Computing DAWGs and Minimal Absent Words in
Linear Time for Integer Alphabets

Yuta Fujishige!, Yuki Tsujimaru?, Shunsuke Inenaga®, Hideo
Bannai?, and Masayuki Takeda®

1 Department of Informatics, Kyushu University, Japan
yuta.fujishige@inf.kyushu-u.ac. jp

2 Department of Electrical Engineering and Computer Science, Kyushu
University, Japan

3 Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac. jp

4 Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac. jp

5 Department of Informatics, Kyushu University, Japan
takeda@Qinf.kyushu-u.ac. jp

—— Abstract

The directed acyclic word graph (DAWG) of a string y is the smallest (partial) DFA which re-
cognizes all suffixes of y and has only O(n) nodes and edges. We present the first O(n)-time
algorithm for computing the DAWG of a given string y of length n over an integer alphabet
of polynomial size in n. We also show that a straightforward modification to our DAWG con-
struction algorithm leads to the first O(n)-time algorithm for constructing the affiz tree of a
given string y over an integer alphabet. Affix trees are a text indexing structure supporting bid-
irectional pattern searches. As an application to our O(n)-time DAWG construction algorithm,
we show that the set MAW (y) of all minimal absent words of y can be computed in optimal
O(n+ |[MAW (y)|) time and O(n) working space for integer alphabets.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases string algorithms, DAWGs, suffix trees, minimal absent words

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.38

1 Introduction

Text indexes are fundamental data structures that allow for efficient processing of string data,
and have been extensively studied. Although there are several alternative data structures
which can be used as an index, such as suffix trees [18] and suffix arrays [11], in this paper,
we focus on directed acyclic word graphs (DAWGS) proposed by Blumer et al. [3]. Intuitively,
the DAWG of string y, denoted DAWG(y), is an edge-labeled DAG obtained by merging
isomorphic subtrees of the trie representing all suffixes of string y, called the suffix trie of y.
Hence, DAWG (y) can be seen as an automaton recognizing all suffixes of y. Let n be the
length of the input string y. Despite the fact that the number of nodes and edges of the
suffix trie can be as large as O(n?), Blumer et al. [3] proved that, surprisingly, DAWG (y)
has at most 2n — 1 nodes and 3n — 4 edges for n > 2. Crochemore [5] showed that DAWG(y)
is the smallest (partial) automaton recognizing all suffixes of y, namely, the sub-tree merging
operation which transforms the suffix trie to DAWG(y) indeed minimizes the automaton.
Since DAWG(y) is a DAG, in general, more than one string can be represented by its
node. It is known that every string represented by the same node of DAWG(y) has the

© Yuta Fujishige, Yuki Tsujimaru, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda;
oY licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).

Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 38; pp. 38:1-38:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.38
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2

Computing DAWGSs and Minimal Absent Words in Linear Time for Integer Alphabets

Table 1 Space requirements and construction times for text indexing structures for input strings
of length n over an alphabet of size o.

space (in words) construction time
ordered alphabet ‘ integer alphabet ‘ constant alphabet

suffix tries O(n?) O(n?) O(n?) O(n?)

suffix trees O(n) O(nlogo) [12] O(n) [8] O(n) [18]

suffix arrays || O(n) O(nlogo) [12]+[11] | O(n) [8]+]11] O(n) [18]+[11]
DAWGSs O(n) O(nlogo) [3] O(n) [this work] | O(n) [3]
CDAWGS O(n) O(nlogo) [4] O(n) [14] O(n) [4]

affix trees O(n) O(nlogo) [10] O(n) [this work] | O(n) [10]

same set of ending positions in the string y. Due to this property, if z is the longest string
represented by a node v of DAWG (y), then any other string represented by the node v is a
proper suffix of z. Hence, the suffix link of each node of DAWG(y) is well-defined; if ax is
the shortest string represented by node v where «a is a single character and x is a string, then
the suffix link of az points to the node of DAWG(y) that represents string x.

One of the most intriguing properties of DAWGs is that the suffix links of DAWG (y)
for any string y forms the suffix tree [18] of the reversed string of y. Hence, DAWG (y)
augmented with suffix links can be seen as a bidirectional text indexing data structure. This
line of research was followed by other types of bidirectional text indexing data structures
such as symmetric compact DAWGs (SCDAWGS) [4] and affix trees [15, 10]. DAWGs with
suffix links also have applications to other kinds of string processing problems which are not
always easily solvable by using suffix trees or arrays, such as: finding minimal absent words
for a given string [7, 16], finding a-gapped repeats that occur in a given string [17], finding
maximal-exponent repeats in a given overlap-free string [1], computing the Lempel-Ziv 77
factorization [20] of a given string in an online manner and with compact space [19].

Time complexities for constructing text indexing data structures depend on the underlying
alphabet. See Table 1. For a given string y of length n over an ordered alphabet of size o, the
suffix tree [12], the suffix array [11], the DAWG, and the compact DAWGs (CDAWGS) [4] of y
can all be constructed in O(nlog o) time. These immediately lead to O(n)-time construction
algorithms for a constant alphabet.

