
(s, t) and (s′, t′) such that t < s, t′ < s′ and t′ ≤ t ≤ s′ ≤ s. Finally, steps 4 and 5 remove all
requests (s, t) with t < s and for which there is a request (s′, t′) such that t′ ≤ t < s ≤ s′.
It can be shown that the set of requests C∗ returned by Normalize is in normal form and
that the optimal ride for the ride-sharing scenario 〈G, (s0, t0), C∗〉 is an optimal ride also for
R. In particular, it can be shown that an optimal ride for 〈G, (s0, t0), C∗〉 can be obtained
by concatenating the rides connecting si to ti, incrementally from i = 1 to i = h, as it is
implemented in step 6 of RideOnPath_Outer. Thus, the following can be established.

I Theorem 4. Algorithm RideOnPath_Outer is correct.

1 The specific order of application of the operator 7→ is immaterial. Hence, we often avoid the use of
parenthesis.

MFCS 2016
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Algorithm 2: Normalize
Input: A set C of requests with s0 ≤ left(R) ≤ right(R) ≤ t0;
Output: A set of requests C∗ in normal form and such that opt(〈G, (s0, t0), C∗〉) ⊆ opt(R);

1 C∗ ← C \ {(s, t) | s ≤ t};
2 while exist (s, t), (s′, t′) ∈ C∗ such that t < s, t′ < s′, and t′ ≤ t ≤ s′ ≤ s do
3 C∗ ← C∗ \ {(s, t), (s′, t′)} ∪ {(s, t′)};
4 while exist (s, t), (s′, t′) ∈ C∗ such that t′ ≤ t < s ≤ s′ do
5 C∗ ← C∗ \ {(s, t)};
6 return C∗;

left s0 M m t0 right

leftIdx

rightIdx

R(M, m)

(a) M < m

left s0 m M t0 right

leftIdx

rightIdx

(b) m ≤ M

Figure 2: Example of (M,m)-canonical rides.

that π satisfies every request in C and that the number of occurrences of each node v ∈ V coincides with the
corresponding lower bound stated above. Therefore, π is optimal for ⟨G, (s0, t0), C∗⟩.

Given that π is optimal for ⟨G, (s0, t0), C∗⟩ and is returned as output, the correctness of RIDEON-
PATH_OUTER eventually follows by Lemma 6. ⊓%

Example 9 Consider the instance introduced in Example 7. Given the set of requests C∗ = {(4, 1), (6, 5)}
calculated at step 5 in RIDEONPATH_OUTER, the ride returned at step 6 is 1 &→ 4 &→ 1 &→ 6 &→ 5 &→ 7. ▹

3.2 Solution to the “inner” case

Let us now move to analyze the “inner” case, where {s0, t0} ∩ {v ∈ V | left(R) < v < right(R)} ̸= ∅
holds. Let us introduce some notation. For any feasible ride π, denote by leftIdx(π) (resp., rightIdx(π)) the
minimum time step i such that πi = left(R) (resp., πi = right(R)). Note that leftIdx(π) and rightIdx(π)
are well defined and, in particular, leftIdx(π) ̸= rightIdx(π) holds, since left(R) < right(R). Moveover,
for every pair of nodes x, y ∈ V with x < y, define R(x, y) = ⟨G, (x, y), {(s, t) ∈ C | x ≤ s, t ≤ y}⟩,
that is, the scenario which inherits from R the graph G and every request with both starting and terminating
nodes in the interval {x, ..., y}, and where the vehicle is asked to start from x and to terminate at y. Notice
that, by definition, the set of all nodes occurring in any optimal ride for R(x, y) is a subset of {x, ..., y}.

3.2.1 Canonical rides

A crucial role in our analysis is played by the concept of canonical ride, which is illustrated below.

Definition 10 Let M,m ∈ VC ∪ {s0, t0} be two nodes. A ride πc in R is said to be (M,m)-canonical if
πc = π′ &→ π′′ &→ π′′′ where

• π′ = s0 &→M &→ left(R) &→M ;

• π′′ =

{
M &→ right(R) if m ≤M
π̄ &→ right(R) if M < m

where π̄ is an optimal ride for R(M,m);

• π′′′ = right(R) &→ m &→ t0. "

Two examples of canonical rides are in Figure 2. Note that if m ≤M holds, we can refer without ambi-
guities to the (M,m)-canonical ride, as there is precisely one ride enjoying the properties in Definition 10.

Fact 11 If m ≤M , then (M,m)-canonical ride is s0 &→M &→ left(R) &→ right(R) &→ m &→ t0.

8

Figure 1 Example of (M,m)-canonical rides.

