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—— Abstract

We introduce the new measure of Public Information Complezity (P1C), as a tool for the study
of multi-party computation protocols, and of quantities such as their communication complex-
ity, or the amount of randomness they require in the context of information-theoretic private
computations. We are able to use this measure directly in the natural asynchronous message-
passing peer-to-peer model and show a number of interesting properties and applications of our
new notion: the Public Information Complexity is a lower bound on the Communication Com-
plexity and an upper bound on the Information Complexity; the difference between the Public
Information Complexity and the Information Complexity provides a lower bound on the amount
of randomness used in a protocol; any communication protocol can be compressed to its Public
Information Cost; an explicit calculation of the zero-error Public Information Complexity of the
k-party, n-bit Parity function, where a player outputs the bit-wise parity of the inputs. The latter
result establishes that the amount of randomness needed for a private protocol that computes
this function is Q(n).
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1 Introduction

Communication complexity, originally introduced by Yao [44], is a prolific field of research in
theoretical computer science that yielded many important results in various fields. Informally,
it answers the question “How many bits must the players transmit to solve a distributed
problem ?” The study of the two-party case has produced a large number of interesting
and important results, upper and lower bounds, with many applications in other areas in
theoretical computer science such as circuit complexity, data structures, streaming algorithms
and distributed computation (see, e.g., [35, 36, 24, 40, 23]).

* Research supported in part by ERC grant QCC and ANR grant RDAM.
T Research supported in part by ANR grant RDAM.
¥ Research supported in part by ERC grant QCC and ANR grant RDAM.

© Tordanis Kerenidis, Adi Rosén, and Florent Urrutia;

37 licensed under Creative Commons License CC-BY
41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 57; pp.57:1-57:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.57
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

57:2

Multi-Party Protocols, Information Complexity and Privacy

A powerful tool recently introduced for the study of two-party communication protocols
is the measure of Information Complezxity (or cost). This measure, originally defined in [1]
and [14], extends the notions of information theory, originally introduced by Shannon [42],
to interactive settings. It quantifies, roughly speaking, the amount of information about
their respective inputs that Alice and Bob must leak to each other in order to compute
a given function f of their inputs. Information complexity (IC) has been used in a long
series of papers to prove lower bounds on communication complexity and other properties
of (two-party) communication protocols (e.g., [2, 3, 11, 6]). An interesting property of
information complexity is that it satisfies a direct sum. The direct sum question, one of
the most interesting questions in complexity theory, asks whether solving n independent
copies of the same problem must cost (in a given measure) n times the cost of solving a
single instance. In the case of communication complexity, this question has been studied in,
e.g., [20, 14, 41, 31, 29, 3, 33, 30] and in many cases it remains open whether a direct sum
property holds.

Another important question in communication complexity is the relation between the
information complexity of a function and its communication complexity. We would like to
know if is it possible to compute a function by sending a number of bits which is not (too
much) more than the information the protocol actually has to reveal. Put differently, is it
always possible to compress the communication cost of a protocol to its information cost?
For the two-party case it is known that perfect compression is not possible [26, 27]. Still,
several interesting compression results are known. The equality between information cost
and amortized communication cost is shown in [11, 6], and other compression techniques are
given in [3, 4, 12, 37]. It remains open if one can compress interactive communication up to
some small loss (for example logarithmic in the size of the input).

When trying to study the multi-party (i.e., where at least 3 players are involved) commu-
nication setting using similar information-theoretic methods, such as IC, one encounters a
serious problem. The celebrated results on information-theoretic private computation [5, 18]
state that if the number of players is at least 3, then any function can be computed by a
randomized protocol such that no information about the inputs is revealed to the other
players (other than what is implied by the value of the function and their own input). Thus,
in the multi-party case, the IC of any function f is 0 (or only the entropy of f, depending on
the definition of IC), and cannot serve to study multi-party protocols.

