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Abstract
An automaton is synchronizing if there exists a word that sends all states of the automaton to a
single state. A coloring of a digraph with a fixed out-degree k is a distribution of k labels over
the edges resulting in a deterministic finite automaton. The famous road coloring theorem states
that every primitive digraph has a synchronizing coloring. We study recent conjectures claiming
that the number of synchronizing colorings is large in the worst and average cases.

Our approach is based on the spectral properties of the adjacency matrix A(G) of a digraph
G. Namely, we study the relation between the number of synchronizing colorings of G and the
structure of the dominant eigenvector ~v of A(G). We show that a vector ~v has no partition
of coordinates into blocks of equal sum if and only if all colorings of the digraphs associated
with ~v are synchronizing. Furthermore, if for each b there exists at most one partition of the
coordinates of ~v into blocks summing up to b, and the total number of partitions is equal to s,
then the fraction of synchronizing colorings among all colorings of G is at least k−s

k . We also give
a combinatorial interpretation of some known results concerning an upper bound on the minimal
length of synchronizing words in terms of ~v.
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1 Introduction

Let A = (Q,Σ, δ) be a finite deterministic complete automaton with an alphabet Σ, a set of
states Q and a transition function δ. The automaton A is synchronizing if there exist a word
u and a state p such that for every state q ∈ Q we have q · u = p, where q · u denotes the
image of q under the action of u. Any such word u is called synchronizing (or reset) word for
A . The length of the shortest synchronizing word rt(A ) is called the reset threshold of A .
Synchronizing automata naturally appear in algebra, coding theory, industrial automation,
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discrete dynamical systems, etc. A brief survey of the theory of synchronizing automata may
be found in [19].

Two fundamental problems about synchronizing automata that were intensively investig-
ated in the last decades are the Černý conjecture and the road coloring problem. The former
states that the reset threshold of an n-state automaton is at most (n − 1)2 [9]. Despite
intensive research efforts it remains open for already half a century. The latter problem
states a certain connection between primitive digraphs and synchronizing automata, which
we will explain shortly, and was recently resolved by Trakhtman [18] after crucial insight by
Culik, Karhumäki, and Kari [10]. Our paper is devoted to the generalizations of the road
coloring theorem.

1.1 The road coloring theorem

The underlying digraph G(A ) of an automaton A is a digraph with Q as a set of vertices,
and for each u ∈ Q, x ∈ Σ there is an edge (u, u · x). We allow loops and multiple edges,
thus G(A ) has a fixed out-degree equal to the cardinality of the alphabet Σ, i.e., G(A ) is a
|Σ|-out-regular digraph.

Vice versa, given a digraph G with a fixed out-degree k and a finite alphabet Σ with k
letters, we can obtain a deterministic finite automaton by distributing the letters of Σ over
the edges of G. Any automaton obtained in this way is called a coloring of G. A digraph
is primitive if there exists a number t such that for any two vertices u and v there exists a
path from u to v of length exactly t. An automaton is strongly connected if its underlying
digraph is strongly connected.

I Theorem 1 (Road coloring theorem). A strongly connected digraph G with a fixed out-degree
k has a synchronizing coloring if and only if it is primitive.

This theorem was stated as a conjecture in 1977 [1]. The authors’ original motivation comes
from symbolic dynamics. Namely, synchronizing coloring defines a morphism from a shift of
finite type given by G to a full shift over Σ with special properties, see [3].

The origin of the terminology is as follows. A digraph G represents a network of one-way
roads. A coloring of G defines labels of the roads that can be perceived by drivers. If the
coloring is synchronizing then the drivers who are unaware of their current location have
the following strategy to relocate themselves: they can simply follow roads labelled by a
synchronizing word and their final position will be well defined.

Although the road coloring theorem gives an answer for a principal connection between
digraphs and synchronizing automata, there are still basic quantitative questions that remain
unanswered. Namely, how many synchronizing colorings a primitive digraph G can have and
what is the number of synchronizing colorings of an average (or random) digraph? These
questions were addressed in [13] and two conjectures were formulated as a result of extensive
computational experiments. In order to state them, we will need some definitions.

The synchronizing ratio of a digraph G is the number of synchronizing colorings divided
by the total number of colorings. Note, that a coloring is a mapping from the set of edges to Σ
with parallel edges being distinguished. Thus, the total number of colorings of a k-out-regular
digraph with n states is always kn.

I Conjecture 2. The minimum value of the synchronizing ratio among all k-out-regular
primitive digraphs with n vertices is equal to k−1

k , except for the case k = 2 and n = 6 when
it is equal to 30

64 .
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We say that the digraph is totally synchronizing if its synchronizing ratio is equal to 1, i.e.,
every coloroing is synchronizing.

I Conjecture 3. For every k ≥ 2, the fraction of totally synchronizing digraphs among all
k-out-regular primitive digraphs with n vertices tends to 1 as n goes to infinity.