3.2 Solution to the “inner” case
Let us now move to analyze the “inner” case, where {s0, t0} ∩ {v ∈ V | left(R) < v <

right(R)} 6= ∅ holds. Let us introduce some notation. For any feasible ride π, denote
by leftIdx(π) (resp., rightIdx(π)) the minimum time step i such that πi = left(R) (resp.,
πi = right(R)). Note that leftIdx(π) and rightIdx(π) are well defined and, in particular,
leftIdx(π) 6= rightIdx(π) holds, since left(R) < right(R). Moveover, for every pair of nodes
x, y ∈ V with x < y, define R(x, y) = 〈G, (x, y), {(s, t) ∈ C | x ≤ s, t ≤ y}〉, that is, the
scenario which inherits from R the graph G and every request with both starting and
terminating nodes in the interval {x, ..., y}, and where the vehicle is asked to start from
x and to terminate at y. Notice that, by definition, the set of all nodes occurring in any
optimal ride for R(x, y) is a subset of {x, ..., y}.

3.2.1 Canonical rides
A crucial role in our analysis is played by the concept of canonical ride, which is illustrated
below.

I Definition 5. Let M,m ∈ VC ∪ {s0, t0} be two nodes. A ride πc in R is said to be (M,m)-
canonical if πc = π′ 7→ π′′ 7→ π′′′ where: π′ = s0 7→M 7→ left(R) 7→M ; π′′ = M 7→ right(R)
(resp., π′′ = π̄ 7→ right(R), with π̄ being an optimal ride for R(M,m)) if m ≤ M (resp.,
m > M); π′′′ = right(R) 7→ m 7→ t0. �

Two examples of canonical rides are in Figure 1. Note that if m ≤M holds, we can refer
without ambiguities to the (M,m)-canonical ride, as there is precisely one ride enjoying the
properties in Definition 5.

I Fact 6. If m ≤ M , then the (M,m)-canonical ride is s0 7→ M 7→ left(R) 7→ right(R) 7→
m 7→ t0.
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left s0 rm r̂m right

leftIdx

rmIdx

rmLastIdx

r̂mIdx

rightIdx

(a) Some critical steps on a ride π∗

left s0 rm= r̂m cr lm t0 right

leftIdx
rmIdx= r̂mIdx

crLastIdx

rightIdx

lmIdx

(b) Some critical steps on a ride πh+1

Figure 3: Some critical steps of any feasible ride on a path. The gray areas denote the space that no feasible
ride can cross for a given time interval.

Instead, whenever m > M , there can be more than one canonical ride. In this case, to compute a
(M,m)-canonical ride, we need to compute an optimal ride for R(M,m), which is a scenario fitting the
“outer” case and which can be hence addressed via the RIDEONPATH_OUTER algorithm.

In fact, the notion of canonical ride characterizes the optimal rides for R. In particular, observe that
in the following result, we focus on optimal rides π∗ such that leftIdx(π∗) < rightIdx(π∗). Indeed, the
case where leftIdx(π∗) ≥ rightIdx(π∗) will be eventually addressed by working on the symmetric scenario
sym(R), according to the approach discussed in Section 3.1 (see Fact 5).

Theorem 12 Assume that π∗ is an optimal ride with leftIdx(π∗) < rightIdx(π∗). Then, there are two nodes
M,m ∈ VC ∪ {s0, t0}, with s0 ≤M and m ≤ t0, such that any (M,m)-canonical ride is optimal, too.

The proof of the result is rather involved, and the rest of this section is devoted to illustrate it in detail.

Assume that π∗ is an optimal ride such that leftIdx(π∗) < rightIdx(π∗). We first define a number of
critical time steps and nodes of the path which are useful to analyze the properties of any optimal ride π. To
help the intuition, the reader is referred to Figure 3(a).

Let rm(π) = max1≤i≤leftIdx(π)πi. Note that rm(π) < right(R) necessarily holds. Let rmIdx(π) be
the minimum time step i ≥ leftIdx(R) such that πi = rm(π). Note that that rmIdx(π) is well defined,
because leftIdx(π) < rightIdx(π) and, hence, the ride π has to cross the node rm(π) at least once between
the time step leftIdx(π) and the time step rightIdx(π). In fact, it actually holds that rmIdx(π) < rightIdx(π),
since rm(π) < right(R). Then, define rmLastIdx(π) as the maximum time step i ≤ rightIdx(π) such that
πi = rm(π). Note that rmLastIdx(π) coincides with rmIdx(π) if, and only if, there is no time step i such
that rmIdx(π) < i ≤ rightIdx(π) with πi = rm(π). Again, observe that rmLastIdx(π) < rightIdx(π) holds.

Now, define r̂m(π) = maxrmIdx(π)≤i≤rmLastIdx(π)πi. Since rmLastIdx(π) < rightIdx(π) and since
rightIdx(π) is the minimum time step where the ride reaches the extreme node right(R), we have that
r̂m(π) < right(R). Moreover, r̂m(π) ≥ rm(π) clearly holds. Therefore, there is some time step between
rmLastIdx(π) and rightIdx(π) where π crosses r̂m(π). So, we can define r̂mIdx(π) as the minimum index
i ≥ rmLastIdx(π) such that πi = r̂m(π), by noticing that r̂mIdx(π) < rightIdx(π) holds.