For this reason, information complexity has rarely been used in the multi-party setting,
where most results have been obtained via combinatorial techniques. Among the interesting
works on multi-party setting are [38, 43] which introduce the techniques of symmetrization
and composition, and [16, 17] which study the influence of the topology of the network.
One notable exception is the work of Braverman et al. [7] which studies the set-disjointness
problem using information theoretic tools. Braverman et al. provide almost tight bounds in
the so-called coordinator model (that differs from the more natural peer-to-peer model) by
analyzing the information leaked between the players but also the information obtained by
the coordinator itself. The set disjointness problem is maybe one of the most extensively
studied problem in communication complexity (cf. [6, 2, 13, 28, 32, 9]). This line of research
was followed by [15] which also uses information complexity to obtain tight bounds on the
communication complexity of the function Tribes in the coordinator model. Information
complexity is also used in [10] to study set-disjointness in the broadcast model.

A number of sub-models have been considered in the literature for the multi-party
computation protocols setting: the number in hand model (NIH), where each player has a
private input, is maybe the most natural one, while in the number on the forehead model
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(NOF), each player ¢ knows all inputs z;, j # 1, i.e., the “inputs” of all players except its own.
As to the communication pattern, a number of variants exist as well: in the blackboard model,
the players communicate by broadcasting messages (or writing them on a “blackboard”);
in the message passing model, each pair of players is given a private channel to mutually
communicate (for more details on different variants see [35]). Most of the results obtained
in multi-party communication complexity were obtained for the NOF model and/or the
blackboard model. The present paper studies, however, the NIH, message passing (peer to
peer) model, which is also the most closely related to the work done on message passing
protocols in the distributed computing and networking communities.

1.1 OQur contributions

Our main goal is to introduce novel information-theoretical measures for the study of number
in hand, message-passing multi-party protocols, coupled with a natural model that, among
other things, allows private protocols (which is not the case for, e.g., the coordinator model)

We define the new measure of Public Information Complexity (PIC), as a tool for the
study of multi-party computation protocols, and of quantities such as their communication
complexity, or the amount of randomness they require in the context of information-theoretic
private computations. Intuitively, our new measure captures a combination of the amount
of information about the inputs that the players leak to other players, and the amount of
randomness that the protocol uses. By proving lower bounds on PIC for a given multi-party
function f, we are able to give lower bounds on the communication complexity of f and on
the amount of randomness needed to privately compute f. The crucial point is that the PIC
of functions, in our multi-party model, is not always 0, unlike their IC.

Our new measure works in a model which is a slight restriction of the most general
asynchronous model, where, for a given player at a given time, the set of players from which
that player waits for a message can be determined by that player’s own local view. This
allows us to have the property that for any protocol, the information which is leaked during
the execution of the protocol is at most the communication cost of the protocol. Note that in
the multi-party case, the information cost of a protocol may be higher than its communication
cost, because the identity of the player from which one receives a message might carry some
information. This is another issue when trying to use IC in the peer-to-peer multi-party
setting. We are able to define our measure and use it directly in a natural asynchronous
peer-to-peer model (and not, e.g., in the coordinator model used in most works studying the
multi-party case, c.f. [19]). The latter point is particularly important when one is interested
in privacy, since our model allows for private protocols, while this is not necessarily the case
for other models, including the coordinator model. Furthermore, if one seeks to accurately
understand the natural peer-to-peer model, suppressing polylog-factor inaccuracies, one has
to study directly the peer-to-peer model (see the comparison of models in subsection 2.1).

We go on to show a number of interesting properties and applications of our new notion:

The Public Information Complexity is a lower bound on the Communication Complexity

and an upper bound on the Information Complexity. In fact, it can be strictly larger

than the Information Complexity.

The difference between the Public Information Complexity and the Information Com-

plexity provides a lower bound on the amount of randomness used in a protocol.

We compress any communication protocol to their PIC (up to logarithmic factors), by

extending to the multi-party setting the work of Brody et al. [12] and Pankratov [37].

We show that one can approach the central question of direct sum in communication

complexity by trying to prove a direct sum result for PIC. Indeed, we show that a direct

sum property for PIC implies a certain direct sum property for communication complexity.
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We explicitly calculate the zero-error Public Information Complexity of the k-party, n-bit
Parity function (Par), where a player outputs the bit-wise parity of the inputs. We show
that the PIC of this function is n(k — 1). This result is tight and it also establishes that
the amount of randomness needed for a private protocol that computes this function is
Q(n). While this sounds a reasonable assertion no previous proof for such claim existed.