If both conjectures are true, then the road coloring theorem is a relatively weak statement
that gives us just the first step towards satisfactory understanding of the synchronizing
properties of automata and digraphs.

We want to mention another direction to strengthen the road coloring theorem.

I Conjecture 4 (Hybrid Černý–Road Coloring Problem). Every primitive k-out-regular digraph
with n vertices has a synchronizing coloring with the reset threshold at most n2 − 3n+ 3.

This conjecture was made by M.V.Volkov and partial results were obtained in [17, 8].

1.2 Our contributions
One of the major obstacles in approaching conjectures 2 and 3 comes from the difficulty of
proving that a coloring under consideration is synchronizing. A simple and straightforward
proof of this fact tends to be tedious and technical even for relatively simple automata, see
for example [12]. In order to overcome this difficulty we rely on spectral properties of the
adjacency matrix A(G) of a primitive k-out-regular digraph G.

More precisely, Perron-Frobenius theorem [15, Chapter 8] implies existence of entrywise
positive eigenvector ~v of A(G) associated with the unique largest eigenvalue, which we will
simply call the eigenvector of G. The vector ~v can also be seen as the unique stationary
distribution of the Markov chain associated with G by assigning the probability 1

k for each
of the outgoing edges.

The importance of the eigenvector of G in the context of synchronizing automata was
demonstrated by Friedman [11]. We will require a few definitions to state his result. Let
Q = {1, . . . , n}, and ~v[i] be the ith entry of ~v. The weight of a subset S ⊆ Q is given by
wg(S) =

∑
i∈S ~v[i]. The subset S ⊆ Q is synchronizing if there exists a word u and a state p

such that for every q ∈ S we have q · u = p.

I Theorem 5. Every coloring A of G has a partition of vertices into synchronizing subsets
Q1, . . . , Q` such that wg(Q1) = . . . = wg(Q`) and for any other synchronizing subset S we
have wg(S) ≤ wg(Q1).

A simple corollary of this statement allows us to easily identify a relatively large class of
totally synchronizing digraphs. We will say that a vector ~v is partitionable if there exists a
partition of ~v into blocks of equal weight b, i.e., a partition Q1, . . . , Q` of Q with ` > 1 such
that

∑
i∈Q1

~v[i] = . . . =
∑
i∈Q`

~v[i] = b. Clearly, a digraph with non-partitionable eigenvector
is totally synchronizing, otherwise maximal synchronizing subsets, i.e. synchronizing subsets
with the largest weight, give rise to a partition by theorem 5. Our first contribution is the
converse (in some sense) of this statement. Namely, let G(~v) be the class of primitive digraphs
of fixed out-degree with the eigenvector ~v. We show that all digraphs in G(~v) are totally
synchronizing if and only if ~v is non-partitionable. We also formulate an algebraic conjecture
that implies conjecture 3. These results are given in section 3.

Our second contribution is a lower bound on the synchronizing ratio of G depending
on the structure of ~v. We say that the partition Q1, . . . , Q` of ~v into blocks of weight b is
unique if for every partition Q′1, . . . , Q′` of weight b there exists a permutation of 1, . . . , ` such

MFCS 2016
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that Qi = Q′σ(i) for all i. In section 4 we show that if all partitions of ~v into blocks of equal
weight are unique and their number is bounded by s, then the synchronizing ratio of G is
at least k−s

k . Note, that for s = 1 we obtain the bound of conjecture 2. To the best of our
knowledge it is the first result that shows validity of the conjecture on a relatively large class
of digraphs, e.g., this class contains all primitive Eulerian1 digraphs with a prime number of
states.

Let A be a coloring of G. We can consider an arbitrary probability distribution on the
letters of A turning it into a Markov chain. Similarly to the previous uniform case we obtain
an eigenvector ~v′ corresponding to the unique stationary distribution. The vector ~v′ played
an important role in various proofs of the Černý conjecture in the special classes of automata,
see e.g. [16, 5, 6]. Our third contribution is related to such approaches. First, in section 2
we generalize theorem 5 to the case of arbitrary probability distributions on the alphabet.
Secondly, in section 5 we present a combinatorial reduction from an arbitrary synchronizing
automaton A to an Eulerian automaton with possibly larger number of states, which has
the same reset threshold as A . This reduction gives a combinatorial view of results by
Berlinkov [4] and Steinberg [16].

2 Partitions into synchronizing subsets

In the present section we will prove a generalization of Theorem 5. Let A be a strongly
connected automaton with the set of states {1, 2, . . . , n}. Let A1, A2, . . . , Ak be the adjacency
matrices of the letters of A , i.e., A`[i, j] = 1 if i is mapped to j under the action of the `th
letter, and A`[i, j] = 0 otherwise.

Consider the matrix A =
∑k
i=0 piAi, where pi > 0 are rational for all i and

∑k
i=0 pi = 1.