In this paper, we are particularly interested in input strings of length n over an integer
alphabet of polynomial size in n. Farach-Colton et al. [8] proposed the first O(n)-time suffix
tree construction algorithm for integer alphabets. Since the out-edges of every node of
the suffix tree constructed by McCreight’s [12] and Farach-Colton et al’s algorithms are
lexicographically sorted, and since sorting is an obvious lower-bound for constructing edge-
sorted suffix trees, the above-mentioned suffix-tree construction algorithms are optimal for
ordered and integer alphabets, respectively. Since the suffix array of y can be easily obtained
in O(n) time from the edge-sorted suffix tree of y, suffix arrays can also be constructed in
optimal time. In addition, since the edge-sorted suffix tree of y can easily be constructed in
O(n) time from the edge-sorted CDAWG of y, and since the edge-sorted CDAWG of y can be
constructed in O(n) time from the edge-sorted DAWG of y [4], sorting is also a lower-bound
for constructing edge-sorted DAWGs and edge-sorted CDAWGs. Using the technique of
Narisawa et al. [14], edge-sorted CDAWGS can be constructed in optimal O(n) time for
integer alphabets. On the other hand, the only known algorithm to construct DAWGs was
Blumer et al’s O(nlog o)-time online algorithm [3] for ordered alphabets of size o, which
results in O(nlogn)-time DAWG construction for integer alphabets.

Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda

In this paper, we close the gap between the upper and lower bounds for DAWG construc-
tion, by proposing the first O(n)-time algorithm to construct edge-sorted DAWGs for integer
alphabets. Our algorithm also computes the suffix links, and can thus be applied to various
kinds of string processing problems. Our algorithm builds DAWG(y) for a given string y by
transforming the suffix tree of y to DAWG(y). In other words, our algorithm simulates the
minimization of the suffix trie of y to DAWG(y) using only O(n) time and space.

A simple modification to our O(n)-time DAWG construction algorithm also leads us to
the first O(n)-time algorithm to construct affix trees for integer alphabets. We remark that
the previous best known affix-tree construction algorithm of Maaf} [10] requires O(nlogn)
time for integer alphabets.

As an application of our O(n)-time DAWG construction algorithm, we present the first
optimal time algorithm to compute minimal absent words for a given string. Let MAW (y)
be the set of minimal absent words of y. Crochemore et al. [7] proposed an algorithm to
compute MAW (y) in O(no) time and O(n) working space. Their algorithm first constructs
DAWG (y) with suffix links in O(nlogo) time and compute MAW (y) in O(no) time using
DAWG(y) and its suffix links. Since |[MAW (y)| = O(no), the output size |MAW (y)| is
hidden in the running time of their algorithm. In this paper, we show that MAW (y) can be
computed in output-sensitive O(n + |MAW (y)|) optimal time for integer alphabets. We first
construct edge-sorted DAWG(y) in O(n) time using the algorithm we propose in this paper.
Then, we show that a slight modification to Crochemore et al’s algorithm [7] finds MAW (y)
in O(n + |[MAW (y)|) time. We emphasize that for non-constant alphabets Crochemore et
al’s algorithm takes super-linear time in terms of the input string length independently of
the output size |[MAW (y)|, and thus our results greatly improves the efficiency for integer
alphabets. Belazzougui et al. [2] showed that using a representation of the bidirectional BWT
of the input string y, MAW (y) can be computed in O(n + |MAW (y)|) time. However, the
construction time for the representation of the bidirectional BWT is not given in [2].

Our result can also be applied to recent work by Crochemore et al. [6] for string comparison
with minimal absent words, resulting in a more efficient algorithm for string comparison with
minimal absent words for integer alphabets.

2 Preliminaries

2.1 Strings

Let X denote the alphabet. An element of ¥* is called a string. Let € denote the empty string,
and let X1 = ¥* \ {e¢}. For any string y, we denote its length by |y|. For any 1 <i <y, we
use y[i] to denote the ith character of y. If y = wvw with u, v, w € ¥*, then u, v, and w are
said to be a prefir, substring, and suffiz of y, respectively. For any 1 < ¢ < j < |y|, y[i..]]
denotes the substring of y which begins at position ¢ and ends at position j. For convenience,
let y[i..j] = € if i > j. Let Substr(y) and Suffiz(y) denote the set of all substrings and that
of all suffixes of y, respectively.

Throughout this paper, we will use y to denote the input string. For any string z € 3%,
we define BegPos(x) = {i | i € [1,|y| — |z| + 1], y[i-i + |z| — 1] = =}, EndPos(x) = {i | i €
[lz],|yl], y[i — |x| + 1..i] = x}, i.e., the set of beginning and end positions of occurrences of
2 in y. For any strings u, v, we write u =1, v (resp. u =g v) when BegPos(u) = BegPos(v)
(resp. EndPos(u) = EndPos(v)). For any string « € ¥*, the equivalence classes with respect
to =1, and =g that 2 belongs to, are respectively denoted by [#]; and [z]z. Also, 2 and T
respectively denote the longest elements of [z];, and [z]g.

38:3

MFCS 2016

38:4

Computing DAWGSs and Minimal Absent Words in Linear Time for Integer Alphabets

For any set S of strings where no two strings are of the same length, let long(S) =
argmax{|z| | ¢ € S} and short(S) = arg min{|x| | z € S}.

