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——— Abstract

Although a simple counting argument shows the existence of Boolean functions of exponential
circuit complexity, proving superlinear circuit lower bounds for explicit functions seems to be out
of reach of the current techniques. There has been a (very slow) progress in proving linear lower
bounds with the latest record of 3g=n — o(n). All known lower bounds are based on the so-called
gate elimination technique. A typical gate elimination argument shows that it is possible to
eliminate several gates from an optimal circuit by making one or several substitutions to the
input variables and repeats this inductively. In this note we prove that this method cannot
achieve linear bounds of cn beyond a certain constant ¢, where ¢ depends only on the number of

substitutions made at a single step of the induction.
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1 Introduction

One of the most important and at the same time most difficult questions in theoretical
computer science is proving circuit lower bounds. A binary Boolean circuit is a directed
acyclic graph with nodes of in-degree either 0 or 2. Nodes of in-degree 0 are called inputs
and are labeled by variables z1, ..., z,. Nodes of in-degree 2 are called gates and are labeled
by binary Boolean functions. One of the nodes is additionally labeled as the output of the
circuit. The output gate computes a Boolean function {0,1}" — {0,1} in a natural way.
The size of a circuit C' is defined as the number of gates in C' and is denoted by gates(C).
By inputs(C) we denote the number of inputs of C. A circuit complexity measure u is a
function assigning each circuit a non-negative real number. In particular, gates and inputs
are circuit complexity measures.

By B, we denote the set of all Boolean functions f: {0,1}" — {0,1}. For a circuit
complexity measure p and a function f € By, by u(f) we denote the minimum value of p(C)
over all circuits C' computing f. For example, gates(f) is the miniumum size of a circuit
computing f.
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By comparing the number of small size circuits with the total number 22" of Boolean
functions of n variables, one concludes that almost all such functions have circuit size at least
Q(%n) This was shown by Shannon in 1949 [30]. However we still do not have an example of
a function from NP that requires circuits of superlinear size. The currently strongest known
lower bound is (3 + g5)n — o(n) [11].

The lack of strong lower bounds is a consequence of the lack of methods for proving
lower bounds for general circuits. Practically, the only known method for proving lower
bounds is the gate elimination method. We illustrate this method with a simple example.
Consider the function MODy ,.: {0,1}" — {0,1} which outputs 1 if and only if the sum
of n input bits is congruent to 7 modulo 3. One can prove that gates(MOD3,) > 2n — 4
for any r € {0,1,2} by induction on n. The base case n < 2 clearly holds. Assume that
n > 3 and consider an optimal circuit C' computing MODQ’T and its topologically first (with
respect to some topological ordering) gate G. This gate is fed by two different variables
x; and x; (if they were the same variable, the circuit would not be optimal). A crucial
observation is that it cannot be the case that the out-degrees of both x; and z; are equal to 1.
Indeed, in this case the whole circuit would depend on z; and z; through the gate G only.
In particular, the four ways of fixing the values of z; and z; would give at most two different
subfunctions (corresponding to G'= 0 and G = 1), while MOD} ,. has three such different
subfunctions: MOD}?, MODj 7%, and MOD},?. Assume, without loss of generality, that
x; has out-degree at least 2. We then substitute z; <— 0, eliminate the gates fed by z; from
the circuit and proceed by induction. The eliminated gates are those fed by x;. After the
substitution, each such gate computes either a constant or a unary function of the other
input of the gate, so can be eliminated. The resulting function computes MODg;l. Thus
we get by induction: gates(MOD3,) > gates(MODg;l) +2>2n-1)-4)+2=2n-4.
This proof was given by Schnorr in 1984 [29]. In fact, it works for a wider class of functions
()3 3 containing functions that have at least three different subfunctions with respect to any
two variables.

This example reveals the main idea of the gate elimination process: a lower bound is
proved inductively by finding at each step an appropriate substitution that eliminates many
gates from the given circuit. At the same time, using just bit-fixing substitutions is not
enough for proving even stronger than 2n lower bounds: the class Q7 3 contains, in particular,
a function THRY that outputs 1 iff Y"1 ; 2; > 2 whose circuit complexity is known to be at
most 2n + o(n) [10] (see also Theorem 2.3 in [35]). For this reason, known proofs of stronger
lower bounds use various additional tricks.