Since the matrix A is row-stochastic the largest eigenvalue of A is equal to 1. By the
Perron-Frobenius theorem [15, Chapter 8] there exists a positive left eigenvector ~u such that
~uA = ~u. Since the entries of A are rational, so are the entries of ~u. Let ~w = `~u, where `
is the least common multiple of the denominators of entries of ~u. We will call the vector
~w the eigenvector of A in accordance with the distribution p1, . . . , pk. If the distribution
is uniform, i.e., p1 = p2 = . . . = pk = 1

k , then we will usually omit its description. Since
all colorings of a digraph G have the same eigenvector ~w in accordance with the uniform
distribution we will call ~w obtained in this way the eigenvector of G.

The kernel of a word x with respect to an automaton A is an equivalence relation ρ

on the set of states Q such that iρj if and only if i · x = j · x. A subset S is synchronizing
if there exists a word x such that the cardinality of S · x = {q · x | q ∈ S} is equal to
1. By S · x−1 we denote the full preimage of the set S under the action of a word x, i.e.,
S · x−1 = {q ∈ Q | q · x ∈ S}. Let ~w be the eigenvector of the automaton A . We define the
weight wg(i) of a state i as ~w[i]. The weight of a set S is defined as wg(S) =

∑
i∈S wg(i).

I Theorem 6. Let ~w be the eigenvector of a strongly connected automaton A in accordance
with a distribution p1, p2, . . . , pk. There exists a partition of the states of A into synchronizing
subsets of maximal weight. Furthermore, this partition is equal to the kernel of some word x.

1 A digraph is Eulerian if the outdegree and indegree of each vertex is equal to k for some constant k.
The eigenvector of such digraph is equal to (1, 1, . . . , 1).
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b/1− p1

a/p1

b/1− p2

a/p2

Figure 1 Automaton F .

Proof. Let Σ = {a1, a2, . . . , ak}, and let S be an arbitrary subset of Q. Note the following
equality:

k∑
i=1

pi wg(S · a−1
i ) = wg(S)

(the incoming edges to S in total bring the weight equal to wg(S), and each preimage brings
pi wg(Sa−1

i ); the weights are equal, since ~w is the eigenvector of A ). If S is a synchronizing
subset of maximal weight, then the weights of preimages are bounded by wg(S), since every
preimage is also a synchronizing subset. Moreover, every preimage has the weight equal to
wg(S), otherwise the left-hand side would be strictly less than the right-hand side. Therefore,
if S is a synchronizing subset of maximal weight, then every preimage of S is a synchronizing
subset of maximal weight.

We will iteratively construct a partition of the set of states of A into synchronizing
subsets of maximal weight. Let S0 be a synchronizing subset of maximal weight. Let u be
a word synchronizing S0 to some state q: S0 · u = q. If S0 = Q, then the automaton is
synchronizing, and the proof is complete. Otherwise, let p be a state that doesn’t belong to
S0. Since the automaton A is strongly connected, there exists a word v such that q · v = p.
Consider now the sets S1 = S0 · (uv)−1 and S0. Note, that S1 is also a maximal synchronizing
subset by the preceding paragraph. Furthermore, both sets are synchronized by uvu. But
their images are different, since q is not equal to p · u due to maximality of S0. Continuing
in the same manner we will eventually construct the desired partition of Q. J

From the matrix theory point of view, independent assignment of probabilities to the
edges of the underlying digraph of A is more natural than the assignment of probabilities to
the letters. Unfortunately, Theorem 6 does not hold in this case. Let F be the automaton
depicted in Fig. 1. The notation `/p means that the edge is labelled by ` and has the
probability p. Note, that the eigenvector of F is equal to (1− p2, 1− p1). Since every letter
acts as a permutation, the automaton F is not synchronizing. Therefore, the partition of
the states into synchronizing subsets should be of the form {{0}, {1}}, but for p2 = 1

3 and
p1 = 1

2 these subsets have different weight.

I Corollary 7. Let ~w be the eigenvector of an automaton A in accordance with a distribution
p1, p2, . . . , pk, and the weight of a subset of states S is given by

∑
i∈S ~w[i]. If there is no

partition of the states into subsets of equal weight, then the automaton A is synchronizing.

Unfortunately, the converse of this corollary does not hold. Let B be an automaton depicted
in Fig. 2. It is synchronized by the word bbaab to the state 1. If p and 1−p are the probabilities
of the letters a and b respectively, then the eigenvector of B is equal to (1, 1, p, p). Thus, the
subsets {0, 2} and {1, 3} form a partition of the states of B for any p, in other words, there
is no witness of the fact that B is synchronizing.

MFCS 2016
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Figure 2 Automaton B.

3 The eigenvectors of totally synchronizing digraphs

Let ~w be an entrywise positive integer vector. We denote by G(~w) the class of primitive
digraphs with the eigenvector ~w such that every digraph in this class has a fixed out-degree
(which can be different for two different digraphs from the class). In this section we will
characterize in terms of ~w the classes G(~w) consisting of only totally synchronizing digraphs.