In this paper, we assume that the input string y of length n is over the integer alphabet
[1,n°] for some constant ¢, and that the last character of y is a unique character denoted by
$ that does not occur elsewhere in y. Our model of computation is a standard word RAM of
machine word size log, n. Space complexities will be evaluated by the number of words (not
bits).

2.2 Suffix trees and DAWGs

Suffix trees [18] and directed acyclic word graphs (DAWGSs) [3] are fundamental text data
structures. Both of these data structures are based on suffix tries. The suffiz trie for string
y, denoted STrie(y), is a trie representing Substr(y), formally defined as follows.

» Definition 1. STrie(y) for string y is an edge-labeled rooted tree (Vr, E7) such that

Vr = {x]|x € Substr(y)}
Er = {(z,b,zb)|x,xbe Vr,be X}

The second element b of each edge (x, b, xb) is the label of the edge. We also define the set
Lt of labeled “reversed” edges called the suffiz links of STrie(y) by

Lt ={(ax,a,z) | z,ax € Substr(y),a € X}.

As can be seen in the above definition, each node v of STrie(y) can be identified with the
substring of y that is represented by v. Assuming that string y terminates with a unique
character that appears nowhere else in y, for each suffix y[i..|y|] € Suffiz(y) there is a unique
leaf ¢; in STrie(y) such that the suffix y[i..|y|] is spelled out by the path from the root to ;.

It is well known that STrie(y) requires O(n?) space. One idea to reduce its space to O(n)
is to contract each path consisting only of non-branching edges into a single edge labeled with
a non-empty string. This leads to the suffix tree STree(y) of string y. Following conventions
from [4, 9], STree(y) is defined as follows.

» Definition 2. STree(y) for string y is an edge-labeled rooted tree (Vg, Eg) such that

Vs = {2 |z e Substr(y)}
Es = {(,B,28)|z.28€ Vs, et b=p1],zb=ap).

The second element 3 of each edge (z, 3, z3) is the label of the edge. We also define the set
Lg of labeled “reversed” edges called the suffiz links of STree(y) by

Ls = {(ax,a,z) | z,ax € Vg,a € ¥},
and denote the tree (Vg, Lg) of the suffix links by SLT(y).

Observe that each internal node of STree(y) is a branching internal node in STrie(y). Note
that for any = € Substr(y) the leaves in the subtree rooted at @ correspond to BegPos(z).
By representing each edge label 8 with a pair of integers (4, j) such that y[i..j] = 3, STree(y)
can be represented with O(n) space.

An alternative way to reduce the size of STrie(y) to O(n) is to regard STrie(y) as a
partial DFA which recognizes Suffiz(y), and to minimize it. This leads to the directed acyclic
word graph DAWG((y) of string y. Following conventions from [4, 9], DAWG(y) is defined as
follows.

Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda

~— i ———

Suffix Trie Suffix Tree

Figure 1 STrie(y), STree(y), and DAWG(y) for string y = abaa$. The solid arcs represent edges,
and the broken arcs represent suffix links.

» Definition 3. DAWG(y) of string y is an edge-labeled DAG (Vp, Ep) such that

Vb = {[z]g |z € Substr(y)}
Ep {([x]R, b, [xb]R) | z,xzb € Substr(y),b € ¥}.

We also define the set Lp of labeled “reversed” edges called the suffiz links of DAWG (y) by
Lp = {([ax]R, a, [z]R) | ,azx € Substr(y),a € 3, [ax]r # [x]r}-
See Figure 1 for examples of STrie(y), STree(y), and DAWG(y).

» Theorem 4 ([3]). For any string y of length n > 2, the number of nodes in DAWG (y) is
at most 2n — 1 and the number of edges in DAWG(y) is at most 3n — 4.

Minimization of STrie(y) to DAWG(y) can be done by merging isomorphic subtrees of
STrie(y) which are rooted at nodes connected by a chain of suffix links of STrie(y). Since
the substrings represented by these merged nodes end at the same positions in y, each node
of DAWG(y) forms an equivalence class [z]r. We will make an extensive use of this property
in our O(n)-time construction algorithm for DAWG(y) over an integer alphabet.

2.3 Minimal Absent Words

A string z is said to be an absent word of another string y if « ¢ Substr(y). An absent word
x of y is said to be a minimal absent word (MAW) of y if Substr(x) \ {z} C Substr(y). The
set of all MAWs of y is denoted by MAW (y). For example, if ¥ = {a,b,c} and y = abaab,
then MAW (y) = {aaa, aaba, bab, bb, c}.

» Lemma 5 ([13]). For any stringy € ¥*, 0 < |MAW (y)| < (o, — 1)(|y| — 1) + o, where
o =|X| and o, is the number of distinct characters occurring in y. This bound is tight.

The next lemma follows from the definition of MAWs.

» Lemma 6. Let y be any string. For any characters a,b € 3 and string © € ¥*, axb €
MAW (y) iff axb ¢ Substr(y), ax € Substr(y), and b € Substr(y).

By Lemma 6, we can encode each MAW axb of y in O(1) space by (i, j, b), where ax = yli..j].