The paper is organized as follows. In Section 2 we define the communication model and a
number of traditional complexity measures. In Section 3 we define the new measure PIC that
we introduce in the present paper, and in Section 4 we discuss its relation to randomness
and multi-party private computation. In section 5 we discuss the existence of a direct sum
property for PIC; and in Section 6 we give tight bounds for Par using PIC. We conclude the
paper in Section 7. All proofs are deferred to the full version of the paper.

2 The model

We start by defining a number of notations. We denote by k& the number of players. We often
use n to denote the size (in bits) of the input to each player. Calligraphic letters will be used
to denote sets. Upper case letters will be used to denote random variables, and given two
random variables A and B, we will denote by AB the joint random variable (A, B). Given a
string (of bits) s, |s| denotes the length of s. Using parentheses we denote an ordered set
(family) of items, e.g., (¥;). Given a family (Y;), Y_; denotes the sub-family which is the
family (Y;) without the element Y;. The letter X will usually denote the input to the players,
and we thus use the shortened notation X for (X;), 4.e. the input to all players. = will be
used to denote a protocol. We use the term entropy to talk about binary entropy.

We now define a natural communication model which is a slight restriction of the most
general asynchronous peer-to-peer model. Its restriction is that for a given player at a given
time, the set of players from which that player waits for a message can be determined by that
player’s own local view. This allows us to define information theoretical tools that pertain to
the transcripts of the protocols, and at the same time to use these tools as lower bounds
for communication complexity. This restriction however does not exclude the existence of
private protocols, as other special cases of the general asynchronous model do. We observe
that without such restriction the information revealed by the execution of a protocol might
be higher than the number of bits transmitted and that, on the other hand, practically all
multi-party protocols in the literature are implicitly defined in our model. We also compare
our model to the general one and to other restricted ones and explain the usefulness and
logic of our specific model.

2.1 Definition of the model

We work in the multi-party number in hand peer-to-peer model. Each player has unbounded
local computation power and, in addition to its input X;, has access to a source of private
randomness R;. We will use the notation R for (R;), i.e., the private randomness of all
players. A source of public randomness R? is also available to all players. The system consists

k
of k players and a family of k functions f = (fi)icpixy, with Vi € [1E], fi - T[] & — Vi,
1=1
where X denotes the set of possible inputs of player [, and ); denotes the set of possible
k
outputs of player i. The players are given some input z = (z;) € [ X;, and for every i,

i=1
player i has to compute f;(z). Each player has a special write-only output tape.
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We define the communication model as follows, which is the asynchronous setting, with
some restrictions. To make the discussion simpler we assume a global time which is unknown
to the players. Every pair of players is connected by a bidirectional communication link that
allows them to send messages in both directions. There is no bound on the delivery time of a
message, but every message is delivered in finite time, and the communication link maintains
FIFO order in each of the two directions. Given a specific time we define the view of player
i, denoted D;, as the input of that player, X;, its private randomness, R;, and the messages
received so far by player i. The protocol of each player ¢ runs in local rounds. In each round,
player i sends messages to some subset of the other players. The identity of these players, as
well as the content of these messages, depend on the current view of player i. The player
also decides whether to write a (nonempty) string on its output tape. Then, the player waits
for messages from a certain subset of the other players, where this subset is also determined
by the current view of the player. Then the (local) round of player i terminates!. To make it
possible for the player to identify the arrival of the complete message that it waits for, we
require that each message sent by a player in the protocol is self-delimiting.

Denote by Df the view of player ¢ at the end of local round j, 7 > 0, where the beginning
of the protocol is considered round 0. Formally, a protocol 7 is defined by a sequence of
functions for each player ¢, parametrized by the local round j, j > 1:

Sij : Dg'*l — 2L kit defining the set of players to which player i sends the messages.

mg)q : Dfl —{0,1}*, for all ¢ € Sf (Dgil) , defining the content of the messages player
i sends. Each such message has to be self-delimiting.

Og : DZJ-;1 — {0,1}*, defining what the player writes on the output tape. Each player
can write on its output tape a non-empty string only once.?

S DI7t — 2{L kN | defining the set of players from which player i waits for a

message.

We note that the model does not impose “coherence” between the players. That is, the
model does not preclude the possibility that a certain player waits indefinitely for a message
that is never sent to it.