Let A be an automaton with the set of states Q and an alphabet Σ. Recall that an
equivalence relation ∼ on Q is a congruence if i ∼ j implies i · x ∼ j · x for all i, j ∈ Q and
x ∈ Σ. The factor automaton A / ∼ of A with respect to ∼ is defined as follows. The set of
states of A / ∼ is equal to the equivalence classes of ∼, and its alphabet is equal to Σ. The
action of a letter x on an equivalence class C defined in accordance with the representative
c ∈ C, i.e., C · x is equal to the class of c · x in A . Since ∼ is a congruence, this definition is
correct and does not depend on the representative c.

We will call an equivalence relation β on the coordinates of ~w a partition if it has at least
two classes and satisfies the following property: there exists a constant b such that for every
class B of β we have

∑
i∈B ~w[i] = b. We will refer to the classes of partition β as blocks. If

~w is the eigenvector of an automaton A , then every coordinate corresponds to a state of
A . Thus, we can naturally obtain an equivalence relation β′ on the states of A from the
partition β. Abusing notation, we will refer to β′ as β. A vector ~w is called partitionable if it
possesses a partition.

I Theorem 8. An entrywise positive integer vector ~w is not partitionable if and only if all
digraphs from G(~w) are totally synchronizing.

Proof. Let G be a digraph from G(~w). If G has a non-synchronizing coloring, then by
Theorem 6 it admits a partition of the states into synchronizing subsets of equal weight.
Since the coloring is not synchronizing such partition has at least two blocks. Thus, the
vector ~w is also partitionable.

Assume now that ~w is partitionable, i.e., there are sets B1, B2, . . . , B` such that for every i
we have

∑
j∈Bi

~w[j] = b. Let n be the number of entries of ~w. We will construct a digraph G
belonging to G(~w) on the set of vertices V = {0, 1, . . . , n−1} that is not totally synchronizing
as follows: for every pair of vertices i and j there is an edge (i, j) of multiplicity ~w[j].

First, let us show that G ∈ G(~w). Note, that the out-degree of every vertex is equal to
the sum of entries of ~w, i.e., b`. Furthermore, the digraph G is primitive since there is a path
of length 1 between every two vertices. It remains to show that ~w is the eigenvector of G
corresponding to the eigenvalue 1. Let cij = ~w[j] be the multiplicity of the edge from i to j,
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and c = b` be the out-degree of G. We have∑
i∈V

cij
c
~w[i] =

∑
i∈V

~w[j]
c

~w[i] = ~w[j]
∑
i∈V

~w[i]
c

= ~w[j]

(the incoming and the outgoing weights are equal). Therefore, ~w is the eigenvector of G.
Now we are going to construct a non-synchronizing coloring of G. We will write i β j for

i, j ∈ V if both i and j belong to Bs for some s. Let A be the set of colorings of G that have
β as a congruence, i.e., for every letter x and for every pair of states i, j such that i β j we
necessarily have that (i · x)β (j · x). The set A is not empty, since it contains the following
coloring: the action of the first ~w[1] letters brings all states to the state 1, the action of the
next ~w[2] letters brings all states to the state 2, and so on.

Let us fix some automaton A ∈ A. Recall that an automaton over k-letter alphabet
is Eulerian if the indegree (and the out-degree) of every state is equal to k. Clearly, an
automaton is Eulearian if and only if its eigenvector is equal to (1, 1, . . . , 1). We will show
now that the factor automaton A ′ of A with respect to β is Eulerian. Let Σ be the alphabet
of A and A ′. Relying on the fact that ~w is the eigenvector of A we have the following
equalities for every block Bt:∑

i∈Q,x∈Σ
i·x=j

1
c
~w[i] = ~w[j] ⇒

∑
i∈Q,x∈Σ
i·x∈Bt

1
c
~w[i] = b ⇒

∑
Bs,x∈Σ
Bs·x=Bt

1
c
b = b

The last equality ensures that (b, b, . . . , b) is the eigenvector of A ′, thus, it is Eulerian.
Lemma 1 from [14] states that every Eulerian automaton has a non-synchronizing

coloring2. Thus, we can recolor an automaton A ′ into a non-synchronizing automaton
B′. Such recoloring procedure can be seen as a sequence of basic flips, i.e., for a fixed Bt,
x1, x2 ∈ Σ we change the label from x1 to x2 and vice versa on the outgoing edges of Bt.
Therefore, this recoloring can be applied to A leading to an automaton B in the following
manner: a basic flip is applied simultaneously to all states of Bt. The latter ensures that β
is a congruence of B and B′ is the factor automaton of B with respect to β. Note that the
automaton B is not synchronizing, since any synchronizing word of the automaton B will
synchronize the automaton B′ leading to a contradiction. J

Theorem 8 allows us to obtain very simple proofs for otherwise non-obvious statements.
Recall that the Černý automaton Cn [9] can be defined as 〈{0, . . . , n− 1}, {a, b}, δ〉, where
δ(i, a) = i+ 1 for i < n− 1, δ(n− 1, a) = 0, δ(n− 1, b) = 0, and δ(i, b) = i for i < n− 1.