Eventually, define also lm(π) = minrightIdx(π)≤i≤len(π)πi.

Lemma 13 Assume there is an optimal ride π′ such that leftIdx(π′) < rightIdx(π′). Then, there is an
optimal ride π such that leftIdx(π) < rightIdx(π) and where lm(π), r̂m(π) and rm(π) belong to the set
VC ∪ {s0, t0}.

Proof. We illustrate the case of rm, since a similar line of reasoning applies to lm and r̂m. Assume that
rm(π′) ̸∈ VC ∪ {s0, t0}. Consider the succession of rides πj , with j ≥ 0, built as follows. Initially, i.e., for
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Figure 2 Some critical steps of any feasible ride on a path. The gray areas denote the space that
no feasible ride can cross for a given time interval.

Instead, whenever m > M , there can be more than one canonical ride. In this case,
to compute a (M,m)-canonical ride, we need to compute an optimal ride for R(M,m),
which is a scenario fitting the “outer” case and which can be hence addressed via the
RideOnPath_Outer algorithm.

As claimed by the following theorem, the notion of canonical ride characterizes the optimal
rides for R. In particular, observe that in the following result, we focus on optimal rides π∗
such that leftIdx(π∗) < rightIdx(π∗). Indeed, the case where leftIdx(π∗) ≥ rightIdx(π∗) will
be eventually addressed by working on the symmetric scenario sym(R), according to the
approach discussed in Section 3.1 (see Fact 3).

I Theorem 7. Assume that π∗ is an optimal ride with leftIdx(π∗) < rightIdx(π∗). Then, there
are two nodes M,m ∈ VC∪{s0, t0}, with s0 ≤M and m ≤ t0, such that any (M,m)-canonical
ride is optimal, too.

The proof of the result is rather involved, and we provide an overview here. We repeatedly
use exchange arguments to gradually transform a given optimal ride without hurting its quality.
Hence, let us assume that π∗ is a given optimal ride such that leftIdx(π∗) < rightIdx(π∗).

We first define a number of critical time steps and nodes of the path which are useful to
analyze the properties of any optimal ride π. To help the intuition, the reader is referred to
Figure 2(a). Let rm(π) = max1≤i≤leftIdx(π)πi. Note that rm(π) < right(R) necessarily holds.
Let rmIdx(π) be the minimum time step i ≥ leftIdx(R) such that πi = rm(π). Note that
that rmIdx(π) is well defined, because leftIdx(π) < rightIdx(π) and, hence, the ride π has
to cross the node rm(π) at least once between the time step leftIdx(π) and the time step
rightIdx(π). In fact, it actually holds that rmIdx(π) < rightIdx(π), since rm(π) < right(R).
Then, define rmLastIdx(π) as the maximum time step i ≤ rightIdx(π) such that πi = rm(π).
Note that rmLastIdx(π) coincides with rmIdx(π) if, and only if, there is no time step i such that
rmIdx(π) < i ≤ rightIdx(π) with πi = rm(π). Again, observe that rmLastIdx(π) < rightIdx(π)
holds. Now, define r̂m(π) = maxrmIdx(π)≤i≤rmLastIdx(π)πi. Since rmLastIdx(π) < rightIdx(π)
and since rightIdx(π) is the minimum time step where the ride reaches the extreme node
right(R), we have that r̂m(π) < right(R). Moreover, r̂m(π) ≥ rm(π) clearly holds. Therefore,
there is some time step between rmLastIdx(π) and rightIdx(π) where π crosses r̂m(π). So,
we can define r̂mIdx(π) as the minimum index i ≥ rmLastIdx(π) such that πi = r̂m(π), by
noticing that r̂mIdx(π) < rightIdx(π) holds.

A basic transformation preserving optimality is illustrated in the following lemma.

I Lemma 8. Assume there is an optimal ride π ∈ opt(R) such that leftIdx(π) < rightIdx(π).
Then, the ride s0 7→ r̂m(π) 7→ left(R) 7→ r̂m(π) 7→ π[r̂mIdx(π), len(π)] is also optimal.
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Consider now the optimal ride π∗, and the succession of optimal rides πj , with j ≥ 0,
obtained by repeatedly applying Lemma 8. First, we set π0 = π∗. Then, for each j ≥ 0,
we define πj+1 as the optimal ride having the form: s0 7→ r̂m(πj) 7→ left(R) 7→ r̂m(πj) 7→
πj [r̂mIdx(πj), len(πj)].