One can use amortized analysis of the number of eliminated gates. For example, one
can show that at each step one can either find a substitution that eliminates 3 gates or
a pair of consecutive substitutions, the first one eliminating 2 gates and the next one
eliminating 4 gates.

They also substitute variables not just by constants but by affine functions, quadratic
functions, and even arbitrary functions of other variables.

In order to amortize for steps that eliminate too few gates, they also use more intricate
complexity measures that combine the number of gates with the number of variables or
other quantities.

We give an overview of known lower bounds and used tricks in Section 2.

One can guess that the gate elimination method changes only the top of a circuit in
few places and thus cannot eliminate many gates. In general, this intuition fails (it is easy
to present examples where a single substitution greatly simplifies a function, in particular,
every substitution to a function of the highest possible complexity 2™ /n (see Theorem 2.1
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and below in [35]) lowers the complexity of this function almost twice as for a function of
n — 1 variables it cannot exceed 2"~1/(n — 1) + 0o(2"~!/(n — 1)). However, in this paper we
manage to make this intuition work for specially designed functions that compose gadgets
satisfying certain rather general properties with arbitrary base functions. We show that

certain formalizations of the gate elimination method cannot prove superlinear lower bounds.

We prove that one cannot reduce the complexity of the designed functions by more than
a constant using any constant number of substitutions of any type (that is, we allow to
substitute variables by arbitrary functions). The complexity of a function may be counted as
any complexity measure (i.e., a nonnegative function of a circuit) varying from the number of
gates to any subadditive function. For recently popular measures that combine the number of
gates with the number of inputs we prove a stronger result (namely, one cannot prove lower
bounds beyond cn for a certain specific constant c; this constant may depend on the number
m of consecutive substitutions made in one step of the induction but does not depend on the
substitutions themselves, m =1 or 2 in modern proofs).

The paper is organized as follows. In Section 2 we list known proofs based on gate
elimination, we discuss their differences and limits. Section 3 presents several examples that
lead us to the main questions of this work. This section contains main results of the paper:
provable limits of the gate elimination method for various complexity measures. Section 4
contains a brief overview of the known barriers for proving circuit lower bounds. Finally,
Section 5 concludes the work with open questions.

2 Known Lower Bounds Proofs

Improving Schnorr’s 2n lower bound proof mentioned above is already a non-trivial task.
It can be the case that all variables in the given circuit feed two parity gates. In this case,
substituting any variable by any constant eliminates just two gates from this circuit. In 1977,
Stockmeyer [31] used the following clever trick to prove a 2.5n — ©(1) lower bound for many
symmetric functions including all MODy;, functions for constant m > 3. The idea is to
eliminate five gates by two consecutive substitutions. This time, instead of substituting
x; < ¢ where ¢ € {0,1} we substitute z; < f,z; < f © 1 where f is an arbitrary function
that does not depend on x; and z;. One should be careful with such substitutions as they
potentially might produce a subfunction outside of the class of functions for which we are
currently proving a lower bound by induction. At the same time, one can see that, for example,
MODy3 , function turns into MODZ{;Q function under the substitution z; < f,z; < f® 1.
Indeed, this substitution just forces the sum of «; and z; to be equal to 1 (both over integers
and over the field of size two).

In 1984, Blum [5], following the work by Paul [25], proved a 3n — o(n) lower bound for
an artificially constructed Boolean function of n + 3logn + 3 variables. The input of this
function consists of n variables X = {x1,...,2,} and 3logn + 3 variables A. The following
“universality” property of this function is essential for Blum’s proof: for any two variables
Z;, T € X one can assign constants to variables from A to turn the output of the function
to be equal to both z; A z; and z; © ;. Blum first applies the standard gate elimination
procedure to variables from X using a carefully chosen induction hypothesis that states
a circuit size lower bound in terms of the number of variables from X that are still “alive”:
if there is a substitution x; < f that eliminates at least three gates, perform this substitution
and proceed inductively. Note that the used function allows to substitute variables from X
by arbitrary functions, but at the same time one is allowed to substitute variables from X,
but not from A. In the remaining case, Blum counts the number of gates of out-degree at
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least 2: he shows that due to the special properties of the function, any circuit computing it
must contain many such gates. This gives a lower bound on the size of a circuit.