I Proposition 9. [13, Proposition 2] The underlying digraph of the Černý automaton Cn is
totally synchronizing.

Proof. It is easy to verify that the eigenvector ~w of the underlying digraph of the n-state
Černý automaton is equal to (2, 2, . . . , 2, 1). Since in every partition exactly one block will
have an odd sum, we conclude that ~w is not partitionable. Thus, the digraph is totally
synchronizing. J

A similar proof can be presented for many other examples in [2].
Another application of theorem 8 is related to conjecture 3. We believe that significant

progress on this conjecture can be made through the study of the eigenvectors of digraphs.

2 It is also a relatively simple corollary of the Birkhoff-von Neumann theorem
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Figure 3 Automaton D .

Despite the fact that the statement of Theorem 8 gives only a necessary condition for a
digraph to be totally synchronizing we expect it to hold in most cases. More formally, we
state the following conjecture:

I Conjecture 10. The eigenvector of a random primitive k-out-regular digraph with n vertices
has no partition into blocks of equal sum with probability 1 as n goes to infinity.

This conjecture has the following interpretation in terms of Markov chains theory. A primitive
k-out-regular digraph G correspond to Markov chain via the distribution of the probability
1
k for each edge. Furthermore, this chain is mixing, i.e., irreducible and aperiodic, and its
stationary distribution is equal to the eigenvector of the the digraph. Informally speaking, a
partition of the eigenvector corresponds to a partition of states of the Markov chain into
classes such that an infinitely long random walk will spend equal amount of time in each of
the classes. Conjecture 10 states that the fraction of Markov chains with this property goes
to 0 as the number of states grows.

I Corollary 11. If the eigenvector of G is not partitionable, then G is totally synchronizing.

There are classes of digraphs G(~w) that contain both totally synchronizing and not totally
synchronizing digraphs. Let ~w be (1, 1, 2, 2). The underlying digraph of the automaton
D , see fig. 3, belongs to G(~w). It is not totally synchronizing, since the pair {2, 3} is not
synchronizable in the coloring D . At the same time, it is easy to see that the underlying
digraph of the automaton B, see fig. 2, belongs to G(~w) and it is totally synchronizing.

There are also classes of digraphs G(~w) which do not contain totally synchronizing
digraphs at all. Namely, if ~w = (1, 1, . . . , 1) then every digraph in G(~w) is Eulerian, thus it
possesses a non-synchronizing coloring [14, Lemma 1].

4 Partitions of the eigenvectors and the synchronizing ratios

In this section we will present a bound on the synchronizing ratio of a digraph G depending
on the structure of its eigenvector. It can be seen as the the first theoretical statement
supporting conjecture 2. In order to obtain our result we will rely on the following key
lemma:

I Lemma 12. Let A be a non-synchronizing automaton with the eigenvector ~w. A partition
into maximal synchronizing subsets is unique if and only if it is a congruence.

Proof. Assume first that the partition into maximal synchronizing subsets is unique. We will
denote the block containing a state p by [p]. If the partition is not a congruence, then there
exists a letter ` such that [p] = [q] and [p`] 6= [q`] for some states p and q. Note, that the
preimage of a maximal synchronizing subset by any letter is also a maximal synchronizing



V.V. Gusev and E. V. Pribavkina 48:9

subset (see the proof of Theorem 6). Hence, the preimage of a partition into maximal
synchronizing subsets is also a partition into maximal synchronizing subsets. Thus, [p`]`−1 is
a maximal synchronizing subset and [p`]`−1 ∩ [p] 6= ∅. We also have [p`]`−1 6= [p], otherwise
we get [p`] = [p]` which implies [p`] = [q`]. Therefore, the preimage of the partition by the
letter ` is a different partition into maximal synchronizing subsets. A contradiction.

Let τ be a partition into maximal synchronizing subsets. Let us assume that the partition
τ is a congruence. Assume to the contrary that there is another partition σ into synchronizing
subsets of maximal weight. Note, that there are states p and q such that p ∼σ q and p �τ q,
otherwise σ is a refinement of τ , and σ is not a partition into synchronizing subsets of
maximal weight. Since p ∼σ q there exists a word u such that pu = qu. Let [p] and [q] be the
blocks of the partition τ of p and q respectively. Since τ is a congruence both [p]u and [q]u
are subsets of the same block [r] for some state r. The subset [r] is synchronizing. Therefore,
the subset [p] ∪ [q] is also synchronizing, which contradicts maximality of [p] and [q]. J

I Corollary 13. A digraph G with the eigenvector ~w is totally synchronizing if the following
conditions hold:
1. if there exists a partition of ~w into blocks of weight b, then it is unique;
2. every partition of ~w is not a congruence for every coloring.