We define the transcript of the protocol of player i, denoted II;, as the concatenation of
the messages read by player 4 from the links of the sets S}, S? ..., ordered by local round
number, and within each round by, say, the index of the player. We denote by ﬁ the
concatenation of II; together with a similar concatenation of the messages sent by player 4 to
the sets ??Ej ,- ... We denote by 1I,_,; the concatenation of the messages sent by player ¢ to
player j during the course of the protocol. The transcript of the (whole) protocol, denoted
I1, is obtained by concatenating all the II; ordered by, say, player index.

We will give most of the definitions for the case where all functions f; are the same
function, that we denote by f. The definitions in the case of family of functions are similar.

k
» Definition 1. For € > 0, a protocol m e-computes a function f if for all z € [] &;:

i=1
1. For all possible assignments for the random sources R;, 1 <i < k, and RP, every player

eventually (i.e., in finite time) writes on its output tape (a non-empty string).

The fact that the receiving of the incoming messages comes as the last step of the (local) round comes
only to emphasize that the sending of the messages and the writing on the output tape are a function
of only the messages received in previous (local) rounds.

We require that each player writes only once on its output tape so that the local view of the player
determines the local output of the protocol (i.e., so that players itself “knows” the output). This
requirement is needed since a player may not know locally that the protocol ended.

57:5
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2. With probability at least 1 — e (over all random sources) the following event occurs: each
player i writes on its output tape the value f(z), i.e., the correct value of the function.

For simplicity we also assume that a protocol must eventually stop. That is, for all
possible inputs and all possible assignments for the random sources, eventually (i.e., in finite
time) there is no message in transit.

2.2 Comparison to other models

The somewhat restricted model (compared to the general asynchronous model) that we
work with allows us to define a measure similar to information cost that we will later
show to have desirable properties and to be of use. Notice that the general asynchronous
model is problematic in this respect since one bit of communication can bring log(k) bits of
information, as not only the content of the message but also the identity of the sender may
reveal information. Thus, information cannot be used as a lower bound on communication.
In our case, the sets S! and S! are determined by the current view of the player, (II;) contains
only the content of the messages, and thus the desirable relation between the communication
and the information is maintained. On the other hand, our restriction is natural, does not
seem to be very restrictive (practically all protocols in the literature adhere to our model),
and does not exclude the existence of private protocols.

To exemplify the above mentioned issue in the general asynchronous model consider the
following simple example of a deterministic protocol, for 4 players A, B and C, D, which
allows A to transmit to B its input bit z, but where all messages sent in the protocol are the
bit 0, and the protocol generates only a single transcript over all possible inputs.

A: If x = 0 send 0 to C; after receiving 0 from C, send 0 to D.
If x = 1 send 0 to D; after receiving 0 from D, send 0 to C'
B: After receiving 0 from a player, send 0 back to that player.
C,D: After receiving 0 from A send 0 to B. After receiving 0 from B send 0 to A.
It is easy to see that B learns the value of z from the order of the messages it gets.

There has been a long series of works about multi-party communication protocols in
different variants of models, for example [13, 28, 32, 38, 16, 17]. In [7], Braverman et al.
consider a restricted class of protocols working in the coordinator model: an additional
player with no input can communicate privately with each player, and the players can only
communicate with the coordinator.

We first note that the coordinator model does not yield exact bounds for the multi-
party communication complexity in the peer-to-peer model (neither in our model nor in the
most general one). Namely, a protocol in the peer-to-peer model can be transformed into a
protocol in the coordinator model with an O(log k) multiplicative factor in the communication
complexity, by sending any message to the coordinator with a O(log k)-bit label indicating
its destination. This factor is sometimes necessary, e.g., for the g-index function, where
players P;, 0 < i < k—1, each holds an input bit z;, player P} holds g indices 0 < j, < k —1,
1 < ¢ < g, and Py should learn the vector (z;,,2;,,...,2;,): in the coordinator model the
communication complexity of this function is ©(min{k, qlogk}), while in both peer-to-peer
models there is a protocol for this function that sends only (at most) min{k, 2¢} bits, where
P just queries the appropriate other players. But this multiplicative factor between the
complexities in the two models is not always necessary: the communication complexity of the
parity function Par is ©(k) both in the peer-to-peer models and in the coordinator model.