In the above succession, there must exists an optimal ride πh, with h ≥ 0, such that
r̂m(πh) = rm(πh). Indeed, note that rm(πj+1) = r̂m(πj) holds, for each j ≥ 0, and we
know that, for any optimal ride π, rm(π) ≤ r̂m(π) < right(R). For this optimal ride πh,
we have that rmLastIdx(πh) = r̂mIdx(πh), by definition of these two time steps. Therefore,
πh+1 = s0 7→ rm(πh) 7→ left(R) 7→ rm(πh) 7→ πh[rmLastIdx(πh), len(πh)]. It is possible to
prove that πh+1 satisfies a number of desirable properties, which can informally be summarised
as follows: after time step r̂mIdx(πh) and before reaching right(R), πh+1 never crosses
r̂m(πh) anymore; moreover, let lm(πh+1) = minrightIdx(πh+1)≤i≤len(πh+1)πi, there is no request
(s, t) ∈ C such that t < lm(πh+1), t < r̂m(πh), and r̂m(πh) < s. For lm(πh+1) ≥ rm(πh), πh+1

is depicted in Figure 2(b). Note that, under such condition, πh+1 has an addition critical
node cr(πh+1). Informally speaking, r̂m(πh) is the largest node v, such that it is smaller than
lm(πh+1) and does not admit any crossing request, i.e., a request (s, t) with t < v ≤ s.

The properties of πh+1 allow us to apply a final improving transformation. In particular,
we are able to show that, if lm(πh+1) < rm(πh) then, by setting M = rm(πh) and m =
lm(πh+1), πh+1 can be reduced to the (M,m)-canonical ride depicted in Figure 2(b); otherwise,
by setting M = rm(πh) and m = cr(πh+1), πh+1 can be reduced to any of the (M,m)-
canonical ride depicted in Figure 2(a).

3.2.2 An algorithm for the “inner” case
It is not difficult to see that the result in Theorem 7 immediately provides us with an algorithm
to compute an optimal ride, which is based on exhaustively enumerating all possible pairs
M,m of elements, by computing the associated canonical ride for each of them (either by
exploiting Fact 6 if m ≤M , or using the RideOnPath_Outer algorithm on R(M,m) of
m > M), and by eventually returning the feasible one having minimum cost. Actually, in
order to deal with the case where all optimal rides π∗ are such that leftIdx(π∗) > rightIdx(π∗),
we can just apply the approach over the symmetric scenario sym(R) too (see Fact 3), and
return the best over the rides computed for R and sym(R).

Note that the approach sketched above requires the enumeration of |VC |2 canonical rides.
However, we can do better than a naïve enumeration. To this end, we explore the properties
enjoyed by canonical rides that are optimal applying to the cases where M < m and M ≥ m,
respectively, hold in Theorem 7.

I Theorem 9. Assume that there are two nodes M,m ∈ VC ∪ {s0, t0}, with s0 ≤M , m ≤ t0
and M < m, such that a (M,m)-canonical ride is an optimal ride. Consider the two sets
X̂ = {x ∈ {s0} ∪ VC | x ≥ s0 ∧ @(s, t) ∈ C with t ≤ x < s} and Ŷ = {y ∈ {t0} ∪ VC |
y ≤ t0 ∧ @(s, t) ∈ C with t < y ≤ s}. It holds that X̂ 6= ∅ and Ŷ 6= ∅. Moreover, let
M̂ = minx̂∈X̂ x̂ and m̂ = maxŷ∈Ŷ ŷ, then s0 ≤ M̂ , m̂ ≤ t0, M̂ < m̂ and any (M̂, m̂)-canonical
ride is an optimal ride, too.

I Theorem 10. Assume that there are two nodes M,m ∈ VC ∪ {s0, t0}, with s0 ≤ M ,
m ≤ t0 and m ≤ M , such that the (M,m)-canonical ride πc is an optimal ride. Consider
the set Ẑm = {z ∈ {s0, t0} ∪ VC | m ≤ z and s0 ≤ z ∧ @(s, t) ∈ C with t < m and z < s}.
It holds that Ẑ 6= ∅. Moreover, let M̂m = minẑ∈Ẑm

ẑ, then s0 ≤ M̂ , m ≤ M̂m and the
(M̂m,m)-canonical ride π̂c is optimal, too.
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Algorithm 3: RideOnPath_Inner
Input: A ride-sharing scenario R = 〈G, (s0, t0), C〉, where G is a path and with

{s0, t0} ∩ {v ∈ V | left(R) < v < right(R)} 6= ∅;
Optionally, a Boolean value symmetric—set to false, if not provided;

Output: An optimal ride for R;
/* PHASE I: implementation of Theorem 9 */

1 Compute M̂ and m̂, as defined in Theorem 9; // note that M̂ < m̂

2 π∗ ← any (M̂, m̂)-canonical ride; // use RideOnPath_Outer as a subroutine for
R(M̂, m̂)
/* PHASE II: implementation of Theorem 10 */