Let Q be a set of states of an automaton A with the eigenvector ~w. A partition of ~w into
blocks of weight b is a partition Q1, . . . , Q` of Q with ` > 1 such that

∑
i∈Q1

~w[i] = . . . =∑
i∈Q`

~w[i] = b. For simplicity in this section we will sometimes say “a partition” meaning a
partition into blocks of equal weight. A partition Q1, . . . , Q` of ~w into blocks of weight b
is unique if for every partition Q′1, . . . , Q′` of weight b there exists a permutation of 1, . . . , `
such that Qi = Q′σ(i) for all i.

I Theorem 14. If all partitions of the eigenvector ~w are unique and their number is equal
to s, then the synchronizing ratio of every k-out-regular digraph in G(~w) is at least k−s

k .

Proof. Every non-synchronizing coloring is associated with a partition of ~w according to
theorem 6. We will show that with every partition at most 1

k · k
n such colorings can be

associated. Thus, the total number of non-synchronizing colorings will be bounded by s
k · k

n,
and the theorem will follow.

Let G be a digraph in G(~w), and let β be one of the partitions of ~w. In order to show that
the fraction of non-synchronizing colorings associated with β is at most 1

k we will consider
two cases depending on the structure of G and β.

Case I: there are two distinct vetrices q, p belonging to the same block B of β with the
following property: there are edges (q, q′) and (p, p′) such that q′ and p′ belong to different
blocks of β. Let A be a non-synchronizing coloring associated with β (if there is no such
coloring, then the proof is complete). By lemma 12 the partition β is a congruence for A .
Thus, for every block B′ there is the same number of letters (and edges) going from q to
B′ and from p to B′. Let k1 be the number of edges going from q to B1, k2 be the number
of edges going from q to B2, . . . , k` be the number of edges going from q to B`, where
B1, . . . , B` are blocks of β and k1, . . . , k` are positive integers such that

∑`
i=1 ki = k.

Now we will divide all colorings of G into classes and show that the fraction of non-
synchronizing colorings in each class is at most 1

k . Let us fix a coloring C of all edges,
except for the outgoing edges of q and p. Let A(C) be the set of automata obtainable
from C by all possible colorings of the remaining edges. We will show that the fraction of
non-synchronizing automata in A(C) is at most 1

k . By lemma 12 every non-synchronizing
coloring of G associated with β must be a congruence. Note, that there are at most
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(
k
k1

)
(k1!)2(k−k1

k2

)
(k2!)2 . . .

(
k`

k`

)
(k`!)2 automata in A(C) that have β as a congruence. Whereas

the total number of automata in A(C) is (k!)2. Thus, the fraction of non-synchronizing
automata is at most k1!k2!...k`!

k! . It is not hard to see, that this value is bounded by 1
k . Since

every coloring of G belongs to A(C) for some C, the result will follow.
Case II: for all distinct vetrices q, p belonging to the same block B of β and for all

edges (q, q′) and (p, p′) we have that q′ and p′ belong to the same block of β. Thus, there is
at least one singleton, i.e. a block of β consisting of a single vertex. Indeed, if it is not the
case, then each of the blocks has a unique successor. It implies that there are no paths of
the same length leading from vertices belonging to different blocks to some fixed vertex, so
G is not primitive. Note, that β is a congruence for every coloring of G.

First, we will show that a coloring A of G is synchronizing if and only if the factor
automaton A /β is synchronizing. Clearly, if A is synchronizing, then A /β is synchronizing
too. Assume now that A /β has a synchronizing word u that brings it to a state i. Let j be
the state belonging to a singleton block of β. Since G is primitive, there is a word v that
brings i to j. It is not hard to see that the word uv is synchronizing for the automaton A .

Secondly, we note that the factor automaton A /β is Eulerian with a prime number of
states. Indeed, since β is a partition into blocks of equal weight, we conclude that A /β is
Eulerian (see the proof of Theorem 8). If the number of states of A /β is not prime, then
the partition β will not be unique. Now it remains to show that the synchronizing ratio of
G/β is at least k−1

k . The proof of this fact is reminiscent of case I.
Note, that there exist a vertex q and edges (q, r), (q, s) for r 6= s, otherwise G is not

primitive. Let all the k outgoing edges of q be (q, p1) of multiplicity k1, (q, p2) of multiplicity
k2, . . ., (q, p`) of multiplicity k`. Let us fix a coloring C of all edges, except for the outgoing
edges of q. Let A(C) be the set of automata obtainable from C by all possible colorings of
the remaining edges. In order to show that the synchronizing ratio of G is at least k−1

k we
will demonstrate that the fraction of non-synchronizing automata in A(C) is at most 1

k .
If all automata in A(C) are synchronizing, then the statement holds true. Otherwise, let