Moreover, when studying private protocols in the peer-to-peer model, the coordinator
model does not offer any insight. In the (asynchronous) coordinator model, described in [19]
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and used for instance in [7], if there is no privacy requirement with respect to the coordinator,
it is trivial to have a private protocol by all players sending their input to the coordinator,
and the coordinator returning the results to the players. If there is a privacy requirement
with respect to the coordinator, then if there is a random source shared by all the players
(but not the coordinator), privacy is always possible using the protocol of [21]. If no such
source exists, privacy is impossible in general. This follows from the results of Braverman et
al. [7] who show a non-zero lower bound on the total internal information complexity of all
parties (including the coordinator) for the function Disjointness in that model.

Note also that the private protocols described in [5, 18] (and further work) are defined in

the synchronous setting, and thus can be adapted to our communication model (the sets Sg
and S are always all the players and hence even independent of the current views).

In the sequel we also use a special case of our model, where the sets Sf and Sg are a
function only of 7 and j, and not of the entire current view of the player. This is a natural
special case for protocols which we call oblivious protocols, where the communication pattern
is fixed and is not a function of the input or randomness. Clearly, the messages themselves
remain a function of the view of the players. This model also allows for private protocols.

2.3 Communication complexity and information complexity

Communication complexity, introduced in [44], measures how many bits of communication
are needed in order for a set of players to compute with error € a given function of their
inputs. The allowed error €, implicit in many of the contexts, will be written explicitly as a
superscript when necessary.

» Definition 2. The communication cost of a protocol 7, CC(w), is the maximal length of
the transcript of 7 over all possible inputs, private randomness and public randomness.

» Definition 3. CC(f) denotes the communication cost of the best protocol computing f.

Information complexity measures the amount of information that must be transmitted so
that the players can compute a given function of their joint inputs. One of its main uses is
to provide a lower bound on the communication complexity of the function. In the two-party
setting, this measure led to interesting results on the communication complexity of various
functions, such as AND and Disjointness. We now focus on designing an analogue to the
information cost, for the multi-party setting. The notion of internal information cost for
two-party protocols (c.f. [14, 2, 6]) can be easily generalized to any number of players:

» Definition 4. The internal information cost of a protocol 7 for k players, with respect to
input distribution u, is the sum of the information revealed to each player about the inputs

k
of the other players: IC,(7) = > I(X_;;II; | X;R;RP).
i=1

Intuitively, the information cost of a protocol is the amount of information each player
learns about the inputs of the other players during the protocol. The definition we give
above, when restricted to two players is the same as in [6], even though they look slightly
different. This is because we explicit the role of the randomness, which will allow us to later
bound the amount of randomness needed for private protocols in the multi-party setting.

The internal information complezity of a function f with respect to input distribution
u, as well as the internal information complexity of a function f, can be defined for the
multi-party case based on the information cost of a protocol, just as in the 2-party case.
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» Definition 5. The internal information complezity of a function f, with respect to input
distribution g, is the infimum of the internal information cost over all protocols computing f
on input distribution p: 1C,(f) = inf ICp(m).

7 computing f

» Definition 6. The internal information complezity of a function f is the infimum, over
all protocols m computing f, of the information cost of 7 when run on the worst input
distribution for that protocol: IC(f) = inf sup 1C, ().

m computing f

» Proposition 7 ([11]). For any protocol 7 and input distribution p, CC(m) > IC, (). Thus,
for any function f, CC(f) > IC(f).

The information revealed to a given player by a protocol can be written in several ways:

» Proposition 8. For any protocol 7, for any player i:
< <

I(X_i: T | XaRP (X)) = I(X—s; T, | X;RRP£(X)) = I(X—_s: 11, | X RiRP f(X).

2.4 Information complexity and privacy

The definition of a private protocol as defined in [5, 18] is the following.

» Definition 9. A k-player protocol 7 for computing a family of functions (f;) is private? if
for every player i € [1, k], for all pair of inputs « = (x1,...,2) and 2’ = (2/,...,z}), such
that f;(x) = fi(2') and x; = z}, for all possible private random tapes r; of player ¢, and all
possible public random tapes 7P, it holds that for any transcript T’

Pr[ll, =T |R;=r;; X=a; RPR=rP]=Pr[I; =T |R;=r; ; X =2'; RP =1P],

where the probability is over the randomness R_;.