In 2011, Demenkov and Kulikov [7] presented a different proof of essentially the same
3n —o(n) lower bound for a different function. The function they use is an affine disperser for
dimension d = o(n), which is by definition non-constant on any affine subspace of dimension
at least d. This property allows to make at least n — o(n) affine substitutions (that is,
substitutions of the form z; + @;.;z; ® ¢ where i ¢ J C [n] and ¢ € {0,1}) before the
function trivializes. The proof also uses a non-standard circuit complexity measure: for
a circuit C, pu(C) = gates(C) + inputs(C). This trick is used to amortize the case when by
substituting one variable one also removes the dependence on another variable. One shows
that for any circuit there is a substitution that reduces p by at least 4 (or makes the whole
circuit a constant). This implies, by induction, that for any circuit C' computing an affine
disperser for dimension o(n),

gates(C) + inputs(C) > 4(n — o(n)), (1)

which in turn implies that gates(C) > 3n — o(n). To find an appropriate affine substitution,
one considers the topologically first gate A that computes a non-linear binary operation. If
A is fed by two variables x; and x; of out-degree 1, we substitute z; <— ¢ to make A constant.
This eliminates A and its successor from the circuit as well as the dependence on both z;
and z;. Hence both gates and inputs are reduced by at least 2, and p is reduced by at
least 4. If, say, x; has out-degree at least 2, we just substitute z; by the constant that makes
A constant: this eliminates the gates fed by z; and all successors of A (at least three gates in
total) and the dependence on x;, hence p is reduced by 4 again. In the remaining case, one of
the inputs to A is a gate computing an affine function jeg T ®e. We make it constant by
substituting x; < P, AN} TP c’. This eliminates this gate, the gate A, and the successors
of A. Thus, p is reduced by at least 4 again.

Find et al. [11] pushed the lower bound 3n — o(n) for affine dispersers further to (3 +
45)n — o(n) by using several new tricks. They generalize the computational model to allow
cycles in circuits, use quadratic substitutions (that are turned into affine substitutions in the
end of the gate elimination process), and use a carefully chosen circuit complexity measure
which besides the number of gates and inputs also depends on the number of certain local
bottleneck configurations and the number of quadratic substitutions.

The first explicit construction of an affine disperser for sublinear dimension (d = o(n))
was presented relatively recently by Ben-Sasson and Kopparty [4]. While such constructions
of higher degree dispersers for sublinear dimension are not yet known, these dispersers do
exist, and a lower bound of 3.1n has been shown for them in [13] using the circuit complexity
measure (i, (C) = gates(C)+a-inputs(C) (o > 0 is a constant) and quadratic substitutions.

We summarize the discussed lower bounds proofs in the table below.

Bound Class of functions Measure Substitutions

2n [29] Q53 gates x; ¢

2.5n [31]  symmetric gates i ¢, {x; + fxj+— fH1}
3n [5] artificial gates arbitrary: x; < f

3n [7] affine dispersers gates 4 inputs linear: x; < @je] ;D
3.01n [11] affine dispersers gates + ainputs + -+ quadratic: x; < f, deg <2
3.1n [13] quadratic dispersers gates 4 ainputs quadratic: z; + f, deg < 2

It is also interesting to note that there is a trivial limitation for the first three proofs in
the table above: the corresponding classes of functions contain functions of linear circuit
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complexity. The class Q% 3 contains the function THRj (that outputs 1 iff the sum of n
input bits is at least 2) of circuit size 2n + o(n). The class of symmetric functions used by
Stockmeyer contains the function MOD} whose circuit size is at most 2.5n + ©(1). The
circuit size of Blum’s function is upper bounded by 6n + o(n). At the same time it is not
known whether there are affine dispersers of sublinear dimension that can be computed by
linear size circuits.