A ∈ A(C) be a non-synchronizing automaton. Since the number of states is prime and the
eigenvector of A is equal to (1, 1, . . . , 1), by Theorem 6 we conclude that every letter of A

acts as a permutation on the set of states. Note, that if edges (q, p1) and (q, p2) are labelled
by x and y respectively, then the automaton A ′ ∈ A(C) obtained by flipping the labels on
these edges, i.e., assigning letter y to (q, p1) and letter x to (q, p2), is synchronizing. Indeed,
either p1 or p2 is not equal to q. Without loss of generality we will assume that p1 6= q. Since
every letter in A acts as a permutation, there exists a state r such that r · y = p1. Thus,
r · y = q · y for the automaton A ′ and it is synchronizing by Theorem 6. More generally,
there are at most k1!k2! . . . k`! permutations of labels on the outgoing edges of q that keep the
resulting automaton non-synchronizing. Since the value of the fraction k1!k2!...k`!

k! is bounded
by 1

k we obtain the desired statement. J

5 The eigenvectors and the reset thresholds

The structure of the eigenvector an automaton A in accordance with some distribution can
be utilized to bound the reset threshold of A . To the best of our knowledge, the first such
result was obtained by Kari [14]. He bounded the reset threshold of automata with the
eigenvector (1, 1, . . . , 1) in accordance with the uniform distribution, i.e., Eulerian automata.

I Theorem 15. The reset threshold of an Eulerian automaton with n states is at most
n2 − 3n+ 3.
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Afterwards, Steinberg noticed that the same bound holds true for automata with the
eigenvector (1, 1, . . . , 1) in accordance with some distribution [16]. Both of these results were
later subsumed by the following theorem3 of Berlinkov [4, Corollary 1].

I Theorem 16. Let w be the sum of the coordinates of the integer eigenvector ~w of a strongly
connected automaton A in accordance with some distribution. If A is synchronizing, then
the reset threshold of A is at most 1 + (n− 1)(w− 2).

Note, that the eigenvector of A in accordance with the uniform distribution depends only
on G(A ). Therefore, the bound given in this theorem will be valid for every recoloring of A .

In this section we will present a simple reduction from an automaton A with the
eigenvector ~w to an Eulerian automaton B with w =

∑
i ~w[i] states such that rt(A ) ≤

rt(B) ≤ rt(A ) + 1. Thus, we will be able to utilize results of Kari about Eulerian automata
to analyze A . This reduction also gives a combinatorial interpretation of the aforementioned
results by Steinberg and, to some extent, of Berlinkov.

I Theorem 17. Let w be the sum of the coordinates of the integer eigenvector ~w of a
strongly connected automaton A in accordance with a distribution p1, p2, . . . , pk. If A is
synchronizing, then there exists a synchronizing Eulerian automaton B with w states such
that A is the factor automaton of B and rt(A ) ≤ rt(B) ≤ rt(A ) + 1.

Proof. Let Σ = {a1, a2, . . . , ak} and pi = mi

` for 1 ≤ i ≤ k, where mi, ` are positive integers.
If there exists pi such that pi 6= 1

k , then we will perform the next step, otherwise we proceed
to step II.

Step I. We are going to duplicate certain letters of A in order to obtain an automaton
A ′ such that its eigenvector in accordance with the uniform distribution is equal to ~w. The
alphabet of A ′ is equal to Σ′ = {a1

1, a
2
1, . . . , a

m1
1 , a1

2, a
2
2, . . . , a

m2
2 , . . . , a1

k, a
2
k, . . . , a

mk

k }. The
actions of these letters are as follows: for every i and j the action of the letter aji in A ′

coincides with the action of the letter ai in A . It is easy to see that A ′ is synchronizing
and rt(A ′) = rt(A ). Furthermore, the eigenvector of A ′ in accordance with the uniform
distribution coincides with ~w. Thus, if ~w = (1, 1, . . . , 1), then rt(A ) = rt(A ′) ≤ n2 − 3n+ 3
by Theorem 15. Therefore, this simple reduction gives an alternative way to obtain the result
of Steinberg.

Step II. Now we are going to construct an Eulerian automaton B on a larger set of
states and on a larger alphabet such that rt(A ) ≤ rt(B) ≤ rt(A ) + 1. Let Q = {1, . . . , n}
be the set of states of A ′ and Σ′ be the alphabet of A ′. The set of states of B is equal to
{(i, j) | i ∈ Q, 1 ≤ j ≤ ~w[i]}. The alphabet of B is equal to Σ′ ∪Λ, where Λ is a set of letters
that we will define shortly. We will denote the set {(i, j) | 1 ≤ j ≤ ~w[i]} by Si. Note that
the number of states in B is equal to w. Our construction of B will ensure the following
properties:
1. B is Eulerian, and for every i ∈ Q, x ∈ Λ we have Si · x ⊆ Si;
2. for every i and x ∈ Σ′ we have Si · x ⊆ Si·x, where i · x is an image of i under the action

of x in A ′.
Note, that these conditions imply that the partition S1, . . . , Sn is a congruence for the
automaton B, and the factor automaton with respect to this congruence is equal to the
automaton A ′.