3 Constructing DAWGSs in O(n) Time for Integer Alphabet

In this section, we present an optimal O(n)-time algorithm to construct DAWG(y) with
suffix links Lp for a given string y of length n over an integer alphabet. Our algorithm
constructs DAWG (y) with suffix links Lp from STree(y) with suffix links Lg. The following
result is known.

38:5

MFCS 2016

38:6

Computing DAWGSs and Minimal Absent Words in Linear Time for Integer Alphabets

Figure 2 An example of STree’(y) with string y = aabcabcab$.

» Theorem 7 ([8]). Given a string y of length n over an integer alphabet, edge-sorted
STree(y) with suffiz links Lg can be computed in O(n) time.

Let £ and R be, respectively, the sets of longest elements of all equivalence classes on
y w.r.t. = and =g, namely, £ = {Z | z € Substr(y)} and R = {& | x € Substr(y)}. Let
STree! (y) = (V¢, ES) be the edge-labeled rooted tree obtained by adding extra nodes for
strings in R to STree(y), namely,

Ve = {z|zeLUR},

By = {(z,B,28)|x,aB € Vg, B €T,
1<Vi<|B,z-B[1..i] ¢ VE}.

Notice that the size of STree'(y) is O(n), since |[CUR| < |Vg| + | Vp| = O(n), where Vg and
Vp are respectively the sets of nodes of STree(y) and DAWG (y).

A node z € V§ of STree/(y) is called black iff x € R. See Figure 2 for an example of
STree' (y).

» Lemma 8. For any x € Substr(y), if x is represented by a black node in STree'(y), then
every prefiz of x is also represented by a black node in STree' (y).

Proof. Since z is a black node, z = . Assume on the contrary that there is a proper prefix
z of x such that z is not represented by a black node. Let zu = x with u € XT. Since
z=p ‘%z, we have = zu =g Zu. On the other hand, since z is not black, we have |Z| > |z|.
However, this contradicts that x is the longest member T of [x]g. Thus, every prefix of z is
also represented by a black node. <

» Lemma 9. For any string y, let BT (y) be the trie consisting only of the black nodes of
STree'(y). Then, every leaf £ of BT (y) is a node of the original suffix tree STree(y).

Proof. Assume on the contrary that some leaf ¢ of BT (y) corresponds to an internal node
of STree’(y) that has exactly one child. Since any substring in £ is represented by a node of
the original suffix tree STree(y), we have £ € R. Since £ = £, £ is the longest substring of y
which has ending positions EndPos(¢) in y. This implies one of the following situations: (1)
occurrences of ¢ in y are immediately preceded by at least two distinct characters a # b, (2)
¢ occurs as a prefix of y and all the other occurrences of ¢ in y are immediately preceded
by a unique character a, or (3) ¢ occurs exactly once in y as its prefix. Let u be the only

Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda

plso) plsy) plsy)

S

=50 - - - - >0~ - - 3@ - - >
p(ss p(‘u)ap(ss) p(»vﬁ)a

—-C
Pl NPAs:) Q

B,

Figure 3 (Left): Illustration for a part of STree’(y), where the branching nodes are those that
exist also in the original suffix tree STree(y). Suppose we have just visited node z = so (marked by
a star) in the post-order traversal on STree’(y). Here, so, ..., s9 are connected by a chain of the
suffix links starting from so, and sy is the first black node after so in the chain. In the corresponding
DAG D, we will add in-coming edges to the black nodes in the path from p(z) to z, and will add
suffix links from these black nodes in the path. The sequence so, ..., sm of nodes in STree (y) is
partitioned into blocks, such that that the parents of the nodes in the same block belong to the same
equivalence class w.r.t. =g. (Right): The in-coming edges and the suffix links have been added to
the nodes in the path from p(z) to z = so.

child of ¢ in STree’(y), and let £z = u, where z € ¥ . By the definition of £, u is not black.
On the other hand, in any of the situations (1)-(3), u = £z is the longest substring of y
which has ending positions EndPos(u) in y. Hence we have u = & and w must be black, a
contradiction. Thus, every leaf ¢ of BT (y) is a node of the original suffix tree STree(y). <«

» Lemma 10 ([14]). For any node x € Vg of the original suffiz tree STree(y), its cor-
responding node in STree'(y) is black iff (1) x is a leaf of the suffix link tree SLT(y), or
(2) z is an internal node of SLT(y) and for any character a € ¥ such that ax € Vg,
|BegPos(ax)| # |BegPos(z)]|.

Using Lemma 9 and Lemma 10, we can compute all leaves of BT (y) in O(n) time by a
standard traversal on the suffix link tree SLT(y). Then, we can compute all internal black
nodes of BT (y) in O(n) time using Lemma 8. Now, by Theorem 7, the next lemma holds:

» Lemma 11. Given a string y of length n over an integer alphabet, edge-sorted STree' (y)
can be constructed in O(n) time.