3 Limits of Gate Elimination

3.1 Notation

Let X = {x1,...,z,} be a set of Boolean variables. A substitution p of a set of variables
R C X is a set of |R| restrictions of the form

ri = fi(z1,...,2p),

one restriction for each variable r; € R, where f; depends only on variables from X \ R. The

degree of a substitution is the maximum degree of f;’s represented as Boolean polynomials.

The size of a substitution is |R|. Substitutions of size m are called m-substitutions.

Given an m-substitution p and a function f, one can naturally define a new function f|,
that has m fewer arguments than f.

A function f depends on a variable x if there is a substitution p of constants to all other
variables such that f[,(0) # f[,(1).

As we saw in Section 2, gate elimination proofs sometimes track sophisticated complezity
measure j rather than just number of gates, for example, the measure u(f) = gates(f)+ a-
inputs(f) for a constant a.

A gate elimination argument uses a certain nonnegative complexity measure p, a family
of substitutions &, a family of functions F, a function gain: N — R, and a certain predicate
stop, and includes proofs of the following statements:

1. (Measure usefulness.) If u(f) is large, then gates(f) is large.

2. (Invariance.) For every f € F and p € S, either f|, € F or stop(f],).

3. (Induction step.) For every f € F with inputs(f) = n, there is a substitution p € S
such that p(f|,) < pu(f) — gain(n). (In known proofs, gain(n) is constant.)

The family must contain functions f such that stop(f|,,, .. ,,) is not reached for sufficiently

many substitutions from S (for example, for s = 0.999 - inputs(f) substitutions).

In what follows, we prove that every gate elimination argument fails to prove a strong
lower bound, for many functions of (virtually) arbitrarily large complexity.

3.2 Introductory Example

We start by providing an elementary construction of functions that are resistant with respect
to any constant number of arbitrary substitutions, i.e., such substitutions eliminate only a
constant number of gates. In the next sections, we generalize this construction to capture
other complexity measures.

Consider a function f: {0,1}™ — {0,1} and let f ¢ MAJ3 be a function of 3n variables
resulting from f by replacing each of its input variables x; by the majority function of three
fresh variables x;1, T2, Ti3:

(f & MAJg)(l‘H, T12y ... ,xn3) = f(MAJg(JUH, T12, 3313), . ,MAJg(Jan, Tn2, xng)) s
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Figure 1 (a) A circuit for f. (b) A circuit for f o MAJs.

Figure 2 (a) A circuit computing the majority of three bits z1,z2,z3. (b) A circuit resulting
from substitution z1 < p. (¢) By adding another gadget to a circuit with x1 substituted, we force it
to compute the majority of x1,x2, x3.

see Fig. 1. Consider a circuit C' of the smallest size computing f ¢ MAJ3. We claim that
no substitution x;; <— p, where p is any function of all the remaining variables, can remove
from C more than 5 gates: gates(C) — gates(C|,,+,) < 5. We are going to prove this by
showing that one can attach a gadget of size 5 to the circuit C|;,,., and obtain a circuit
that computes f. This is explained in Fig. 2. Formally, assume, without loss of generality,
that the substituted variable is x1;. We then take a circuit C’ computing flzi1<p and use
the value of a gadget computing MAJ3(x11, z12,213) instead of 215 and z15. This way we
suppress the effect of the substitution z17 < p, and the resulting circuit C” computes the

initial function f o MAJs. Since the majority of three bits can be computed in five gates, we
get:

gates(C) < gates(C"”) < gates(Cly,p) +5.

This trick can be extended from 1-substitution to m-substitutions in a natural way. For
this, we use gadgets computing the majority of 2m + 1 bits instead of just three bits. We
can then suppress the effect of substituting any m variables by feeding the values to m + 1
of the remaining variables. Taking into account the fact that the majority of 2m + 1 bits can
be computed by a circuit of size 4.5(2m + 1) [8], we get the following result.

» Lemma 1. For any m > 0, for any function h of n inputs, there exists a function
f=hoMAJomi1 of n(2m + 1) variables, such that

Circuit complexity of f is close to that of h: gates(h) < gates(f) < gates(h)+4.5(2m+
n,
For any m-substitution p, gates(f) — gates(f|,) <4.5(2m + 1)m.

