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Abstract
The fastest known algorithm for factoring univariate polynomials over finite fields is the Kedlaya-
Umans [13] (fast modular composition) implementation of the Kaltofen-Shoup algorithm [12, § 2].
It is randomized and takes Õ(n3/2 log q+n log2 q) time to factor polynomials of degree n over the
finite field Fq with q elements. A significant open problem is if the 3/2 exponent can be improved.
We study a collection of algebraic problems and establish a web of reductions between them. A
consequence is that an algorithm for any one of these problems with exponent better than 3/2
would yield an algorithm for polynomial factorization with exponent better than 3/2.
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1 Introduction

A recent trend in discrete algorithms has been to establish very efficient reductions between
problems with polynomial time algorithms, with the intention of identifying barriers (concep-
tual or concrete) to improving the polynomial running time of the best known algorithms.
A standard example is the problem 3-SUM, which seems to require essentially quadratic
time, and which has been reduced to many other problems. More recently, the study of
“fine-grained” complexity has broadened, with several connections established between central
problems in discrete algorithms, and new conjectures beyond the 3-SUM conjecture entering
the picture (see, e.g. [1, 2, 3, 17, 18, 22, 23, 24]).

In this paper we focus on a “barrier” in algebraic algorithms, that of improving the
exponent 3/2 for univariate polynomial factorization and several other problems. Generally,
algebraic problems have two relevant “size” parameters – n, and the field size q. It is typical
for the dependence on q to be polylogarithmic (it is for all of the problems we consider), and
so we focus on the exponent on n in this work. We find that exponent 3/2 seems to be a
barrier for a number of problems. This points to a need to move beyond the so-called “baby
steps giant steps” methodology which tends to give rise to the exponent 3/2 behavior.
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47:2 Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization

The reductions in this paper can be seen as giving evidence that improving the 3/2
exponent may not be possible for these problems, but we believe that it “merely” gives
evidence that this improvement requires a conceptual breakthrough (along the lines of going
beyond the baby-steps giant-steps approach). Using the connections established in this paper,
such a breakthrough for any one of the problems considered here would improve the exponent
for all of them. In the discussion below, we use Õ to suppress no(1) terms and logo(1) q terms,
in order to highlight the exponent on n that is our main object of study. We also use the
phrase “nearly linear time reduction” to mean a reduction that runs in time Õ(n log q), and
the phrase “3/2 exponent reducible” to mean the weaker connection that shows that beating
exponent 3/2 for one problem implies beating exponent 3/2 for the other.

1.1 Algebraic problems with 3/2 exponent algorithms
We investigate the complexity of factoring a univariate polynomial over a finite field into its
irreducible factors. The problem formally stated is,

Factor: Given a monic square free f(x) ∈ Fq[x] of degree n, write f(x) as a product of
its monic irreducible factors.

The square free assumption is without loss of generality [14, 25]. Factor can be solved in
randomized polynomial time [4] and there is an extensive line of research [5, 12, 21] leading
to a randomized algorithm [13] with exponent 3/2. Surprisingly, even determining the degree
of a single irreducible factor rapidly would be sufficient to improve the exponent of this
algorithm. We formulate this problem as

Factor Degree: Given a monic square free f(x) ∈ Fq[x], find the degree of an irreducible
factor of f(x).

and prove in § 2 that Factor is 3/2-exponent reducible to Factor Degree. That is, an
algorithm for Factor Degree with exponent less than 3/2 yields one for Factor. Observe
that Factor Degree merely seeks one, not necessarily all, irreducible factor degrees. We
next investigate two linear algebraic problems, both we will demonstrate to be nearly linear
time reducible to Factor.

Frobenius Min-Poly: Given a monic square free f(x) ∈ Fq[x], compute the minimal
polynomial of the Frobenius endomorphism on Fq[x]/(f(x)) which takes a(x) mod f(x)
to a(x)q mod f(x).
Carlitz Char-Poly: Given a monic square free f(x) ∈ Fq[x], compute the characteristic
polynomial of the Carlitz endomorphism on Fq[x]/(f(x)) which takes a(x) mod f(x) to
xa(x) + a(x)q mod f(x).

In § 4, we prove that Factor Degree is nearly linear time reducible to Carlitz Char-
Poly, under certain restrictions on the characteristic of Fq. These restrictions were removed
in [15] by passing from Carlitz to Drinfeld modules. In § 3, through a novel recursive
argument, we prove that Factor is 3/2-exponent reducible to Frobenius Min-Poly.

Frobenius Min-Poly was known [12, 11] to be nearly linear time reducible to
Automorphism Projection: Given a monic square free f(x) ∈ Fq[x], α ∈ Fq[x]/(f(x))
and an Fq-linear map u : Fq[x]/(f(x)) −→ Fq, compute u(αqi),∀i ∈ {1, 2, . . . ,deg(f)}.