The notion of privacy has an equivalent formulation in terms of information.
k
» Proposition 10. A protocol 7 is private iff for all u, Y I(X_;11; | X;R;RPf;(X)) = 0.
i=1

It is well known that in the multi-party number-in-the-hand peer-to-peer setting (for
k > 3), unlike in the two-party case, any function can be privately computed.

» Theorem 11 ([5],[18]). Any function of more than two variables can be privately computed.
Using the above theorem, we can give the following lemma.
» Lemma 12. For any family of functions (f;) of more than two variables and any p,

k
IC.(f) <> H(fi(X)), where X is distributed according to fu.
i=1

This lemma shows that IC cannot be used in the multi-party setting for any meaningful
lower bounds on the communication complexity, since its value is always upper bounded by
the entropies of the functions. Our goal is to get lower bounds tight in both k and n. For
this reason, we introduce a new information theoretic quantity for the multi-party setting.

3 In this paper we consider only the setting of 1-privacy, which we call here for simplicity, privacy.



. Kerenidis, A. Rosén, and F. Urrutia

3 The new measure: Public Information Cost

We now introduce a new information theoretic quantity which can be used instead of 1C
in the multi-party setting. The notion we define will be suitable for studying multi-party
communication in a model which is only a slight restriction on the general asynchronous
model, and which allows for private protocols. This means that while IC will be at most the

entropies of the functions, our new notion remains a strong lower bound for communication.

» Definition 13. For any protocol 7w and any pu, the public information cost of 7 is:

k

PIC,(m) =Y I(X_;;ILR_; | X;R;R").

i=1

The difference between PIC and IC is the presence of the other parties private coins,
R_;, in the formula. If 7 is a protocol using only public randomness, then for any input
distribution p, PIC,(7) = IC,(7), and hence the name public information cost.

The public information cost measures both the information about the inputs learned
by the players and the information that is hidden by the use of private coins. It can be
decomposed, using the chain rule, into two terms, making explicit the contribution of the
internal information cost and of the private randomness of the players.

k

» Proposition 14. For any 7 and any p, PIC,(7) = I1C,(7) + > I(R—;; X_;| X,;IL; R; RP).
i=1
The meaning of the second term is the following. At the end of the protocol, player ¢ knows
its input X, its private coins R;, the public coins RP and its transcript IT;. Suppose that
the private randomness R_; of the other players is now revealed to player i. This brings to
it some new information I(R_;; X_;|X;II; R; RP) about the inputs X_; of the other players.
We also define the public information complexity of a function.

» Definition 15. For any f and any p, PIC,(f) = inf  PIC,(m).

7 computing f

7 computing

» Definition 16. For any f, we define the quantity PIC(f) = inf sup PIC,(m).
%
The public information cost is a lower bound for the communication complexity.

» Proposition 17. For any 7 and p, CC(m) > PIC, (7). Thus, for any f, CC(f) > PIC(f).

In fact, as we show below, the public information cost of a function is equal to its internal
information cost in a setting where only public randomness is allowed. The role of private
coins in communication protocol has been studied for example in [8, 12, 34]. In the next
section we will see that the difference between the public information cost and the information
cost is related to the private coins used during the protocol.

» Theorem 18. For any function f and input distribution p,

Plc#(f) - 7T computing f, usliI}lfg‘] only public coins lcﬂ(ﬂ-) 7 and
PIC(f) = inf sup 1C, ().

m computing f, using only public coins
The following property of the public information cost will be useful for zero-error protocols.

» Proposition 19. For any function f, for any input distribution pu, PICz(f) = IC?ft(f)
where ICI°(f) = inf IC,. (7).

7 deterministic protocol computing f

57:9
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PIC and IC are strictly different even in the two party case. We prove below that
for the AND function, the public information cost is log3 ~ 1.58, while, as shown in [9],
ICO(AND) ~ 1.49. This implies that the protocol that achieves the optimal information cost
for AND must use private coins. We remark also that in [9] it is shown that the external
information cost of AND, that we do not consider here, is log(3).

» Proposition 20. For two players, PIC’(AND) = log(3) ~ 1.58.