3 for each node m ∈ VC ∪ {s0, t0} with m ≤ t0 do
4 Compute M̂m, as defined in Theorem 10; // note that M̂m ≥ m̂
5 π ← the (M̂m,m)-canonical ride; // s0 7→ M̂m 7→ left(R) 7→ right(R) 7→ m 7→ t0
6 if w(π) < w(π∗) then
7 π∗ ← π;

/* PHASE III: working on the symmetric scenario */
8 if symmetric is false then
9 π∗sym ← RideOnPath_Inner(sym(R), true);

10 if w(π∗sym) < w(π∗) then
11 π∗ ← sym(π∗sym);

12 return π∗;

In the light of Theorem 7, Theorem 9 and Theorem 10, consider then Algorithm 3, named
RideOnPath_Inner. It computes an optimal ride π∗ for the “inner” case, by proceeding
in three phases.

In Phase I, the algorithm computes the values M̂ and m̂ defined in Theorem 9 (step 1),
it builds a (M̂, m̂)-canonical ride, and it assigns it to π∗ (step 2). Note that, according to
Definition 5 and given that M̂ < m̂, in order to build a (M̂, m̂)-canonical ride we need to
compute an optimal ride for R(M̂, m̂), which is a task that we can accomplish by exploiting
RideOnPath_Outer as a subroutine—indeed, note that R(M̂, m̂) fits the “outer” case.
In Phase II, the algorithm iterates over all possible values for m in VC ∪ {s0, t0} with m ≤ t0.
For each node m, the value M̂m, defined in Theorem 10, is calculated (step 4). Then,
the (M̂m,m)-canonical ride π is built. In particular, since M̂m ≥ m holds, the ride π is
completely determined by Fact 6. Eventually, if the cost of π is smaller than the cost of
the current value of π∗, it updates π∗ to π (step 7). Finally, Phase III is devoted to deal
with the symmetric scenario sym(R). The idea is that the first two phases are executed
again on sym(R). Let π∗sym be the result of this computation (step 9). Then, we consider the
symmetric ride sym(π∗sym), which is a ride for R, and we compare its cost with the cost of
the current value of π∗ (step 10). As usual, we keep the ride with the associated minimum
cost, which is eventually returned as output (step 12).

Concerning the correctness, note that if R admits an optimal ride π with leftIdx(π) <
rightIdx(π), then by combining Theorem 7 with Theorem 9 and Theorem 10, we get that
either any (M̂, m̂)-canonical ride is optimal, or there is a node m ∈ VC ∪ {s0, t0} for which
the (M̂m,m)-canonical ride is optimal. Instead, if every optimal ride π for R is such that
leftIdx(π) > rightIdx(π), then sym(R) admits an optimal ride that meets the fits the previous
case. We can conclude that an optimal ride for R is one with the smallest cost among any
(M̂, m̂)-canonical ride and every (M̂m,m)-canonical ride, for every value of m in VC ∪{s0, t0},
both for R and for sym(R). Note that RideOnPath_Inner exhaustively searches among
all the possible candidate optimal rides listed above. So, the algorithm is correct.
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3.3 Implementation issues and running time
Note that checking whether an instance fits the “outer” or the “inner” case is feasible in
O(|C|). Our goal is to show that both RideOnPath_Outer and RideOnPath_Inner
can be made to run in O(|C| log |C|+ |V |). So, we eventually establish the following result.

I Theorem 11. Let R = 〈G, (s0, t0), C〉 be a ride-sharing scenario where G = (V,E,w)
is a path. Then, an optimal ride for R (together with its cost) can be computed in time
O(|C| log |C|+ |V |).

In the implementation, we propose to sort these requests in order of starting node and,
accordingly, we shall assume that Ĉ = {(s1, t1), (s2, t2), . . . , (s|Ĉ|, t|Ĉ|)} holds with si ≤ sj
whenever i < j. Similarly, we sort the nodes in VC ∪ {s0, t0}, and hence we assume that
VC ∪ {s0, t0} = {w1, w2, . . . , wr} holds with wi ≤ wj whenever i < j. Moreover, for each
node wi ∈ VC ∪ {s0, t0}, we define the set F (wi) = {j | (sj , tj) ∈ Ĉ ∧ (wi = sj or wi = tj)},
maintained as linked list. And, finally, for each element j in F (wi) we keep a label lij ∈ {s, t}
denoting whether wi is a starting (s) or a terminating (t) node of request j. This is feasible in
O(|C| log |C|). Given the pre-processing, it is not difficult to show that RideOnPath_Outer
can be implemented in O(|C| log |C| + |V |), where the extra O(|V |) factor comes from the
need of explicitly building the ride and computing the associated cost.

Let us then analyze RideOnPath_Inner and let us focus on Phase I and Phase II,
since it is immediate to check that Phase III has the same complexity.