Thus, as a consequence of the reduction in § 3, we conclude that Factor is 3/2-exponent
reducible to Automorphism Projection. This should be contrasted with the connec-
tion established in [12, 11]. They show that Factor is nearly linear time reducible to
Automorphism Projection assuming an Fq-linear straight line program algorithm for
Automorphism Projection. This assumption allows them to use the “transpose” problem
Automorphism Evaluation. Our reduction to Automorphism Projection is novel,
direct, and holds without any assumptions.
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The final two problems pertain to zero testing Moore and Vandermonde determinants.
Moore-Det: Given a monic square free f(x) ∈ Fq[x] and a positive integer m, decide if
the determinant of the m by m square matrix with entries mij := xjq

i mod f(x) is zero.
Vandermonde-Det: Given a monic square free f(x) ∈ Fq[x] and a positive integer
b ≤

√
deg(f), decide if the determinant of the Vandermonde matrix with first row (xqi

mod f(x), i = 0, 1, 2, . . . , b− 1, b, 2b, 3b, . . . , (b− 1)b, b2) is zero.
In § 5, we prove that Factor Degree is nearly linear time reducible to each of these
problems and that each of these problems is nearly linear time reducible to Factor. In
summary, we have the following diagram where solid lines denote nearly linear time reductions
and dotted lines denote 3/2-exponent reductions.

Factor Degree Factor

Carlitz
Char-Poly

Frobenius
Min-Poly

Moore-Det

Vandermonde
Det

Automorphism
Projection

An interesting open question is if the dotted lines can be made solid. Except for Auto-
morphism Projection, every listed problem has a known randomized algorithm with
exponent 3/2. If the matrix multiplication exponent is 2, then a randomized algorithm for
Automorphism Projection with exponent 3/2 is known. Another open problem is if this
dependence on the matrix multiplication exponent can be removed – perhaps by reducing
automorphism projection to one of the other problems in the figure. Regardless, an
algorithm for any of the problems in the figure with exponent less that 3/2 would yield an
algorithm with exponent 3/2 for Factor, and this is one of the main points of this paper.

2 Factorization and Finding a Factor Degree

Clearly, if one can solve the problem factor in time T (n, q) then one can solve the problem
factor degree in time T (n, q). In this section we show a reduction in the reverse direction,
which leads to the surprising conclusion that one only needs to compute the degree of a single
irreducible factor of the polynomial f(x) with exponent better than 3/2 to be able to factor
f(x) completely with exponent better than 3/2.

I Theorem 1. If there is an algorithm that solves factor degree in the time T (n, q)
where T (n, q) = Ω(n log2 q) 1, then there is an algorithm that solves factor in time Õ(n ·
T (n, q)1/3 log4/3 q).

Observe that when factor degree has an exponent 3/2 algorithm (as it does), this
reduction recovers a 3/2 exponent algorithm for factor. A sub-3/2 exponent algorithm
for factor degree implies a sub-3/2 exponent algorithm for factor, with a nearly-linear
time algorithm yielding exponent 4/3 for factor.

1 The assumption T (n, q) = Ω(n log2 q) is without loss of generality. For otherwise we slow down an
algorithm with runtime T (n, q) until it is Ω(n log2 q).

MFCS 2016



47:4 Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization

Proof. We are given a monic, square-free polynomial f(x) ∈ Fq[x] of degree n. Let g(x)
be the product of irreducible factors of f(x) with degrees at most t (for a parameter t to
be chosen later). If s(x) is defined as s(x) =

∏t
i=1(xqi − x)ai , for some positive integers

a1, a2, . . . , at, then we have that g(x) = gcd(s(x), f(x)). Using fast modular composition [13]
and the method of Kaltofen-Shoup [12], we can compute s(x) mod f(x) in time Õ(n

√
t log2 q)

time. We then proceed to factor g(x) completely, using the Kedlaya-Umans implementation
of the Kaltofen-Shoup algorithm. The bottleneck in this algorithm is computing the splitting
polynomials, which are all polynomials of the form of s(x), with i ranging from 1 up to t′ ≤ t.
This portion of the algorithm runs in time Õ(n

√
t log2 q) and factors g(x) completely.

Now we invoke the algorithm to solve factor degree, on input f(x)/g(x). Upon
finding the degree d of an irreducible factor, we compute gcd(xqd − x mod f(x), f(x)) to
split off the factors with that degree. We then repeat. The number of repetitions is
bounded by n/t, since each irreducible factor of f(x)/g(x) has degree at least t. Each
repetition takes time T (n, q) + Õ(n log2 q). Thus this portion of the algorithm runs in time
Õ(n/t·(T (n, q)+n log2 q)) = Õ(n/t·T (n, q)). Finally we factor completely using equal-degree
factorization which takes Õ(n log2 q) time. Optimizing, we set t = (T (n, q)/ log2 q)2/3, and
the overall running time becomes Õ(n · T (n, q)1/3 log4/3 q) for each of the two stages, and
hence in total as well. J

3 Factoring and Minimal Polynomial of Frobenius

For a monic square free f(x), let g(λ) ∈ Fq[λ] denote the minimal polynomial of the qth
power Frobenius endomorphism σ : Fq[x]/(f(x))→ Fq[x]/(f(x)). That is, g(λ) is the unique
nonzero monic polynomial of least degree such that the endomorphism g(σ) on Fq[x]/(f(x))
is zero. The problem Frobenius Min-Poly is to determine g(λ) given f(x). Since g(λ) is
the least common multiple of λd − 1 as d runs through the degrees of the irreducible factors
of f(x), Frobenius Min-Poly is nearly linear time reducible to Factor. In this section,
we conversely prove that Factor is 3/2-exponent reducible to Frobenius Min-Poly.