We construct DAWG (y) with suffix links Lp from STree’(y), as follows. First, we construct
a DAG D, which is initially equivalent to the trie BT (y) consisting only of the black nodes
of STree'(y). Our algorithm adds edges and suffix links to D, so that the DAG D will finally
become DAWG(y). In so doing, we traverse STree’(y) in post-order. For each black node
x of STree(y) visited in the post-order traversal, which is either an internal node or a leaf
of the original suffix tree STree(y), we perform the following: Let p(z) be the parent of x
in the original suffiz tree STree(y). It follows from Lemma 8 that every prefix 2’ of x with
Ip(z)| < |2'| < |z| is represented by a black node. For each black node 2’ in the path from
p(z) to in the DAG D, we compute the in-coming edges to 2’ and the suffix link of ’.

Let sg, ..., Sm be the sequence of nodes connected by a chain of suffix links starting from
so = x, such that |BegPos(s;)| = |BegPos(sg)| for all 0 < i < m — 1 and |BegPos(sy,)| >
| BegPos(sg)| (see the left diagram of Figure 3). In other words, s, is the first black node

38:7

MFCS 2016

38:8

Computing DAWGSs and Minimal Absent Words in Linear Time for Integer Alphabets

after sq in the chain of suffix links (this is true by Lemma 10). Since |s;| = |s;—1]|+1 for every
1<i<m-—1, EndPos(s;) = EndPos(sg). Thus, sg,. .., Sm—1 form a single equivalence class
w.r.t. =g and are represented by the same node as z = sy in the DAWG.

For any 0 <14 <m—1,let d(s;) = |s;]—|p(s;)|. Observe that the sequence d(so),...,d(sm)
is monotonically non-increasing. We partition the sequence sq, ..., s, of nodes into blocks
so that the parents of all nodes in the same block belong to the same equivalence class w.r.t.
=pg. Let r be the number of such blocks, and for each 0 < k <r—1,let By = s;,,..., 84,1
be the kth such block. Note that for each block By, p(s;,) is the only black node among the
parents p(s;,), ..., p(s4,,—1) of the nodes in By, since it is the longest one in its equivalence
class [p(si,)]r- Also, every node in the same block has the same value for function d. Thus,
for each block By, we add a new edge (p(s;,), bk, qr) to the DAG D, where gy, is the (black)
ancestor of x such that |qx| = |z| — d(s;,) + 1, and by, is the first character of the label of the
edge from p(s;,) to s;, in STree’(y). Notice that this new edge added to D corresponds to
the edges between the nodes in the block By and their parents in STree’(y). We also add a
suffix link (p(qx),a, p(s;,)) to D, where a = s;, —1[1]. See also the right diagram of Figure 3.

For each 2 < k < r — 1, let Py be the path from ¢x_1 to g, where gr = p(p(qr)) for
2<k<r—2and g,—1 =x = sg. Each Py is a sub-path of the path from p(sp) to sp, and
every node in Py has not been given their suffix link yet. For each node v in Py, we add the
suffix link from v to the ancestor u of s;, such that |s;, | — |u| = |so| — |v|. See also the right
diagram of Figure 3.

Repeating the above procedure for all black nodes of STree’(y) that are either internal
nodes or leaves of the original suffix tree STree(y) in post order, the DAG D finally becomes
DAWG(y) with suffix links Lp. We remark however that the edges of DAWG(y) might not
be sorted, since the edges that exist in STree’(y) were firstly inserted to the DAG D. Still,
we can easily sort all the edges of DAWG(y) in O(n) total time after they are constructed:
First, extract all edges of DAWG(y) by a standard traversal on DAWG(y), which takes O(n)
time. Next, radix sort them by their labels, which takes O(n) time because we assumed an
integer alphabet of polynomial size in n. Finally, re-insert the edges to their respective nodes
in the sorted order.

» Theorem 12. Given a string y of length n over an integer alphabet, we can compute
edge-sorted DAWG(y) with suffix links Lp in O(n) time and space.

Proof. The correctness can easily be seen if one recalls that minimizing STrie(y) based on
its suffix links produces DAWG(y). The proposed algorithm simulates this minimization
using only the subset of the nodes of STrie(y) that exist in STree’(y). The out-edges of each
node of DAWG/(y) are sorted in lexicographical order as previously described.

We analyze the time complexity of our algorithm. We can compute STree’(y) in O(n)
time by Lemma 11. The initial trie for D can easily be computed in O(n) time from STree’(y).
Let = be any node visited in the post-order traversal on STree’(y) that is either an internal
node or a leaf of the original suffix tree STree(y). The cost of adding the new in-coming
edges to the black nodes in the path from p(x) to & = s¢ is linear in the number of nodes in
the sequence s, ..., s, connected by the chain of suffix links starting from sg = x. Since sg
and s,, are the only black nodes in the sequence, it follows from Lemma 10 that the chain of
suffix links from sg to s,, is a non-branching path of the suffix link tree SLT(y). This implies
that the suffix links in this chain are used only for node x during the post-order traversal
of STree'(y). Since the number of edges in SLT(y) is O(n), the amortized cost of adding
each edge to D is constant. Also, the total cost to sort all edges is O(n), as was previously
explained. Now let us consider the cost of adding the suffix links from the nodes in each
sub-path Pg. For each node v in Py, the destination node v can be found in constant time

Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda

by simply climbing up the path from s;, in the chain of suffix links. Overall, the total time
cost to transform the trie for D to DAWG(y) is O(n).
The working space is clearly O(n). <

Figure 4 shows an example of DAWG construction by our algorithm.