Concerning Phase I, we first need to compute M̂ and m̂. To this end, we iterate through
the nodes in VC ∪ {s0, t0} in order of increasing index, starting from w1. Throughout the
iteration, we maintain a set S of indexes of requests in Ĉ. Initially S = ∅; during the k-th
iteration, we add to S every j ∈ F (wk) with lkj = t, and we remove from S every j ∈ F (wk)
with lkj = s. Note that, at the end of the iteration, S contains all the elements in Pwk

, so
that if wk ≥ s0 and S = ∅, then we terminate by concluding that wk is the smallest element
in X̂. Given the existence of M̂ , such procedure always terminates. For the complexity
analysis, observe that every request in Ĉ is added and removed from S exactly once. Hence,
the time taken by the procedure is at most O(|Ĉ|) times the maximum cost for performing
each operation. If the set S is maintained as a binary min-heap, where the key of each
request is its starting node, removing an element from S with label s corresponds to extract
the element with smallest key, and both the insertion and the removal can be made to run in
time O(log |Ĉ|). A similar approach can be used to compute m̂. Thus, Phase I takes total
time O(|Ĉ| log |Ĉ|), hence O(|C| log |C|), to define the pair M̂, m̂. A canonical ride with its
associated cost can be then computed in O(|C| log |C|+ |V |), since the dominant operation is
the invocation of the algorithm for the outer case.

Concerning Phase II, let m ∈ VC ∪ {s0, t0} with m ≤ t0, and let M̂m be the node
as defined in Theorem 10. Consider the set Qm = {(s′, t′) ∈ C | t′ < m < s′}, and let
um = max{m, s0} if Qm = ∅, and um = max{s0, max(s′,t′)∈Qm

s′} otherwise. Then, we can
show that M̂m = um.

Therefore, for every node wi ∈ VC ∪ {s0, t0}, M̂wi
is defined as the maximum between wi

and s0, if Qwi is not empty, or the maximum between s0 and max(s′,t′)∈Qwi
s′, otherwise. So,

the dominant operation is the computation of Qwi
. To this end, for every wi ∈ VC ∪ {s0, t0},

we iterate through the nodes in VC ∪{s0, t0} in order of increasing index. Note that Qwi
⊆ Ĉ,

hence equivalently we can write Qwi
= {(s′, t′) ∈ Ĉ | t′ < wi < s′}; this implies that, in order

to compute Qwi
, we need of only the requests in Ĉ and we can use the usual data structures.

More specifically, we iterate through the nodes in VC ∪ {s0, t0} in order of increasing index,
starting from w1. Initially, we define a set S = ∅. During the k-th iteration, we remove
from S every j ∈ F (wk) with lkj = s, and if k ≥ 2 we add to S every j ∈ F (wk−1) with
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l(k−1)j = t. Note that, at the end of the iteration, S contains all the elements in Qwk
. Thus,

if S = ∅, then we set Mwk
to max{m, s0}, otherwise we set Mwk

to max{s0, max(s′,t′)∈S s
′}.

In the latter case, we need to calculate max(s′,t′)∈S s
′, i.e., to search in S for the request

with the largest starting node. We continue in this fashion until we run out of nodes. For the
complexity analysis, observe that every request in Ĉ is added and removed from S exactly
once. Moreover, at the end of each iteration, we need to search in S for the request with
the largest starting node, in order to calculate max(s′,t′)∈S s′. Hence, the time taken by
the procedure is at most O(|Ĉ|) times the maximum cost for performing each operation.
If the set S is maintained as a binary min-max-heap, where the key of each request is its
starting node, removing an element from S with label s corresponds to extract the element
with smallest key, hence both the insertion and the removal can be made to run in time
O(log |Ĉ|); moreover, calculating max(s′,t′)∈S s

′ corresponds to search for the element with
largest key, which takes only constant time. Thus, the computation of M̂wi , for every node
wi ∈ VC ∪ {s0, t0}, takes a total time O(|Ĉ| log |Ĉ|), hence O(|C| log |C|).

Now, note that the computation of the (M̂m,m)-canonical ride takes constant time, since
by Fact 6, we know that this ride has the form s0 7→ M̂m 7→ left(R) 7→ right(R) 7→ m 7→ t0.
Then, the remaining operation in Phase II is the comparison between the cost of the given
best ride and cost of the current ride. We have already seen that the computation of the
cost of rides built in Phase I can be accommodated in the overall O(|C| log |C|+ |V |) cost.
Now, we claim that the computation of the cost of the (M̂m,m)-canonical ride takes constant
time, provided a suitable pre-processing. Indeed, observe that the (M̂m,m)-canonical ride is
succinctly represented by a constant number of nodes. The idea is then to associate each
node x ∈ V with the value cw(x) =

∑x
i=2 w({i, i+ 1}), which is overall feasible in O(|V |).