Let FrobMinPoly be an oracle that solves Frobenius Min-Poly. We present an
algorithm Factor that invokes FrobMinPoly and solves Factor. For k ∈ N+, denote by Φk
the kth cyclotomic polynomial over Fq. Write φ(·) for the Euler totient function.

Algorithm 1 Factor(f(x))
Input: Monic square free polynomial f(x) ∈ Fq[x] of degree n.
Output: Monic irreducible factors of f(x).
Oracle: FrobMinPoly

1: Using [13], output and remove all monic irreducible factors of f(x) of degree at most
n2/3. If at most one irreducible factor of degree greater than n2/3 remains, output and
exit.

2: g(λ)← FrobMinPoly(f(x)).
3: Perform square free factorization on g(λ), and then run Factor recursively on the outputs

to obtain the list of monic irreducible factors g1(λ), . . . , gm(λ) of g(λ).
4: Run FindT(g1(λ), . . . , gm(λ)) computing the set T := {k : p - k and Φk(λ)|g(λ)} as well

as mk, the multiplicity of Φk(λ) in g(λ), for each k ∈ T .
5: Compute S := {kpe : k ∈ T, 0 ≤ e ≤ logpmk}.
6: for each s ∈ S greater than n2/3, set fs(x) ← gcd(f(x), xqs − x mod f(x)), f(x) ←
f(x)/fs(x) and perform equal-degree factorization on fs(x).
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The algorithm begins by extracting all monic irreducible factors of degree at most n2/3.
After Line 1, f(x) only has large (at least n2/3) degree factors. Suppose d1, d2, . . . , dm are the
degrees of the (remaining) monic irreducible factors of f(x). Then the minimal polynomial
g(λ) ∈ Fq[λ] of the Frobenius acting on Fq[x]/(f(x)) is

g(λ) = lcm
(
λd1 − 1, . . . , λdm − 1

)
.

In particular, the cyclotomic polynomials Φd1(λ), . . . ,Φdm(λ) divide g(λ) and the factorization
of g(λ) contains information about d1, d2, . . . , dm. We devise a novel procedure to infer
d1, d2, . . . , dm efficiently.

On Line 2, g(λ) is computed by invoking FrobMinPoly. To infer d1, d2, . . . , dm, we seek
the factorization of g(λ). To this end, a key idea is to factor g(λ) recursively on Line 3
and obtain a list g1(λ), g2(λ), . . . , gm(λ) of its monic irreducible factors. Since f(x) is not
irreducible at this point, g(λ) has degree strictly less than f(x) and the algorithm runs to
completion.

Then we use a procedure FindT(g1(λ), . . . , gm(λ)) to compute the set T and integers mk

as defined on Line 4. This step is the most technical part of the algorithm, and we defer its
description and analysis to the next subsection, where we prove the following theorem:

I Theorem 2. FindT(g1(λ), . . . , gm(λ)) can be implemented to run in Õ(n log q) time.

Once T is known, to compute S on Line 5 is straightforward. The following lemma shows
that S indeed contains d1, d2, . . . , dm.

I Lemma 3. d1, d2, . . . , dm ∈ S.

Proof. Consider an arbitrary d ∈ {d1, d2, . . . , dm} and write it as d = kpe with p - k. By
definition (λd − 1)|g(λ). Since λd − 1 = (λk − 1)pe and λk − 1 =

∏
k0|k Φk0(λ), Φk(λ) is a

factor of g(λ) with multiplicity at least pe. So k ∈ T and mk ≥ pe, implying d = kpe ∈ S. J

To conclude, by Line 6, all the irreducible factors of f(x) are indeed output.

I Theorem 4. Suppose the oracle FrobMinPoly runs in time T (n, q) which is monotone in
n and q. Then Factor factors a degree-n polynomial in Õ(T (n, q) + n4/3 log2 q) time.