4 Private computation, randomness, and PIC

We have seen that the public information cost of a function is equal to the information cost
of the function when we only consider public coin protocols, and that in order to decrease
the information cost even further, the players must use private randomness. We will see now
that the difference between the public information cost of a protocol and its information cost
can provide a lower bound on the amount of private randomness the players use during the
protocol. The entropy of the transcript of the protocol, conditioned on the inputs and the
public coins, is defined as H(IT | X RP). Once the input and the public coins are fixed, the
entropy of the transcript of the protocol comes solely from the private randomness. Thus it
provides a lower bound on the entropy of the private randomness used by the players.

» Theorem 21. Let f = (f;) be a family of functions of k variables. Let 7 be a protocol for

PIC —1C
f. For any input distribution u, it holds: H,(Il | XRP) > ”(7;) 1 u(T)

. Thus running

PIC,(f) = 1

a protocol for f with information cost I,, requires entropy H,(II | X RP) > 1

5 A direct sum for PIC ?

The direct sum property is a fundamental question in complexity theory, and has been
studied for many computation models. A direct sum theorem affirms that the amount of
resources needed to perform ¢ independent tasks is at least the sum of the resources needed
to perform each of the ¢ tasks. In this section we show that a direct sum property for PIC
implies a direct sum property for CC. For this, we prove a compression result by extending
[12, 37] to the multi-party case. Note that information complexity has a direct sum property
in the multi-party case. For PIC, it is easy to prove the following inequality.

» Theorem 22. For any k-variable functions f and g, for any p on inputs of f, for any n
on inputs of g, PIC,xy,(f x g) < PIC,(f) + PIC,(9).

In order to understand whether the opposite inequality holds, i.e., whether a direct sum
property holds for PIC, we first need to study the problem of compressing communication.

5.1 Relation between PIC and CC: A compression result

An important open question is how well we can compress the communication cost of an
interactive protocol. Compression results have appeared in [3, 11, 12, 37, 4], while, on the other
hand, [25, 27, 39, 22, 26] focus on the hardness of compressing communication protocols.
Here, we present a compression result with regards to the average-case communication
complexity and the public information cost.
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» Definition 23. The average-case communication complexity of a protocol m with respect to
the input distribution p, denoted ACC,, (), is the expected number of bits that are transmitted
in an execution of 7 for inputs distributed according to g and uniform randomness.

» Theorem 24. Suppose there exists a protocol ® to compute a k-variable function f over
the distribution p with error probability €. Then there exists a public-coin protocol p that
computes f over p with error € + 6, and with average communication complexity

k2P|cﬂ(w);og(CC(7T))>) ,

The proof of the above theorem will follow from extending the compression result presented
in [12, 37] to the case of k > 2 players.

ACC,(p)=0 <k2PIC“(7r) log(CC(m)) (log(kCC(W)) + log

» Theorem 25. Suppose there exists a public coin protocol ™ to compute a k-variable function
f over the distribution p with error probability €. Then there exists a public-coin protocol p
that computes f over u with error e + 0, and with average communication complexity

k?1C,, () log(CC(m))
5 .
Theorems 25 and 18, which make the link between the public information cost of general

protocols and the information cost of public coins protocol, imply theorem 24.
In the two-party compression scheme of [12, 37], the two players, given their own input,

ACC,(p) = O <k2ICM(7r) log(CC(r)) <log(kCC(7r)) +log

try to guess the transcript 7(x1,z2) of the protocol 7. For this, player 1 picks a candidate ¢;
from the set Im(7(z1,-)) of possible transcripts knowing that it has input z;, while player
2 picks a candidate to from the set Im(7(:,22)). The two players then communicate in
order to find the first bit on which ¢; and ¢y disagree. The general structure of protocols
ensures that the common prefix of ¢; and ¢o (until the first bit of disagreement) is identical
to the beginning of the correct transcript on inputs z; and 9, i.e., identical to 7(z1, z2).
Starting from this correct prefix, the players then pick new candidates for the transcript of
the protocol 7(x1,x2), and so on, until they agree on the full transcript m(z1,22). Clever
choices of the candidates, along with an efficient technique to find the first bit which differs
between the candidates, lead to a protocol with little communication.