Then, the cost for a rides moving from a node x to a node y, along the unique path as defined
in the notion of canonical ride, is just given by the value |cw(y)− cw(x)|. Therefore, with a
constant overhead, the cost of the (M̂m,m)-canonical ride can be computed. Putting it all
together, Phase II can be implemented in O(|C| log |C|+ |V |), too.

4 Optimal Rides on Cycles

In this section, we consider scenarios R = 〈G, (s0, t0), C〉 such that the underlying graph
G = (V,E,w), with V = {1, . . . , n}, is a cycle. Formally, for each node v ∈ V \ {n}, the edge
{v, v + 1} is in E; moreover, the edge {n, 1} is in E; and no further edge is in E. Without
loss of generality, we assume s0 = 1.

The solution approach we shall propose is to reuse the methods we have already developed
to deal with scenarios over paths. In this section, we define the key technical ingredients,
and based on them an algorithm will be subsequently illustrated. Let π be a ride on R,
and let us associate each of its time steps i with a “virtual” node τπ(i) = πi + (`π(i) −
minj∈{1,...,len(π)}`π(j)) · n, where `π(1) = 0 and where, for each i ∈ {2, . . . , len(π)}, `π(i) is
an integer defined as follows: `π(i) = `π(i−1)+1 if πi−1 = n and πi = 1; `π(i) = `π(i−1)−1
if πi−1 = 1 and πi = n; and `π(i) = `π(i− 1) otherwise.

Intuitively, the function τπ keeps track of the number of times in which the cycle is
completely traversed by the ride, either clockwise or anti clockwise. Note that τπ(i) mod n =
πi.

Let cw(π) (resp., acw(π)) be the maximum (resp., minimum) value of τπ(i) over all time
steps i ∈ {1, . . . , len(π)}. Let cwIdx(π) (resp., acwIdx(π)) be the minimum time step i ∈
{1, . . . , len(π)} such that τπ(i) = acw(π) (resp., τπ(i) = cw(π)). Note that 1 ≤ acw(π) ≤ n
always hold, by definition of τπ. In fact, over optimal rides, useful characterizations and
bounds can be derived for both acw(π) and cw(π).
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Algorithm 4: RideOnCycle
Input: A ride-sharing scenario R = 〈G, (s0, t0), C〉, where G is a cycle;
Output: An optimal ride for R ;

1 for each tuple 〈α, β, vs0 , vt0 , s
◦, t◦〉 of elements as in Theorem 14 do

2 Let π◦ be an optimal ride for 〈G◦, (vs0 , vt0 ), C◦α,β ∪ {(s◦, t◦)}〉;
3 if π∗ is not yet defined or w◦(π◦) < w◦(π∗) then
4 π∗ ← π◦;

5 return π∗1 mod n, . . . , π∗len(π∗) mod n;

I Lemma 12. An optimal ride π exists with cw(π) ≤ 3n and {cw(π) mod n, acw(π) mod n} ⊆
VC ∪ {s0, t0}.

Now, consider the path G◦ = (V ◦, E◦, w◦), where V ◦ = {1, . . . , 3n} and where w◦ is the
function such that w◦({v, v + 1}) = w({v mod n, (v + 1)mod n}). For each pair of nodes
α, β ∈ V ◦ with α ≤ β, let us define V ◦α,β as the set of nodes v ∈ {α, . . . , β} for which no other
distinct node v′ ∈ {α, . . . , β} exists such that v mod n = v′ mod n. Note that if β < α + n,
then V ◦α,β = {α, . . . , β}; if β ≥ α+ 2n− 1, then V ◦α,β = ∅; if α+ n ≤ β < α+ 2n− 1, then
V ◦α,β = {β − n+ 1, . . . , α+ n− 1}. Moreover, define C◦α,β = {(vs, vt) | (vs mod n, vt mod n) ∈
C, vs ∈ V ◦α,β , vt ∈ V ◦α,β}.

I Theorem 13. Let π be a feasible ride for R with cw(π) ≤ 3n and such that acwIdx(π) ≤
cwIdx(π) (resp., acwIdx(π) > cwIdx(π)). Let α = acw(π) and β = cw(π), and let (s◦, t◦) =
(α, β) (resp., (s◦, t◦) = (β, α)). Then, the ride τπ(1), ..., τπ(len(π)) is feasible for
〈G◦, (τπ(1), τπ(len(π))), C◦α,β ∪ {(s◦, t◦)}〉.

Intuitively, the result tells us that feasible rides for R are mapped into feasible rides for a
suitable defined scenario over a path. Below, we show that the converse also holds, under
certain technical conditions.