Proof. We first analyze the running time of each step except the recursive call. Line 1 can
be implemented in Õ(n4/3 log2 q) time using the baby-step-giant-step strategy [12, 13]. The
oracle FrobMinPoly on Line 2 runs in time T (n, q). The set T on Line 4 could be found in
time Õ(n log q) by Theorem 2. Since

∏
k∈T Φk(λ)mk divides g(λ), we have

∑
k∈T mkφ(k) ≤

deg(g(λ)) ≤ n. Hence |T | ≤ n and mk ≤ n for all k ∈ T , implying S on Line 5 could be
computed in time Õ(n). Further,∑

s∈S
s ≤

∑
k∈T,0≤e≤logp mk

kpe ≤ logn
∑
k∈T

kmk ≤ O(log logn) · logn
∑
k∈T

mkφ(k) = Õ(n)

where we use k/φ(k) = O(log log k) [19] and
∑
k∈T mkφ(k) ≤ n. Hence the number of s ∈ S

greater than n2/3 is at most (
∑
s∈S s)/n2/3 = Õ(n1/3). For each s ∈ S, Computing fs(x)

takes Õ(n log2 q) time for each s ∈ S [13] and hence Õ(n4/3 log2 q) time in total. Equal
degree factorization on Line 6 takes Õ(n log2 q) time in total.

Let dmax(f(x)) denote the maximal degree of the irreducible factors of f(x). We claim
that dmax(f(x)) shrinks by at least a factor of two every two recursive calls. It implies that
the recursive tree has depth no more than O(logn), so the total running time is bounded by
O(logn) · (T (n, q) + Õ(n4/3 log2 q)) = Õ(T (n, q) + n4/3 log2 q), as desired.

MFCS 2016



47:6 Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization

Consider an irreducible factor g0(λ) of g(λ). We know g0(λ) divides λk−1 =
∏
k0|k Φk0(λ)

for a positive integer k corresponding to some degree k irreducible factor f0(x) of f(x). If
g0(λ) divides Φk0(λ) for some proper divisor k0 of k, we have deg(g0(λ)) ≤ φ(k0) ≤ k0 ≤ k/2.
Likewise, if g0(λ) is a proper irreducible factor of Φk(λ), we have deg(g0(λ)) ≤ φ(k)/2 ≤ k/2
as well. So assume g0(λ) = Φk(λ). Suppose k =

∏
` `
e` , ` running over prime divisors of k.

Then φ(k) =
∏
`(`− 1)`e`−1. If k is even, we have e2 ≥ 1 implying deg(g0(λ)) = φ(k) ≤ k/2

(since for ` = 2, (` − 1)`e`−1 = `e`/2). If k is odd, deg(g0(λ)) = φ(k) =
∏
`(` − 1)`e`−1 is

even. The argument above applied to g0(λ) and g(λ) in place of f0(x) and f(x) shows that
the degree shrinks by at least a factor of two in the next recursive call. The claim follows. J

I Remark. One may easily check that the same algorithm and analysis also work if the
polynomial g(λ) computed by the oracle is the characteristic polynomial of the Frobenius
endomorphism instead of the minimal polynomial. The only difference is that g(λ) is the
product of λd1 − 1, . . . , λdm − 1 rather than their lcm.

3.1 Computing the Set T
We next devise a nearly linear time procedure to implement FindT. It relies on solutions to
the following two problems: (1) finding all irreducible factors of Φk(λ) over Fq from a single
irreducible factor g0(λ) and (2) finding the corresponding integer k. We deal with these two
problems individually before describing FindT.

3.1.1 Finding the irreducible factors of Φk(λ)
Let k ∈ [1, n] be an integer coprime to p. Our goal is to find all the irreducible factors of
Φk(λ) over Fq from a single irreducible factor g0(λ)|Φk(λ). To achieve it, we need to know
how Φk(λ) factorizes over Fq.

3.1.1.1 Factorization of Φk(λ) over Fq.

As k is coprime to p, there are φ(k) distinct primitive kth roots of unity in Fq which are
exactly the roots of Φk(λ). Denote this set of roots by µk. Let G be the abelian group
(Z/kZ)× of order φ(k). For d ∈ Z, we write d̄ for the image of d in Z/kZ. The group G

acts on µk such that d̄ ∈ G sends any θ ∈ µk to θd. This is a regular action, meaning that
for fixed θ ∈ µk, the map d̄ 7→ θd is a bijection between G and µk. As p is coprime to k,
we have q̄ ∈ G. Let G0 = 〈q̄〉 ⊆ G and s = [G : G0]. Restrict the G-action on µk to a
G0-action. Then µk is partitioned into s distinct G0-orbits represented by θ1, . . . , θs ∈ µk. It
is well-known that the factorization of Φk(λ) over Fq is then determined in the following way:

I Lemma 5. Under the notations above, Φk(λ) has s irreducible factors g1(λ), . . . , gs(λ)
over Fq corresponding to the G0-orbits G0θ1, . . . , G0θs of µk in the sense that the set of roots
of gi(λ) is exactly G0θi.