In some applications such as bidirectional pattern searches, it is preferable that the
in-coming suffix links at each node of DAWG(y) are also sorted in lexicographical order, but
our algorithm described above does not sort the suffix links. However, we can sort the suffix
links in O(n) time by the same technique applied to the edges of DAWG(y).

4 Constructing Affix Trees in O(n) Time for Integer Alphabet

Let y be the input string of length n over an integer alphabet. Recall the sets £ = {? |
x € Substr(y)} and R = {& | « € Substr(y)} introduced in Section 3. For any set
S C ¥* x ¥* of ordered pairs of strings, let S[1] = {z; | (z1,22) € S for some z3 € £*} and
S[2] = {z2 | (z1,22) € S for some z; € £*}. For any string x, let £ denote the reversed
string of x.

The affix tree [15] of string y, denoted ATree(y), is a bidirectional text indexing structure
defined as follows:

» Definition 13. ATree(y) for string y is an edge-labeled DAG (Va, Ea) = (Va, EY U EF)
which has two mutually distinct sets E4, E¥ of edges such that

Va = {(z,2)]| 2z e LUR},

EY = {((x,2),8, (xB,b2)) |z, 28 € Va[l],
Bext 1<Vi<|Bl,z-p1.i] ¢ Vall]},

EF = {((z,2),4, (ax,24)) | &, 24 € Va[2],

aeSt 1<Vi<|al,z-al.i ¢ Va2]}.

EY is the set of forward edges labeled by substrings of y, while E¥ is the set of backward
edges labeled by substrings of .

» Theorem 14. Given a string y of length n over an integer alphabet, we can compute
edge-sorted ATree(y) in O(n) time and space.

Proof. Clearly, there is a one-to-one correspondence between each node (x,%) € Vy4 of
ATree(y) = (Va, EY U E®) and each node z € V{ of STree/(y) = (V§, E5) of Section 3 (see
also Figure 2 and Figure 5). Moreover, there is a one-to-one correspondence between each
forward edge (z, 3,z3) € EX of ATree(y) and each edge (z, 8,2) € E§ of STree'(y). Hence,
what remains is to construct the backward edges in E¥ for ATree(y). A straightforward
modification to our DAWG construction algorithm of Section 3 can construct the backward
edges of ATree(y); instead of working on the DAG D, we directly add the suffix links to
the black nodes of STree’(y) whose suffix links are not defined yet (namely, those that are
neither branching nodes nor leaves of the suffix link tree SLT(y)). Since the suffix links are
reversed edges, by reversing them we obtain the backward edges of ATree(y). The labels
of the backward edges can be easily computed in O(n) time by storing in each node the
length of the string it represents. Finally, we can sort the forward and backward edges in
lexicographical order in overall O(n) time, using the same idea as in Section 3. <

38:9

MFCS 2016

38:10

Computing DAWGSs and Minimal Absent Words in Linear Time for Integer Alphabets

AN J
STEP 4

Figure 4 Snapshots during the construction of DAWG(y) for y = aabcabcab$. Step 0: (Left):
STree' (y) with suffix links Lg and (Right): the initial trie for D. We traverse STree’(y) in post order.
Step 1: We arrived at black leaf node x1 = aabcabcab$ (indicated by a star). We determine the
in-coming edges and suffix links for the black nodes in the path from p(z1) = a and x1 (indicated by
thick black lines). To the right is the resulting DAG D for this step. Step 2: We arrived at black
branching node z2 = abcab (indicated by a star). We determine the in-coming edges and suffix links
for the black nodes in the path from p(z2) = ab and z2 (indicated by thick black lines). To the right
is the resulting DAG D for this step. Step 3: We arrived at black branching node zs = ab (indicated
by a star). We determine the in-coming edges and suffix links for the black nodes in the path from
p(zs) = a and x3 (indicated by thick black lines). To the right is the resulting DAG D for this
step. Step 4: We arrived at black branching node z4 = a (indicated by a star). We determine the
in-coming edges and suffix links for the black nodes in the path from p(z4) = € and x4 (indicated by
thick black lines). To the right is the resulting DAG D for this step. Since all branching and leaf
black nodes have been processed, the final DAG D is DAWG(y) with suffix links.

Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda

Figure 5 An example of ATree(y) with string y = aabcabcab$. The solid arcs represent the
forward edges in EX, while the broken arcs represent the backward edges in E5. For simplicity, the
labels of backward edges are omitted.

5 Computing Minimal Absent Words in O(n + |[MAW (y)|) Time

As an application to our O(n)-time DAWG construction algorithm of Section 3, in this
section we show an optimal time algorithm to compute the set of all minimal absent words
of a given string over an integer alphabet.

Finding minimal absent words of length 1 for a given string y (i.e., the characters not
occurring in y) is easy to do in O(n+ o) time and O(1) working space for an integer alphabet,
where o is the alphabet size. In what follows, we concentrate on finding minimal absent
words of y of length at least 2.

Crochemore et al. [7] proposed a ©(on)-time algorithm to compute MAW (y) for a given
string y of length n. The following two lemmas, which show tight connections between
DAWG(y) and MAW (y), are implicitly used in their algorithm but under a somewhat
different formulation. Since our O(n + |MAW (y)|)-time solution is built on the lemmas, we
give a proof for completeness.