» Remark. Note that from the Circuit Hierarchy Theorem (see, e.g., [18]), one can find h of
virtually any circuit complexity from n to 2" /n.
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3.3 Subadditive Measures

In this section we generalize the result of Lemma 1 to arbitrary subadditive measures. A
function u: B, — R is called a subadditive complexity measure, if for all functions f and
g, (k) < pu(f) + p(g), where h(z,y) = f(g(z),...,9(Z),y). That is, if h can be computed
by application some function g to some of the the inputs, and then evaluating f, then
the measure of h must not exceed the sum of measures of f and g. Clearly, the measures
u(f) = gates(f) and pq(f) = gates(f) + a - inputs(f) are subadditive, and so are many
other natural measures.

Let f € B,, and g € B,. Then by h = f ¢ g we denote the function of nk variables
resulting from f by replacing each of its input variables by h applied to k fresh variables.

Our main construction is such a composition of a function f (typically, of large circuit
complexity) and a gadget g that is chosen to satisfy certain combinatorial properties. Note
that since we show a limitation of the proof method rather than a proof of a lower bound,
we do not necessarily need to present explicit functions.

In this section we use gadgets that satisfy the following requirement: For every set of
variables Y of size m, we can force the value of the gadget to be 0 and 1 by assigning
constants only to the remaining variables.

» Definition 2 (weakly m-stable function). A function g(X) is weakly m-stable if, for every
Y C X of size |Y| < m, there exist two assignments 79, 71: X \' Y — {0,1} to the remaining
variables, such that g|,,(Y) =0 and g|,(Y) = 1. That is, after the assignment 79 (71), the
function does not depend on the remaining variables Y.

It is easy to see that MAJsy,,11 is a weakly m-stable function. In Lemma 6 we show that
almost all Boolean functions satisfy an even stronger requirement of stability.

» Theorem 3. Let p be a subadditive measure, f be a Boolean function, g be a weakly
m-stable function, and h = f o g. Then for every m-substitution p, p(h) — p(hl,) < m- u(g).

Proof. Similarly to Lemma 1, we use a circuit H for the function h|, to construct a circuit
C for h. Let

h(z11, 212, Tnk) = fg(@11, 1K)y -+ o G(Tn1y - ooy Tnk))-

Let us focus on the variables x11,...,x15. Assume, without loss of generality, that the
variables x11, ..., 21, are substituted by p. Since p is an m-substitution, » < m. From the
definition of weakly m-stable function, there exist substitutions 79 and 71 to the variables
Zir41,- - ., T1k, such that g|,-, = 0 and g¢|,-, = 1. We take the circuit H and add a circuit
computing g(z11,...,21x). Now, for every variable © € {z1,41,...,21%} in the circuit H, we
wire g(211, ..., T1k) ® 70(2) instead of x if 79(x) # 71 (), and wire 79(x) otherwise. That is,
we set T1,41,...,T1% in such a way that g|,(€ir41,...,216) = b= g(211,...,21%). Thus, we
added one instance of a circuit computing the gadget g and “repaired” g(x11,...,21k).

Now we repeat this procedure for each of the n inner functions g that have at least one
variable substituted by p. Since p is an m-substitution, there are at most m gadgets we
need to repair. Thus, we can compute h using the circuit H and m instances of a circuit
computing ¢g. From subadditivity of p, p(h) — p(h|,) < m - p(g). <

3.4 Measures that count inputs

The results of the previous section prove that no subadditive complexity measure can prove a
lower bound of more than nu(g), where the gadget g depends only on m. For g = MAJo,41
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and measure u(g) = gates(g) Lemma 1 gives 4.5(2m + 1)n as a specific linear bound barrier
that gate elimination cannot overcome. However, since u(g) depends on the measure pu, it
does not exclude a possibility that there is a sequence of complexity measures allowing to
prove better and better bounds. One such natural sequence is based on the circuit measure
1o (C) = gates(C)+a-inputs(C) for a constant « > 0 (used, for example, in [7, 13]). Indeed,
for growing v, the method of the previous section gives growing bounds, and if one proves that
it is possible to eliminate, say, ¢; > 0 gates and co > 1 variables per substitution, then after
n — o(n) substitutions that would give us pu(C) > (n — o(n))(c1 + acz) = n(er + acz) — o(n).
This would imply that gates(C) > n(c; + a(ca — 1)) — o(n), an arbitrary linear lower bound.
Note that does not require a sequence of gate elimination proofs, just a single proof and a
sequence of complexity measures.