Proof. Let g(λ) be an irreducible factor of Φk(λ) over Fq and θ ∈ µk be a root of g(λ). Then
Fq[θ] is Galois over Fq with the Galois group generated by the Frobenius map a 7→ aq. So
a ∈ Fq[θ] is a root of g(λ) if and only if aq is a root of g(λ). Therefore G0θ is the set of roots
of g(λ) and the lemma follows. J

From now on we fix a root θ ∈ µk of the given irreducible factor g0 of Φk. For any
subgroup H ⊆ G containing G0, the G-action on µk restricts to an H-action. The H-orbit
Hθ is partitioned into a disjoint union of G0-orbits and hence corresponds to a subset L of
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irreducible factors of Φk(λ) by Lemma 5. Note that L also determines H: h ∈ G lies in H if
and only if the minimal polynomial of hθ over Fq is in L. We say L is associated with the
subgroup H.

We need an auxiliary procedure FindOrder(`, L) to find the order of H ¯̀ in G/H.

I Lemma 6. There exists a procedure FindOrder(`, L) that takes an integer ` and the set
L associated with H, and returns the following result: if ¯̀∈ G = (Z/kZ)×, it returns the
order of H ¯̀ in G/H, i.e. the smallest e > 1 for which ¯̀e ∈ H. Otherwise it returns zero.
Moreover FindOrder(`, L) could be implemented in time Õ(φ(k) log q).

See the full version of this paper [10] for the proof of Lemma 6 and the description of
FindOrder(`, L).

We use a randomized procedure FindCyclotomic(g0(λ), n) to find all irreducible factors
of Φk(λ) over Fq. Here g0(λ) is one irreducible factor of Φk(λ) and n is the degree of the
polynomial f(x).2

Algorithm 2 FindCyclotomic(g0(λ), n)
Input: Irreducible factor g0(λ) of Φk(λ) over Fq and degree n of f(x)
Output: The list of irreducible factors of Φk(λ) over Fq

1: L← {g0(λ)}
2: for t from 1 to N = bc logn log lognc do . c > 0 is a large enough constant
3: Pick an integer ` ∈ [1, n] at random
4: e← FindOrder(`, L)
5: for each h(λ) ∈ L do
6: r0 ← λ mod h(λ) ∈ Fq[λ]/(h(λ)), ri ← r`i−1 for i = 1, . . . , e− 1
7: Let fi(λ) be the minimal polynomial of ri over Fq for i = 1, . . . , e− 1
8: Add f1(λ), . . . , fe−1(λ) to L
9: end for

10: end for
11: return L

The procedure FindCyclotomic(g0(λ), n) maintains a subset L of irreducible factors of
Φk(λ) associated with some subgroup of G containing G0. Initially L = {g0(λ)}, associated
with H0 := G0. We claim:

I Lemma 7. Suppose L is associated with Hi−1 at the beginning ith execution of the outer
loop of FindCyclotomic(g0(λ), n). Then at the end of the ith execution, the set L is associated
with a subgroup Hi ⊇ Hi−1. Moreover, Hi = Hi−1 if ¯̀ 6∈ G in the ith execution of the outer
loop. Otherwise Hi = Hi−1〈¯̀〉.

Proof. If ` 6∈ G in the ith execution of the outer loop, then e is set to zero by Lemma 6 and
the claim is trivial. So assume ` ∈ G and let H = Hi−1〈¯̀〉. Then e is the order of Hi−1 ¯̀ in
H/Hi−1 by Lemma 6, or [H : Hi−1]. Suppose the irreducible factors in L at the beginning
of the ith execution correspond to distinct G0-orbits G0θ1, . . . , G0θm whose union is the
Hi−1-orbit Hi−1θ, m = [Hi−1 : G0]. The inner loop enumerates G0θj , and for each of them,
adds the irreducible factor corresponding to G0θ

`s

j to L, s = 1, . . . , e − 1. Note that the
union of these G0-orbits G0θ

`s

j = G0 ¯̀sθj = ¯̀sG0θj where 1 ≤ j ≤ m, 0 ≤ s ≤ e− 1 equals

2 The argument n is only used on Line 2 and 3 to control the number of repetitions and the range of `,
which is related to the error probability.

MFCS 2016



47:8 Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization

the union of Hi−1-orbits ¯̀sHi−1θj , which equals the H-orbit Hθ. And these G0-orbits are
all distinct since the number of them is me = [H : G0]. So L is associated with H at the end
of the ith execution of the outer loop. J

I Lemma 8. The procedure FindCyclotomic(g0(λ), n) returns a set L associated with
HN ⊆ G. And HN = G with probability 1− poly(n) in which case L contains all irreducible
factors of Φk(λ) over Fq. Moreover FindCyclotomic(g0(λ), n) could be implemented in time
Õ(φ(k) log q).

Proof. We want to show HN = G with probability 1− poly(n). By Lemma 6 and Lemma
7, it is equivalent to showing the set of ¯̀∈ G generates G. Identify G with a product of at
most log |G| ≤ logn primary cyclic groups Ci whose orders are coprime to each other. We
only need to show the the set of holomorphic images of ¯̀∈ G generates Ci for each i with
probability 1− poly(n) and then apply the union bound.