In extending the proof in [12, 37] to the multi-party case, new difficulties occur. The
players can no longer try to guess the full transcript, as they have little information about
the conversation between the other players, but can only try to guess their partial transcripts,
according to their own input. Then, in order to find the first disagreement in the global
transcript, every pair of players needs to find and communicate the place of the first
disagreement in their partial transcripts. This induces the k2 factor in our compression

scheme. It is unclear if this is necessary. Moreover, the players lack a common reference time.

To solve this, we will introduce, as a technical tool in the proof, a coordinator, whose role is
to introduce a round structure in the protocol w. Note that this is only in the proof, and
that the stated results hold in the model we define in Section 2.

5.2 A direct sum for PIC implies a direct sum for CC

» Theorem 26. Given a k-variable function f and a distribution u on inputs of f, if the
existence of a protocol m computing f& with error € > 0 implies that there exists a protocol

1
7' computing f with error € and verifying PIC, (1) < EPICM@ (), CC(n") < CC(m), then

§ 2 €(rRt o €/ rRt
t(6k+ 5)CC€(f®t)1og(CC€(f®t))1og(k)1ogk s >16g(CC (f ))> '

Note that the result of this theorem is meaningful when ¢ is large with respect to k.

() =0 <
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6 Tight lower bounds for the parity function Par

We now show how one can indeed use PIC to study multi-party communication protocols and
to prove tight bounds. We study one of the canonical problems for zero-error multi-party
computation, the parity function. The k-party parity problem with n-bit inputs Par} is
defined as follows. Each player i receives n bits (2}),cp,,) and Player 1 has to output the

k k k
bitwise XOR of the inputs <@ o, @, D x?) .
=1 =1 i=1

There is a simple private protocol for Par} that uses n bits of private randomness. Player
1 uses a private random n-bit string r» and sends to Player 2 the string x; & r. Then, Player
2 computes the bit-wise parity of its input with the message and sends o ® 1 H r to Player
3. The players continue until Player 1 receives back the message xy @ ... @ x1 & r. Player 1
then takes the bit-wise parity of this message with the private string r to compute the value
of the parity function. It is easy to see that this protocol has information cost equal to n,
since Player 1 just learns the value of the function and all other players learn nothing. We
thus see that information cost cannot provide here lower bounds that scale with k.

We now prove tight lower bounds for this problem using the measure of PIC. For this, we
study a restricted class of protocols: we only consider protocols such that for any player ¢,
the sets (S!); and (gi)l do not depend on the input z or on the randomness. In other words,
the structure of the protocol is fixed and independent of the input and randomness. Note
that the private protocol we described above fits in this model.

Our bound for Pary is in fact proved for a wider class of protocols, where we allow the
player outputting @lescf to be different for each coordinate p and to depend on the input.

» Theorem 27. PICg(ParZ) > n(k — 1) where p is the uniform input distribution.

» Theorem 28. The entropy in the private randomness of a private protocol for Pary is at

least

e
Where the last theorem follows from Theorems 27 and 21. Using Theorem 21 we can
also give a lower bound on the randomness one needs for protocols that are allowed to leak

some limited amount of information about the inputs of the players.

7 Conclusions

In this paper we introduce a new information-theoretic measure, that we call PIC, for the
study of multi-party computation protocols in the number-in-hand, peer-to-peer model. This
is probably the most natural (distributed) computation model, and also closely related to
the models used in the distributed algorithms community. Previous information-theoretic
measures that were used successfully for the study of two-party computation protocols do
not extend immediately to the multi-party case due to the fact that private protocols exist
for any function in the multi-party setting [5, 18]. Our notion of PIC provides an alternative
way of studying multi-party protocols, especially when one is interested in notions of privacy.
Furthermore, PIC may yield tight results for certain functions, for which using other models,
such as the coordinator model, would imply a loss of a logarithmic factor.

We define this measure in a slightly restricted computation model which however still
allows private protocols, and applies to almost any protocol in the literature. We prove
a number of properties of our new measure, PIC, and a number of connections to other
complexity notions, e.g., the amount of randomness needed for private computation or the
central question of direct sum (in communication complexity).
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Our work opens the way to interesting directions for further work. A challenging direction

would be to prove a tight lower bound for Disjointness in the message passing peer-to-peer
model (without the loss of a logarithmic factor). An even more ambitious goal would be to
use our result from Section 5 to try and prove the direct sum property for communication

complexity, in either the two-party or multi-party setting, via our measure of PIC.
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