» Lemma 15. Let a,b € ¥ and x € ¥*. If axb € MAW (y), then x = %, namely, x is the
longest string represented by node [x]r € Vp of DAWG(y).

Proof. Assume on the contrary that 2 # . Since z is not the longest string of [z]g, there
exists a character ¢ € ¥ such that cx € Subsir(y) and [z]g = [cz]r. Since axb € MAW (y),
it follows from Lemma 6 that xb € Substr(y). Since [z]g = [cz]r, ¢ always immediately
precedes x in y. Thus we have cab € Substr(y).

Since axb € MAW(y), ¢ # a. On the other hand, it follows from Lemma 6 that
ax € Substr(y). However, this contradicts that ¢ always immediately precedes z in y and
¢ # a. Consequently, if axb € MAW (y), then z = . <

For any node v € Vp of DAWG(y) and character b € X, we write dp(v,b) = wu if
(v,b,u) € Ep for some u € Vp, and write dp(v,b) = nil otherwise. For any suffix link
(u,a,v) € Lp of DAWG(y), we write slp(u) = v. Since there is exactly one suffix link coming
out from each node u € Vp of DAWG(y), the character a is unique for each node w.

» Lemma 16. Leta,b € ¥ and x € *. Then, axb € MAW (y) iffx = =, 6p([z]r, b) = [zD]r,
sip([ax]r) = [z]Rr, and dp([ax]g,b) = nil.

38:11

MFCS 2016

38:12

Computing DAWGSs and Minimal Absent Words in Linear Time for Integer Alphabets

Figure 6 Computing minimal absent words from a DAWG. In this case, axb is a MAW since it
does not occur in the string while axz and xb do.

Algorithm 1: O(no)-time algorithm (MF-TRIE) by Crochemore et al. [7]
Input: String y of length n
Output: All minimal absent words for y
MAW « 0;
Construct DAWG(y) augmented with suffix links Lp;
for each non-source node u of DAWG(y) do

for each character b € ¥ do

if dp(u,b) = nil and dp(sip(u),b) # nil then
L L MAW <« MAW U {axb} ; // (u,a,slp(u))€Lp, r=Ilong(slp(u))

S Gk W N =

~

Output MAW,

Proof. (=) From Lemma 15, = %. From Lemma 6, axb & Substr(y). However, ax,zb €
Substr(y), and thus we have dp([az]g,b) = nil, 0p([z]r,b) = [zb]r, and sip([az|r) = [2]R,
where the last suffix link exists since x =

(<) Since 0p([z]r,b) = [zb]r and sip([ax]r) = [z]r, we have that zb,ax € Substr(y).
Since ax € Substr(y) and dp([ax]r,b) = nil, we have that axb ¢ Substr(y) Thus from
Lemma 6, axb € MAW (y). <

Sl

—~~

From Lemma 16 all MAWs of y can be computed by traversing all the states of DAWG (y)
and comparing all out-going edges between nodes connected by suffix links. A pseudo-code
of the algorithm MF-TRIE by Crochemore et al. [7], which is based on this idea, is shown in
Algorithm 1. Since all characters in the alphabet X are tested at each node, the total time
complexity becomes O(no). The working space is O(n), since only the DAWG and its suffix
links are needed.

Next we show that with a simple modification in the for loops of the algorithm and with
a careful examination of the total cost, the set MAW (y) of all MAWSs of the input string
y can be computed in O(n + |[MAW (y)|) time and O(n) working space. Basically, the only
change is to move the “dp(sip(u),b) # nil” condition in Line 5 to the for loop of Line 4.
Namely, when we focus on node u of DAWG(y), we test only the characters which label the
out-edges from node slp(u). A pseudo-code of the modified version is shown in Algorithm 2.

» Theorem 17. Given a string y of length n over an integer alphabet, we compute MAW (y)
in optimal O(n + |MAW (y)|) time with O(n) working space.

Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, and M. Takeda

Algorithm 2: Proposed O(n + |MAW (y)|)-time algorithm
Input: String y of length n
Output: All minimal absent words for y
MAW «+ 0;
Construct edge-sorted DAWG(y) augmented with suffix links Lp;
for each non-source node u of DAWG(y) do
for each character b such that ép(slp(u),b) # nil do
L if 0p(u,b) = nil then

(<IN S VU VI

L MAW < MAW U {axb} ; // (u,a,slp(u))€Lp, x=long(slp(u))

~

Output MAW;

Proof. First, we show the correctness of our algorithm. For any node u of DAWG(y),
EndPos(slp(u)) D EndPos(u) holds since every string in slp(u) is a suffix of the strings in
u. Thus, if there is an out-edge of u labeled ¢, then there is an out-edge of slp(u) labeled c.
Hence, the task is to find every character b such that there is an out-edge of sip(u) labeled b
but there is no out-edge of u labeled b. The for loop of Line 4 of Algorithm 2 tests all such
characters and only those. Hence, Algorithm 2 computes MAW (y) correctly.