So fix one such Ci and let m = |Ci|. Then φ(m) out of the m elements in Ci are generators
of Ci. Let α be the probability that the holomorphic image of ¯̀ is among these φ(m) elements,
where ` is randomly sampled from [1, n] as on Line 3. As m is a prime power, we have
φ(m) ≥ m/2. Therefore

α ≥ bn/kc
n
· φ(m)

m
· |G| = Ω(φ(k)/k) = Ω(1/ log log k)

where we use k/φ(k) = O(log log k) [19]. So for sufficiently large N = bc logn log lognc, the
claim holds with probability 1− poly(n).

Then we analyze the running time: Line 4 runs in time Õ(φ(k) log q) by Lemma 6.
Line 7 could be implemented in time Õ(|G0| log q) [13, 20]. And Line 3–9 runs in time
|L| · max{e, 1} · Õ(|G0| log q). This is bounded by Õ(φ(k) log q) since |L| = [Hi−1 : G0],
max{e, 1} = [Hi : Hi−1], and |G| = φ(k). As N = Θ(logn log logn), the total running time
is bounded by Õ(φ(k) log q). J

3.1.2 Finding the integer k
Another problem we need to solve is finding the integer k given an irreducible factor g0(λ) of
Φk(λ) over Fq. Using the procedure FindCyclotomic(g0(λ)), we could find all the irreducible
factors of Φk(λ) and hence Φk(λ) itself. The degree d := deg(Φk(λ)) = φ(k) is hence also
known. If |φ−1(d)| is small, we could find k by enumerating k0 ∈ φ−1(d) and checking if
Φk0(λ) = Φk(λ). However, Erdős [9] showed that for some constant c > 0, there are infinitely
many integers d for which |φ−1(d)| ≥ dc. So this approach is not affordable in general. Based
on more sophisticated ideas, we show that it is possible to find k efficiently:

I Lemma 9. There exists a procedure Findk(d, g0(λ)) that takes an integer d > 0 dividing
φ(k) and an irreducible factor g0(λ) of Φk(λ), and returns a positive integer k0|k in time
Õ(φ(k) log q). Moreover k0 = k if d = φ(k).

See the full version of this paper [10] for the proof of Lemma 9 and the description of
Findk(d, g0(λ)).

3.1.3 Finding the set T
Now we are ready to describe the procedure FindT(g1(λ), . . . , gm(λ)):
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Algorithm 3 FindT(g1(λ), . . . , gm(λ))
Input: The irreducible factors g1(λ), . . . , gm(λ) of g(λ) over Fq
Output: The set T and multiplicities mk for each k ∈ T

1: L0 ← {g1(λ), . . . , gm(λ)} as a multi-set and T ← ∅
2: repeat
3: Pick an arbitrary element g0(λ) ∈ L0
4: L← FindCyclotomic(g0(λ))
5: h(λ)←

∏
fi(λ)∈L fi(λ), d← deg(h(λ))

6: k0 ← Findk(d, g0)
7: if h(λ)|λk0 − 1 then
8: if k0 6∈ T then mk0 ← 0
9: T ← T ∪ {k0}, mk0 ← mk0 + 1

10: L0 ← L0 − L
11: end if
12: until L0 = ∅
13: return T

I Theorem 10 (Theorem 2 restated). FindT(g1(λ), . . . , gm(λ)) computes the set T and
multiplicities mk as defined in Algorithm 1, Line 4. Moreover it halts in time Õ(n log q) with
probability 1− 1/poly(n).

Proof. The algorithm picks g0(λ) from L0, calls FindCyclotomic to find a list L ⊆ L0 that
almost surely contains all the irreducible factors of Φk(λ), and remove these factors from L0.
It repeats these steps until L0 is empty. Each time it also determines the integer k using
Findk, adds it to T and updates mk.

Note that with small probability, the list L returned by FindCyclotomic may not contain
all the irreducible factors, in which case it is associated with a proper subgroup HN ⊆ G (c.f.
Lemma 8). In any case we have deg(h(λ))|φ(k) and therefore by Lemma 9, the integer k0
returned by Findk divides k. We verify that k = k0 on Line 7: h(λ)|(λk0 − 1) if and only if
k|k0 if and only if k = k0 since we know k0|k. And if we find k 6= k0 we do nothing in that
round. The correctness of the algorithm is then straightforward.

For the running time, note that each round runs in time Õ(φ(k) log q) by Lemma 8
and Lemma 9, and then factors of total degree φ(k) are removed from L0 with probability
1 − 1/poly(n). So with probability 1 − 1/poly(n), the total running time is bounded by∑m

i=1 Õ(deg(gi(λ)) log q) = Õ(n log q). J

4 Polynomial Factorization Using Carlitz Modules

We next establish connections between polynomial factorization and the Carlitz action. We
prove two nearly linear reductions, namely Factor Degree to Carlitz Char-Poly and
Carlitz Char-Poly to Factor. The former reduction requires that the characteristic p of
Fq is larger than the number of irreducible factors.