3 In the original formulation of the theorem the bound is given in terms of the least common multiple
L of the coordinates’ denominators of the eigenvector ~v associated with the eigenvalue 1 such that∑

i
~v[i] = 1. Clearly, w = L.
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Let k′ = |Σ′| be the cardinality of Σ′ and cij be the number of letters in Σ′ that bring i
to j in the automaton A ′. By the definition of ~w we have

∑
i∈Q cij ~w[i] = k′ ~w[j] for every j.

Since ~w[i] = |Si| we derive the equality
∑
i∈Q cij |Si| = k′|Sj | for every j. Due to the second

property, cij |Si| is the total number of edges labelled by Σ′ going from Si to Sj in B. Since
the total number of incoming edges to Sj labelled by Σ′ is equal to k′|Sj |, we can arrange
them in such a way that every state of Sj has exactly k′ incoming edges labelled by Σ′. We
fix any such arrangement to define the action of Σ′ on B. Note, that the automaton B

restricted to the alphabet Σ′ is Eulerian.
The additional set of letters Λ is defined as follows. For every i ∈ Q and every j ∈ Si we

add a letter uji . The action of uji brings all states from Si to j, and all the remaining states
are fixed. Note, that the automaton B restricted to the alphabet Λ is Eulerian. Therefore,
the first property is satisfied.

Step III. We will show now that the automaton B is synchronizing and rt(A ) ≤ rt(B) ≤
rt(A ) + 1. Let u be the shortest synchronizing word of A ′, and the action of u brings it to a
state i. Since A ′ is the factor automaton of B, we conclude that the automaton B is brought
to Si under the action of u. Thus, uuii is a synchronizing word of B and rt(B) ≤ rt(A ) + 1.

Let u be a synchronizing word of B, and the action of u brings it to a state in Si for
some i. Let v be a word over the alphabet Σ′ obtained from u by removing all the letters
from Λ. Since the action of every letter x from Λ of the automaton B satisfies Si · x ⊆ Si
and A ′ is the factor automaton of B, we conclude that u is a synchronizing word for the
automaton A ′ and rt(A ) ≤ rt(B). J

I Corollary 18. Let w be the sum of the coordinates of the integer eigenvector ~w of a
strongly connected automaton A in accordance with a distribution p1, p2, . . . , pk. If A is
synchronizing, then rt(A ) ≤ w2 − 3w + 3.

Clearly, this corollary is much weaker than Theorem 16. Nevertheless, both of these
statements give O(n2) bound when w = O(n). This case is the most typical application
of Theorem 16. At the same time, we believe that such simple reduction to an Eulerian
automaton is of interest by itself.

To conclude this section we will estimate entries of the eigenvector of an arbitrary digraph.
In general, they can be exponential in terms of the number of vertices. Consider the following
k-out-regular digraph Un,k. The set of vertices is equal to {0, 1, 2, . . . , n − 1}. For each
0 ≤ i ≤ n− 1 there is an edge (i, 0) of multiplicity k − 1 and an edge (i, i+ 1 mod n). It is
easy to verify that the integer eigenvector of Un,k is (kn−1, kn−2, . . . , k, 1). Thus, the upper
bound given by Theorem 16 can be exponential in n.

I Proposition 19. Let G be a primitive k-out-regular digraph with n vertices. The entries
of the eigenvector ~w are at most (2k2)

n−1
2 .

Proof. Let A be the adjacency matrix of G, i.e., A[i, j] = 1 if there exists an edge going from
i to j and A[i, j] = 0 otherwise. According to the definition of the eigenvector ~w in Section 2
we have the equality ~w( 1

kA) = ~w. After rearrangement we get ~w(A − kI) = 0, where I is
the identity matrix. By Perron-Frobenius theorem we conclude that the rank of A− kI is
equal to n− 1, since the eigenspace associated with ~w is one-dimensional. The main result
of [7] states that for every integer matrix M of rank r if a system of linear equations Mx = 0
admits a nontrivial non-negative integer solution, then there exists such solution with entries
bounded by the maximum of the absolute values of the r × r minors of M .

Thus, we conclude that there exists a non-negative integer vector ~w′ such that ~w′(A−kI) =
0 and entries of ~w′ are bounded by the maximum of the absolute values of the (n−1)×(n−1)
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minors of A − kI. Note, that the Eucledean norm of each row of every minor is at most√
2k2, since the absolute of the entries is at most k and their sum is at most 2k. Thus,

by the Hadamard’s inequality for the determinant we obtain an upper bound (2k2) n−1
2 on

the minors. Since the non-negative vector ~w′ is an eigenvector of A associated with the
largest eigenvalue, we immediately conclude that ~w′ is positive by the Perron-Frobenius
theorem. J
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