In this section in order to show that such a measure cannot prove growing linear bounds,
we construct a function f such that any m-substitution reduces the measure by a constant
number ¢, of gates and at most m inputs. This prevents anyone from proving a better than
¢mn bound with it.

» Definition 4 (m-stable function). A function g(X) is m-stable if, for every Y C X of size
Y] <m+1 and every y € Y, there exists an assignment 7: X \Y — {0,1} to the remaining
variables such that g|,(Y) =y or g|-(Y) = —y. That is, after the assignment 7, the function
depends only on the variable y.

It is now easy to see that every m-stable function is a weakly m-stable function.

» Theorem 5. Let f be a Boolean function, g be an m-stable function, and h = f o g. Then
for every m-substitution p, pa(h) — pa(h|,) <m- (gates(g) + ).

Proof. Since g is m-stable, Theorem 3 implies that gates(h) — gates(h|,) < m - gates(g).
It remains to show that inputs(h) — inputs(h|,) < m. Thus, it suffices to prove that if f
depends on z; and p does not substitute x; ;, then h|, depends on z; ;. Let

h(l‘n,xlg, e ,xnk) = f(g(l‘n, . 77:11@)7 e ,g(xnl, . ,Jjnk)).

Assume f depends on its first input. Since g is not constant, there exists a substitution 7 to

the variables {x21,..., %2k, ..., Zn1, ..., Znk} such that hl,(z11,...,21%) is not constant.
Let us consider the variables x11, ..., 21x. Assume, without loss of generality, that the
variables x11,...,x1, are substituted by p. Since p is an m-substitution, » < m. Now we

want to show that for every j > r, h|, depends on z1;. From the definition of an m-stable
function, there exists a substitution 7 to {z1,,41,..., 1%} \ {xi;} such that g|,-(z1;) is not
constant (g|,r = 15 or g|,r = —@y; ). Now, we compose the substitutions 7 and 7, which
gives us that h|,-(x1;) is not constant. This implies that the function k|, depends on the
variable ;. ]

Now we show that for a fixed m, almost all Boolean functions are m-stable.
» Lemma 6. Form > 1 and k = Q(2™), a random f € By, is m-stable almost surely.

Proof. Let X denote the set of k input variables. Let us fix a set Y, |[Y| < m+ 1, and a
variable y € Y. Now let us count the number of functions that do not satisfy the definition
of m-stable function for this fixed choice of Y and y. Thus, for each assignment to the
variables from X \ Y, the function must not be 3 nor —y. There are 2¥=m~1
the variables X \ Y, and at most (22" — 2) functions of (m+ 1) variables that are not y nor

—y. Thus, there are at most (22 —2)2°"""" functions that do not satisfy the definition of

assignments to
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m-stable function for this fixed choice of Y and y. Now, since there are (mil) -(m+1) ways
to choose Y and y, the union bound implies that a random function is not m-stable with
probability at most

k 2'm+1 2k77n71 mt1 2k—m,—1
lnsn) (¥ DE =) cpmiz (22 <
22k 227n+1
exp ((m + 2) Ik~ 22" ) = o(1)
for k = Q(2™). <

Lemma 6, together with Theorem 5, provides a class of functions such that any m-substitution
decreases the measure u, by at most a fixed constant (which may depend on m but not on
Q).

» Corollary 7. For any m > 0, there exists k > 0 and a function g of k inputs, such that for
any function h of n inputs, the function f = ho g of nk inputs satisfies:
Circuit complexity of f is close to that of h: gates(h) < gates(f) < gates(h) +
gates(g) - n,
For any m-substitution p and real o > 0, pa(f) — pa(flp) < gates(g) - m+ am.
Thus, for many functions gate elimination with m-substitutions and p, measures can prove
only O(n) lower bounds.