4.1 Carlitz Modules
Let A be an Fq[x]-algebra. For f(x) ∈ Fq[x] and α ∈ A, f(x)α is understood to be the result
of the Fq[x] action of f(x) on α in A. Let σ : A −→ A and τ : A −→ A denote the qth power
Frobenius endomorphism and the multiplication by x endomorphism respectively. That is,

MFCS 2016
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∀α ∈ A, σ(α) = αq and τ(α) = xα. In [6, 7], Carlitz endowed a new Fq[x]-module structure
on A by defining m(x) =

∑
imix

i ∈ Fq[x] to act on α ∈ A as

ρm(α) := (m(σ + τ)) (α) =
(∑

i

mi(σ + τ)i
)

(α).

In particular, ∀α ∈ A, ρx(α) = αq + xα and ∀u ∈ Fq, ρu(α) = uα. Let ρ(A) denote the
Fq[x]-module structure thus endowed to A by the Carlitz action. To factor a monic square
free polynomial f(x), we will concern ourselves with ρ(Fq[x]/(f(x))). Let χf (x) ∈ Fq[x]
denote the characteristic polynomial of the Fq linear transformation on Fq[x]/(f(x)) that
takes α ∈ Fq[x]/(f(x)) to ρx(α). Hence Carlitz Char-Poly may be restated as

I Problem 11. Given a monic square free f(x) ∈ Fq[x], compute χf (x).

By Lemma 12, knowledge of factorization of f(x) immediately yields χf (x) in Õ(n log q)
time. Thus Problem Carlitz Char-Poly is linear time reducible to Factor. We next
reduce Factor Degree to Carlitz Char-Poly.

4.2 Factor Degree Estimation using Carlitz Modules
I Lemma 12. Let f(x) =

∏
i fi(x) be a factorization of a monic square free f(x) ∈ Fq[x] into

monic irreducible polynomials . Then ρ(Fq[x]/(f(x))) ∼=
⊕

i Fq[x]/(fi(x)− 1). In particular,
χf (x) =

∏
i(fi(x)− 1).

Proof. By the Chinese remainder theorem, Fq[x]/(f(x)) ∼=
∏
i Fq[x]/(fi(x))

⇒ ρ(Fq[x]/(f(x))) ∼= ρ

(∏
i

Fq[x]/(fi(x))
)
∼=
⊕
i

ρ (Fq[x]/(fi(x))) . (4.1)

The final congruence holds since for every direct product C ∼= A×B of Fq[x]-algebras, we
have the corresponding direct sum ρ(C) ∼= ρ(A)⊕ ρ(B) of Fq[x]-modules [8]. For a monic
irreducible g(x) ([8]),

ρ(Fq[x]/(g(x))) ∼= Fq[x]/(g(x)− 1). (4.2)

Equation 4.1 and 4.2 together prove the lemma. J

I Lemma 13. If p does not divide the number of smallest degree factors of a monic square
free f(x) ∈ Fq[x], then the smallest irreducible factor degree of f(x) is deg(f(x))−deg(f(x)−
χf (x)).

Proof. Let f(x) =
∏
i fi(x) be a factorization of a monic square free f(x) ∈ Fq[x] into monic

irreducible polynomials. Let d be the smallest degree of factors of f(x). Then

f(x)−χf (x) = f(x)−
∏
i

(fi(x)−1) =
∑
i

f(x)
fi(x) +(terms of degree less than deg(f(x))−d).

The first equality is from Lemma 12. Since f(x) and fi(x) are all monic and p does not
divide the number of fi(x) of degree d, the leading term of

∑
i(f(x)/fi(x)) is of degree

deg(f(x))− d. Therefore deg(f(x)− χf (x)) = deg(f(x))− d and the lemma follows. J

Lemma 13 reduces in nearly linear time Factor Degree (when restricted to p greater than
the number of factors of f(x)) to Carlitz Char-Poly. To see this, given f(x), we may call
an algorithm that solves Problem 11 to obtain χf (x) and output deg(f(x))−deg(f(x)−χf (x)).
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5 Moore and Vandermonde Determinants

5.1 Moore Determinants and Carlitz Factorials
Let A be a finitely generated Fq algebra and n a positive integer. The Moore matrix Mw

with first row w = (w1, w2, . . . , wn) ∈ An is defined as

Mw :=



w1 w2 w3 . . . wn
wq1 wq2 wq3 . . . wqn
wq

2

1 wq
2

2 wq
2

3 . . . wq
2

n
...

...
...

. . .
...

wq
n−1

1 wq
n−1

2 wq
n−1

3 . . . wq
n−1

n


and its determinant det(Mw) is denoted by ∆(w1, w2, . . . , wn). For a positive integer m, the
mth Carlitz factorial ∏

0≤i<j≤m

(
xq

j−i

− x
)qi

,

is the product of all polynomials over Fq of degree at most m [6]. We next recall Carlitz’s
identity and from it reduce Factor Degree to computing certain Moore determinants.