I Theorem 14. Assume that: (i) α, β ∈ V ◦ is a pair of nodes such that {α mod n, β mod n} ⊆
VC ∪ {s0, t0}, 1 ≤ α, β ≤ 3n, and such that, for each x ∈ VC ∪ {s0, t0}, there is a node
vx ∈ V ◦ with α ≤ vx ≤ β and x = vx mod n. (ii) vs0 , vt0 ∈ V ◦ is a pair of nodes such that
α ≤ vs0 ≤ β, α ≤ vt0 ≤ β, vs0 mod n = s0, and vt0 mod n = t0. (iii) (s◦, t◦) is a request such
that (s◦, t◦) ∈ {(α, β), (β, α)}. Let π◦ be a feasible ride for 〈G◦, (vs0 , vt0), C◦α,β ∪ {(s◦, t◦)}〉.
Then, π◦1 mod n, . . . , π◦len(π◦) mod n is a feasible ride for R.

Armed with the above technical ingredients, we can now illustrate Algorithm 4, which we
refer to as RideOnCycle. This algorithm computes an optimal ride for any ride-sharing
scenario R = 〈G, (s0, t0), C〉, with G being a cycle. The algorithm founds on the idea of
enumerating each possible tuple 〈α, β, vs0 , vt0 , s

◦, t◦〉 of elements as in Theorem 14. For each
given configuration, the optimal ride π◦ over the scenario 〈G◦, (vs0 , vt0), C◦α,β ∪ {(s◦, t◦)}〉 is
computed. Eventually, π∗ is defined (see step 3) as the ride with minimum cost (w.r.t. w◦)
over such rides π◦. The ride π∗1 mod n, . . . , π∗len(π∗) mod n is then returned. Now, we claim
the following.

I Theorem 15. Let R = 〈G, (s0, t0), C〉 be a ride-sharing scenario where G = (V,E,w) is a
cycle. Then, an optimal ride for R can be computed in time O(|VC |2 · (|C| log |C|+ |V |)).

In order to analyze the correctness, observe that by Theorem 14, the ride returned as
output, say Λ∗ = π∗1 mod n, . . . , π∗len(π∗) mod n, is necessarily feasible for R. Therefore,
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assume for the sake of contradiction that there is an optimal ride π for R such that
w(π) < w(Λ∗). In particular, by construction of w◦, we derive that w(π) < w(Λ∗) =
w◦(π∗). Now, by Lemma 12, we can actually assume, w.l.o.g., that cw(π) ≤ 3n and
{cw(π) mod n, acw(π) mod n} ⊆ VC∪{s0, t0} hold. So, we can apply Theorem 13 and derive the
existence of a tuple 〈α, β, vs0 , vt0 , s

◦, t◦〉 of elements, with vs0 = τπ(1) and vt0 = τπ(len(π)),
satisfying properties (i), (ii), and (iii) in Theorem 14 and such that Υ = τπ(1), ..., τπ(len(π))
is feasible for 〈G◦, (vs0 , vt0), C◦α,β ∪{(s◦, t◦)}〉. In particular, by construction of w◦, we derive
that w◦(Υ) = w(π). However, the algorithm has compared the weight of Υ and π∗, and
hence we know that w(π) = w◦(Υ) ≥ w◦(π∗), which is impossible.

Let us finally discuss about the implementation and running time of the algorithm. Before
starting the loop, we first compute the sets W = {w ∈ V ◦ | 1 ≤ w ≤ 3n and (w mod n) ∈
VC ∪ {s0, t0}} and C◦ = {(s, t) ∈W | (s mod n, t mod n) ∈ C}; this can be done in time O(|C|)
by iterating through the requests in C. Note that |W | = O(|VC |) and C◦| = O(|C|). Now,
note that the number of iterations of RideOnCycle corresponds to the number tuples
〈α, β, vs0 , vt0 , s

◦, t◦〉 which satisfy the conditions of Theorem 14. The number of possible
pairs (α, β) is W 2 = O(|VC |2). Checking whether condition (i) in Theorem 14 holds on them
can be simply accomplished by checking that every element x ∈ VC ∪ {s0, t0}} is such that
α mod n ≤ x ≤ β mod n. So, it can be done in constant time after that, in a pre-processing
step costing O(|VC |), the minimum and maximum element in VC ∪ {s0, t0}} have been
computed. Moreover, note that since 1 ≤ α, β ≤ 3n, according to Theorem 14, there are
at most 3 possible choices for s0 (resp, t0); in addition, there are just two alternatives for
the pair s◦, t◦. Hence, summarizing we have that all tuples satisfying the conditions of
Theorem 14 can be enumerated in O(|VC |2). Then, by inspecting the operations performed
at each iteration, for each tuple 〈α, β, vs0 , vt0 , s

◦, t◦〉, we have to compute the set C◦α,β . To
this end, we search among the elements in C◦ for the pairs (s, t) having both nodes in V ◦α,β ;
this step takes O(|C|). Finally, on the resulting scenario defined on a path, we apply the
algorithm for computing an optimal ride, which costs O(|C| log |C|+ |V |). Hence the result
in the theorem follows.
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