» Remark. Although Lemma 6 proves the existence of m-stable functions, their circuit
complexities might be large (though constant). To optimize these constants, one can use
explicit constructions of m-stable functions. For example, for m = 1 one can use an
error correcting code C: {1,...,7} — {0,1}® with distance 4. Let us define a function
go: {0,1}% — {0,1} as follows:
1. gc(C(i)) = 0 and go(C(i)®%) = 0 for all 4, where x®* inverts the i-th coordinate of the
vector x;
2. gc(C(i)®) =1 and go(C(i)®H7) =1 for all j # i.
It is easy to see that g is 1-stable. This construction can also be easily generalized to larger
m.
A computer-assisted search gives a 1-stable function of 5 inputs that can be computed
with 11 gates, which means that for 1-substitutions one cannot prove a lower bound stronger
than 11n.

4 Known Limitations for Various Circuit Models

Although there is no known argument limiting the power of gate elimination, there are many
known barriers in proving circuit lower bounds. In this section we list some of them. This
list does not pretend to cover all known barriers in proving lower bounds, but we try to show
both fundamental barriers in proving strong bounds and limits of specific techniques.
Baker, Gill, and Solovay [3, 12] present the relativization barrier that shows that any
solution to the P versus NP question must be non-relativizing. In particular, they show
that the classical diagonalization technique is not powerful enough to resolve this question.
Aaronson and Wigderson [1] present the algebrization barrier that generalizes relativization.
For instance, they show that any proof of superlinear circuit lower bound requires non-
algebrizing techniques. The natural proofs argument by Razborov and Rudich [28] shows
that a “natural” proof of a circuit lower bound would contradict the conjecture that strong
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one-way functions exist. In particular, this argument shows that the random restrictions
method [14] is unlikely to prove superpolynomial lower bounds. The natural proofs argument
implies the following limitation for the gate elimination method. If subexponentially strong
one-way functions exist, then for any large class P of functions (fraction of elements of P is
greater than %), for any effective measure (computable in time 2°(") and effective family
of substitutions S (the family of substitutions used by the gate elimination algorithm is
enumerable in time 2°0("), gate elimination cannot prove lower bounds better than O(n).
Note that there are currently no known algorithms computing the measures considered in
this paper in time 2°(%).

Let F be a family of Boolean functions of n variables. Let X and Y be disjoint sets of
input variables, and |X| = n. Then a Boolean function UF(X,Y) is called universal for the
family F if for every f(X) € F, there exists an assignment ¢ of constants to the variables
Y, such that UF(X,¢) = f(X). For example, it can be shown that the function used by
Blum [5] is universal for the family F = {x; ® x;, z; A z;|1 <4,j < n}. Nigmatullin [23, 24]
shows that many known proofs can be stated as lower bounds for universal functions for
families of low-complexity functions. At the same time, Valiant [34] proves a linear upper
bound on the circuit complexity of universal functions for these simple families.

Vadhan and Williams [33] note that the inequality (1) is tight for the inner product
function. This implies that the approach from [7] described in Section 2 cannot yield stronger
bounds.

There are known linear upper bounds on circuit complexity of some specific functions
and even classes of functions. For example, Demenkov et al. [6] show that each symmetric
function (i.e., a function that depends only on the sum of its inputs over the integers) can
be computed by a circuit of size 4.5n + o(n). This, in turn, implies that no gate elimination
argument for a class of functions that contains a symmetric function can lead to a superlinear
lower bound.

The basis Us is the basis of all binary Boolean functions without parity and its negation.
The strongest known lower bound for circuits over the basis Uz is 5n — o(n). This bound is
proved by Iwama and Morizumi [17] for (n — o(n))-mized functions. Amano and Tarui [2]
construct an (n — o(n))-mixed function whose circuit complexity over Us is 5n + o(n).

A formula is a circuit where each gate has out-degree one. The best known lower bound
of n?=°(M on formula size is proved by Nechiporuk [21]. The proof of Nechiporuk is based
on counting different subfunctions of given function. It is known that this argument cannot
lead to a superquadratic lower bound (see, e.g., Section 6.5 in [18]).