I Lemma 14. (Carlitz [6]) For every positive integer m,

∆(1, x, x2, . . . , xm) =
∏

0≤i<j≤m

(
xq

j−i

− x
)qi

,

Proof. The Moore matrix with first row (1, x, x2, . . . , xm), when viewed column-wise is
Vandermonde. By the Vandermonde determinant formula,

det




1 x x2 . . . xm

1 xq x2q . . . xmq

1 xq
2

x2q2
. . . xmq

2

...
...

...
. . .

...
1 xq

n−1
x2qn−1

. . . xmq
n−1



 =
∏

0≤i<j≤m
(xq

j

−xq
i

) =
∏

0≤i<j≤m

(
xq

j−i

− x
)qi

J

Moore-Det may be restated as

I Problem 15. Given a square free monic polynomial f(x) ∈ Fq[x] of degree n and a positive
integer m ≤ n, decide if ∆(1, x, . . . , xm) mod f(x) is 0.

Problem 15 can be solved in Õ(n3/2 log q + n log2 q) time [13, Lemma 8.4].

I Theorem 16. If there is a T (n,m, log q) time algorithm for Problem 15, then Factor
Degree can be solved in O(T (n, dn/2e, log q) logn) time. That is, Factor Degree is
nearly linear time reducible to Moore-Det.

Proof. By Lemma 14, for a monic square free f(x) ∈ Fq[x] and m ≤ deg(f(x)), we have
∆(1, x, . . . , xm) mod f(x) = 0 if and only if∏

0≤i<j≤m

(
xq

j−i

− x
)qi

= 0 mod f(x). (5.1)

Since f(x) is square free, Equation 5.1 holds if and only if every irreducible factor of f(x)
has degree at most m. Given oracle access to an algorithm for Problem 15, a binary search
leads to the determination of the largest irreducible factor degree of f(x). J
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5.2 Vandermonde Determinants
The determinants involved in the previous subsection were both Moore and Vandermonde.
Here we study determinants that are Vandermonde but not Moore. Further, the matrices
involved are of dimension significantly smaller than the degree of the polynomial factored.

For a positive integer m, let

Sm := {0, 1, 2, . . . , b
√
mc − 1, b

√
mc, 2b

√
mc, 3b

√
mc, . . . , (b

√
mc − 1)b

√
mc, b

√
mc2,m}.

This ensures that |Sm| ≤ 2b
√
mc+ 1 and {j − i|i, j ∈ Sm, i < j} = {1, 2, . . . ,m− 1,m}.

For a positive integer m, let Vm(x) ∈ Fq[x] denote the determinant of the Vandermonde
matrix with first row {xqi

, i ∈ Sm}.

I Lemma 17. For every monic square free f(x) ∈ Fq[x] and every positive integer m,

gcd(Vm(x), f(x)) = gcd

 ∏
0≤i≤m

(
xq

i

− x
)
, f(x)

 .

Proof. By the Vandermonde determinant formula,

Vm(x) =
∏

i,j∈Sm|i<j

(
xq

j

− xq
i
)

=
∏

i,j∈Sm|i<j

(
xq

j−i

− x
)qi

. (5.2)

Since f(x) is square free and {j − i|i, j ∈ Sm, i < j} = {1, 2, . . . ,m− 1,m},

gcd

 ∏
i,j∈Sm|i<j

(
xq

j−i

− x
)qi

, f(x)

 = gcd

 ∏
0≤i≤m

(
xq

i

− x
)
, f(x)

 . (5.3)

By Equations 5.2 and 5.3, the lemma follows. J

Vandermonde Det may be restated as

I Problem 18. Given a square free monic polynomial f(x) ∈ Fq[x] of degree n and a positive
integer m ≤ n, decide if Vm(x) mod f(x) is 0.

We next sketch a fast algorithm for Problem 18. Since |Sm| ≤
√
n, the first row {xqi

mod f(x), i ∈ Sm} can be computed in Õ(n3/2 log q+ n log2 q) time using iterated Frobenius
algorithm [21] implemented using fast modular composition [13]. Given the first row of a
Vandermonde matrix over a commutative ring, the square of its determinant can be computed
with nearly linearly many operations over the ring [16]. Hence, Vm(x) mod f(x) can be zero
tested in Õ(n3/2 log q + n log2 q) time.

I Theorem 19. If there is a T (n,m, log q) time algorithm for Problem 18, then Factor
Degree can be solved in O(T (n, d

√
ne, log q) logn) time. That is, Factor Degree is nearly

linear time reducible to Vandermonde Det.

Proof. By Lemma 14 and Lemma 17, for every monic square free f(x) ∈ Fq[x] and positive
integer m ≤ deg(f(x)),

gcd(Vm(x), f(x)) = gcd(∆(1, x, . . . , xm), f(x)).

Hence Problems 15 and 18 are identical and our theorem follows from Theorem 16. J
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