Second, we analyze the efficiency of our algorithm. As was mentioned above, minimal
absent words of length 1 for y can be found in O(n + o) time and O(1) working space. By
Lemma 5, 0 < |[MAW (y)| and hence the o-term is dominated by the output size | MAW (y)|.
Now we consider the cost of finding minimal absent words of length at least 2 by Algorithm 2.
Let b be any character such that there is an out-edge e of sip(u) labeled b. There are two
cases: (1) If there is no out-edge of u labeled b, then we output an MAW, so we can charge
the cost to check e to an output. (2) If there is an out-edge ¢’ of u labeled b, then the trick
is that we can charge the cost to check e to ¢’. Since each node u has exactly one suffix link
going out from it, each out-edge of u is charged only once in Case (2). Since the out-edges of
every node u and those of slp(u) are both sorted, we can compute their difference for every
node v in DAWG(y), in overall O(n) time. Edge-sorted DAWG(y) with suffix links can be
constructed in O(n) time for an integer alphabet as in Section 3. Overall, Algorithm 2 runs
in O(n + |MAW (y)|) time. The space requirement is clearly O(n). <

—— References

1 Golnaz Badkobeh, Maxime Crochemore, and Chalita Toopsuwan. Computing the maximal-
exponent repeats of an overlap-free string in linear time. In SPIRE 2012, pages 61-72, 2012.

2 Djamal Belazzougui, Fabio Cunial, Juha Kérkkéainen, and Veli Mékinen. Versatile succinct
representations of the bidirectional burrows-wheeler transform. In Proc. ESA 2013, pages
133-144, 2013.

3 Anselm Blumer, J. Blumer, David Haussler, Andrzej Ehrenfeucht, M. T. Chen, and Joel 1.
Seiferas. The smallest automaton recognizing the subwords of a text. Theor. Comput. Sci.,
40:31-55, 1985. doi:10.1016/0304-3975(85)90157-4.

4 Anselm Blumer, J. Blumer, David Haussler, Ross M. McConnell, and Andrzej Ehrenfeucht.
Complete inverted files for efficient text retrieval and analysis. J. ACM, 34(3):578-595,
1987. doi:10.1145/28869.28873.

5 Maxime Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63-86, 1986.

38:13

MFCS 2016

http://dx.doi.org/10.1016/0304-3975(85)90157-4
http://dx.doi.org/10.1145/28869.28873

38:14

Computing DAWGSs and Minimal Absent Words in Linear Time for Integer Alphabets

10

11

12

13

14

15

16

17

18

19

20

Maxime Crochemore, Gabriele Fici, Robert Mercas, and Solon P. Pissis. Linear-time se-
quence comparison using minimal absent words & applications. In LATIN 2016, pages
334-346, 2016.

Maxime Crochemore, Filippo Mignosi, and Antonio Restivo. Automata and forbidden
words. Inf. Process. Lett., 67(3):111-117, 1998. doi:10.1016/50020-0190(98)00104-5.
Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. J. ACM, 47(6):987-1011, 2000.

Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shinohara, Masayuki Takeda, Setsuo
Arikawa, Giancarlo Mauri, and Giulio Pavesi. On-line construction of compact directed
acyclic word graphs. Discrete Applied Mathematics, 146(2):156-179, 2005.

Moritz G. Maafi. Linear bidirectional on-line construction of affix trees. Algorithmica,
37(1):43-74, 2003.

Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935-948, 1993.

Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):2627272, 1976. doi:10.1145/321941.321946.

Filippo Mignosi, Antonio Restivo, and Marinella Sciortino. Words and forbidden factors.
Theor. Comput. Sci., 273(1-2):99-117, 2002.

Kazuyuki Narisawa, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. FEfficient
computation of substring equivalence classes with suffix arrays. In CPM 2007, pages 340-
351, 2007.

Jens Stoye. Affix trees. Technical Report Report 2000-04, Universitat Bielefeld, 2000. URL:
https://www.techfak.uni-bielefeld.de/~stoye/dropbox/report00-04.pdf.

Shiho Sugimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Finding absent
words from grammar compressed strings. In the Festschrift for Bofivoj Melichar, 2012.
Yuka Tanimura, Yuta Fujishige, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masay-
uki Takeda. A faster algorithm for computing maximal a-gapped repeats in a string. In
SPIRE 2015, pages 124-136, 2015.

Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory, Towa City, Towa, USA, October 15-17, 1973, pages 1-11, 1973.
doi:10.1109/SWAT.1973.13.

Jun-ichi Yamamoto, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda.
Faster compact on-line Lempel-Ziv factorization. In STACS 2014, pages 675-686, 2014.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEFEE
Transactions on Information Theory, IT-23(3):337-343, 1977.

http://dx.doi.org/10.1016/S0020-0190(98)00104-5
http://dx.doi.org/10.1145/321941.321946
https://www.techfak.uni-bielefeld.de/~stoye/dropbox/report00-04.pdf
http://dx.doi.org/10.1109/SWAT.1973.13

	Introduction
	Preliminaries
	Strings
	Suffix trees and DAWGs
	Minimal Absent Words

	Constructing DAWGs in O(n) Time for Integer Alphabet
	Constructing Affix Trees in O(n) Time for Integer Alphabet
	Computing Minimal Absent Words in O(n+|MAW(y)|) Time