A De Morgan formula is a formula with AND and OR gates, whose inputs are variables and
their negations. The best known lower bound for De Morgan formulas is n®>~°(") (Hastad [15],
Tal [32], Dinur and Meir [9]). The original proof of this lower bound by Héstad is based on
showing that the shrinkage exponent I' is at least 2. This cannot be improved since I' is also
at most 2 as can be shown by analyzing the formula size of the parity function.

Paterson introduces the notion of formal complexity measures for proving De Morgan
formula size lower bounds (see, e.g., [35]). A formal complexity measure is a function
1 By, — R that maps Boolean functions to reals, such that
1. for every literal z, p(x) < 1;

2. for all Boolean functions f and g, pu(f A g) < p(f) + p(g) and p(f Vv g) < p(f) + w(g)-

It is known that De Morgan formula size is the largest formal complexity measure.
Thus, in order to prove a lower bound on the size of De Morgan formula, it suffices to

define a formal complexity measure and show that an explicit function has high value

2—o(1)

of measure. Khrapchenko [19] uses this approach to prove an n lower bound on
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the size of DeMorgan formulas for parity. Unfortunately, many natural classes of formal
complexity measures cannot lead to stronger lower bounds. Hrubes et al. [16] prove that
convezr measures (including the measure used by Khrapchenko) cannot lead to superquadratic
bounds. A formula complexity measure p is called submodular, if for all functions f, g it
satisfies u(fVg)+u(fAg) < u(f)+u(g). Razborov [26] uses a submodular measure based on
matrix parameters to prove superpolynomial lower bounds on the size of monotone formulas.
In a subsequent work, Razborov [27] shows that submodular measures cannot yield superlinear
lower bounds for non-monotone formulas. The drag-along principle [28, 20] shows that no
useful formal complexity measure can capture specific properties of a function. Namely, it
shows that if a function has measure m, then a random function with probability 1/4 has
measure at least m/4. Measures based on graph entropy (Newman and Wigderson [22]) are
used to prove a lower bound of nlogn on DeMorgan formula size, but it is proved that these
measures cannot lead to stronger bounds.

5 Conclusion and Further Directions

In this paper we have demonstrated that there are functions of virtually arbitrary complexity
that even after several substitutions do not allow to reduce their complexity more than by
a constant number of gates (and at most one variable they depend upon), or a constant
amount of a subadditive complexity measure.

This puts a barrier on gate elimination proofs that do not use specific properties of the
functions while analyzing how their circuits degrade after substitutions. Indeed, in most
proofs it is usually the case (properties of the function are used for estimating how many
substitutions can the function withstand).

However, there is one exception: in order to estimate the number of “bad” local situations
on the top of a circuit computing the function, [11] uses the fact that the function is an affine
disperser. While we believe that in this particular case it can be overcome, there may be
new techniques exploiting the function properties. Thus the first open question is:

Show that interesting classes of functions contain functions resistant to gate elimination.
For example, it would be interesting to show that the class of affine dispersers, or more
generally every large enough class of functions, contains a series of functions resistant to
gate elimination.

Another possible direction is to extend the result to other possible complexity measures,
because some syntactic measures can lack subadditivity (for example, composition can in
principle introduce more “bad” local situations). One can imagine, for example, “local”
measures that count specific small patterns in a circuit.

Extend the result to local complexity measures or another wide class.

While the results of this paper capture all types of substitutions, another possible
directions is:

Allow induction to descend to arbitrary varieties instead of the varieties described by
substitutions (for example, allow restrictions of the form xy = zt).

The situation might become much easier if we switch from arbitrary Boolean functions to
n-bit linear maps {0,1}"™ — {0,1}". They have non-linear complexity in principle but, again,
we do not have non-linear lower bounds for explicit functions. Can gate elimination prove
non-linear bounds here? What if we restrict ourselves to linear operations in the circuit and
linear substitutions? The gadgets used in this paper are non-linear and thus cannot help.
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Ezxtend the result to linear maps.

We show that there exist functions such that after a constant number of substitutions the

complexity of these functions decreases only by a constant. How far can it be strengthened
w.r.t. the number of substitutions?
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